Bitcoin Core 28.99.0
P2P Digital Currency
modinv64.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2020 Peter Dettman *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef SECP256K1_MODINV64_H
8#define SECP256K1_MODINV64_H
9
10#include "util.h"
11
12#ifndef SECP256K1_WIDEMUL_INT128
13#error "modinv64 requires 128-bit wide multiplication support"
14#endif
15
16/* A signed 62-bit limb representation of integers.
17 *
18 * Its value is sum(v[i] * 2^(62*i), i=0..4). */
19typedef struct {
20 int64_t v[5];
22
23typedef struct {
24 /* The modulus in signed62 notation, must be odd and in [3, 2^256]. */
26
27 /* modulus^{-1} mod 2^62 */
28 uint64_t modulus_inv62;
30
31/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus).
32 * If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of
33 * x and modulus must be 1). These rules are automatically satisfied if the modulus is prime.
34 *
35 * On output, all of x's limbs will be in [0, 2^62).
36 */
38
39/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */
41
42/* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus
43 * cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result
44 * cannot be computed. */
46
47#endif /* SECP256K1_MODINV64_H */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
secp256k1_modinv64_signed62 modulus
Definition: modinv64.h:25