Bitcoin Core  0.19.99
P2P Digital Currency
ctaes.c
Go to the documentation of this file.
1  /*********************************************************************
2  * Copyright (c) 2016 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 /* Constant time, unoptimized, concise, plain C, AES implementation
8  * Based On:
9  * Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM
10  * http://www.iacr.org/archive/ches2009/57470001/57470001.pdf
11  * But using 8 16-bit integers representing a single AES state rather than 8 128-bit
12  * integers representing 8 AES states.
13  */
14 
15 #include "ctaes.h"
16 
17 /* Slice variable slice_i contains the i'th bit of the 16 state variables in this order:
18  * 0 1 2 3
19  * 4 5 6 7
20  * 8 9 10 11
21  * 12 13 14 15
22  */
23 
25 static void LoadByte(AES_state* s, unsigned char byte, int r, int c) {
26  int i;
27  for (i = 0; i < 8; i++) {
28  s->slice[i] |= (byte & 1) << (r * 4 + c);
29  byte >>= 1;
30  }
31 }
32 
34 static void LoadBytes(AES_state *s, const unsigned char* data16) {
35  int c;
36  for (c = 0; c < 4; c++) {
37  int r;
38  for (r = 0; r < 4; r++) {
39  LoadByte(s, *(data16++), r, c);
40  }
41  }
42 }
43 
45 static void SaveBytes(unsigned char* data16, const AES_state *s) {
46  int c;
47  for (c = 0; c < 4; c++) {
48  int r;
49  for (r = 0; r < 4; r++) {
50  int b;
51  uint8_t v = 0;
52  for (b = 0; b < 8; b++) {
53  v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b;
54  }
55  *(data16++) = v;
56  }
57  }
58 }
59 
60 /* S-box implementation based on the gate logic from:
61  * Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box.
62  * https://eprint.iacr.org/2011/332.pdf
63 */
64 static void SubBytes(AES_state *s, int inv) {
65  /* Load the bit slices */
66  uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4];
67  uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0];
68 
69  uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16;
70  uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D;
71  uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40;
72  uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54;
73  uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63;
74 
75  if (inv) {
76  uint16_t R5, R13, R17, R18, R19;
77  /* Undo linear postprocessing */
78  T23 = U0 ^ U3;
79  T22 = ~(U1 ^ U3);
80  T2 = ~(U0 ^ U1);
81  T1 = U3 ^ U4;
82  T24 = ~(U4 ^ U7);
83  R5 = U6 ^ U7;
84  T8 = ~(U1 ^ T23);
85  T19 = T22 ^ R5;
86  T9 = ~(U7 ^ T1);
87  T10 = T2 ^ T24;
88  T13 = T2 ^ R5;
89  T3 = T1 ^ R5;
90  T25 = ~(U2 ^ T1);
91  R13 = U1 ^ U6;
92  T17 = ~(U2 ^ T19);
93  T20 = T24 ^ R13;
94  T4 = U4 ^ T8;
95  R17 = ~(U2 ^ U5);
96  R18 = ~(U5 ^ U6);
97  R19 = ~(U2 ^ U4);
98  D = U0 ^ R17;
99  T6 = T22 ^ R17;
100  T16 = R13 ^ R19;
101  T27 = T1 ^ R18;
102  T15 = T10 ^ T27;
103  T14 = T10 ^ R18;
104  T26 = T3 ^ T16;
105  } else {
106  /* Linear preprocessing. */
107  T1 = U0 ^ U3;
108  T2 = U0 ^ U5;
109  T3 = U0 ^ U6;
110  T4 = U3 ^ U5;
111  T5 = U4 ^ U6;
112  T6 = T1 ^ T5;
113  T7 = U1 ^ U2;
114  T8 = U7 ^ T6;
115  T9 = U7 ^ T7;
116  T10 = T6 ^ T7;
117  T11 = U1 ^ U5;
118  T12 = U2 ^ U5;
119  T13 = T3 ^ T4;
120  T14 = T6 ^ T11;
121  T15 = T5 ^ T11;
122  T16 = T5 ^ T12;
123  T17 = T9 ^ T16;
124  T18 = U3 ^ U7;
125  T19 = T7 ^ T18;
126  T20 = T1 ^ T19;
127  T21 = U6 ^ U7;
128  T22 = T7 ^ T21;
129  T23 = T2 ^ T22;
130  T24 = T2 ^ T10;
131  T25 = T20 ^ T17;
132  T26 = T3 ^ T16;
133  T27 = T1 ^ T12;
134  D = U7;
135  }
136 
137  /* Non-linear transformation (shared between the forward and backward case) */
138  M1 = T13 & T6;
139  M6 = T3 & T16;
140  M11 = T1 & T15;
141  M13 = (T4 & T27) ^ M11;
142  M15 = (T2 & T10) ^ M11;
143  M20 = T14 ^ M1 ^ (T23 & T8) ^ M13;
144  M21 = (T19 & D) ^ M1 ^ T24 ^ M15;
145  M22 = T26 ^ M6 ^ (T22 & T9) ^ M13;
146  M23 = (T20 & T17) ^ M6 ^ M15 ^ T25;
147  M25 = M22 & M20;
148  M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25));
149  M38 = M20 ^ M25 ^ (M21 | (M20 & M23));
150  M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25));
151  M40 = M22 ^ M25 ^ (M23 | (M21 & M22));
152  M41 = M38 ^ M40;
153  M42 = M37 ^ M39;
154  M43 = M37 ^ M38;
155  M44 = M39 ^ M40;
156  M45 = M42 ^ M41;
157  M46 = M44 & T6;
158  M47 = M40 & T8;
159  M48 = M39 & D;
160  M49 = M43 & T16;
161  M50 = M38 & T9;
162  M51 = M37 & T17;
163  M52 = M42 & T15;
164  M53 = M45 & T27;
165  M54 = M41 & T10;
166  M55 = M44 & T13;
167  M56 = M40 & T23;
168  M57 = M39 & T19;
169  M58 = M43 & T3;
170  M59 = M38 & T22;
171  M60 = M37 & T20;
172  M61 = M42 & T1;
173  M62 = M45 & T4;
174  M63 = M41 & T2;
175 
176  if (inv){
177  /* Undo linear preprocessing */
178  uint16_t P0 = M52 ^ M61;
179  uint16_t P1 = M58 ^ M59;
180  uint16_t P2 = M54 ^ M62;
181  uint16_t P3 = M47 ^ M50;
182  uint16_t P4 = M48 ^ M56;
183  uint16_t P5 = M46 ^ M51;
184  uint16_t P6 = M49 ^ M60;
185  uint16_t P7 = P0 ^ P1;
186  uint16_t P8 = M50 ^ M53;
187  uint16_t P9 = M55 ^ M63;
188  uint16_t P10 = M57 ^ P4;
189  uint16_t P11 = P0 ^ P3;
190  uint16_t P12 = M46 ^ M48;
191  uint16_t P13 = M49 ^ M51;
192  uint16_t P14 = M49 ^ M62;
193  uint16_t P15 = M54 ^ M59;
194  uint16_t P16 = M57 ^ M61;
195  uint16_t P17 = M58 ^ P2;
196  uint16_t P18 = M63 ^ P5;
197  uint16_t P19 = P2 ^ P3;
198  uint16_t P20 = P4 ^ P6;
199  uint16_t P22 = P2 ^ P7;
200  uint16_t P23 = P7 ^ P8;
201  uint16_t P24 = P5 ^ P7;
202  uint16_t P25 = P6 ^ P10;
203  uint16_t P26 = P9 ^ P11;
204  uint16_t P27 = P10 ^ P18;
205  uint16_t P28 = P11 ^ P25;
206  uint16_t P29 = P15 ^ P20;
207  s->slice[7] = P13 ^ P22;
208  s->slice[6] = P26 ^ P29;
209  s->slice[5] = P17 ^ P28;
210  s->slice[4] = P12 ^ P22;
211  s->slice[3] = P23 ^ P27;
212  s->slice[2] = P19 ^ P24;
213  s->slice[1] = P14 ^ P23;
214  s->slice[0] = P9 ^ P16;
215  } else {
216  /* Linear postprocessing */
217  uint16_t L0 = M61 ^ M62;
218  uint16_t L1 = M50 ^ M56;
219  uint16_t L2 = M46 ^ M48;
220  uint16_t L3 = M47 ^ M55;
221  uint16_t L4 = M54 ^ M58;
222  uint16_t L5 = M49 ^ M61;
223  uint16_t L6 = M62 ^ L5;
224  uint16_t L7 = M46 ^ L3;
225  uint16_t L8 = M51 ^ M59;
226  uint16_t L9 = M52 ^ M53;
227  uint16_t L10 = M53 ^ L4;
228  uint16_t L11 = M60 ^ L2;
229  uint16_t L12 = M48 ^ M51;
230  uint16_t L13 = M50 ^ L0;
231  uint16_t L14 = M52 ^ M61;
232  uint16_t L15 = M55 ^ L1;
233  uint16_t L16 = M56 ^ L0;
234  uint16_t L17 = M57 ^ L1;
235  uint16_t L18 = M58 ^ L8;
236  uint16_t L19 = M63 ^ L4;
237  uint16_t L20 = L0 ^ L1;
238  uint16_t L21 = L1 ^ L7;
239  uint16_t L22 = L3 ^ L12;
240  uint16_t L23 = L18 ^ L2;
241  uint16_t L24 = L15 ^ L9;
242  uint16_t L25 = L6 ^ L10;
243  uint16_t L26 = L7 ^ L9;
244  uint16_t L27 = L8 ^ L10;
245  uint16_t L28 = L11 ^ L14;
246  uint16_t L29 = L11 ^ L17;
247  s->slice[7] = L6 ^ L24;
248  s->slice[6] = ~(L16 ^ L26);
249  s->slice[5] = ~(L19 ^ L28);
250  s->slice[4] = L6 ^ L21;
251  s->slice[3] = L20 ^ L22;
252  s->slice[2] = L25 ^ L29;
253  s->slice[1] = ~(L13 ^ L27);
254  s->slice[0] = ~(L6 ^ L23);
255  }
256 }
257 
258 #define BIT_RANGE(from,to) (((1 << ((to) - (from))) - 1) << (from))
259 
260 #define BIT_RANGE_LEFT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) << (shift))
261 #define BIT_RANGE_RIGHT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) >> (shift))
262 
263 static void ShiftRows(AES_state* s) {
264  int i;
265  for (i = 0; i < 8; i++) {
266  uint16_t v = s->slice[i];
267  s->slice[i] =
268  (v & BIT_RANGE(0, 4)) |
269  BIT_RANGE_LEFT(v, 4, 5, 3) | BIT_RANGE_RIGHT(v, 5, 8, 1) |
270  BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
271  BIT_RANGE_LEFT(v, 12, 15, 1) | BIT_RANGE_RIGHT(v, 15, 16, 3);
272  }
273 }
274 
275 static void InvShiftRows(AES_state* s) {
276  int i;
277  for (i = 0; i < 8; i++) {
278  uint16_t v = s->slice[i];
279  s->slice[i] =
280  (v & BIT_RANGE(0, 4)) |
281  BIT_RANGE_LEFT(v, 4, 7, 1) | BIT_RANGE_RIGHT(v, 7, 8, 3) |
282  BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
283  BIT_RANGE_LEFT(v, 12, 13, 3) | BIT_RANGE_RIGHT(v, 13, 16, 1);
284  }
285 }
286 
287 #define ROT(x,b) (((x) >> ((b) * 4)) | ((x) << ((4-(b)) * 4)))
288 
289 static void MixColumns(AES_state* s, int inv) {
290  /* The MixColumns transform treats the bytes of the columns of the state as
291  * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them
292  * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo
293  * x^4 + {01}.
294  *
295  * In the inverse transform, we multiply by the inverse of a(x),
296  * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to
297  * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code
298  * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna)
299  *
300  * In the bitsliced representation, a multiplication of every column by x
301  * mod x^4 + 1 is simply a right rotation.
302  */
303 
304  /* Shared for both directions is a multiplication by a(x), which can be
305  * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}).
306  *
307  * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01
308  * variables and (x^3 + x^2 + x)*s into the s?_123 variables.
309  */
310  uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2], s3 = s->slice[3];
311  uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6], s7 = s->slice[7];
312  uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3);
313  uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3);
314  uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3);
315  uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3);
316  uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3);
317  uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3);
318  uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3);
319  uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3);
320  /* Now compute s = s?_123 + {02} * s?_01. */
321  s->slice[0] = s7_01 ^ s0_123;
322  s->slice[1] = s7_01 ^ s0_01 ^ s1_123;
323  s->slice[2] = s1_01 ^ s2_123;
324  s->slice[3] = s7_01 ^ s2_01 ^ s3_123;
325  s->slice[4] = s7_01 ^ s3_01 ^ s4_123;
326  s->slice[5] = s4_01 ^ s5_123;
327  s->slice[6] = s5_01 ^ s6_123;
328  s->slice[7] = s6_01 ^ s7_123;
329  if (inv) {
330  /* In the reverse direction, we further need to multiply by
331  * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}.
332  *
333  * First compute (x^2 + {01}) * s into the t?_02 variables: */
334  uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2);
335  uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2);
336  uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2);
337  uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2);
338  uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2);
339  uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2);
340  uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2);
341  uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2);
342  /* And then update s += {04} * t?_02 */
343  s->slice[0] ^= t6_02;
344  s->slice[1] ^= t6_02 ^ t7_02;
345  s->slice[2] ^= t0_02 ^ t7_02;
346  s->slice[3] ^= t1_02 ^ t6_02;
347  s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02;
348  s->slice[5] ^= t3_02 ^ t7_02;
349  s->slice[6] ^= t4_02;
350  s->slice[7] ^= t5_02;
351  }
352 }
353 
354 static void AddRoundKey(AES_state* s, const AES_state* round) {
355  int b;
356  for (b = 0; b < 8; b++) {
357  s->slice[b] ^= round->slice[b];
358  }
359 }
360 
362 static void GetOneColumn(AES_state* s, const AES_state* a, int c) {
363  int b;
364  for (b = 0; b < 8; b++) {
365  s->slice[b] = (a->slice[b] >> c) & 0x1111;
366  }
367 }
368 
370 static void KeySetupColumnMix(AES_state* s, AES_state* r, const AES_state* a, int c1, int c2) {
371  int b;
372  for (b = 0; b < 8; b++) {
373  r->slice[b] |= ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1;
374  }
375 }
376 
378 static void KeySetupTransform(AES_state* s, const AES_state* r) {
379  int b;
380  for (b = 0; b < 8; b++) {
381  s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b];
382  }
383 }
384 
385 /* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 + x + 1 */
386 static void MultX(AES_state* s) {
387  uint16_t top = s->slice[7];
388  s->slice[7] = s->slice[6];
389  s->slice[6] = s->slice[5];
390  s->slice[5] = s->slice[4];
391  s->slice[4] = s->slice[3] ^ top;
392  s->slice[3] = s->slice[2] ^ top;
393  s->slice[2] = s->slice[1];
394  s->slice[1] = s->slice[0] ^ top;
395  s->slice[0] = top;
396 }
397 
407 static void AES_setup(AES_state* rounds, const uint8_t* key, int nkeywords, int nrounds)
408 {
409  int i;
410 
411  /* The one-byte round constant */
412  AES_state rcon = {{1,0,0,0,0,0,0,0}};
413  /* The number of the word being generated, modulo nkeywords */
414  int pos = 0;
415  /* The column representing the word currently being processed */
416  AES_state column;
417 
418  for (i = 0; i < nrounds + 1; i++) {
419  int b;
420  for (b = 0; b < 8; b++) {
421  rounds[i].slice[b] = 0;
422  }
423  }
424 
425  /* The first nkeywords round columns are just taken from the key directly. */
426  for (i = 0; i < nkeywords; i++) {
427  int r;
428  for (r = 0; r < 4; r++) {
429  LoadByte(&rounds[i >> 2], *(key++), r, i & 3);
430  }
431  }
432 
433  GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3);
434 
435  for (i = nkeywords; i < 4 * (nrounds + 1); i++) {
436  /* Transform column */
437  if (pos == 0) {
438  SubBytes(&column, 0);
439  KeySetupTransform(&column, &rcon);
440  MultX(&rcon);
441  } else if (nkeywords > 6 && pos == 4) {
442  SubBytes(&column, 0);
443  }
444  if (++pos == nkeywords) pos = 0;
445  KeySetupColumnMix(&column, &rounds[i >> 2], &rounds[(i - nkeywords) >> 2], i & 3, (i - nkeywords) & 3);
446  }
447 }
448 
449 static void AES_encrypt(const AES_state* rounds, int nrounds, unsigned char* cipher16, const unsigned char* plain16) {
450  AES_state s = {{0}};
451  int round;
452 
453  LoadBytes(&s, plain16);
454  AddRoundKey(&s, rounds++);
455 
456  for (round = 1; round < nrounds; round++) {
457  SubBytes(&s, 0);
458  ShiftRows(&s);
459  MixColumns(&s, 0);
460  AddRoundKey(&s, rounds++);
461  }
462 
463  SubBytes(&s, 0);
464  ShiftRows(&s);
465  AddRoundKey(&s, rounds);
466 
467  SaveBytes(cipher16, &s);
468 }
469 
470 static void AES_decrypt(const AES_state* rounds, int nrounds, unsigned char* plain16, const unsigned char* cipher16) {
471  /* Most AES decryption implementations use the alternate scheme
472  * (the Equivalent Inverse Cipher), which allows for more code reuse between
473  * the encryption and decryption code, but requires separate setup for both.
474  */
475  AES_state s = {{0}};
476  int round;
477 
478  rounds += nrounds;
479 
480  LoadBytes(&s, cipher16);
481  AddRoundKey(&s, rounds--);
482 
483  for (round = 1; round < nrounds; round++) {
484  InvShiftRows(&s);
485  SubBytes(&s, 1);
486  AddRoundKey(&s, rounds--);
487  MixColumns(&s, 1);
488  }
489 
490  InvShiftRows(&s);
491  SubBytes(&s, 1);
492  AddRoundKey(&s, rounds);
493 
494  SaveBytes(plain16, &s);
495 }
496 
497 void AES128_init(AES128_ctx* ctx, const unsigned char* key16) {
498  AES_setup(ctx->rk, key16, 4, 10);
499 }
500 
501 void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
502  while (blocks--) {
503  AES_encrypt(ctx->rk, 10, cipher16, plain16);
504  cipher16 += 16;
505  plain16 += 16;
506  }
507 }
508 
509 void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
510  while (blocks--) {
511  AES_decrypt(ctx->rk, 10, plain16, cipher16);
512  cipher16 += 16;
513  plain16 += 16;
514  }
515 }
516 
517 void AES192_init(AES192_ctx* ctx, const unsigned char* key24) {
518  AES_setup(ctx->rk, key24, 6, 12);
519 }
520 
521 void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
522  while (blocks--) {
523  AES_encrypt(ctx->rk, 12, cipher16, plain16);
524  cipher16 += 16;
525  plain16 += 16;
526  }
527 
528 }
529 
530 void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
531  while (blocks--) {
532  AES_decrypt(ctx->rk, 12, plain16, cipher16);
533  cipher16 += 16;
534  plain16 += 16;
535  }
536 }
537 
538 void AES256_init(AES256_ctx* ctx, const unsigned char* key32) {
539  AES_setup(ctx->rk, key32, 8, 14);
540 }
541 
542 void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
543  while (blocks--) {
544  AES_encrypt(ctx->rk, 14, cipher16, plain16);
545  cipher16 += 16;
546  plain16 += 16;
547  }
548 }
549 
550 void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
551  while (blocks--) {
552  AES_decrypt(ctx->rk, 14, plain16, cipher16);
553  cipher16 += 16;
554  plain16 += 16;
555  }
556 }
void AES256_init(AES256_ctx *ctx, const unsigned char *key32)
Definition: ctaes.c:538
static void MixColumns(AES_state *s, int inv)
Definition: ctaes.c:289
static void InvShiftRows(AES_state *s)
Definition: ctaes.c:275
uint16_t slice[8]
Definition: ctaes.h:14
void AES128_encrypt(const AES128_ctx *ctx, size_t blocks, unsigned char *cipher16, const unsigned char *plain16)
Definition: ctaes.c:501
void AES192_encrypt(const AES192_ctx *ctx, size_t blocks, unsigned char *cipher16, const unsigned char *plain16)
Definition: ctaes.c:521
static void ShiftRows(AES_state *s)
Definition: ctaes.c:263
void AES256_encrypt(const AES256_ctx *ctx, size_t blocks, unsigned char *cipher16, const unsigned char *plain16)
Definition: ctaes.c:542
static void KeySetupColumnMix(AES_state *s, AES_state *r, const AES_state *a, int c1, int c2)
column_c1(r) |= (column_0(s) ^= column_c2(a))
Definition: ctaes.c:370
void AES128_decrypt(const AES128_ctx *ctx, size_t blocks, unsigned char *plain16, const unsigned char *cipher16)
Definition: ctaes.c:509
static void GetOneColumn(AES_state *s, const AES_state *a, int c)
column_0(s) = column_c(a)
Definition: ctaes.c:362
AES_state rk[13]
Definition: ctaes.h:22
static void LoadBytes(AES_state *s, const unsigned char *data16)
Load 16 bytes of data into 8 sliced integers.
Definition: ctaes.c:34
static void AES_setup(AES_state *rounds, const uint8_t *key, int nkeywords, int nrounds)
Expand the cipher key into the key schedule.
Definition: ctaes.c:407
static void AddRoundKey(AES_state *s, const AES_state *round)
Definition: ctaes.c:354
static void MultX(AES_state *s)
Definition: ctaes.c:386
AES_state rk[11]
Definition: ctaes.h:18
void AES256_decrypt(const AES256_ctx *ctx, size_t blocks, unsigned char *plain16, const unsigned char *cipher16)
Definition: ctaes.c:550
#define BIT_RANGE(from, to)
Definition: ctaes.c:258
AES_state rk[15]
Definition: ctaes.h:26
void AES128_init(AES128_ctx *ctx, const unsigned char *key16)
Definition: ctaes.c:497
static secp256k1_context * ctx
Definition: tests.c:46
static void SaveBytes(unsigned char *data16, const AES_state *s)
Convert 8 sliced integers into 16 bytes of data.
Definition: ctaes.c:45
void AES192_init(AES192_ctx *ctx, const unsigned char *key24)
Definition: ctaes.c:517
static void AES_encrypt(const AES_state *rounds, int nrounds, unsigned char *cipher16, const unsigned char *plain16)
Definition: ctaes.c:449
#define BIT_RANGE_LEFT(x, from, to, shift)
Definition: ctaes.c:260
#define ROT(x, b)
Definition: ctaes.c:287
void AES192_decrypt(const AES192_ctx *ctx, size_t blocks, unsigned char *plain16, const unsigned char *cipher16)
Definition: ctaes.c:530
static void KeySetupTransform(AES_state *s, const AES_state *r)
Rotate the rows in s one position upwards, and xor in r.
Definition: ctaes.c:378
static void SubBytes(AES_state *s, int inv)
Definition: ctaes.c:64
static void LoadByte(AES_state *s, unsigned char byte, int r, int c)
Convert a byte to sliced form, storing it corresponding to given row and column in s...
Definition: ctaes.c:25
#define BIT_RANGE_RIGHT(x, from, to, shift)
Definition: ctaes.c:261
static void AES_decrypt(const AES_state *rounds, int nrounds, unsigned char *plain16, const unsigned char *cipher16)
Definition: ctaes.c:470