Bitcoin Core 28.99.0
P2P Digital Currency
group_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_GROUP_IMPL_H
8#define SECP256K1_GROUP_IMPL_H
9
10#include <string.h>
11
12#include "field.h"
13#include "group.h"
14#include "util.h"
15
16/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
17#define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\
18 0x66625d13, 0x317ffe44, 0x63d32cff, 0x1ca02b9b,\
19 0xe5c6d070, 0x50b4b05e, 0x81cc30db, 0xf5166f0a,\
20 0x1e60e897, 0xa7c00c7c, 0x2df53eb6, 0x98274ff4,\
21 0x64252f42, 0x8ca44e17, 0x3b25418c, 0xff4ab0cf\
22)
23#define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\
24 0xa2482ff8, 0x4bf34edf, 0xa51262fd, 0xe57921db,\
25 0xe0dd2cb7, 0xa5914790, 0xbc71631f, 0xc09704fb,\
26 0x942536cb, 0xa3e49492, 0x3a701cc3, 0xee3e443f,\
27 0xdf182aa9, 0x15b8aa6a, 0x166d3b19, 0xba84b045\
28)
29#define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\
30 0x7fb07b5c, 0xd07c3bda, 0x553902e2, 0x7a87ea2c,\
31 0x35108a7f, 0x051f41e5, 0xb76abad5, 0x1f2703ad,\
32 0x0a251539, 0x5b4c4438, 0x952a634f, 0xac10dd4d,\
33 0x6d6f4745, 0x98990c27, 0x3a4f3116, 0xd32ff969\
34)
38#define SECP256K1_G SECP256K1_GE_CONST(\
39 0x79be667e, 0xf9dcbbac, 0x55a06295, 0xce870b07,\
40 0x029bfcdb, 0x2dce28d9, 0x59f2815b, 0x16f81798,\
41 0x483ada77, 0x26a3c465, 0x5da4fbfc, 0x0e1108a8,\
42 0xfd17b448, 0xa6855419, 0x9c47d08f, 0xfb10d4b8\
43)
44/* These exhaustive group test orders and generators are chosen such that:
45 * - The field size is equal to that of secp256k1, so field code is the same.
46 * - The curve equation is of the form y^2=x^3+B for some small constant B.
47 * - The subgroup has a generator 2*P, where P.x is as small as possible.
48 * - The subgroup has size less than 1000 to permit exhaustive testing.
49 * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
50 */
51#if defined(EXHAUSTIVE_TEST_ORDER)
52# if EXHAUSTIVE_TEST_ORDER == 7
53
55#define SECP256K1_B 6
56
57# elif EXHAUSTIVE_TEST_ORDER == 13
58
60#define SECP256K1_B 2
61
62# elif EXHAUSTIVE_TEST_ORDER == 199
63
65#define SECP256K1_B 4
66
67# else
68# error No known generator for the specified exhaustive test group order.
69# endif
70#else
71
73#define SECP256K1_B 7
74
75#endif
76/* End of section generated by sage/gen_exhaustive_groups.sage. */
77
78static void secp256k1_ge_verify(const secp256k1_ge *a) {
83 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
84 (void)a;
85}
86
87static void secp256k1_gej_verify(const secp256k1_gej *a) {
94 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
95 (void)a;
96}
97
98/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
100 secp256k1_fe zi2;
101 secp256k1_fe zi3;
105
106 secp256k1_fe_sqr(&zi2, zi);
107 secp256k1_fe_mul(&zi3, &zi2, zi);
108 secp256k1_fe_mul(&r->x, &a->x, &zi2);
109 secp256k1_fe_mul(&r->y, &a->y, &zi3);
110 r->infinity = a->infinity;
111
113}
114
115/* Set r to the affine coordinates of Jacobian point (a.x, a.y, 1/zi). */
117 secp256k1_fe zi2;
118 secp256k1_fe zi3;
122
123 secp256k1_fe_sqr(&zi2, zi);
124 secp256k1_fe_mul(&zi3, &zi2, zi);
125 secp256k1_fe_mul(&r->x, &a->x, &zi2);
126 secp256k1_fe_mul(&r->y, &a->y, &zi3);
127 r->infinity = a->infinity;
128
130}
131
132static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
135
136 r->infinity = 0;
137 r->x = *x;
138 r->y = *y;
139
141}
142
145
146 return a->infinity;
147}
148
149static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
151
152 *r = *a;
154 secp256k1_fe_negate(&r->y, &r->y, 1);
155
157}
158
160 secp256k1_fe z2, z3;
162
163 r->infinity = a->infinity;
164 secp256k1_fe_inv(&a->z, &a->z);
165 secp256k1_fe_sqr(&z2, &a->z);
166 secp256k1_fe_mul(&z3, &a->z, &z2);
167 secp256k1_fe_mul(&a->x, &a->x, &z2);
168 secp256k1_fe_mul(&a->y, &a->y, &z3);
169 secp256k1_fe_set_int(&a->z, 1);
170 r->x = a->x;
171 r->y = a->y;
172
175}
176
178 secp256k1_fe z2, z3;
180
183 return;
184 }
185 r->infinity = 0;
186 secp256k1_fe_inv_var(&a->z, &a->z);
187 secp256k1_fe_sqr(&z2, &a->z);
188 secp256k1_fe_mul(&z3, &a->z, &z2);
189 secp256k1_fe_mul(&a->x, &a->x, &z2);
190 secp256k1_fe_mul(&a->y, &a->y, &z3);
191 secp256k1_fe_set_int(&a->z, 1);
192 secp256k1_ge_set_xy(r, &a->x, &a->y);
193
196}
197
198static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
199 secp256k1_fe u;
200 size_t i;
201 size_t last_i = SIZE_MAX;
202#ifdef VERIFY
203 for (i = 0; i < len; i++) {
205 }
206#endif
207
208 for (i = 0; i < len; i++) {
209 if (a[i].infinity) {
211 } else {
212 /* Use destination's x coordinates as scratch space */
213 if (last_i == SIZE_MAX) {
214 r[i].x = a[i].z;
215 } else {
216 secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
217 }
218 last_i = i;
219 }
220 }
221 if (last_i == SIZE_MAX) {
222 return;
223 }
224 secp256k1_fe_inv_var(&u, &r[last_i].x);
225
226 i = last_i;
227 while (i > 0) {
228 i--;
229 if (!a[i].infinity) {
230 secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
231 secp256k1_fe_mul(&u, &u, &a[last_i].z);
232 last_i = i;
233 }
234 }
235 VERIFY_CHECK(!a[last_i].infinity);
236 r[last_i].x = u;
237
238 for (i = 0; i < len; i++) {
239 if (!a[i].infinity) {
240 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
241 }
242 }
243
244#ifdef VERIFY
245 for (i = 0; i < len; i++) {
246 SECP256K1_GE_VERIFY(&r[i]);
247 }
248#endif
249}
250
251static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) {
252 size_t i;
253 secp256k1_fe zs;
254#ifdef VERIFY
255 for (i = 0; i < len; i++) {
256 SECP256K1_GE_VERIFY(&a[i]);
257 SECP256K1_FE_VERIFY(&zr[i]);
258 }
259#endif
260
261 if (len > 0) {
262 i = len - 1;
263 /* Ensure all y values are in weak normal form for fast negation of points */
265 zs = zr[i];
266
267 /* Work our way backwards, using the z-ratios to scale the x/y values. */
268 while (i > 0) {
269 if (i != len - 1) {
270 secp256k1_fe_mul(&zs, &zs, &zr[i]);
271 }
272 i--;
273 secp256k1_ge_set_ge_zinv(&a[i], &a[i], &zs);
274 }
275 }
276
277#ifdef VERIFY
278 for (i = 0; i < len; i++) {
279 SECP256K1_GE_VERIFY(&a[i]);
280 }
281#endif
282}
283
285 r->infinity = 1;
286 secp256k1_fe_set_int(&r->x, 0);
287 secp256k1_fe_set_int(&r->y, 0);
288 secp256k1_fe_set_int(&r->z, 0);
289
291}
292
294 r->infinity = 1;
295 secp256k1_fe_set_int(&r->x, 0);
296 secp256k1_fe_set_int(&r->y, 0);
297
299}
300
303}
304
307}
308
309static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
310 secp256k1_fe x2, x3;
311 int ret;
313
314 r->x = *x;
315 secp256k1_fe_sqr(&x2, x);
316 secp256k1_fe_mul(&x3, x, &x2);
317 r->infinity = 0;
319 ret = secp256k1_fe_sqrt(&r->y, &x3);
321 if (secp256k1_fe_is_odd(&r->y) != odd) {
322 secp256k1_fe_negate(&r->y, &r->y, 1);
323 }
324
326 return ret;
327}
328
331
332 r->infinity = a->infinity;
333 r->x = a->x;
334 r->y = a->y;
335 secp256k1_fe_set_int(&r->z, 1);
336
338}
339
340static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) {
341 secp256k1_gej tmp;
344
345 secp256k1_gej_neg(&tmp, a);
346 secp256k1_gej_add_var(&tmp, &tmp, b, NULL);
347 return secp256k1_gej_is_infinity(&tmp);
348}
349
350static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b) {
351 secp256k1_gej tmp;
354
355 secp256k1_gej_neg(&tmp, a);
356 secp256k1_gej_add_ge_var(&tmp, &tmp, b, NULL);
357 return secp256k1_gej_is_infinity(&tmp);
358}
359
360static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b) {
361 secp256k1_fe tmp;
364
365 if (a->infinity != b->infinity) return 0;
366 if (a->infinity) return 1;
367
368 tmp = a->x;
370 if (!secp256k1_fe_equal(&tmp, &b->x)) return 0;
371
372 tmp = a->y;
374 if (!secp256k1_fe_equal(&tmp, &b->y)) return 0;
375
376 return 1;
377}
378
379static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
380 secp256k1_fe r;
384
385 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
386 return secp256k1_fe_equal(&r, &a->x);
387}
388
391
392 r->infinity = a->infinity;
393 r->x = a->x;
394 r->y = a->y;
395 r->z = a->z;
397 secp256k1_fe_negate(&r->y, &r->y, 1);
398
400}
401
404
405 return a->infinity;
406}
407
409 secp256k1_fe y2, x3;
411
412 if (a->infinity) {
413 return 0;
414 }
415 /* y^2 = x^3 + 7 */
416 secp256k1_fe_sqr(&y2, &a->y);
417 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
419 return secp256k1_fe_equal(&y2, &x3);
420}
421
423 /* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */
424 secp256k1_fe l, s, t;
426
427 r->infinity = a->infinity;
428
429 /* Formula used:
430 * L = (3/2) * X1^2
431 * S = Y1^2
432 * T = -X1*S
433 * X3 = L^2 + 2*T
434 * Y3 = -(L*(X3 + T) + S^2)
435 * Z3 = Y1*Z1
436 */
437
438 secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */
439 secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */
440 secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */
441 secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */
442 secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */
443 secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */
444 secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */
445 secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */
446 secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */
447 secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */
448 secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */
449 secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */
450 secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */
451 secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */
452 secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */
453
455}
456
459
470 if (a->infinity) {
472 if (rzr != NULL) {
473 secp256k1_fe_set_int(rzr, 1);
474 }
475 return;
476 }
477
478 if (rzr != NULL) {
479 *rzr = a->y;
481 }
482
484
486}
487
489 /* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
490 secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t;
493
494 if (a->infinity) {
495 VERIFY_CHECK(rzr == NULL);
496 *r = *b;
497 return;
498 }
499 if (b->infinity) {
500 if (rzr != NULL) {
501 secp256k1_fe_set_int(rzr, 1);
502 }
503 *r = *a;
504 return;
505 }
506
507 secp256k1_fe_sqr(&z22, &b->z);
508 secp256k1_fe_sqr(&z12, &a->z);
509 secp256k1_fe_mul(&u1, &a->x, &z22);
510 secp256k1_fe_mul(&u2, &b->x, &z12);
511 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
512 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
513 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
514 secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
517 secp256k1_gej_double_var(r, a, rzr);
518 } else {
519 if (rzr != NULL) {
520 secp256k1_fe_set_int(rzr, 0);
521 }
523 }
524 return;
525 }
526
527 r->infinity = 0;
528 secp256k1_fe_mul(&t, &h, &b->z);
529 if (rzr != NULL) {
530 *rzr = t;
531 }
532 secp256k1_fe_mul(&r->z, &a->z, &t);
533
534 secp256k1_fe_sqr(&h2, &h);
535 secp256k1_fe_negate(&h2, &h2, 1);
536 secp256k1_fe_mul(&h3, &h2, &h);
537 secp256k1_fe_mul(&t, &u1, &h2);
538
539 secp256k1_fe_sqr(&r->x, &i);
540 secp256k1_fe_add(&r->x, &h3);
541 secp256k1_fe_add(&r->x, &t);
542 secp256k1_fe_add(&r->x, &t);
543
544 secp256k1_fe_add(&t, &r->x);
545 secp256k1_fe_mul(&r->y, &t, &i);
546 secp256k1_fe_mul(&h3, &h3, &s1);
547 secp256k1_fe_add(&r->y, &h3);
548
550}
551
553 /* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
554 secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
557
558 if (a->infinity) {
559 VERIFY_CHECK(rzr == NULL);
561 return;
562 }
563 if (b->infinity) {
564 if (rzr != NULL) {
565 secp256k1_fe_set_int(rzr, 1);
566 }
567 *r = *a;
568 return;
569 }
570
571 secp256k1_fe_sqr(&z12, &a->z);
572 u1 = a->x;
573 secp256k1_fe_mul(&u2, &b->x, &z12);
574 s1 = a->y;
575 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
577 secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
580 secp256k1_gej_double_var(r, a, rzr);
581 } else {
582 if (rzr != NULL) {
583 secp256k1_fe_set_int(rzr, 0);
584 }
586 }
587 return;
588 }
589
590 r->infinity = 0;
591 if (rzr != NULL) {
592 *rzr = h;
593 }
594 secp256k1_fe_mul(&r->z, &a->z, &h);
595
596 secp256k1_fe_sqr(&h2, &h);
597 secp256k1_fe_negate(&h2, &h2, 1);
598 secp256k1_fe_mul(&h3, &h2, &h);
599 secp256k1_fe_mul(&t, &u1, &h2);
600
601 secp256k1_fe_sqr(&r->x, &i);
602 secp256k1_fe_add(&r->x, &h3);
603 secp256k1_fe_add(&r->x, &t);
604 secp256k1_fe_add(&r->x, &t);
605
606 secp256k1_fe_add(&t, &r->x);
607 secp256k1_fe_mul(&r->y, &t, &i);
608 secp256k1_fe_mul(&h3, &h3, &s1);
609 secp256k1_fe_add(&r->y, &h3);
610
612 if (rzr != NULL) SECP256K1_FE_VERIFY(rzr);
613}
614
615static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
616 /* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
617 secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
620 SECP256K1_FE_VERIFY(bzinv);
621
622 if (a->infinity) {
623 secp256k1_fe bzinv2, bzinv3;
624 r->infinity = b->infinity;
625 secp256k1_fe_sqr(&bzinv2, bzinv);
626 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
627 secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
628 secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
629 secp256k1_fe_set_int(&r->z, 1);
631 return;
632 }
633 if (b->infinity) {
634 *r = *a;
635 return;
636 }
637
646 secp256k1_fe_mul(&az, &a->z, bzinv);
647
648 secp256k1_fe_sqr(&z12, &az);
649 u1 = a->x;
650 secp256k1_fe_mul(&u2, &b->x, &z12);
651 s1 = a->y;
652 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
654 secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
657 secp256k1_gej_double_var(r, a, NULL);
658 } else {
660 }
661 return;
662 }
663
664 r->infinity = 0;
665 secp256k1_fe_mul(&r->z, &a->z, &h);
666
667 secp256k1_fe_sqr(&h2, &h);
668 secp256k1_fe_negate(&h2, &h2, 1);
669 secp256k1_fe_mul(&h3, &h2, &h);
670 secp256k1_fe_mul(&t, &u1, &h2);
671
672 secp256k1_fe_sqr(&r->x, &i);
673 secp256k1_fe_add(&r->x, &h3);
674 secp256k1_fe_add(&r->x, &t);
675 secp256k1_fe_add(&r->x, &t);
676
677 secp256k1_fe_add(&t, &r->x);
678 secp256k1_fe_mul(&r->y, &t, &i);
679 secp256k1_fe_mul(&h3, &h3, &s1);
680 secp256k1_fe_add(&r->y, &h3);
681
683}
684
685
687 /* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */
688 secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
689 secp256k1_fe m_alt, rr_alt;
690 int degenerate;
694
695 /* In:
696 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
697 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
698 * we find as solution for a unified addition/doubling formula:
699 * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
700 * x3 = lambda^2 - (x1 + x2)
701 * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
702 *
703 * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
704 * U1 = X1*Z2^2, U2 = X2*Z1^2
705 * S1 = Y1*Z2^3, S2 = Y2*Z1^3
706 * Z = Z1*Z2
707 * T = U1+U2
708 * M = S1+S2
709 * Q = -T*M^2
710 * R = T^2-U1*U2
711 * X3 = R^2+Q
712 * Y3 = -(R*(2*X3+Q)+M^4)/2
713 * Z3 = M*Z
714 * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
715 *
716 * This formula has the benefit of being the same for both addition
717 * of distinct points and doubling. However, it breaks down in the
718 * case that either point is infinity, or that y1 = -y2. We handle
719 * these cases in the following ways:
720 *
721 * - If b is infinity we simply bail by means of a VERIFY_CHECK.
722 *
723 * - If a is infinity, we detect this, and at the end of the
724 * computation replace the result (which will be meaningless,
725 * but we compute to be constant-time) with b.x : b.y : 1.
726 *
727 * - If a = -b, we have y1 = -y2, which is a degenerate case.
728 * But here the answer is infinity, so we simply set the
729 * infinity flag of the result, overriding the computed values
730 * without even needing to cmov.
731 *
732 * - If y1 = -y2 but x1 != x2, which does occur thanks to certain
733 * properties of our curve (specifically, 1 has nontrivial cube
734 * roots in our field, and the curve equation has no x coefficient)
735 * then the answer is not infinity but also not given by the above
736 * equation. In this case, we cmov in place an alternate expression
737 * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
738 * expressions for lambda are defined, they are equal, and can be
739 * obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
740 * then substitution of x^3 + 7 for y^2 (using the curve equation).
741 * For all pairs of nonzero points (a, b) at least one is defined,
742 * so this covers everything.
743 */
744
745 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
746 u1 = a->x; /* u1 = U1 = X1*Z2^2 (GEJ_X_M) */
747 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
748 s1 = a->y; /* s1 = S1 = Y1*Z2^3 (GEJ_Y_M) */
749 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
750 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
751 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (GEJ_X_M+1) */
752 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (GEJ_Y_M+1) */
753 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
754 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */
755 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */
756 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */
757 /* If lambda = R/M = R/0 we have a problem (except in the "trivial"
758 * case that Z = z1z2 = 0, and this is special-cased later on). */
759 degenerate = secp256k1_fe_normalizes_to_zero(&m);
760 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
761 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
762 * a nontrivial cube root of one. In either case, an alternate
763 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
764 * so we set R/M equal to this. */
765 rr_alt = s1;
766 secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (GEJ_Y_M*2) */
767 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (GEJ_X_M+2) */
768
769 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (GEJ_Y_M*2) */
770 secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (GEJ_X_M+2) */
771 /* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
772 * From here on out Ralt and Malt represent the numerator
773 * and denominator of lambda; R and M represent the explicit
774 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
775 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
777 SECP256K1_GEJ_X_MAGNITUDE_MAX + 1); /* q = -T (GEJ_X_M+2) */
778 secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
779 /* These two lines use the observation that either M == Malt or M == 0,
780 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
781 * zero (which is "computed" by cmov). So the cost is one squaring
782 * versus two multiplications. */
783 secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */
784 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (GEJ_Y_M+1) */
785 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
786 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
787 secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
788 r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
789 secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
790 secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
791 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
792 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (GEJ_Y_M+2) */
793 secp256k1_fe_negate(&r->y, &t,
794 SECP256K1_GEJ_Y_MAGNITUDE_MAX + 2); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (GEJ_Y_M+3) */
795 secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 ((GEJ_Y_M+3)/2 + 1) */
796
797 /* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
798 secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
799 secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
801
802 /* Set r->infinity if r->z is 0.
803 *
804 * If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false,
805 * which is correct because the function assumes that b is not infinity.
806 *
807 * Now assume !a->infinity. This implies Z = Z1 != 0.
808 *
809 * Case y1 = -y2:
810 * In this case we could have a = -b, namely if x1 = x2.
811 * We have degenerate = true, r->z = (x1 - x2) * Z.
812 * Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b).
813 *
814 * Case y1 != -y2:
815 * In this case, we can't have a = -b.
816 * We have degenerate = false, r->z = (y1 + y2) * Z.
817 * Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */
819
821}
822
824 /* Operations: 4 mul, 1 sqr */
825 secp256k1_fe zz;
829
830 secp256k1_fe_sqr(&zz, s);
831 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
832 secp256k1_fe_mul(&r->y, &r->y, &zz);
833 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
834 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
835
837}
838
840 secp256k1_fe x, y;
843
844 x = a->x;
846 y = a->y;
848 secp256k1_fe_to_storage(&r->x, &x);
849 secp256k1_fe_to_storage(&r->y, &y);
850}
851
853 secp256k1_fe_from_storage(&r->x, &a->x);
854 secp256k1_fe_from_storage(&r->y, &a->y);
855 r->infinity = 0;
856
858}
859
863
864 secp256k1_fe_cmov(&r->x, &a->x, flag);
865 secp256k1_fe_cmov(&r->y, &a->y, flag);
866 secp256k1_fe_cmov(&r->z, &a->z, flag);
867 r->infinity ^= (r->infinity ^ a->infinity) & flag;
868
870}
871
873 secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
874 secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
875}
876
879
880 *r = *a;
882
884}
885
887#ifdef EXHAUSTIVE_TEST_ORDER
889 int i;
891
892 /* A very simple EC multiplication ladder that avoids a dependency on ecmult. */
894 for (i = 0; i < 32; ++i) {
896 if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
897 secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
898 }
899 }
901#else
903
904 (void)ge;
905 /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
906 return 1;
907#endif
908}
909
911 secp256k1_fe c;
912 secp256k1_fe_sqr(&c, x);
913 secp256k1_fe_mul(&c, &c, x);
916}
917
919 /* We want to determine whether (xn/xd) is on the curve.
920 *
921 * (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
922 */
923 secp256k1_fe r, t;
925
926 secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
927 secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
928 secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
929 secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
930 secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
932 secp256k1_fe_mul_int(&t, SECP256K1_B); /* t = 7*xd^4 */
933 secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
935}
936
937static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a) {
939
940 /* We require that the secp256k1_ge_storage type is exactly 64 bytes.
941 * This is formally not guaranteed by the C standard, but should hold on any
942 * sane compiler in the real world. */
943 STATIC_ASSERT(sizeof(secp256k1_ge_storage) == 64);
946 memcpy(buf, &s, 64);
947}
948
949static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf) {
951
952 STATIC_ASSERT(sizeof(secp256k1_ge_storage) == 64);
953 memcpy(&s, buf, 64);
955}
956
957static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge) {
958 if (secp256k1_ge_is_infinity(ge)) {
959 memset(data, 0, 64);
960 } else {
962 }
963}
964
965static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data) {
966 static const unsigned char zeros[64] = { 0 };
967 if (secp256k1_memcmp_var(data, zeros, sizeof(zeros)) == 0) {
969 } else {
971 }
972}
973
974#endif /* SECP256K1_GROUP_IMPL_H */
int ret
#define secp256k1_fe_cmov
Definition: field.h:95
#define secp256k1_fe_negate(r, a, m)
Negate a field element.
Definition: field.h:211
#define secp256k1_fe_mul_int(r, a)
Multiply a field element with a small integer.
Definition: field.h:233
#define secp256k1_fe_normalizes_to_zero_var
Definition: field.h:82
#define secp256k1_fe_normalize_weak
Definition: field.h:79
static const secp256k1_fe secp256k1_const_beta
Definition: field.h:69
#define secp256k1_fe_is_odd
Definition: field.h:85
#define SECP256K1_FE_VERIFY_MAGNITUDE(a, m)
Definition: field.h:348
#define secp256k1_fe_mul
Definition: field.h:93
static const secp256k1_fe secp256k1_fe_one
Definition: field.h:68
static int secp256k1_fe_sqrt(secp256k1_fe *SECP256K1_RESTRICT r, const secp256k1_fe *SECP256K1_RESTRICT a)
Compute a square root of a field element.
#define secp256k1_fe_add
Definition: field.h:92
#define secp256k1_fe_normalize_var
Definition: field.h:80
#define secp256k1_fe_half
Definition: field.h:101
#define secp256k1_fe_to_storage
Definition: field.h:96
#define secp256k1_fe_inv_var
Definition: field.h:99
#define SECP256K1_FE_VERIFY(a)
Definition: field.h:344
#define secp256k1_fe_is_square_var
Definition: field.h:103
#define secp256k1_fe_from_storage
Definition: field.h:97
#define secp256k1_fe_normalizes_to_zero
Definition: field.h:81
#define secp256k1_fe_inv
Definition: field.h:98
#define secp256k1_fe_sqr
Definition: field.h:94
#define secp256k1_fe_normalize
Definition: field.h:78
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b)
Determine whether two field elements are equal.
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
#define secp256k1_fe_add_int
Definition: field.h:102
#define secp256k1_fe_set_int
Definition: field.h:83
#define SECP256K1_GE_X_MAGNITUDE_MAX
Maximum allowed magnitudes for group element coordinates in affine (x, y) and jacobian (x,...
Definition: group.h:49
#define SECP256K1_GEJ_VERIFY(a)
Definition: group.h:210
#define SECP256K1_GEJ_Y_MAGNITUDE_MAX
Definition: group.h:52
#define SECP256K1_GE_Y_MAGNITUDE_MAX
Definition: group.h:50
#define SECP256K1_GEJ_Z_MAGNITUDE_MAX
Definition: group.h:53
#define SECP256K1_GE_VERIFY(a)
Definition: group.h:206
#define SECP256K1_GEJ_X_MAGNITUDE_MAX
Definition: group.h:51
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b)
Definition: group_impl.h:340
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Definition: group_impl.h:457
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Definition: group_impl.h:615
#define SECP256K1_G_ORDER_13
Definition: group_impl.h:23
static void secp256k1_gej_clear(secp256k1_gej *r)
Definition: group_impl.h:301
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Definition: group_impl.h:877
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Definition: group_impl.h:284
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Definition: group_impl.h:402
static void secp256k1_ge_clear(secp256k1_ge *r)
Definition: group_impl.h:305
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Definition: group_impl.h:132
static void secp256k1_gej_verify(const secp256k1_gej *a)
Definition: group_impl.h:87
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd)
Definition: group_impl.h:309
static void secp256k1_ge_verify(const secp256k1_ge *a)
Definition: group_impl.h:78
static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b)
Definition: group_impl.h:360
static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x)
Definition: group_impl.h:910
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Definition: group_impl.h:552
static void secp256k1_ge_to_bytes_ext(unsigned char *data, const secp256k1_ge *ge)
Definition: group_impl.h:957
static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag)
Definition: group_impl.h:860
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Definition: group_impl.h:686
#define SECP256K1_G
Generator for secp256k1, value 'g' defined in "Standards for Efficient Cryptography" (SEC2) 2....
Definition: group_impl.h:38
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi)
Definition: group_impl.h:99
#define SECP256K1_B
Definition: group_impl.h:73
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b)
Definition: group_impl.h:350
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a)
Definition: group_impl.h:408
static void secp256k1_ge_from_bytes_ext(secp256k1_ge *ge, const unsigned char *data)
Definition: group_impl.h:965
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
Definition: group_impl.h:852
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Definition: group_impl.h:488
static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd)
Definition: group_impl.h:918
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s)
Definition: group_impl.h:823
static void secp256k1_ge_set_ge_zinv(secp256k1_ge *r, const secp256k1_ge *a, const secp256k1_fe *zi)
Definition: group_impl.h:116
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
Definition: group_impl.h:379
#define SECP256K1_G_ORDER_7
Definition: group_impl.h:17
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Definition: group_impl.h:159
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge *ge)
Definition: group_impl.h:886
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr)
Definition: group_impl.h:251
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Definition: group_impl.h:149
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:72
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Definition: group_impl.h:143
static void secp256k1_ge_set_infinity(secp256k1_ge *r)
Definition: group_impl.h:293
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Definition: group_impl.h:198
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Definition: group_impl.h:329
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a)
Definition: group_impl.h:839
static void secp256k1_ge_to_bytes(unsigned char *buf, const secp256k1_ge *a)
Definition: group_impl.h:937
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag)
Definition: group_impl.h:872
#define SECP256K1_G_ORDER_199
Definition: group_impl.h:29
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Definition: group_impl.h:177
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Definition: group_impl.h:389
static void secp256k1_ge_from_bytes(secp256k1_ge *r, const unsigned char *buf)
Definition: group_impl.h:949
static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Definition: group_impl.h:422
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
Definition: util.h:255
#define SECP256K1_INLINE
Definition: util.h:54
#define STATIC_ASSERT(expr)
Assert statically that expr is true.
Definition: util.h:64
static SECP256K1_INLINE void secp256k1_memclear(void *ptr, size_t len)
Definition: util.h:223
#define VERIFY_CHECK(cond)
Definition: util.h:159
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
secp256k1_fe_storage x
Definition: group.h:39
secp256k1_fe_storage y
Definition: group.h:40
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
int infinity
Definition: group.h:19
secp256k1_fe x
Definition: group.h:17
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
secp256k1_fe y
Definition: group.h:30
secp256k1_fe x
Definition: group.h:29
int infinity
Definition: group.h:32
secp256k1_fe z
Definition: group.h:31
#define EXHAUSTIVE_TEST_ORDER