Bitcoin Core 28.99.0
P2P Digital Currency
field_5x52_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_FIELD_REPR_IMPL_H
8#define SECP256K1_FIELD_REPR_IMPL_H
9
10#include "checkmem.h"
11#include "util.h"
12#include "field.h"
13#include "modinv64_impl.h"
14
16
17#ifdef VERIFY
18static void secp256k1_fe_impl_verify(const secp256k1_fe *a) {
19 const uint64_t *d = a->n;
20 int m = a->normalized ? 1 : 2 * a->magnitude;
21 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
22 VERIFY_CHECK(d[0] <= 0xFFFFFFFFFFFFFULL * m);
23 VERIFY_CHECK(d[1] <= 0xFFFFFFFFFFFFFULL * m);
24 VERIFY_CHECK(d[2] <= 0xFFFFFFFFFFFFFULL * m);
25 VERIFY_CHECK(d[3] <= 0xFFFFFFFFFFFFFULL * m);
26 VERIFY_CHECK(d[4] <= 0x0FFFFFFFFFFFFULL * m);
27 if (a->normalized) {
28 if ((d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
29 VERIFY_CHECK(d[0] < 0xFFFFEFFFFFC2FULL);
30 }
31 }
32}
33#endif
34
36 r->n[0] = 0xFFFFFFFFFFFFFULL * 2 * m;
37 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * m;
38 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * m;
39 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * m;
40 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * m;
41}
42
44 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
45
46 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
47 uint64_t m;
48 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
49
50 /* The first pass ensures the magnitude is 1, ... */
51 t0 += x * 0x1000003D1ULL;
52 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
53 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
54 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
55 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
56
57 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
58 VERIFY_CHECK(t4 >> 49 == 0);
59
60 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
61 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
62 & (t0 >= 0xFFFFEFFFFFC2FULL));
63
64 /* Apply the final reduction (for constant-time behaviour, we do it always) */
65 t0 += x * 0x1000003D1ULL;
66 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
67 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
68 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
69 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
70
71 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
72 VERIFY_CHECK(t4 >> 48 == x);
73
74 /* Mask off the possible multiple of 2^256 from the final reduction */
75 t4 &= 0x0FFFFFFFFFFFFULL;
76
77 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
78}
79
81 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
82
83 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
84 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
85
86 /* The first pass ensures the magnitude is 1, ... */
87 t0 += x * 0x1000003D1ULL;
88 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
89 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
90 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
91 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
92
93 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
94 VERIFY_CHECK(t4 >> 49 == 0);
95
96 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
97}
98
100 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
101
102 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
103 uint64_t m;
104 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
105
106 /* The first pass ensures the magnitude is 1, ... */
107 t0 += x * 0x1000003D1ULL;
108 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
109 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
110 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
111 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
112
113 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
114 VERIFY_CHECK(t4 >> 49 == 0);
115
116 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
117 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
118 & (t0 >= 0xFFFFEFFFFFC2FULL));
119
120 if (x) {
121 t0 += 0x1000003D1ULL;
122 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
123 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
124 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
125 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
126
127 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
128 VERIFY_CHECK(t4 >> 48 == x);
129
130 /* Mask off the possible multiple of 2^256 from the final reduction */
131 t4 &= 0x0FFFFFFFFFFFFULL;
132 }
133
134 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
135}
136
138 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
139
140 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
141 uint64_t z0, z1;
142
143 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
144 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
145
146 /* The first pass ensures the magnitude is 1, ... */
147 t0 += x * 0x1000003D1ULL;
148 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
149 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
150 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
151 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
152 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
153
154 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
155 VERIFY_CHECK(t4 >> 49 == 0);
156
157 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
158}
159
161 uint64_t t0, t1, t2, t3, t4;
162 uint64_t z0, z1;
163 uint64_t x;
164
165 t0 = r->n[0];
166 t4 = r->n[4];
167
168 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
169 x = t4 >> 48;
170
171 /* The first pass ensures the magnitude is 1, ... */
172 t0 += x * 0x1000003D1ULL;
173
174 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
175 z0 = t0 & 0xFFFFFFFFFFFFFULL;
176 z1 = z0 ^ 0x1000003D0ULL;
177
178 /* Fast return path should catch the majority of cases */
179 if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
180 return 0;
181 }
182
183 t1 = r->n[1];
184 t2 = r->n[2];
185 t3 = r->n[3];
186
187 t4 &= 0x0FFFFFFFFFFFFULL;
188
189 t1 += (t0 >> 52);
190 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
191 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
192 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
193 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
194
195 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
196 VERIFY_CHECK(t4 >> 49 == 0);
197
198 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
199}
200
202 r->n[0] = a;
203 r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
204}
205
207 const uint64_t *t = a->n;
208 return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
209}
210
212 return a->n[0] & 1;
213}
214
216 int i;
217 for (i = 4; i >= 0; i--) {
218 if (a->n[i] > b->n[i]) {
219 return 1;
220 }
221 if (a->n[i] < b->n[i]) {
222 return -1;
223 }
224 }
225 return 0;
226}
227
228static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
229 r->n[0] = (uint64_t)a[31]
230 | ((uint64_t)a[30] << 8)
231 | ((uint64_t)a[29] << 16)
232 | ((uint64_t)a[28] << 24)
233 | ((uint64_t)a[27] << 32)
234 | ((uint64_t)a[26] << 40)
235 | ((uint64_t)(a[25] & 0xF) << 48);
236 r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
237 | ((uint64_t)a[24] << 4)
238 | ((uint64_t)a[23] << 12)
239 | ((uint64_t)a[22] << 20)
240 | ((uint64_t)a[21] << 28)
241 | ((uint64_t)a[20] << 36)
242 | ((uint64_t)a[19] << 44);
243 r->n[2] = (uint64_t)a[18]
244 | ((uint64_t)a[17] << 8)
245 | ((uint64_t)a[16] << 16)
246 | ((uint64_t)a[15] << 24)
247 | ((uint64_t)a[14] << 32)
248 | ((uint64_t)a[13] << 40)
249 | ((uint64_t)(a[12] & 0xF) << 48);
250 r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
251 | ((uint64_t)a[11] << 4)
252 | ((uint64_t)a[10] << 12)
253 | ((uint64_t)a[9] << 20)
254 | ((uint64_t)a[8] << 28)
255 | ((uint64_t)a[7] << 36)
256 | ((uint64_t)a[6] << 44);
257 r->n[4] = (uint64_t)a[5]
258 | ((uint64_t)a[4] << 8)
259 | ((uint64_t)a[3] << 16)
260 | ((uint64_t)a[2] << 24)
261 | ((uint64_t)a[1] << 32)
262 | ((uint64_t)a[0] << 40);
263}
264
265static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
267 return !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL));
268}
269
271static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a) {
272 r[0] = (a->n[4] >> 40) & 0xFF;
273 r[1] = (a->n[4] >> 32) & 0xFF;
274 r[2] = (a->n[4] >> 24) & 0xFF;
275 r[3] = (a->n[4] >> 16) & 0xFF;
276 r[4] = (a->n[4] >> 8) & 0xFF;
277 r[5] = a->n[4] & 0xFF;
278 r[6] = (a->n[3] >> 44) & 0xFF;
279 r[7] = (a->n[3] >> 36) & 0xFF;
280 r[8] = (a->n[3] >> 28) & 0xFF;
281 r[9] = (a->n[3] >> 20) & 0xFF;
282 r[10] = (a->n[3] >> 12) & 0xFF;
283 r[11] = (a->n[3] >> 4) & 0xFF;
284 r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
285 r[13] = (a->n[2] >> 40) & 0xFF;
286 r[14] = (a->n[2] >> 32) & 0xFF;
287 r[15] = (a->n[2] >> 24) & 0xFF;
288 r[16] = (a->n[2] >> 16) & 0xFF;
289 r[17] = (a->n[2] >> 8) & 0xFF;
290 r[18] = a->n[2] & 0xFF;
291 r[19] = (a->n[1] >> 44) & 0xFF;
292 r[20] = (a->n[1] >> 36) & 0xFF;
293 r[21] = (a->n[1] >> 28) & 0xFF;
294 r[22] = (a->n[1] >> 20) & 0xFF;
295 r[23] = (a->n[1] >> 12) & 0xFF;
296 r[24] = (a->n[1] >> 4) & 0xFF;
297 r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
298 r[26] = (a->n[0] >> 40) & 0xFF;
299 r[27] = (a->n[0] >> 32) & 0xFF;
300 r[28] = (a->n[0] >> 24) & 0xFF;
301 r[29] = (a->n[0] >> 16) & 0xFF;
302 r[30] = (a->n[0] >> 8) & 0xFF;
303 r[31] = a->n[0] & 0xFF;
304}
305
307 /* For all legal values of m (0..31), the following properties hold: */
308 VERIFY_CHECK(0xFFFFEFFFFFC2FULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
309 VERIFY_CHECK(0xFFFFFFFFFFFFFULL * 2 * (m + 1) >= 0xFFFFFFFFFFFFFULL * 2 * m);
310 VERIFY_CHECK(0x0FFFFFFFFFFFFULL * 2 * (m + 1) >= 0x0FFFFFFFFFFFFULL * 2 * m);
311
312 /* Due to the properties above, the left hand in the subtractions below is never less than
313 * the right hand. */
314 r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
315 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
316 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
317 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
318 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
319}
320
322 r->n[0] *= a;
323 r->n[1] *= a;
324 r->n[2] *= a;
325 r->n[3] *= a;
326 r->n[4] *= a;
327}
328
330 r->n[0] += a;
331}
332
334 r->n[0] += a->n[0];
335 r->n[1] += a->n[1];
336 r->n[2] += a->n[2];
337 r->n[3] += a->n[3];
338 r->n[4] += a->n[4];
339}
340
342 secp256k1_fe_mul_inner(r->n, a->n, b->n);
343}
344
346 secp256k1_fe_sqr_inner(r->n, a->n);
347}
348
350 uint64_t mask0, mask1;
351 volatile int vflag = flag;
352 SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
353 mask0 = vflag + ~((uint64_t)0);
354 mask1 = ~mask0;
355 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
356 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
357 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
358 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
359 r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
360}
361
363 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
364 uint64_t one = (uint64_t)1;
365 uint64_t mask = -(t0 & one) >> 12;
366
367 /* Bounds analysis (over the rationals).
368 *
369 * Let m = r->magnitude
370 * C = 0xFFFFFFFFFFFFFULL * 2
371 * D = 0x0FFFFFFFFFFFFULL * 2
372 *
373 * Initial bounds: t0..t3 <= C * m
374 * t4 <= D * m
375 */
376
377 t0 += 0xFFFFEFFFFFC2FULL & mask;
378 t1 += mask;
379 t2 += mask;
380 t3 += mask;
381 t4 += mask >> 4;
382
383 VERIFY_CHECK((t0 & one) == 0);
384
385 /* t0..t3: added <= C/2
386 * t4: added <= D/2
387 *
388 * Current bounds: t0..t3 <= C * (m + 1/2)
389 * t4 <= D * (m + 1/2)
390 */
391
392 r->n[0] = (t0 >> 1) + ((t1 & one) << 51);
393 r->n[1] = (t1 >> 1) + ((t2 & one) << 51);
394 r->n[2] = (t2 >> 1) + ((t3 & one) << 51);
395 r->n[3] = (t3 >> 1) + ((t4 & one) << 51);
396 r->n[4] = (t4 >> 1);
397
398 /* t0..t3: shifted right and added <= C/4 + 1/2
399 * t4: shifted right
400 *
401 * Current bounds: t0..t3 <= C * (m/2 + 1/2)
402 * t4 <= D * (m/2 + 1/4)
403 *
404 * Therefore the output magnitude (M) has to be set such that:
405 * t0..t3: C * M >= C * (m/2 + 1/2)
406 * t4: D * M >= D * (m/2 + 1/4)
407 *
408 * It suffices for all limbs that, for any input magnitude m:
409 * M >= m/2 + 1/2
410 *
411 * and since we want the smallest such integer value for M:
412 * M == floor(m/2) + 1
413 */
414}
415
417 uint64_t mask0, mask1;
418 volatile int vflag = flag;
419 SECP256K1_CHECKMEM_CHECK_VERIFY(r->n, sizeof(r->n));
420 mask0 = vflag + ~((uint64_t)0);
421 mask1 = ~mask0;
422 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
423 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
424 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
425 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
426}
427
429 r->n[0] = a->n[0] | a->n[1] << 52;
430 r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
431 r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
432 r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
433}
434
436 r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
437 r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
438 r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
439 r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
440 r->n[4] = a->n[3] >> 16;
441}
442
444 const uint64_t M52 = UINT64_MAX >> 12;
445 const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
446
447 /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
448 * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
449 */
450 VERIFY_CHECK(a0 >> 62 == 0);
451 VERIFY_CHECK(a1 >> 62 == 0);
452 VERIFY_CHECK(a2 >> 62 == 0);
453 VERIFY_CHECK(a3 >> 62 == 0);
454 VERIFY_CHECK(a4 >> 8 == 0);
455
456 r->n[0] = a0 & M52;
457 r->n[1] = (a0 >> 52 | a1 << 10) & M52;
458 r->n[2] = (a1 >> 42 | a2 << 20) & M52;
459 r->n[3] = (a2 >> 32 | a3 << 30) & M52;
460 r->n[4] = (a3 >> 22 | a4 << 40);
461}
462
464 const uint64_t M62 = UINT64_MAX >> 2;
465 const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4];
466
467 r->v[0] = (a0 | a1 << 52) & M62;
468 r->v[1] = (a1 >> 10 | a2 << 42) & M62;
469 r->v[2] = (a2 >> 20 | a3 << 32) & M62;
470 r->v[3] = (a3 >> 30 | a4 << 22) & M62;
471 r->v[4] = a4 >> 40;
472}
473
475 {{-0x1000003D1LL, 0, 0, 0, 256}},
476 0x27C7F6E22DDACACFLL
477};
478
480 secp256k1_fe tmp = *x;
482
487}
488
490 secp256k1_fe tmp = *x;
492
497}
498
500 secp256k1_fe tmp;
502 int jac, ret;
503
504 tmp = *x;
506 /* secp256k1_jacobi64_maybe_var cannot deal with input 0. */
507 if (secp256k1_fe_is_zero(&tmp)) return 1;
510 if (jac == 0) {
511 /* secp256k1_jacobi64_maybe_var failed to compute the Jacobi symbol. Fall back
512 * to computing a square root. This should be extremely rare with random
513 * input (except in VERIFY mode, where a lower iteration count is used). */
514 secp256k1_fe dummy;
515 ret = secp256k1_fe_sqrt(&dummy, &tmp);
516 } else {
517 ret = jac >= 0;
518 }
519 return ret;
520}
521
522#endif /* SECP256K1_FIELD_REPR_IMPL_H */
int ret
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len)
Definition: checkmem.h:99
static int secp256k1_fe_sqrt(secp256k1_fe *SECP256K1_RESTRICT r, const secp256k1_fe *SECP256K1_RESTRICT a)
Compute a square root of a field element.
#define secp256k1_fe_normalize_var
Definition: field.h:80
#define secp256k1_fe_is_zero
Definition: field.h:84
#define secp256k1_fe_normalize
Definition: field.h:78
static SECP256K1_INLINE void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a)
static SECP256K1_INLINE void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t *SECP256K1_RESTRICT b)
static SECP256K1_INLINE void secp256k1_fe_impl_half(secp256k1_fe *r)
static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a)
static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r)
static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x)
static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
static SECP256K1_INLINE void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a)
static SECP256K1_INLINE int secp256k1_fe_impl_is_zero(const secp256k1_fe *a)
static void secp256k1_fe_impl_get_bounds(secp256k1_fe *r, int m)
static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a)
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
static SECP256K1_INLINE void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m)
static SECP256K1_INLINE void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a)
static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b)
static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a)
static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r)
static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x)
static SECP256K1_INLINE void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a)
static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a)
static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r)
static void secp256k1_fe_impl_normalize(secp256k1_fe *r)
static SECP256K1_INLINE void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag)
static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x)
static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r)
static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a)
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe
static SECP256K1_INLINE int secp256k1_fe_impl_is_odd(const secp256k1_fe *a)
static SECP256K1_INLINE void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
#define SECP256K1_INLINE
Definition: util.h:54
#define VERIFY_CHECK(cond)
Definition: util.h:159
#define SECP256K1_RESTRICT
Definition: util.h:194
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
uint32_t n[10]
Definition: field_10x26.h:22