Bitcoin Core 28.99.0
P2P Digital Currency
bip324.cpp
Go to the documentation of this file.
1// Copyright (c) 2023 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <bip324.h>
6
7#include <chainparams.h>
8#include <crypto/chacha20.h>
11#include <key.h>
12#include <pubkey.h>
13#include <random.h>
14#include <span.h>
15#include <support/cleanse.h>
16#include <uint256.h>
17
18#include <algorithm>
19#include <assert.h>
20#include <cstdint>
21#include <cstddef>
22#include <iterator>
23#include <string>
24
26 m_key(key)
27{
28 m_our_pubkey = m_key.EllSwiftCreate(ent32);
29}
30
31BIP324Cipher::BIP324Cipher(const CKey& key, const EllSwiftPubKey& pubkey) noexcept :
32 m_key(key), m_our_pubkey(pubkey) {}
33
34void BIP324Cipher::Initialize(const EllSwiftPubKey& their_pubkey, bool initiator, bool self_decrypt) noexcept
35{
36 // Determine salt (fixed string + network magic bytes)
37 const auto& message_header = Params().MessageStart();
38 std::string salt = std::string{"bitcoin_v2_shared_secret"} + std::string(std::begin(message_header), std::end(message_header));
39
40 // Perform ECDH to derive shared secret.
41 ECDHSecret ecdh_secret = m_key.ComputeBIP324ECDHSecret(their_pubkey, m_our_pubkey, initiator);
42
43 // Derive encryption keys from shared secret, and initialize stream ciphers and AEADs.
44 bool side = (initiator != self_decrypt);
45 CHKDF_HMAC_SHA256_L32 hkdf(UCharCast(ecdh_secret.data()), ecdh_secret.size(), salt);
46 std::array<std::byte, 32> hkdf_32_okm;
47 hkdf.Expand32("initiator_L", UCharCast(hkdf_32_okm.data()));
48 (side ? m_send_l_cipher : m_recv_l_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL);
49 hkdf.Expand32("initiator_P", UCharCast(hkdf_32_okm.data()));
50 (side ? m_send_p_cipher : m_recv_p_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL);
51 hkdf.Expand32("responder_L", UCharCast(hkdf_32_okm.data()));
52 (side ? m_recv_l_cipher : m_send_l_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL);
53 hkdf.Expand32("responder_P", UCharCast(hkdf_32_okm.data()));
54 (side ? m_recv_p_cipher : m_send_p_cipher).emplace(hkdf_32_okm, REKEY_INTERVAL);
55
56 // Derive garbage terminators from shared secret.
57 hkdf.Expand32("garbage_terminators", UCharCast(hkdf_32_okm.data()));
58 std::copy(std::begin(hkdf_32_okm), std::begin(hkdf_32_okm) + GARBAGE_TERMINATOR_LEN,
59 (initiator ? m_send_garbage_terminator : m_recv_garbage_terminator).begin());
60 std::copy(std::end(hkdf_32_okm) - GARBAGE_TERMINATOR_LEN, std::end(hkdf_32_okm),
61 (initiator ? m_recv_garbage_terminator : m_send_garbage_terminator).begin());
62
63 // Derive session id from shared secret.
64 hkdf.Expand32("session_id", UCharCast(m_session_id.data()));
65
66 // Wipe all variables that contain information which could be used to re-derive encryption keys.
67 memory_cleanse(ecdh_secret.data(), ecdh_secret.size());
68 memory_cleanse(hkdf_32_okm.data(), sizeof(hkdf_32_okm));
69 memory_cleanse(&hkdf, sizeof(hkdf));
70 m_key = CKey();
71}
72
74{
75 assert(output.size() == contents.size() + EXPANSION);
76
77 // Encrypt length.
78 std::byte len[LENGTH_LEN];
79 len[0] = std::byte{(uint8_t)(contents.size() & 0xFF)};
80 len[1] = std::byte{(uint8_t)((contents.size() >> 8) & 0xFF)};
81 len[2] = std::byte{(uint8_t)((contents.size() >> 16) & 0xFF)};
82 m_send_l_cipher->Crypt(len, output.first(LENGTH_LEN));
83
84 // Encrypt plaintext.
85 std::byte header[HEADER_LEN] = {ignore ? IGNORE_BIT : std::byte{0}};
86 m_send_p_cipher->Encrypt(header, contents, aad, output.subspan(LENGTH_LEN));
87}
88
90{
91 assert(input.size() == LENGTH_LEN);
92
93 std::byte buf[LENGTH_LEN];
94 // Decrypt length
95 m_recv_l_cipher->Crypt(input, buf);
96 // Convert to number.
97 return uint32_t(buf[0]) + (uint32_t(buf[1]) << 8) + (uint32_t(buf[2]) << 16);
98}
99
101{
102 assert(input.size() + LENGTH_LEN == contents.size() + EXPANSION);
103
104 std::byte header[HEADER_LEN];
105 if (!m_recv_p_cipher->Decrypt(input, aad, header, contents)) return false;
106
107 ignore = (header[0] & IGNORE_BIT) == IGNORE_BIT;
108 return true;
109}
const CChainParams & Params()
Return the currently selected parameters.
unsigned DecryptLength(Span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
BIP324Cipher()=delete
No default constructor; keys must be provided to create a BIP324Cipher.
bool Decrypt(Span< const std::byte > input, Span< const std::byte > aad, bool &ignore, Span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
void Encrypt(Span< const std::byte > contents, Span< const std::byte > aad, bool ignore, Span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
const MessageStartChars & MessageStart() const
Definition: chainparams.h:94
A rfc5869 HKDF implementation with HMAC_SHA256 and fixed key output length of 32 bytes (L=32)
void Expand32(const std::string &info, unsigned char hash[OUTPUT_SIZE])
An encapsulated private key.
Definition: key.h:35
void memory_cleanse(void *ptr, size_t len)
Secure overwrite a buffer (possibly containing secret data) with zero-bytes.
Definition: cleanse.cpp:14
std::array< std::byte, ECDH_SECRET_SIZE > ECDHSecret
Definition: key.h:29
unsigned char * UCharCast(char *c)
Definition: span.h:281
An ElligatorSwift-encoded public key.
Definition: pubkey.h:310
assert(!tx.IsCoinBase())