Bitcoin Core 28.99.0
P2P Digital Currency
ecmult_gen_compute_table_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) Pieter Wuille, Gregory Maxwell, Peter Dettman *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H
8#define SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H
9
11#include "group_impl.h"
12#include "field_impl.h"
13#include "scalar_impl.h"
14#include "ecmult_gen.h"
15#include "util.h"
16
17static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage* table, const secp256k1_ge* gen, int blocks, int teeth, int spacing) {
18 size_t points = ((size_t)1) << (teeth - 1);
19 size_t points_total = points * blocks;
20 secp256k1_ge* prec = checked_malloc(&default_error_callback, points_total * sizeof(*prec));
21 secp256k1_gej* ds = checked_malloc(&default_error_callback, teeth * sizeof(*ds));
22 secp256k1_gej* vs = checked_malloc(&default_error_callback, points_total * sizeof(*vs));
24 size_t vs_pos = 0;
26 int block, i;
27
28 VERIFY_CHECK(points_total > 0);
29
30 /* u is the running power of two times gen we're working with, initially gen/2. */
33 for (i = 255; i >= 0; --i) {
34 /* Use a very simple multiplication ladder to avoid dependency on ecmult. */
35 secp256k1_gej_double_var(&u, &u, NULL);
36 if (secp256k1_scalar_get_bits_limb32(&half, i, 1)) {
37 secp256k1_gej_add_ge_var(&u, &u, gen, NULL);
38 }
39 }
40#ifdef VERIFY
41 {
42 /* Verify that u*2 = gen. */
43 secp256k1_gej double_u;
44 secp256k1_gej_double_var(&double_u, &u, NULL);
46 }
47#endif
48
49 for (block = 0; block < blocks; ++block) {
50 int tooth;
51 /* Here u = 2^(block*teeth*spacing) * gen/2. */
54 for (tooth = 0; tooth < teeth; ++tooth) {
55 /* Here u = 2^((block*teeth + tooth)*spacing) * gen/2. */
56 /* Make sum = sum(2^((block*teeth + t)*spacing), t=0..tooth) * gen/2. */
57 secp256k1_gej_add_var(&sum, &sum, &u, NULL);
58 /* Make u = 2^((block*teeth + tooth)*spacing + 1) * gen/2. */
59 secp256k1_gej_double_var(&u, &u, NULL);
60 /* Make ds[tooth] = u = 2^((block*teeth + tooth)*spacing + 1) * gen/2. */
61 ds[tooth] = u;
62 /* Make u = 2^((block*teeth + tooth + 1)*spacing) * gen/2, unless at the end. */
63 if (block + tooth != blocks + teeth - 2) {
64 int bit_off;
65 for (bit_off = 1; bit_off < spacing; ++bit_off) {
66 secp256k1_gej_double_var(&u, &u, NULL);
67 }
68 }
69 }
70 /* Now u = 2^((block*teeth + teeth)*spacing) * gen/2
71 * = 2^((block+1)*teeth*spacing) * gen/2 */
72
73 /* Next, compute the table entries for block number block in Jacobian coordinates.
74 * The entries will occupy vs[block*points + i] for i=0..points-1.
75 * We start by computing the first (i=0) value corresponding to all summed
76 * powers of two times G being negative. */
77 secp256k1_gej_neg(&vs[vs_pos++], &sum);
78 /* And then teeth-1 times "double" the range of i values for which the table
79 * is computed: in each iteration, double the table by taking an existing
80 * table entry and adding ds[tooth]. */
81 for (tooth = 0; tooth < teeth - 1; ++tooth) {
82 size_t stride = ((size_t)1) << tooth;
83 size_t index;
84 for (index = 0; index < stride; ++index, ++vs_pos) {
85 secp256k1_gej_add_var(&vs[vs_pos], &vs[vs_pos - stride], &ds[tooth], NULL);
86 }
87 }
88 }
89 VERIFY_CHECK(vs_pos == points_total);
90
91 /* Convert all points simultaneously from secp256k1_gej to secp256k1_ge. */
92 secp256k1_ge_set_all_gej_var(prec, vs, points_total);
93 /* Convert all points from secp256k1_ge to secp256k1_ge_storage output. */
94 for (block = 0; block < blocks; ++block) {
95 size_t index;
96 for (index = 0; index < points; ++index) {
97 VERIFY_CHECK(!secp256k1_ge_is_infinity(&prec[block * points + index]));
98 secp256k1_ge_to_storage(&table[block * points + index], &prec[block * points + index]);
99 }
100 }
101
102 /* Free memory. */
103 free(vs);
104 free(ds);
105 free(prec);
106}
107
108#endif /* SECP256K1_ECMULT_GEN_COMPUTE_TABLE_IMPL_H */
static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage *table, const secp256k1_ge *gen, int blocks, int teeth, int spacing)
volatile double sum
Definition: examples.cpp:10
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b)
Check two group elements (jacobian and affine) for equality in variable time.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Set a batch of group elements equal to the inputs given in jacobian coordinates.
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a)
Convert a group element to the storage type.
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a)
Multiply a scalar with the multiplicative inverse of 2.
static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
Access bits (1 < count <= 32) from a scalar.
static const secp256k1_scalar secp256k1_scalar_one
Definition: scalar_impl.h:27
static const secp256k1_callback default_error_callback
Definition: util.h:117
#define VERIFY_CHECK(cond)
Definition: util.h:159
static SECP256K1_INLINE void * checked_malloc(const secp256k1_callback *cb, size_t size)
Definition: util.h:162
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13