Bitcoin Core 28.99.0
P2P Digital Currency
coinselection.cpp
Go to the documentation of this file.
1// Copyright (c) 2017-2022 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
6
7#include <common/system.h>
8#include <consensus/amount.h>
10#include <interfaces/chain.h>
11#include <logging.h>
12#include <policy/feerate.h>
13#include <util/check.h>
14#include <util/moneystr.h>
15
16#include <numeric>
17#include <optional>
18#include <queue>
19
20namespace wallet {
21// Common selection error across the algorithms
23{
24 return util::Error{_("The inputs size exceeds the maximum weight. "
25 "Please try sending a smaller amount or manually consolidating your wallet's UTXOs")};
26}
27
28// Sort by descending (effective) value prefer lower waste on tie
29struct {
30 bool operator()(const OutputGroup& a, const OutputGroup& b) const
31 {
32 if (a.GetSelectionAmount() == b.GetSelectionAmount()) {
33 // Lower waste is better when effective_values are tied
34 return (a.fee - a.long_term_fee) < (b.fee - b.long_term_fee);
35 }
36 return a.GetSelectionAmount() > b.GetSelectionAmount();
37 }
39
40// Sort by descending (effective) value prefer lower weight on tie
41struct {
42 bool operator()(const OutputGroup& a, const OutputGroup& b) const
43 {
44 if (a.GetSelectionAmount() == b.GetSelectionAmount()) {
45 // Sort lower weight to front on tied effective_value
46 return a.m_weight < b.m_weight;
47 }
48 return a.GetSelectionAmount() > b.GetSelectionAmount();
49 }
51
52/*
53 * This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
54 * set that can pay for the spending target and does not exceed the spending target by more than the
55 * cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
56 * tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
57 * are sorted by their effective values and the tree is explored deterministically per the inclusion
58 * branch first. At each node, the algorithm checks whether the selection is within the target range.
59 * While the selection has not reached the target range, more UTXOs are included. When a selection's
60 * value exceeds the target range, the complete subtree deriving from this selection can be omitted.
61 * At that point, the last included UTXO is deselected and the corresponding omission branch explored
62 * instead. The search ends after the complete tree has been searched or after a limited number of tries.
63 *
64 * The search continues to search for better solutions after one solution has been found. The best
65 * solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
66 * spend the current inputs at the given fee rate minus the long term expected cost to spend the
67 * inputs, plus the amount by which the selection exceeds the spending target:
68 *
69 * waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
70 *
71 * The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
72 * the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
73 * cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
74 * to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
75 * predecessor.
76 *
77 * The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
78 * https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
79 *
80 * @param const std::vector<OutputGroup>& utxo_pool The set of UTXO groups that we are choosing from.
81 * These UTXO groups will be sorted in descending order by effective value and the OutputGroups'
82 * values are their effective values.
83 * @param const CAmount& selection_target This is the value that we want to select. It is the lower
84 * bound of the range.
85 * @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
86 * This plus selection_target is the upper bound of the range.
87 * @param int max_selection_weight The maximum allowed weight for a selection result to be valid.
88 * @returns The result of this coin selection algorithm, or std::nullopt
89 */
90
91static const size_t TOTAL_TRIES = 100000;
92
93util::Result<SelectionResult> SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool, const CAmount& selection_target, const CAmount& cost_of_change,
94 int max_selection_weight)
95{
96 SelectionResult result(selection_target, SelectionAlgorithm::BNB);
97 CAmount curr_value = 0;
98 std::vector<size_t> curr_selection; // selected utxo indexes
99 int curr_selection_weight = 0; // sum of selected utxo weight
100
101 // Calculate curr_available_value
102 CAmount curr_available_value = 0;
103 for (const OutputGroup& utxo : utxo_pool) {
104 // Assert that this utxo is not negative. It should never be negative,
105 // effective value calculation should have removed it
106 assert(utxo.GetSelectionAmount() > 0);
107 curr_available_value += utxo.GetSelectionAmount();
108 }
109 if (curr_available_value < selection_target) {
110 return util::Error();
111 }
112
113 // Sort the utxo_pool
114 std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
115
116 CAmount curr_waste = 0;
117 std::vector<size_t> best_selection;
118 CAmount best_waste = MAX_MONEY;
119
120 bool is_feerate_high = utxo_pool.at(0).fee > utxo_pool.at(0).long_term_fee;
121 bool max_tx_weight_exceeded = false;
122
123 // Depth First search loop for choosing the UTXOs
124 for (size_t curr_try = 0, utxo_pool_index = 0; curr_try < TOTAL_TRIES; ++curr_try, ++utxo_pool_index) {
125 // Conditions for starting a backtrack
126 bool backtrack = false;
127 if (curr_value + curr_available_value < selection_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
128 curr_value > selection_target + cost_of_change || // Selected value is out of range, go back and try other branch
129 (curr_waste > best_waste && is_feerate_high)) { // Don't select things which we know will be more wasteful if the waste is increasing
130 backtrack = true;
131 } else if (curr_selection_weight > max_selection_weight) { // Selected UTXOs weight exceeds the maximum weight allowed, cannot find more solutions by adding more inputs
132 max_tx_weight_exceeded = true; // at least one selection attempt exceeded the max weight
133 backtrack = true;
134 } else if (curr_value >= selection_target) { // Selected value is within range
135 curr_waste += (curr_value - selection_target); // This is the excess value which is added to the waste for the below comparison
136 // Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
137 // However we are not going to explore that because this optimization for the waste is only done when we have hit our target
138 // value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
139 // explore any more UTXOs to avoid burning money like that.
140 if (curr_waste <= best_waste) {
141 best_selection = curr_selection;
142 best_waste = curr_waste;
143 }
144 curr_waste -= (curr_value - selection_target); // Remove the excess value as we will be selecting different coins now
145 backtrack = true;
146 }
147
148 if (backtrack) { // Backtracking, moving backwards
149 if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
150 break;
151 }
152
153 // Add omitted UTXOs back to lookahead before traversing the omission branch of last included UTXO.
154 for (--utxo_pool_index; utxo_pool_index > curr_selection.back(); --utxo_pool_index) {
155 curr_available_value += utxo_pool.at(utxo_pool_index).GetSelectionAmount();
156 }
157
158 // Output was included on previous iterations, try excluding now.
159 assert(utxo_pool_index == curr_selection.back());
160 OutputGroup& utxo = utxo_pool.at(utxo_pool_index);
161 curr_value -= utxo.GetSelectionAmount();
162 curr_waste -= utxo.fee - utxo.long_term_fee;
163 curr_selection_weight -= utxo.m_weight;
164 curr_selection.pop_back();
165 } else { // Moving forwards, continuing down this branch
166 OutputGroup& utxo = utxo_pool.at(utxo_pool_index);
167
168 // Remove this utxo from the curr_available_value utxo amount
169 curr_available_value -= utxo.GetSelectionAmount();
170
171 if (curr_selection.empty() ||
172 // The previous index is included and therefore not relevant for exclusion shortcut
173 (utxo_pool_index - 1) == curr_selection.back() ||
174 // Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded.
175 // Since the ratio of fee to long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
176 utxo.GetSelectionAmount() != utxo_pool.at(utxo_pool_index - 1).GetSelectionAmount() ||
177 utxo.fee != utxo_pool.at(utxo_pool_index - 1).fee)
178 {
179 // Inclusion branch first (Largest First Exploration)
180 curr_selection.push_back(utxo_pool_index);
181 curr_value += utxo.GetSelectionAmount();
182 curr_waste += utxo.fee - utxo.long_term_fee;
183 curr_selection_weight += utxo.m_weight;
184 }
185 }
186 }
187
188 // Check for solution
189 if (best_selection.empty()) {
190 return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error();
191 }
192
193 // Set output set
194 for (const size_t& i : best_selection) {
195 result.AddInput(utxo_pool.at(i));
196 }
197 result.RecalculateWaste(cost_of_change, cost_of_change, CAmount{0});
198 assert(best_waste == result.GetWaste());
199
200 return result;
201}
202
203/*
204 * TL;DR: Coin Grinder is a DFS-based algorithm that deterministically searches for the minimum-weight input set to fund
205 * the transaction. The algorithm is similar to the Branch and Bound algorithm, but will produce a transaction _with_ a
206 * change output instead of a changeless transaction.
207 *
208 * Full description: CoinGrinder can be thought of as a graph walking algorithm. It explores a binary tree
209 * representation of the powerset of the UTXO pool. Each node in the tree represents a candidate input set. The tree’s
210 * root is the empty set. Each node in the tree has two children which are formed by either adding or skipping the next
211 * UTXO ("inclusion/omission branch"). Each level in the tree after the root corresponds to a decision about one UTXO in
212 * the UTXO pool.
213 *
214 * Example:
215 * We represent UTXOs as _alias=[effective_value/weight]_ and indicate omitted UTXOs with an underscore. Given a UTXO
216 * pool {A=[10/2], B=[7/1], C=[5/1], D=[4/2]} sorted by descending effective value, our search tree looks as follows:
217 *
218 * _______________________ {} ________________________
219 * / \
220 * A=[10/2] __________ {A} _________ __________ {_} _________
221 * / \ / \
222 * B=[7/1] {AB} _ {A_} _ {_B} _ {__} _
223 * / \ / \ / \ / \
224 * C=[5/1] {ABC} {AB_} {A_C} {A__} {_BC} {_B_} {__C} {___}
225 * / \ / \ / \ / \ / \ / \ / \ / \
226 * D=[4/2] {ABCD} {ABC_} {AB_D} {AB__} {A_CD} {A_C_} {A__D} {A___} {_BCD} {_BC_} {_B_D} {_B__} {__CD} {__C_} {___D} {____}
227 *
228 *
229 * CoinGrinder uses a depth-first search to walk this tree. It first tries inclusion branches, then omission branches. A
230 * naive exploration of a tree with four UTXOs requires visiting all 31 nodes:
231 *
232 * {} {A} {AB} {ABC} {ABCD} {ABC_} {AB_} {AB_D} {AB__} {A_} {A_C} {A_CD} {A_C_} {A__} {A__D} {A___} {_} {_B} {_BC}
233 * {_BCD} {_BC_} {_B_} {_B_D} {_B__} {__} {__C} {__CD} {__C} {___} {___D} {____}
234 *
235 * As powersets grow exponentially with the set size, walking the entire tree would quickly get computationally
236 * infeasible with growing UTXO pools. Thanks to traversing the tree in a deterministic order, we can keep track of the
237 * progress of the search solely on basis of the current selection (and the best selection so far). We visit as few
238 * nodes as possible by recognizing and skipping any branches that can only contain solutions worse than the best
239 * solution so far. This makes CoinGrinder a branch-and-bound algorithm
240 * (https://en.wikipedia.org/wiki/Branch_and_bound).
241 * CoinGrinder is searching for the input set with lowest weight that can fund a transaction, so for example we can only
242 * ever find a _better_ candidate input set in a node that adds a UTXO, but never in a node that skips a UTXO. After
243 * visiting {A} and exploring the inclusion branch {AB} and its descendants, the candidate input set in the omission
244 * branch {A_} is equivalent to the parent {A} in effective value and weight. While CoinGrinder does need to visit the
245 * descendants of the omission branch {A_}, it is unnecessary to evaluate the candidate input set in the omission branch
246 * itself. By skipping evaluation of all nodes on an omission branch we reduce the visited nodes to 15:
247 *
248 * {A} {AB} {ABC} {ABCD} {AB_D} {A_C} {A_CD} {A__D} {_B} {_BC} {_BCD} {_B_D} {__C} {__CD} {___D}
249 *
250 * _______________________ {} ________________________
251 * / \
252 * A=[10/2] __________ {A} _________ ___________\____________
253 * / \ / \
254 * B=[7/1] {AB} __ __\_____ {_B} __ __\_____
255 * / \ / \ / \ / \
256 * C=[5/1] {ABC} \ {A_C} \ {_BC} \ {__C} \
257 * / / / / / / / /
258 * D=[4/2] {ABCD} {AB_D} {A_CD} {A__D} {_BCD} {_B_D} {__CD} {___D}
259 *
260 *
261 * We refer to the move from the inclusion branch {AB} via the omission branch {A_} to its inclusion-branch child {A_C}
262 * as _shifting to the omission branch_ or just _SHIFT_. (The index of the ultimate element in the candidate input set
263 * shifts right by one: {AB} ⇒ {A_C}.)
264 * When we reach a leaf node in the last level of the tree, shifting to the omission branch is not possible. Instead we
265 * go to the omission branch of the node’s last ancestor on an inclusion branch: from {ABCD}, we go to {AB_D}. From
266 * {AB_D}, we go to {A_C}. We refer to this operation as a _CUT_. (The ultimate element in
267 * the input set is deselected, and the penultimate element is shifted right by one: {AB_D} ⇒ {A_C}.)
268 * If a candidate input set in a node has not selected sufficient funds to build the transaction, we continue directly
269 * along the next inclusion branch. We call this operation _EXPLORE_. (We go from one inclusion branch to the next
270 * inclusion branch: {_B} ⇒ {_BC}.)
271 * Further, any prefix that already has selected sufficient effective value to fund the transaction cannot be improved
272 * by adding more UTXOs. If for example the candidate input set in {AB} is a valid solution, all potential descendant
273 * solutions {ABC}, {ABCD}, and {AB_D} must have a higher weight, thus instead of exploring the descendants of {AB}, we
274 * can SHIFT from {AB} to {A_C}.
275 *
276 * Given the above UTXO set, using a target of 11, and following these initial observations, the basic implementation of
277 * CoinGrinder visits the following 10 nodes:
278 *
279 * Node [eff_val/weight] Evaluation
280 * ---------------------------------------------------------------
281 * {A} [10/2] Insufficient funds: EXPLORE
282 * {AB} [17/3] Solution: SHIFT to omission branch
283 * {A_C} [15/3] Better solution: SHIFT to omission branch
284 * {A__D} [14/4] Worse solution, shift impossible due to leaf node: CUT to omission branch of {A__D},
285 * i.e. SHIFT to omission branch of {A}
286 * {_B} [7/1] Insufficient funds: EXPLORE
287 * {_BC} [12/2] Better solution: SHIFT to omission branch
288 * {_B_D} [11/3] Worse solution, shift impossible due to leaf node: CUT to omission branch of {_B_D},
289 * i.e. SHIFT to omission branch of {_B}
290 * {__C} [5/1] Insufficient funds: EXPLORE
291 * {__CD} [9/3] Insufficient funds, leaf node: CUT
292 * {___D} [4/2] Insufficient funds, leaf node, cannot CUT since only one UTXO selected: done.
293 *
294 * _______________________ {} ________________________
295 * / \
296 * A=[10/2] __________ {A} _________ ___________\____________
297 * / \ / \
298 * B=[7/1] {AB} __\_____ {_B} __ __\_____
299 * / \ / \ / \
300 * C=[5/1] {A_C} \ {_BC} \ {__C} \
301 * / / / /
302 * D=[4/2] {A__D} {_B_D} {__CD} {___D}
303 *
304 *
305 * We implement this tree walk in the following algorithm:
306 * 1. Add `next_utxo`
307 * 2. Evaluate candidate input set
308 * 3. Determine `next_utxo` by deciding whether to
309 * a) EXPLORE: Add next inclusion branch, e.g. {_B} ⇒ {_B} + `next_uxto`: C
310 * b) SHIFT: Replace last selected UTXO by next higher index, e.g. {A_C} ⇒ {A__} + `next_utxo`: D
311 * c) CUT: deselect last selected UTXO and shift to omission branch of penultimate UTXO, e.g. {AB_D} ⇒ {A_} + `next_utxo: C
312 *
313 * The implementation then adds further optimizations by discovering further situations in which either the inclusion
314 * branch can be skipped, or both the inclusion and omission branch can be skipped after evaluating the candidate input
315 * set in the node.
316 *
317 * @param std::vector<OutputGroup>& utxo_pool The UTXOs that we are choosing from. These UTXOs will be sorted in
318 * descending order by effective value, with lower weight preferred as a tie-breaker. (We can think of an output
319 * group with multiple as a heavier UTXO with the combined amount here.)
320 * @param const CAmount& selection_target This is the minimum amount that we need for the transaction without considering change.
321 * @param const CAmount& change_target The minimum budget for creating a change output, by which we increase the selection_target.
322 * @param int max_selection_weight The maximum allowed weight for a selection result to be valid.
323 * @returns The result of this coin selection algorithm, or std::nullopt
324 */
325util::Result<SelectionResult> CoinGrinder(std::vector<OutputGroup>& utxo_pool, const CAmount& selection_target, CAmount change_target, int max_selection_weight)
326{
327 std::sort(utxo_pool.begin(), utxo_pool.end(), descending_effval_weight);
328 // The sum of UTXO amounts after this UTXO index, e.g. lookahead[5] = Σ(UTXO[6+].amount)
329 std::vector<CAmount> lookahead(utxo_pool.size());
330 // The minimum UTXO weight among the remaining UTXOs after this UTXO index, e.g. min_tail_weight[5] = min(UTXO[6+].weight)
331 std::vector<int> min_tail_weight(utxo_pool.size());
332
333 // Calculate lookahead values, min_tail_weights, and check that there are sufficient funds
334 CAmount total_available = 0;
335 int min_group_weight = std::numeric_limits<int>::max();
336 for (size_t i = 0; i < utxo_pool.size(); ++i) {
337 size_t index = utxo_pool.size() - 1 - i; // Loop over every element in reverse order
338 lookahead[index] = total_available;
339 min_tail_weight[index] = min_group_weight;
340 // UTXOs with non-positive effective value must have been filtered
341 Assume(utxo_pool[index].GetSelectionAmount() > 0);
342 total_available += utxo_pool[index].GetSelectionAmount();
343 min_group_weight = std::min(min_group_weight, utxo_pool[index].m_weight);
344 }
345
346 const CAmount total_target = selection_target + change_target;
347 if (total_available < total_target) {
348 // Insufficient funds
349 return util::Error();
350 }
351
352 // The current selection and the best input set found so far, stored as the utxo_pool indices of the UTXOs forming them
353 std::vector<size_t> curr_selection;
354 std::vector<size_t> best_selection;
355
356 // The currently selected effective amount, and the effective amount of the best selection so far
357 CAmount curr_amount = 0;
358 CAmount best_selection_amount = MAX_MONEY;
359
360 // The weight of the currently selected input set, and the weight of the best selection
361 int curr_weight = 0;
362 int best_selection_weight = max_selection_weight; // Tie is fine, because we prefer lower selection amount
363
364 // Whether the input sets generated during this search have exceeded the maximum transaction weight at any point
365 bool max_tx_weight_exceeded = false;
366
367 // Index of the next UTXO to consider in utxo_pool
368 size_t next_utxo = 0;
369
370 /*
371 * You can think of the current selection as a vector of booleans that has decided inclusion or exclusion of all
372 * UTXOs before `next_utxo`. When we consider the next UTXO, we extend this hypothetical boolean vector either with
373 * a true value if the UTXO is included or a false value if it is omitted. The equivalent state is stored more
374 * compactly as the list of indices of the included UTXOs and the `next_utxo` index.
375 *
376 * We can never find a new solution by deselecting a UTXO, because we then revisit a previously evaluated
377 * selection. Therefore, we only need to check whether we found a new solution _after adding_ a new UTXO.
378 *
379 * Each iteration of CoinGrinder starts by selecting the `next_utxo` and evaluating the current selection. We
380 * use three state transitions to progress from the current selection to the next promising selection:
381 *
382 * - EXPLORE inclusion branch: We do not have sufficient funds, yet. Add `next_utxo` to the current selection, then
383 * nominate the direct successor of the just selected UTXO as our `next_utxo` for the
384 * following iteration.
385 *
386 * Example:
387 * Current Selection: {0, 5, 7}
388 * Evaluation: EXPLORE, next_utxo: 8
389 * Next Selection: {0, 5, 7, 8}
390 *
391 * - SHIFT to omission branch: Adding more UTXOs to the current selection cannot produce a solution that is better
392 * than the current best, e.g. the current selection weight exceeds the max weight or
393 * the current selection amount is equal to or greater than the target.
394 * We designate our `next_utxo` the one after the tail of our current selection, then
395 * deselect the tail of our current selection.
396 *
397 * Example:
398 * Current Selection: {0, 5, 7}
399 * Evaluation: SHIFT, next_utxo: 8, omit last selected: {0, 5}
400 * Next Selection: {0, 5, 8}
401 *
402 * - CUT entire subtree: We have exhausted the inclusion branch for the penultimately selected UTXO, both the
403 * inclusion and the omission branch of the current prefix are barren. E.g. we have
404 * reached the end of the UTXO pool, so neither further EXPLORING nor SHIFTING can find
405 * any solutions. We designate our `next_utxo` the one after our penultimate selected,
406 * then deselect both the last and penultimate selected.
407 *
408 * Example:
409 * Current Selection: {0, 5, 7}
410 * Evaluation: CUT, next_utxo: 6, omit two last selected: {0}
411 * Next Selection: {0, 6}
412 */
413 auto deselect_last = [&]() {
414 OutputGroup& utxo = utxo_pool[curr_selection.back()];
415 curr_amount -= utxo.GetSelectionAmount();
416 curr_weight -= utxo.m_weight;
417 curr_selection.pop_back();
418 };
419
420 SelectionResult result(selection_target, SelectionAlgorithm::CG);
421 bool is_done = false;
422 size_t curr_try = 0;
423 while (!is_done) {
424 bool should_shift{false}, should_cut{false};
425 // Select `next_utxo`
426 OutputGroup& utxo = utxo_pool[next_utxo];
427 curr_amount += utxo.GetSelectionAmount();
428 curr_weight += utxo.m_weight;
429 curr_selection.push_back(next_utxo);
430 ++next_utxo;
431 ++curr_try;
432
433 // EVALUATE current selection: check for solutions and see whether we can CUT or SHIFT before EXPLORING further
434 auto curr_tail = curr_selection.back();
435 if (curr_amount + lookahead[curr_tail] < total_target) {
436 // Insufficient funds with lookahead: CUT
437 should_cut = true;
438 } else if (curr_weight > best_selection_weight) {
439 // best_selection_weight is initialized to max_selection_weight
440 if (curr_weight > max_selection_weight) max_tx_weight_exceeded = true;
441 // Worse weight than best solution. More UTXOs only increase weight:
442 // CUT if last selected group had minimal weight, else SHIFT
443 if (utxo_pool[curr_tail].m_weight <= min_tail_weight[curr_tail]) {
444 should_cut = true;
445 } else {
446 should_shift = true;
447 }
448 } else if (curr_amount >= total_target) {
449 // Success, adding more weight cannot be better: SHIFT
450 should_shift = true;
451 if (curr_weight < best_selection_weight || (curr_weight == best_selection_weight && curr_amount < best_selection_amount)) {
452 // New lowest weight, or same weight with fewer funds tied up
453 best_selection = curr_selection;
454 best_selection_weight = curr_weight;
455 best_selection_amount = curr_amount;
456 }
457 } else if (!best_selection.empty() && curr_weight + int64_t{min_tail_weight[curr_tail]} * ((total_target - curr_amount + utxo_pool[curr_tail].GetSelectionAmount() - 1) / utxo_pool[curr_tail].GetSelectionAmount()) > best_selection_weight) {
458 // Compare minimal tail weight and last selected amount with the amount missing to gauge whether a better weight is still possible.
459 if (utxo_pool[curr_tail].m_weight <= min_tail_weight[curr_tail]) {
460 should_cut = true;
461 } else {
462 should_shift = true;
463 }
464 }
465
466 if (curr_try >= TOTAL_TRIES) {
467 // Solution is not guaranteed to be optimal if `curr_try` hit TOTAL_TRIES
468 result.SetAlgoCompleted(false);
469 break;
470 }
471
472 if (next_utxo == utxo_pool.size()) {
473 // Last added UTXO was end of UTXO pool, nothing left to add on inclusion or omission branch: CUT
474 should_cut = true;
475 }
476
477 if (should_cut) {
478 // Neither adding to the current selection nor exploring the omission branch of the last selected UTXO can
479 // find any solutions. Redirect to exploring the Omission branch of the penultimate selected UTXO (i.e.
480 // set `next_utxo` to one after the penultimate selected, then deselect the last two selected UTXOs)
481 deselect_last();
482 should_shift = true;
483 }
484
485 while (should_shift) {
486 // Set `next_utxo` to one after last selected, then deselect last selected UTXO
487 if (curr_selection.empty()) {
488 // Exhausted search space before running into attempt limit
489 is_done = true;
490 result.SetAlgoCompleted(true);
491 break;
492 }
493 next_utxo = curr_selection.back() + 1;
494 deselect_last();
495 should_shift = false;
496
497 // After SHIFTing to an omission branch, the `next_utxo` might have the same effective value as the UTXO we
498 // just omitted. Since lower weight is our tiebreaker on UTXOs with equal effective value for sorting, if it
499 // ties on the effective value, it _must_ have the same weight (i.e. be a "clone" of the prior UTXO) or a
500 // higher weight. If so, selecting `next_utxo` would produce an equivalent or worse selection as one we
501 // previously evaluated. In that case, increment `next_utxo` until we find a UTXO with a differing amount.
502 while (utxo_pool[next_utxo - 1].GetSelectionAmount() == utxo_pool[next_utxo].GetSelectionAmount()) {
503 if (next_utxo >= utxo_pool.size() - 1) {
504 // Reached end of UTXO pool skipping clones: SHIFT instead
505 should_shift = true;
506 break;
507 }
508 // Skip clone: previous UTXO is equivalent and unselected
509 ++next_utxo;
510 }
511 }
512 }
513
514 result.SetSelectionsEvaluated(curr_try);
515
516 if (best_selection.empty()) {
517 return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error();
518 }
519
520 for (const size_t& i : best_selection) {
521 result.AddInput(utxo_pool[i]);
522 }
523
524 return result;
525}
526
528{
529public:
530 int operator() (const OutputGroup& group1, const OutputGroup& group2) const
531 {
532 return group1.GetSelectionAmount() > group2.GetSelectionAmount();
533 }
534};
535
536util::Result<SelectionResult> SelectCoinsSRD(const std::vector<OutputGroup>& utxo_pool, CAmount target_value, CAmount change_fee, FastRandomContext& rng,
537 int max_selection_weight)
538{
539 SelectionResult result(target_value, SelectionAlgorithm::SRD);
540 std::priority_queue<OutputGroup, std::vector<OutputGroup>, MinOutputGroupComparator> heap;
541
542 // Include change for SRD as we want to avoid making really small change if the selection just
543 // barely meets the target. Just use the lower bound change target instead of the randomly
544 // generated one, since SRD will result in a random change amount anyway; avoid making the
545 // target needlessly large.
546 target_value += CHANGE_LOWER + change_fee;
547
548 std::vector<size_t> indexes;
549 indexes.resize(utxo_pool.size());
550 std::iota(indexes.begin(), indexes.end(), 0);
551 std::shuffle(indexes.begin(), indexes.end(), rng);
552
553 CAmount selected_eff_value = 0;
554 int weight = 0;
555 bool max_tx_weight_exceeded = false;
556 for (const size_t i : indexes) {
557 const OutputGroup& group = utxo_pool.at(i);
558 Assume(group.GetSelectionAmount() > 0);
559
560 // Add group to selection
561 heap.push(group);
562 selected_eff_value += group.GetSelectionAmount();
563 weight += group.m_weight;
564
565 // If the selection weight exceeds the maximum allowed size, remove the least valuable inputs until we
566 // are below max weight.
567 if (weight > max_selection_weight) {
568 max_tx_weight_exceeded = true; // mark it in case we don't find any useful result.
569 do {
570 const OutputGroup& to_remove_group = heap.top();
571 selected_eff_value -= to_remove_group.GetSelectionAmount();
572 weight -= to_remove_group.m_weight;
573 heap.pop();
574 } while (!heap.empty() && weight > max_selection_weight);
575 }
576
577 // Now check if we are above the target
578 if (selected_eff_value >= target_value) {
579 // Result found, add it.
580 while (!heap.empty()) {
581 result.AddInput(heap.top());
582 heap.pop();
583 }
584 return result;
585 }
586 }
587 return max_tx_weight_exceeded ? ErrorMaxWeightExceeded() : util::Error();
588}
589
602static void ApproximateBestSubset(FastRandomContext& insecure_rand, const std::vector<OutputGroup>& groups,
603 const CAmount& nTotalLower, const CAmount& nTargetValue,
604 std::vector<char>& vfBest, CAmount& nBest, int max_selection_weight, int iterations = 1000)
605{
606 std::vector<char> vfIncluded;
607
608 // Worst case "best" approximation is just all of the groups.
609 vfBest.assign(groups.size(), true);
610 nBest = nTotalLower;
611
612 for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
613 {
614 vfIncluded.assign(groups.size(), false);
615 CAmount nTotal = 0;
616 int selected_coins_weight{0};
617 bool fReachedTarget = false;
618 for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
619 {
620 for (unsigned int i = 0; i < groups.size(); i++)
621 {
622 //The solver here uses a randomized algorithm,
623 //the randomness serves no real security purpose but is just
624 //needed to prevent degenerate behavior and it is important
625 //that the rng is fast. We do not use a constant random sequence,
626 //because there may be some privacy improvement by making
627 //the selection random.
628 if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
629 {
630 nTotal += groups[i].GetSelectionAmount();
631 selected_coins_weight += groups[i].m_weight;
632 vfIncluded[i] = true;
633 if (nTotal >= nTargetValue && selected_coins_weight <= max_selection_weight) {
634 fReachedTarget = true;
635 // If the total is between nTargetValue and nBest, it's our new best
636 // approximation.
637 if (nTotal < nBest)
638 {
639 nBest = nTotal;
640 vfBest = vfIncluded;
641 }
642 nTotal -= groups[i].GetSelectionAmount();
643 selected_coins_weight -= groups[i].m_weight;
644 vfIncluded[i] = false;
645 }
646 }
647 }
648 }
649 }
650}
651
652util::Result<SelectionResult> KnapsackSolver(std::vector<OutputGroup>& groups, const CAmount& nTargetValue,
653 CAmount change_target, FastRandomContext& rng, int max_selection_weight)
654{
655 SelectionResult result(nTargetValue, SelectionAlgorithm::KNAPSACK);
656
657 bool max_weight_exceeded{false};
658 // List of values less than target
659 std::optional<OutputGroup> lowest_larger;
660 // Groups with selection amount smaller than the target and any change we might produce.
661 // Don't include groups larger than this, because they will only cause us to overshoot.
662 std::vector<OutputGroup> applicable_groups;
663 CAmount nTotalLower = 0;
664
665 std::shuffle(groups.begin(), groups.end(), rng);
666
667 for (const OutputGroup& group : groups) {
668 if (group.m_weight > max_selection_weight) {
669 max_weight_exceeded = true;
670 continue;
671 }
672 if (group.GetSelectionAmount() == nTargetValue) {
673 result.AddInput(group);
674 return result;
675 } else if (group.GetSelectionAmount() < nTargetValue + change_target) {
676 applicable_groups.push_back(group);
677 nTotalLower += group.GetSelectionAmount();
678 } else if (!lowest_larger || group.GetSelectionAmount() < lowest_larger->GetSelectionAmount()) {
679 lowest_larger = group;
680 }
681 }
682
683 if (nTotalLower == nTargetValue) {
684 for (const auto& group : applicable_groups) {
685 result.AddInput(group);
686 }
687 if (result.GetWeight() <= max_selection_weight) return result;
688 else max_weight_exceeded = true;
689
690 // Try something else
691 result.Clear();
692 }
693
694 if (nTotalLower < nTargetValue) {
695 if (!lowest_larger) {
696 if (max_weight_exceeded) return ErrorMaxWeightExceeded();
697 return util::Error();
698 }
699 result.AddInput(*lowest_larger);
700 return result;
701 }
702
703 // Solve subset sum by stochastic approximation
704 std::sort(applicable_groups.begin(), applicable_groups.end(), descending);
705 std::vector<char> vfBest;
706 CAmount nBest;
707
708 ApproximateBestSubset(rng, applicable_groups, nTotalLower, nTargetValue, vfBest, nBest, max_selection_weight);
709 if (nBest != nTargetValue && nTotalLower >= nTargetValue + change_target) {
710 ApproximateBestSubset(rng, applicable_groups, nTotalLower, nTargetValue + change_target, vfBest, nBest, max_selection_weight);
711 }
712
713 // If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
714 // or the next bigger coin is closer), return the bigger coin
715 if (lowest_larger &&
716 ((nBest != nTargetValue && nBest < nTargetValue + change_target) || lowest_larger->GetSelectionAmount() <= nBest)) {
717 result.AddInput(*lowest_larger);
718 } else {
719 for (unsigned int i = 0; i < applicable_groups.size(); i++) {
720 if (vfBest[i]) {
721 result.AddInput(applicable_groups[i]);
722 }
723 }
724
725 // If the result exceeds the maximum allowed size, return closest UTXO above the target
726 if (result.GetWeight() > max_selection_weight) {
727 // No coin above target, nothing to do.
728 if (!lowest_larger) return ErrorMaxWeightExceeded();
729
730 // Return closest UTXO above target
731 result.Clear();
732 result.AddInput(*lowest_larger);
733 }
734
736 std::string log_message{"Coin selection best subset: "};
737 for (unsigned int i = 0; i < applicable_groups.size(); i++) {
738 if (vfBest[i]) {
739 log_message += strprintf("%s ", FormatMoney(applicable_groups[i].m_value));
740 }
741 }
742 LogDebug(BCLog::SELECTCOINS, "%stotal %s\n", log_message, FormatMoney(nBest));
743 }
744 }
745 Assume(result.GetWeight() <= max_selection_weight);
746 return result;
747}
748
749/******************************************************************************
750
751 OutputGroup
752
753 ******************************************************************************/
754
755void OutputGroup::Insert(const std::shared_ptr<COutput>& output, size_t ancestors, size_t descendants) {
756 m_outputs.push_back(output);
757 auto& coin = *m_outputs.back();
758
759 fee += coin.GetFee();
760
761 coin.long_term_fee = coin.input_bytes < 0 ? 0 : m_long_term_feerate.GetFee(coin.input_bytes);
762 long_term_fee += coin.long_term_fee;
763
764 effective_value += coin.GetEffectiveValue();
765
766 m_from_me &= coin.from_me;
767 m_value += coin.txout.nValue;
768 m_depth = std::min(m_depth, coin.depth);
769 // ancestors here express the number of ancestors the new coin will end up having, which is
770 // the sum, rather than the max; this will overestimate in the cases where multiple inputs
771 // have common ancestors
772 m_ancestors += ancestors;
773 // descendants is the count as seen from the top ancestor, not the descendants as seen from the
774 // coin itself; thus, this value is counted as the max, not the sum
775 m_descendants = std::max(m_descendants, descendants);
776
777 if (output->input_bytes > 0) {
778 m_weight += output->input_bytes * WITNESS_SCALE_FACTOR;
779 }
780}
781
782bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter) const
783{
784 return m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs)
785 && m_ancestors <= eligibility_filter.max_ancestors
786 && m_descendants <= eligibility_filter.max_descendants;
787}
788
790{
792}
793
794void OutputGroupTypeMap::Push(const OutputGroup& group, OutputType type, bool insert_positive, bool insert_mixed)
795{
796 if (group.m_outputs.empty()) return;
797
798 Groups& groups = groups_by_type[type];
799 if (insert_positive && group.GetSelectionAmount() > 0) {
800 groups.positive_group.emplace_back(group);
801 all_groups.positive_group.emplace_back(group);
802 }
803 if (insert_mixed) {
804 groups.mixed_group.emplace_back(group);
805 all_groups.mixed_group.emplace_back(group);
806 }
807}
808
809CAmount GenerateChangeTarget(const CAmount payment_value, const CAmount change_fee, FastRandomContext& rng)
810{
811 if (payment_value <= CHANGE_LOWER / 2) {
812 return change_fee + CHANGE_LOWER;
813 } else {
814 // random value between 50ksat and min (payment_value * 2, 1milsat)
815 const auto upper_bound = std::min(payment_value * 2, CHANGE_UPPER);
816 return change_fee + rng.randrange(upper_bound - CHANGE_LOWER) + CHANGE_LOWER;
817 }
818}
819
821{
822 // Overlapping ancestry can only lower the fees, not increase them
823 assert (discount >= 0);
824 bump_fee_group_discount = discount;
825}
826
827void SelectionResult::RecalculateWaste(const CAmount min_viable_change, const CAmount change_cost, const CAmount change_fee)
828{
829 // This function should not be called with empty inputs as that would mean the selection failed
830 assert(!m_selected_inputs.empty());
831
832 // Always consider the cost of spending an input now vs in the future.
833 CAmount waste = 0;
834 for (const auto& coin_ptr : m_selected_inputs) {
835 const COutput& coin = *coin_ptr;
836 waste += coin.GetFee() - coin.long_term_fee;
837 }
838 // Bump fee of whole selection may diverge from sum of individual bump fees
840
841 if (GetChange(min_viable_change, change_fee)) {
842 // if we have a minimum viable amount after deducting fees, account for
843 // cost of creating and spending change
844 waste += change_cost;
845 } else {
846 // When we are not making change (GetChange(…) == 0), consider the excess we are throwing away to fees
847 CAmount selected_effective_value = m_use_effective ? GetSelectedEffectiveValue() : GetSelectedValue();
848 assert(selected_effective_value >= m_target);
849 waste += selected_effective_value - m_target;
850 }
851
852 m_waste = waste;
853}
854
855void SelectionResult::SetAlgoCompleted(bool algo_completed)
856{
857 m_algo_completed = algo_completed;
858}
859
861{
862 return m_algo_completed;
863}
864
866{
867 m_selections_evaluated = attempts;
868}
869
871{
873}
874
876{
877 return *Assert(m_waste);
878}
879
881{
882 return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin->txout.nValue; });
883}
884
886{
887 return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin->GetEffectiveValue(); }) + bump_fee_group_discount;
888}
889
891{
892 return std::accumulate(m_selected_inputs.cbegin(), m_selected_inputs.cend(), CAmount{0}, [](CAmount sum, const auto& coin) { return sum + coin->ancestor_bump_fees; }) - bump_fee_group_discount;
893}
894
896{
897 m_selected_inputs.clear();
898 m_waste.reset();
899 m_weight = 0;
900}
901
903{
904 // As it can fail, combine inputs first
905 InsertInputs(group.m_outputs);
906 m_use_effective = !group.m_subtract_fee_outputs;
907
908 m_weight += group.m_weight;
909}
910
911void SelectionResult::AddInputs(const std::set<std::shared_ptr<COutput>>& inputs, bool subtract_fee_outputs)
912{
913 // As it can fail, combine inputs first
914 InsertInputs(inputs);
915 m_use_effective = !subtract_fee_outputs;
916
917 m_weight += std::accumulate(inputs.cbegin(), inputs.cend(), 0, [](int sum, const auto& coin) {
918 return sum + std::max(coin->input_bytes, 0) * WITNESS_SCALE_FACTOR;
919 });
920}
921
923{
924 // As it can fail, combine inputs first
926
927 m_target += other.m_target;
930 m_algo = other.m_algo;
931 }
932
933 m_weight += other.m_weight;
934}
935
936const std::set<std::shared_ptr<COutput>>& SelectionResult::GetInputSet() const
937{
938 return m_selected_inputs;
939}
940
941std::vector<std::shared_ptr<COutput>> SelectionResult::GetShuffledInputVector() const
942{
943 std::vector<std::shared_ptr<COutput>> coins(m_selected_inputs.begin(), m_selected_inputs.end());
944 std::shuffle(coins.begin(), coins.end(), FastRandomContext());
945 return coins;
946}
947
949{
950 Assert(m_waste.has_value());
951 Assert(other.m_waste.has_value());
952 // As this operator is only used in std::min_element, we want the result that has more inputs when waste are equal.
953 return *m_waste < *other.m_waste || (*m_waste == *other.m_waste && m_selected_inputs.size() > other.m_selected_inputs.size());
954}
955
956std::string COutput::ToString() const
957{
958 return strprintf("COutput(%s, %d, %d) [%s]", outpoint.hash.ToString(), outpoint.n, depth, FormatMoney(txout.nValue));
959}
960
962{
963 switch (algo)
964 {
965 case SelectionAlgorithm::BNB: return "bnb";
966 case SelectionAlgorithm::KNAPSACK: return "knapsack";
967 case SelectionAlgorithm::SRD: return "srd";
968 case SelectionAlgorithm::CG: return "cg";
969 case SelectionAlgorithm::MANUAL: return "manual";
970 // No default case to allow for compiler to warn
971 }
972 assert(false);
973}
974
975CAmount SelectionResult::GetChange(const CAmount min_viable_change, const CAmount change_fee) const
976{
977 // change = SUM(inputs) - SUM(outputs) - fees
978 // 1) With SFFO we don't pay any fees
979 // 2) Otherwise we pay all the fees:
980 // - input fees are covered by GetSelectedEffectiveValue()
981 // - non_input_fee is included in m_target
982 // - change_fee
983 const CAmount change = m_use_effective
984 ? GetSelectedEffectiveValue() - m_target - change_fee
986
987 if (change < min_viable_change) {
988 return 0;
989 }
990
991 return change;
992}
993
994} // namespace wallet
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
#define Assert(val)
Identity function.
Definition: check.h:85
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
CAmount GetFee(uint32_t num_bytes) const
Return the fee in satoshis for the given vsize in vbytes.
Definition: feerate.cpp:23
uint32_t n
Definition: transaction.h:32
Txid hash
Definition: transaction.h:31
CAmount nValue
Definition: transaction.h:152
Fast randomness source.
Definition: random.h:377
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool randbool() noexcept
Generate a random boolean.
Definition: random.h:316
std::string ToString() const
int operator()(const OutputGroup &group1, const OutputGroup &group2) const
static const int WITNESS_SCALE_FACTOR
Definition: consensus.h:21
volatile double sum
Definition: examples.cpp:10
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:233
#define LogDebug(category,...)
Definition: logging.h:280
std::string FormatMoney(const CAmount n)
Money parsing/formatting utilities.
Definition: moneystr.cpp:19
@ SELECTCOINS
Definition: logging.h:53
static constexpr CAmount CHANGE_UPPER
upper bound for randomly-chosen target change amount
Definition: coinselection.h:25
struct wallet::@17 descending
static constexpr CAmount CHANGE_LOWER
lower bound for randomly-chosen target change amount
Definition: coinselection.h:23
util::Result< SelectionResult > SelectCoinsBnB(std::vector< OutputGroup > &utxo_pool, const CAmount &selection_target, const CAmount &cost_of_change, int max_selection_weight)
CAmount GenerateChangeTarget(const CAmount payment_value, const CAmount change_fee, FastRandomContext &rng)
Choose a random change target for each transaction to make it harder to fingerprint the Core wallet b...
SelectionAlgorithm
util::Result< SelectionResult > CoinGrinder(std::vector< OutputGroup > &utxo_pool, const CAmount &selection_target, CAmount change_target, int max_selection_weight)
util::Result< SelectionResult > KnapsackSolver(std::vector< OutputGroup > &groups, const CAmount &nTargetValue, CAmount change_target, FastRandomContext &rng, int max_selection_weight)
static util::Result< SelectionResult > ErrorMaxWeightExceeded()
struct wallet::@18 descending_effval_weight
std::string GetAlgorithmName(const SelectionAlgorithm algo)
static const size_t TOTAL_TRIES
static void ApproximateBestSubset(FastRandomContext &insecure_rand, const std::vector< OutputGroup > &groups, const CAmount &nTotalLower, const CAmount &nTargetValue, std::vector< char > &vfBest, CAmount &nBest, int max_selection_weight, int iterations=1000)
Find a subset of the OutputGroups that is at least as large as, but as close as possible to,...
util::Result< SelectionResult > SelectCoinsSRD(const std::vector< OutputGroup > &utxo_pool, CAmount target_value, CAmount change_fee, FastRandomContext &rng, int max_selection_weight)
Select coins by Single Random Draw.
OutputType
Definition: outputtype.h:17
A UTXO under consideration for use in funding a new transaction.
Definition: coinselection.h:28
CAmount long_term_fee
The fee required to spend this output at the consolidation feerate.
Definition: coinselection.h:73
COutPoint outpoint
The outpoint identifying this UTXO.
Definition: coinselection.h:38
int depth
Depth in block chain.
Definition: coinselection.h:48
std::string ToString() const
CTxOut txout
The output itself.
Definition: coinselection.h:41
CAmount GetFee() const
Parameters for filtering which OutputGroups we may use in coin selection.
const uint64_t max_ancestors
Maximum number of unconfirmed ancestors aggregated across all UTXOs in an OutputGroup.
const uint64_t max_descendants
Maximum number of descendants that a single UTXO in the OutputGroup may have.
const int conf_theirs
Minimum number of confirmations for outputs received from a different wallet.
const int conf_mine
Minimum number of confirmations for outputs that we sent to ourselves.
std::vector< OutputGroup > positive_group
std::vector< OutputGroup > mixed_group
A group of UTXOs paid to the same output script.
CFeeRate m_long_term_feerate
The feerate for spending a created change output eventually (i.e.
bool m_from_me
Whether the UTXOs were sent by the wallet to itself.
CAmount m_value
The total value of the UTXOs in sum.
void Insert(const std::shared_ptr< COutput > &output, size_t ancestors, size_t descendants)
bool m_subtract_fee_outputs
Indicate that we are subtracting the fee from outputs.
CAmount GetSelectionAmount() const
int m_depth
The minimum number of confirmations the UTXOs in the group have.
int m_weight
Total weight of the UTXOs in this group.
bool EligibleForSpending(const CoinEligibilityFilter &eligibility_filter) const
CAmount effective_value
The value of the UTXOs after deducting the cost of spending them at the effective feerate.
size_t m_ancestors
The aggregated count of unconfirmed ancestors of all UTXOs in this group.
CAmount fee
The fee to spend these UTXOs at the effective feerate.
CAmount long_term_fee
The fee to spend these UTXOs at the long term feerate.
size_t m_descendants
The maximum count of descendants of a single UTXO in this output group.
std::vector< std::shared_ptr< COutput > > m_outputs
The list of UTXOs contained in this output group.
void Push(const OutputGroup &group, OutputType type, bool insert_positive, bool insert_mixed)
std::map< OutputType, Groups > groups_by_type
int m_weight
Total weight of the selected inputs.
bool operator<(SelectionResult other) const
size_t m_selections_evaluated
The count of selections that were evaluated by this coin selection attempt.
std::set< std::shared_ptr< COutput > > m_selected_inputs
Set of inputs selected by the algorithm to use in the transaction.
CAmount bump_fee_group_discount
How much individual inputs overestimated the bump fees for the shared ancestry.
void Merge(const SelectionResult &other)
Combines the.
size_t GetSelectionsEvaluated() const
Get selections_evaluated.
const std::set< std::shared_ptr< COutput > > & GetInputSet() const
Get m_selected_inputs.
SelectionAlgorithm m_algo
The algorithm used to produce this result.
bool GetAlgoCompleted() const
Get m_algo_completed.
void SetBumpFeeDiscount(const CAmount discount)
How much individual inputs overestimated the bump fees for shared ancestries.
void AddInput(const OutputGroup &group)
CAmount GetSelectedEffectiveValue() const
CAmount GetTotalBumpFees() const
bool m_algo_completed
False if algorithm was cut short by hitting limit of attempts and solution is non-optimal.
CAmount m_target
The target the algorithm selected for.
CAmount GetChange(const CAmount min_viable_change, const CAmount change_fee) const
Get the amount for the change output after paying needed fees.
void InsertInputs(const T &inputs)
void SetAlgoCompleted(bool algo_completed)
Tracks that algorithm was able to exhaustively search the entire combination space before hitting lim...
CAmount GetSelectedValue() const
Get the sum of the input values.
void RecalculateWaste(const CAmount min_viable_change, const CAmount change_cost, const CAmount change_fee)
Calculates and stores the waste for this result given the cost of change and the opportunity cost of ...
std::optional< CAmount > m_waste
The computed waste.
bool m_use_effective
Whether the input values for calculations should be the effective value (true) or normal value (false...
void SetSelectionsEvaluated(size_t attempts)
Record the number of selections that were evaluated.
void AddInputs(const std::set< std::shared_ptr< COutput > > &inputs, bool subtract_fee_outputs)
std::vector< std::shared_ptr< COutput > > GetShuffledInputVector() const
Get the vector of COutputs that will be used to fill in a CTransaction's vin.
CAmount GetWaste() const
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
assert(!tx.IsCoinBase())