Bitcoin Core 30.99.0
P2P Digital Currency
tests_exhaustive.c
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2016 Andrew Poelstra *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#include <stdio.h>
8#include <stdlib.h>
9#include <time.h>
10
11#ifndef EXHAUSTIVE_TEST_ORDER
12/* see group_impl.h for allowable values */
13#define EXHAUSTIVE_TEST_ORDER 13
14#endif
15
16/* These values of B are all values in [1, 8] that result in a curve with even order. */
17#define EXHAUSTIVE_TEST_CURVE_HAS_EVEN_ORDER (SECP256K1_B == 1 || SECP256K1_B == 6 || SECP256K1_B == 8)
18
19#ifdef USE_EXTERNAL_DEFAULT_CALLBACKS
20 #pragma message("Ignoring USE_EXTERNAL_CALLBACKS in exhaustive_tests.")
21 #undef USE_EXTERNAL_DEFAULT_CALLBACKS
22#endif
23#include "secp256k1.c"
24
25#include "../include/secp256k1.h"
26#include "assumptions.h"
27#include "group.h"
28#include "testrand_impl.h"
31#include "testutil.h"
32#include "util.h"
33
34static int count = 2;
35
36static uint32_t num_cores = 1;
37static uint32_t this_core = 0;
38
39SECP256K1_INLINE static int skip_section(uint64_t* iter) {
40 if (num_cores == 1) return 0;
41 *iter += 0xe7037ed1a0b428dbULL;
42 return ((((uint32_t)*iter ^ (*iter >> 32)) * num_cores) >> 32) != this_core;
43}
44
45static int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
46 const unsigned char *key32, const unsigned char *algo16,
47 void *data, unsigned int attempt) {
49 int *idata = data;
50 (void)msg32;
51 (void)key32;
52 (void)algo16;
53 /* Some nonces cannot be used because they'd cause s and/or r to be zero.
54 * The signing function has retry logic here that just re-calls the nonce
55 * function with an increased `attempt`. So if attempt > 0 this means we
56 * need to change the nonce to avoid an infinite loop. */
57 if (attempt > 0) {
58 *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
59 }
61 secp256k1_scalar_get_b32(nonce32, &s);
62 return 1;
63}
64
66 int i;
67 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
68 secp256k1_ge res;
70 CHECK(secp256k1_ge_eq_var(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res));
71 }
72}
73
74static void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj) {
75 int i, j;
76 uint64_t iter = 0;
77
78 /* Sanity-check (and check infinity functions) */
81 for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
83 CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
84 }
85
86 /* Check all addition formulae */
87 for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
88 secp256k1_fe fe_inv;
89 if (skip_section(&iter)) continue;
90 secp256k1_fe_inv(&fe_inv, &groupj[j].z);
91 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
92 secp256k1_ge zless_gej;
93 secp256k1_gej tmp;
94 /* add_var */
95 secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
97 /* add_ge */
98 if (j > 0) {
99 secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
101 }
102 /* add_ge_var */
103 secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
105 /* add_zinv_var */
106 if (secp256k1_gej_is_infinity(&groupj[j])) {
107 secp256k1_ge_set_infinity(&zless_gej);
108 } else {
109 secp256k1_ge_set_xy(&zless_gej, &groupj[j].x, &groupj[j].y);
110 }
111 secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
113 }
114 }
115
116 /* Check doubling */
117 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
118 secp256k1_gej tmp;
119 secp256k1_gej_double(&tmp, &groupj[i]);
121 secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
123 }
124
125 /* Check negation */
126 for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
127 secp256k1_ge tmp;
128 secp256k1_gej tmpj;
129 secp256k1_ge_neg(&tmp, &group[i]);
131 secp256k1_gej_neg(&tmpj, &groupj[i]);
133 }
134}
135
136static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_gej *groupj) {
137 int i, j, r_log;
138 uint64_t iter = 0;
139 for (r_log = 1; r_log < EXHAUSTIVE_TEST_ORDER; r_log++) {
140 for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
141 if (skip_section(&iter)) continue;
142 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
143 secp256k1_gej tmp;
144 secp256k1_scalar na, ng;
147
148 secp256k1_ecmult(&tmp, &groupj[r_log], &na, &ng);
149 CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER]));
150 }
151 }
152 }
153
154 for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
155 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
156 int ret;
157 secp256k1_gej tmp;
158 secp256k1_fe xn, xd, tmpf;
160
161 if (skip_section(&iter)) continue;
162
164
165 /* Test secp256k1_ecmult_const. */
166 secp256k1_ecmult_const(&tmp, &group[i], &ng);
168
169 if (i != 0 && j != 0) {
170 /* Test secp256k1_ecmult_const_xonly with all curve X coordinates, and xd=NULL. */
171 ret = secp256k1_ecmult_const_xonly(&tmpf, &group[i].x, NULL, &ng, 0);
172 CHECK(ret);
174
175 /* Test secp256k1_ecmult_const_xonly with all curve X coordinates, with random xd. */
177 secp256k1_fe_mul(&xn, &xd, &group[i].x);
178 ret = secp256k1_ecmult_const_xonly(&tmpf, &xn, &xd, &ng, 0);
179 CHECK(ret);
181 }
182 }
183 }
184}
185
186typedef struct {
190
191static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
193 *sc = data->sc[idx];
194 *pt = data->pt[idx];
195 return 1;
196}
197
199 int i, j, k, x, y;
200 uint64_t iter = 0;
202 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
203 for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
204 for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
205 for (x = 0; x < EXHAUSTIVE_TEST_ORDER; x++) {
206 if (skip_section(&iter)) continue;
207 for (y = 0; y < EXHAUSTIVE_TEST_ORDER; y++) {
208 secp256k1_gej tmp;
209 secp256k1_scalar g_sc;
211
215 data.pt[0] = group[x];
216 data.pt[1] = group[y];
217
218 secp256k1_ecmult_multi_var(&ctx->error_callback, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
219 CHECK(secp256k1_gej_eq_ge_var(&tmp, &group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER]));
220 }
221 }
222 }
223 }
224 }
226}
227
228static void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int* overflow) {
229 secp256k1_fe x;
230 unsigned char x_bin[32];
232 x = group[k].x;
234 secp256k1_fe_get_b32(x_bin, &x);
235 secp256k1_scalar_set_b32(r, x_bin, overflow);
236}
237
239 int s, r, msg, key;
240 uint64_t iter = 0;
241 for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) {
242 for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) {
243 for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) {
244 for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) {
245 secp256k1_ge nonconst_ge;
248 secp256k1_scalar sk_s, msg_s, r_s, s_s;
249 secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
250 int k, should_verify;
251 unsigned char msg32[32];
252
253 if (skip_section(&iter)) continue;
254
258 secp256k1_scalar_set_int(&sk_s, key);
259
260 /* Verify by hand */
261 /* Run through every k value that gives us this r and check that *one* works.
262 * Note there could be none, there could be multiple, ECDSA is weird. */
263 should_verify = 0;
264 for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
265 secp256k1_scalar check_x_s;
266 r_from_k(&check_x_s, group, k, NULL);
267 if (r_s == check_x_s) {
268 secp256k1_scalar_set_int(&s_times_k_s, k);
269 secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
270 secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
271 secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
272 should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
273 }
274 }
275 /* nb we have a "high s" rule */
276 should_verify &= !secp256k1_scalar_is_high(&s_s);
277
278 /* Verify by calling verify */
279 secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
280 memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
281 secp256k1_pubkey_save(&pk, &nonconst_ge);
282 secp256k1_scalar_get_b32(msg32, &msg_s);
283 CHECK(should_verify ==
284 secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
285 }
286 }
287 }
288 }
289}
290
292 int i, j, k;
293 uint64_t iter = 0;
294
295 /* Loop */
296 for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */
297 for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */
298 if (skip_section(&iter)) continue;
299 for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */
300 const int starting_k = k;
301 int ret;
303 secp256k1_scalar sk, msg, r, s, expected_r;
304 unsigned char sk32[32], msg32[32];
309
310 ret = secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
311 CHECK(ret == 1);
312
313 secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
314 /* Note that we compute expected_r *after* signing -- this is important
315 * because our nonce-computing function function might change k during
316 * signing. */
317 r_from_k(&expected_r, group, k, NULL);
318 CHECK(r == expected_r);
319 CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER ||
321
322 /* Overflow means we've tried every possible nonce */
323 if (k < starting_k) {
324 break;
325 }
326 }
327 }
328 }
329
330 /* We would like to verify zero-knowledge here by counting how often every
331 * possible (s, r) tuple appears, but because the group order is larger
332 * than the field order, when coercing the x-values to scalar values, some
333 * appear more often than others, so we are actually not zero-knowledge.
334 * (This effect also appears in the real code, but the difference is on the
335 * order of 1/2^128th the field order, so the deviation is not useful to a
336 * computationally bounded attacker.)
337 */
338}
339
340#ifdef ENABLE_MODULE_RECOVERY
342#endif
343
344#ifdef ENABLE_MODULE_EXTRAKEYS
346#endif
347
348#ifdef ENABLE_MODULE_SCHNORRSIG
350#endif
351
352#ifdef ENABLE_MODULE_ELLSWIFT
354#endif
355
356int main(int argc, char** argv) {
357 int i;
360 unsigned char rand32[32];
362
363 /* Disable buffering for stdout to improve reliability of getting
364 * diagnostic information. Happens right at the start of main because
365 * setbuf must be used before any other operation on the stream. */
366 setbuf(stdout, NULL);
367 /* Also disable buffering for stderr because it's not guaranteed that it's
368 * unbuffered on all systems. */
369 setbuf(stderr, NULL);
370
371 printf("Exhaustive tests for order %lu\n", (unsigned long)EXHAUSTIVE_TEST_ORDER);
372
373 /* find iteration count */
374 if (argc > 1) {
375 count = strtol(argv[1], NULL, 0);
376 }
377 printf("test count = %i\n", count);
378
379 /* find random seed */
380 testrand_init(argc > 2 ? argv[2] : NULL);
381
382 /* set up split processing */
383 if (argc > 4) {
384 num_cores = strtol(argv[3], NULL, 0);
385 this_core = strtol(argv[4], NULL, 0);
386 if (num_cores < 1 || this_core >= num_cores) {
387 fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]);
388 return EXIT_FAILURE;
389 }
390 printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1);
391 }
392
393 /* Recreate the ecmult{,_gen} tables using the right generator (as selected via EXHAUSTIVE_TEST_ORDER) */
396
397 while (count--) {
398 /* Build context */
400 testrand256(rand32);
402
403 /* Generate the entire group */
404 secp256k1_gej_set_infinity(&groupj[0]);
405 secp256k1_ge_set_gej(&group[0], &groupj[0]);
406 for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
407 secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
408 secp256k1_ge_set_gej(&group[i], &groupj[i]);
409 if (count != 0) {
410 /* Set a different random z-value for each Jacobian point, except z=1
411 is used in the last iteration. */
412 secp256k1_fe z;
414 secp256k1_gej_rescale(&groupj[i], &z);
415 }
416
417 /* Verify against ecmult_gen */
418 {
419 secp256k1_scalar scalar_i;
420 secp256k1_gej generatedj;
421 secp256k1_ge generated;
422
423 secp256k1_scalar_set_int(&scalar_i, i);
424 secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
425 secp256k1_ge_set_gej(&generated, &generatedj);
426
428 CHECK(secp256k1_ge_eq_var(&group[i], &generated));
429 }
430 }
431
432 /* Run the tests */
439
440#ifdef ENABLE_MODULE_RECOVERY
442#endif
443#ifdef ENABLE_MODULE_EXTRAKEYS
445#endif
446#ifdef ENABLE_MODULE_SCHNORRSIG
448#endif
449#ifdef ENABLE_MODULE_ELLSWIFT
450 /* The ellswift algorithm does have additional edge cases when operating on
451 * curves of even order, which are not included in the code as secp256k1 is
452 * of odd order. Skip the ellswift tests if the used exhaustive tests curve
453 * is even-ordered accordingly. */
454 #if !EXHAUSTIVE_TEST_CURVE_HAS_EVEN_ORDER
456 #endif
457#endif
458
460 }
461
463
464 printf("no problems found\n");
465 return EXIT_SUCCESS;
466}
int ret
return EXIT_SUCCESS
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void secp256k1_ecmult_compute_two_tables(secp256k1_ge_storage *table, secp256k1_ge_storage *table_128, int window_g, const secp256k1_ge *gen)
static int secp256k1_ecmult_const_xonly(secp256k1_fe *r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve)
Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point only,...
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q)
Multiply: R = q*A (in constant-time for q)
#define COMB_SPACING
Definition: ecmult_gen.h:78
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
#define COMB_BLOCKS
Definition: ecmult_gen.h:66
#define COMB_TEETH
Definition: ecmult_gen.h:72
static void secp256k1_ecmult_gen_compute_table(secp256k1_ge_storage *table, const secp256k1_ge *gen, int blocks, int teeth, int spacing)
static void test_exhaustive_ellswift(const secp256k1_context *ctx, const secp256k1_ge *group)
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge *group)
#define secp256k1_fe_mul
Definition: field.h:93
#define secp256k1_fe_get_b32
Definition: field.h:89
#define secp256k1_fe_inv
Definition: field.h:98
#define secp256k1_fe_normalize
Definition: field.h:78
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b)
Determine whether two field elements are equal.
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Set a group element equal to the point with given X and Y coordinates.
static int secp256k1_ge_eq_var(const secp256k1_ge *a, const secp256k1_ge *b)
Check two group elements (affine) for equality in variable time.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b)
Check two group elements (jacobian and affine) for equality in variable time.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_set_infinity(secp256k1_ge *r)
Set a group element (affine) equal to the point at infinity.
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the double of a.
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:72
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
void printf(FormatStringCheck< sizeof...(Args)> fmt, const Args &... args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1096
const secp256k1_ge_storage secp256k1_pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]
const secp256k1_ge_storage secp256k1_pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]
#define WINDOW_G
const secp256k1_ge_storage secp256k1_ecmult_gen_prec_table[COMB_BLOCKS][COMB_POINTS]
static void test_exhaustive_recovery(const secp256k1_context *ctx, const secp256k1_ge *group)
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
Check whether a scalar is higher than the group order divided by 2.
static void test_exhaustive_schnorrsig(const secp256k1_context *ctx)
static void secp256k1_scratch_destroy(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
static secp256k1_scratch * secp256k1_scratch_create(const secp256k1_callback *error_callback, size_t max_size)
#define SECP256K1_INLINE
Definition: util.h:54
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature *sig, const secp256k1_scalar *r, const secp256k1_scalar *s)
Definition: secp256k1.c:367
static void secp256k1_pubkey_save(secp256k1_pubkey *pubkey, secp256k1_ge *ge)
Definition: secp256k1.c:246
static void secp256k1_ecdsa_signature_load(const secp256k1_context *ctx, secp256k1_scalar *r, secp256k1_scalar *s, const secp256k1_ecdsa_signature *sig)
Definition: secp256k1.c:353
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:187
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Randomizes the context to provide enhanced protection against side-channel leakage.
Definition: secp256k1.c:755
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:141
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:574
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:214
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:458
secp256k1_callback error_callback
Definition: secp256k1.c:64
secp256k1_ecmult_gen_context ecmult_gen_ctx
Definition: secp256k1.c:62
Opaque data structure that holds a parsed ECDSA signature.
Definition: secp256k1.h:74
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:61
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
static void testrand256(unsigned char *b32)
Generate a pseudorandom 32-byte array.
static void testrand_init(const char *hexseed)
Initialize the test RNG using (hex encoded) array up to 16 bytes, or randomly if hexseed is NULL.
static void testrand_finish(void)
Print final test information.
static void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group)
static void test_exhaustive_endomorphism(const secp256k1_ge *group)
static void test_exhaustive_ecmult(const secp256k1_ge *group, const secp256k1_gej *groupj)
static uint32_t this_core
static SECP256K1_INLINE int skip_section(uint64_t *iter)
int main(int argc, char **argv)
static void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int *overflow)
static void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group)
static void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group)
static uint32_t num_cores
static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata)
static int count
static void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj)
#define EXHAUSTIVE_TEST_ORDER
static int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt)
static void testutil_random_fe_non_zero(secp256k1_fe *nz)
Definition: testutil.h:32
static void testutil_random_fe(secp256k1_fe *x)
Definition: testutil.h:22