Bitcoin Core 28.99.0
P2P Digital Currency
arith_uint256.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2022 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <arith_uint256.h>
7
8#include <uint256.h>
9#include <crypto/common.h>
10
11#include <cassert>
12
13template <unsigned int BITS>
15{
16 base_uint<BITS> a(*this);
17 for (int i = 0; i < WIDTH; i++)
18 pn[i] = 0;
19 int k = shift / 32;
20 shift = shift % 32;
21 for (int i = 0; i < WIDTH; i++) {
22 if (i + k + 1 < WIDTH && shift != 0)
23 pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
24 if (i + k < WIDTH)
25 pn[i + k] |= (a.pn[i] << shift);
26 }
27 return *this;
28}
29
30template <unsigned int BITS>
32{
33 base_uint<BITS> a(*this);
34 for (int i = 0; i < WIDTH; i++)
35 pn[i] = 0;
36 int k = shift / 32;
37 shift = shift % 32;
38 for (int i = 0; i < WIDTH; i++) {
39 if (i - k - 1 >= 0 && shift != 0)
40 pn[i - k - 1] |= (a.pn[i] << (32 - shift));
41 if (i - k >= 0)
42 pn[i - k] |= (a.pn[i] >> shift);
43 }
44 return *this;
45}
46
47template <unsigned int BITS>
49{
50 uint64_t carry = 0;
51 for (int i = 0; i < WIDTH; i++) {
52 uint64_t n = carry + (uint64_t)b32 * pn[i];
53 pn[i] = n & 0xffffffff;
54 carry = n >> 32;
55 }
56 return *this;
57}
58
59template <unsigned int BITS>
61{
63 for (int j = 0; j < WIDTH; j++) {
64 uint64_t carry = 0;
65 for (int i = 0; i + j < WIDTH; i++) {
66 uint64_t n = carry + a.pn[i + j] + (uint64_t)pn[j] * b.pn[i];
67 a.pn[i + j] = n & 0xffffffff;
68 carry = n >> 32;
69 }
70 }
71 *this = a;
72 return *this;
73}
74
75template <unsigned int BITS>
77{
78 base_uint<BITS> div = b; // make a copy, so we can shift.
79 base_uint<BITS> num = *this; // make a copy, so we can subtract.
80 *this = 0; // the quotient.
81 int num_bits = num.bits();
82 int div_bits = div.bits();
83 if (div_bits == 0)
84 throw uint_error("Division by zero");
85 if (div_bits > num_bits) // the result is certainly 0.
86 return *this;
87 int shift = num_bits - div_bits;
88 div <<= shift; // shift so that div and num align.
89 while (shift >= 0) {
90 if (num >= div) {
91 num -= div;
92 pn[shift / 32] |= (1U << (shift & 31)); // set a bit of the result.
93 }
94 div >>= 1; // shift back.
95 shift--;
96 }
97 // num now contains the remainder of the division.
98 return *this;
99}
100
101template <unsigned int BITS>
103{
104 for (int i = WIDTH - 1; i >= 0; i--) {
105 if (pn[i] < b.pn[i])
106 return -1;
107 if (pn[i] > b.pn[i])
108 return 1;
109 }
110 return 0;
111}
112
113template <unsigned int BITS>
114bool base_uint<BITS>::EqualTo(uint64_t b) const
115{
116 for (int i = WIDTH - 1; i >= 2; i--) {
117 if (pn[i])
118 return false;
119 }
120 if (pn[1] != (b >> 32))
121 return false;
122 if (pn[0] != (b & 0xfffffffful))
123 return false;
124 return true;
127template <unsigned int BITS>
129{
130 double ret = 0.0;
131 double fact = 1.0;
132 for (int i = 0; i < WIDTH; i++) {
133 ret += fact * pn[i];
134 fact *= 4294967296.0;
135 }
136 return ret;
137}
138
139template <unsigned int BITS>
140std::string base_uint<BITS>::GetHex() const
141{
143 for (int x = 0; x < this->WIDTH; ++x) {
144 WriteLE32(b.begin() + x*4, this->pn[x]);
145 }
146 return b.GetHex();
147}
148
149template <unsigned int BITS>
150std::string base_uint<BITS>::ToString() const
151{
152 return GetHex();
153}
154
155template <unsigned int BITS>
156unsigned int base_uint<BITS>::bits() const
157{
158 for (int pos = WIDTH - 1; pos >= 0; pos--) {
159 if (pn[pos]) {
160 for (int nbits = 31; nbits > 0; nbits--) {
161 if (pn[pos] & 1U << nbits)
162 return 32 * pos + nbits + 1;
164 return 32 * pos + 1;
165 }
166 }
167 return 0;
168}
169
170// Explicit instantiations for base_uint<256>
171template class base_uint<256>;
172
173// This implementation directly uses shifts instead of going
174// through an intermediate MPI representation.
175arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
176{
177 int nSize = nCompact >> 24;
178 uint32_t nWord = nCompact & 0x007fffff;
179 if (nSize <= 3) {
180 nWord >>= 8 * (3 - nSize);
181 *this = nWord;
182 } else {
183 *this = nWord;
184 *this <<= 8 * (nSize - 3);
185 }
186 if (pfNegative)
187 *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
188 if (pfOverflow)
189 *pfOverflow = nWord != 0 && ((nSize > 34) ||
190 (nWord > 0xff && nSize > 33) ||
191 (nWord > 0xffff && nSize > 32));
192 return *this;
193}
194
195uint32_t arith_uint256::GetCompact(bool fNegative) const
196{
197 int nSize = (bits() + 7) / 8;
198 uint32_t nCompact = 0;
199 if (nSize <= 3) {
200 nCompact = GetLow64() << 8 * (3 - nSize);
201 } else {
202 arith_uint256 bn = *this >> 8 * (nSize - 3);
203 nCompact = bn.GetLow64();
204 }
205 // The 0x00800000 bit denotes the sign.
206 // Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
207 if (nCompact & 0x00800000) {
208 nCompact >>= 8;
209 nSize++;
210 }
211 assert((nCompact & ~0x007fffffU) == 0);
212 assert(nSize < 256);
213 nCompact |= nSize << 24;
214 nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
215 return nCompact;
216}
217
219{
220 uint256 b;
221 for(int x=0; x<a.WIDTH; ++x)
222 WriteLE32(b.begin() + x*4, a.pn[x]);
223 return b;
226{
228 for(int x=0; x<b.WIDTH; ++x)
229 b.pn[x] = ReadLE32(a.begin() + x*4);
230 return b;
231}
arith_uint256 UintToArith256(const uint256 &a)
uint256 ArithToUint256(const arith_uint256 &a)
int ret
256-bit unsigned big integer.
arith_uint256 & SetCompact(uint32_t nCompact, bool *pfNegative=nullptr, bool *pfOverflow=nullptr)
The "compact" format is a representation of a whole number N using an unsigned 32bit number similar t...
uint32_t GetCompact(bool fNegative=false) const
Template base class for fixed-sized opaque blobs.
Definition: uint256.h:26
constexpr unsigned char * begin()
Definition: uint256.h:115
std::string GetHex() const
Definition: uint256.cpp:11
Template base class for unsigned big integers.
Definition: arith_uint256.h:25
uint32_t pn[WIDTH]
Big integer represented with 32-bit digits, least-significant first.
Definition: arith_uint256.h:30
int CompareTo(const base_uint &b) const
Numeric ordering (unlike base_blob::Compare)
base_uint & operator>>=(unsigned int shift)
static constexpr int WIDTH
Definition: arith_uint256.h:28
base_uint & operator*=(uint32_t b32)
bool EqualTo(uint64_t b) const
double getdouble() const
base_uint & operator<<=(unsigned int shift)
std::string ToString() const
base_uint & operator/=(const base_uint &b)
uint64_t GetLow64() const
std::string GetHex() const
Hex encoding of the number (with the most significant digits first).
unsigned int bits() const
Returns the position of the highest bit set plus one, or zero if the value is zero.
256-bit opaque blob.
Definition: uint256.h:201
void WriteLE32(B *ptr, uint32_t x)
Definition: common.h:50
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
assert(!tx.IsCoinBase())