Bitcoin Core 28.99.0
P2P Digital Currency
modinv32.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2020 Peter Dettman *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef SECP256K1_MODINV32_H
8#define SECP256K1_MODINV32_H
9
10#include "util.h"
11
12/* A signed 30-bit limb representation of integers.
13 *
14 * Its value is sum(v[i] * 2^(30*i), i=0..8). */
15typedef struct {
16 int32_t v[9];
18
19typedef struct {
20 /* The modulus in signed30 notation, must be odd and in [3, 2^256]. */
22
23 /* modulus^{-1} mod 2^30 */
24 uint32_t modulus_inv30;
26
27/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
28 * If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
29 * x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
30 *
31 * On output, all of x's limbs will be in [0, 2^30).
32 */
34
35/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
37
38/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
39 * cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
40 * cannot be computed. */
42
43#endif /* SECP256K1_MODINV32_H */
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
secp256k1_modinv32_signed30 modulus
Definition: modinv32.h:21