Bitcoin Core  0.20.99
P2P Digital Currency
tests_exhaustive.c
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2016 Andrew Poelstra *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #if defined HAVE_CONFIG_H
8 #include "libsecp256k1-config.h"
9 #endif
10 
11 #include <stdio.h>
12 #include <stdlib.h>
13 
14 #include <time.h>
15 
16 #undef USE_ECMULT_STATIC_PRECOMPUTATION
17 
18 #ifndef EXHAUSTIVE_TEST_ORDER
19 /* see group_impl.h for allowable values */
20 #define EXHAUSTIVE_TEST_ORDER 13
21 #endif
22 
23 #include "include/secp256k1.h"
24 #include "assumptions.h"
25 #include "group.h"
26 #include "secp256k1.c"
27 #include "testrand_impl.h"
28 
29 static int count = 2;
30 
32 void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
33  CHECK(a->infinity == b->infinity);
34  if (a->infinity) {
35  return;
36  }
37  CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
38  CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
39 }
40 
41 void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
42  secp256k1_fe z2s;
43  secp256k1_fe u1, u2, s1, s2;
44  CHECK(a->infinity == b->infinity);
45  if (a->infinity) {
46  return;
47  }
48  /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
49  secp256k1_fe_sqr(&z2s, &b->z);
50  secp256k1_fe_mul(&u1, &a->x, &z2s);
51  u2 = b->x; secp256k1_fe_normalize_weak(&u2);
52  secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
53  s2 = b->y; secp256k1_fe_normalize_weak(&s2);
54  CHECK(secp256k1_fe_equal_var(&u1, &u2));
55  CHECK(secp256k1_fe_equal_var(&s1, &s2));
56 }
57 
59  unsigned char bin[32];
60  do {
62  if (secp256k1_fe_set_b32(x, bin)) {
63  return;
64  }
65  } while(1);
66 }
69 static uint32_t num_cores = 1;
70 static uint32_t this_core = 0;
71 
72 SECP256K1_INLINE static int skip_section(uint64_t* iter) {
73  if (num_cores == 1) return 0;
74  *iter += 0xe7037ed1a0b428dbULL;
75  return ((((uint32_t)*iter ^ (*iter >> 32)) * num_cores) >> 32) != this_core;
76 }
77 
78 int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
79  const unsigned char *key32, const unsigned char *algo16,
80  void *data, unsigned int attempt) {
82  int *idata = data;
83  (void)msg32;
84  (void)key32;
85  (void)algo16;
86  /* Some nonces cannot be used because they'd cause s and/or r to be zero.
87  * The signing function has retry logic here that just re-calls the nonce
88  * function with an increased `attempt`. So if attempt > 0 this means we
89  * need to change the nonce to avoid an infinite loop. */
90  if (attempt > 0) {
91  *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
92  }
93  secp256k1_scalar_set_int(&s, *idata);
94  secp256k1_scalar_get_b32(nonce32, &s);
95  return 1;
96 }
97 
99  int i;
100  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
101  secp256k1_ge res;
102  secp256k1_ge_mul_lambda(&res, &group[i]);
103  ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
104  }
105 }
106 
107 void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj) {
108  int i, j;
109  uint64_t iter = 0;
110 
111  /* Sanity-check (and check infinity functions) */
112  CHECK(secp256k1_ge_is_infinity(&group[0]));
113  CHECK(secp256k1_gej_is_infinity(&groupj[0]));
114  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
115  CHECK(!secp256k1_ge_is_infinity(&group[i]));
116  CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
117  }
118 
119  /* Check all addition formulae */
120  for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
121  secp256k1_fe fe_inv;
122  if (skip_section(&iter)) continue;
123  secp256k1_fe_inv(&fe_inv, &groupj[j].z);
124  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
125  secp256k1_ge zless_gej;
126  secp256k1_gej tmp;
127  /* add_var */
128  secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
129  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
130  /* add_ge */
131  if (j > 0) {
132  secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
133  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
134  }
135  /* add_ge_var */
136  secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
137  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
138  /* add_zinv_var */
139  zless_gej.infinity = groupj[j].infinity;
140  zless_gej.x = groupj[j].x;
141  zless_gej.y = groupj[j].y;
142  secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
143  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
144  }
145  }
146 
147  /* Check doubling */
148  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
149  secp256k1_gej tmp;
150  secp256k1_gej_double(&tmp, &groupj[i]);
151  ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
152  secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
153  ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
154  }
155 
156  /* Check negation */
157  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
158  secp256k1_ge tmp;
159  secp256k1_gej tmpj;
160  secp256k1_ge_neg(&tmp, &group[i]);
161  ge_equals_ge(&group[EXHAUSTIVE_TEST_ORDER - i], &tmp);
162  secp256k1_gej_neg(&tmpj, &groupj[i]);
163  ge_equals_gej(&group[EXHAUSTIVE_TEST_ORDER - i], &tmpj);
164  }
165 }
166 
167 void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj) {
168  int i, j, r_log;
169  uint64_t iter = 0;
170  for (r_log = 1; r_log < EXHAUSTIVE_TEST_ORDER; r_log++) {
171  for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
172  if (skip_section(&iter)) continue;
173  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
174  secp256k1_gej tmp;
175  secp256k1_scalar na, ng;
176  secp256k1_scalar_set_int(&na, i);
177  secp256k1_scalar_set_int(&ng, j);
178 
179  secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
180  ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
181 
182  if (i > 0) {
183  secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
184  ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);
185  }
186  }
187  }
188  }
189 }
190 
191 typedef struct {
195 
196 static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
197  ecmult_multi_data *data = (ecmult_multi_data*) cbdata;
198  *sc = data->sc[idx];
199  *pt = data->pt[idx];
200  return 1;
201 }
202 
204  int i, j, k, x, y;
205  uint64_t iter = 0;
207  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
208  for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
209  for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
210  for (x = 0; x < EXHAUSTIVE_TEST_ORDER; x++) {
211  if (skip_section(&iter)) continue;
212  for (y = 0; y < EXHAUSTIVE_TEST_ORDER; y++) {
213  secp256k1_gej tmp;
214  secp256k1_scalar g_sc;
215  ecmult_multi_data data;
216 
217  secp256k1_scalar_set_int(&data.sc[0], i);
218  secp256k1_scalar_set_int(&data.sc[1], j);
219  secp256k1_scalar_set_int(&g_sc, k);
220  data.pt[0] = group[x];
221  data.pt[1] = group[y];
222 
223  secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
224  ge_equals_gej(&group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER], &tmp);
225  }
226  }
227  }
228  }
229  }
231 }
232 
233 void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int* overflow) {
234  secp256k1_fe x;
235  unsigned char x_bin[32];
237  x = group[k].x;
239  secp256k1_fe_get_b32(x_bin, &x);
240  secp256k1_scalar_set_b32(r, x_bin, overflow);
241 }
242 
244  int s, r, msg, key;
245  uint64_t iter = 0;
246  for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) {
247  for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) {
248  for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) {
249  for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) {
250  secp256k1_ge nonconst_ge;
252  secp256k1_pubkey pk;
253  secp256k1_scalar sk_s, msg_s, r_s, s_s;
254  secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
255  int k, should_verify;
256  unsigned char msg32[32];
257 
258  if (skip_section(&iter)) continue;
259 
260  secp256k1_scalar_set_int(&s_s, s);
261  secp256k1_scalar_set_int(&r_s, r);
262  secp256k1_scalar_set_int(&msg_s, msg);
263  secp256k1_scalar_set_int(&sk_s, key);
264 
265  /* Verify by hand */
266  /* Run through every k value that gives us this r and check that *one* works.
267  * Note there could be none, there could be multiple, ECDSA is weird. */
268  should_verify = 0;
269  for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
270  secp256k1_scalar check_x_s;
271  r_from_k(&check_x_s, group, k, NULL);
272  if (r_s == check_x_s) {
273  secp256k1_scalar_set_int(&s_times_k_s, k);
274  secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
275  secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
276  secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
277  should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
278  }
279  }
280  /* nb we have a "high s" rule */
281  should_verify &= !secp256k1_scalar_is_high(&s_s);
282 
283  /* Verify by calling verify */
284  secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
285  memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
286  secp256k1_pubkey_save(&pk, &nonconst_ge);
287  secp256k1_scalar_get_b32(msg32, &msg_s);
288  CHECK(should_verify ==
289  secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
290  }
291  }
292  }
293  }
294 }
295 
297  int i, j, k;
298  uint64_t iter = 0;
299 
300  /* Loop */
301  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */
302  for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */
303  if (skip_section(&iter)) continue;
304  for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */
305  const int starting_k = k;
307  secp256k1_scalar sk, msg, r, s, expected_r;
308  unsigned char sk32[32], msg32[32];
309  secp256k1_scalar_set_int(&msg, i);
310  secp256k1_scalar_set_int(&sk, j);
311  secp256k1_scalar_get_b32(sk32, &sk);
312  secp256k1_scalar_get_b32(msg32, &msg);
313 
314  secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
315 
316  secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
317  /* Note that we compute expected_r *after* signing -- this is important
318  * because our nonce-computing function function might change k during
319  * signing. */
320  r_from_k(&expected_r, group, k, NULL);
321  CHECK(r == expected_r);
322  CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER ||
323  (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER);
324 
325  /* Overflow means we've tried every possible nonce */
326  if (k < starting_k) {
327  break;
328  }
329  }
330  }
331  }
332 
333  /* We would like to verify zero-knowledge here by counting how often every
334  * possible (s, r) tuple appears, but because the group order is larger
335  * than the field order, when coercing the x-values to scalar values, some
336  * appear more often than others, so we are actually not zero-knowledge.
337  * (This effect also appears in the real code, but the difference is on the
338  * order of 1/2^128th the field order, so the deviation is not useful to a
339  * computationally bounded attacker.)
340  */
341 }
342 
343 #ifdef ENABLE_MODULE_RECOVERY
345 #endif
346 
347 #ifdef ENABLE_MODULE_EXTRAKEYS
349 #endif
350 
351 #ifdef ENABLE_MODULE_SCHNORRSIG
353 #endif
354 
355 int main(int argc, char** argv) {
356  int i;
359  unsigned char rand32[32];
361 
362  /* Disable buffering for stdout to improve reliability of getting
363  * diagnostic information. Happens right at the start of main because
364  * setbuf must be used before any other operation on the stream. */
365  setbuf(stdout, NULL);
366  /* Also disable buffering for stderr because it's not guaranteed that it's
367  * unbuffered on all systems. */
368  setbuf(stderr, NULL);
369 
370  printf("Exhaustive tests for order %lu\n", (unsigned long)EXHAUSTIVE_TEST_ORDER);
371 
372  /* find iteration count */
373  if (argc > 1) {
374  count = strtol(argv[1], NULL, 0);
375  }
376  printf("test count = %i\n", count);
377 
378  /* find random seed */
379  secp256k1_testrand_init(argc > 2 ? argv[2] : NULL);
380 
381  /* set up split processing */
382  if (argc > 4) {
383  num_cores = strtol(argv[3], NULL, 0);
384  this_core = strtol(argv[4], NULL, 0);
385  if (num_cores < 1 || this_core >= num_cores) {
386  fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]);
387  return 1;
388  }
389  printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1);
390  }
391 
392  while (count--) {
393  /* Build context */
395  secp256k1_testrand256(rand32);
396  CHECK(secp256k1_context_randomize(ctx, rand32));
397 
398  /* Generate the entire group */
399  secp256k1_gej_set_infinity(&groupj[0]);
400  secp256k1_ge_set_gej(&group[0], &groupj[0]);
401  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
402  secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
403  secp256k1_ge_set_gej(&group[i], &groupj[i]);
404  if (count != 0) {
405  /* Set a different random z-value for each Jacobian point, except z=1
406  is used in the last iteration. */
407  secp256k1_fe z;
408  random_fe(&z);
409  secp256k1_gej_rescale(&groupj[i], &z);
410  }
411 
412  /* Verify against ecmult_gen */
413  {
414  secp256k1_scalar scalar_i;
415  secp256k1_gej generatedj;
416  secp256k1_ge generated;
417 
418  secp256k1_scalar_set_int(&scalar_i, i);
419  secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
420  secp256k1_ge_set_gej(&generated, &generatedj);
421 
422  CHECK(group[i].infinity == 0);
423  CHECK(generated.infinity == 0);
424  CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
425  CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
426  }
427  }
428 
429  /* Run the tests */
431  test_exhaustive_addition(group, groupj);
432  test_exhaustive_ecmult(ctx, group, groupj);
433  test_exhaustive_ecmult_multi(ctx, group);
434  test_exhaustive_sign(ctx, group);
435  test_exhaustive_verify(ctx, group);
436 
437 #ifdef ENABLE_MODULE_RECOVERY
438  test_exhaustive_recovery(ctx, group);
439 #endif
440 #ifdef ENABLE_MODULE_EXTRAKEYS
441  test_exhaustive_extrakeys(ctx, group);
442 #endif
443 #ifdef ENABLE_MODULE_SCHNORRSIG
445 #endif
446 
448  }
449 
451 
452  printf("no problems found\n");
453  return 0;
454 }
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group)
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj)
secp256k1_ge * pt
Definition: tests.c:2836
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
static void secp256k1_testrand256(unsigned char *b32)
Generate a pseudorandom 32-byte array.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
static void secp256k1_scratch_destroy(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
secp256k1_fe x
Definition: group.h:25
int main(int argc, char **argv)
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Updates the context randomization to protect against side-channel leakage.
Definition: secp256k1.c:728
void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b)
stolen from tests.c
static SECP256K1_INLINE int skip_section(uint64_t *iter)
static void test_exhaustive_recovery(const secp256k1_context *ctx, const secp256k1_ge *group)
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static void secp256k1_pubkey_save(secp256k1_pubkey *pubkey, secp256k1_ge *ge)
Definition: secp256k1.c:263
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b&#39;s Z coordinate passed as bzinv)...
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int *overflow)
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void test_exhaustive_schnorrsig(const secp256k1_context *ctx)
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:24
#define SECP256K1_CONTEXT_SIGN
Definition: secp256k1.h:171
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature *sig, const secp256k1_scalar *r, const secp256k1_scalar *s)
Definition: secp256k1.c:332
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:195
static const secp256k1_ge secp256k1_ge_const_g
Generator for secp256k1, value &#39;g&#39; defined in "Standards for Efficient Cryptography" (SEC2) 2...
Definition: group_impl.h:53
static uint32_t num_cores
END stolen from tests.c.
void test_exhaustive_endomorphism(const secp256k1_ge *group)
#define SECP256K1_INLINE
Definition: secp256k1.h:124
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits)
Multiply: R = q*A (in constant-time) Here bits should be set to the maximum bitlength of the absolute...
secp256k1_ecmult_gen_context ecmult_gen_ctx
Definition: secp256k1.c:72
static void secp256k1_testrand_init(const char *hexseed)
Initialize the test RNG using (hex encoded) array up to 16 bytes, or randomly if hexseed is NULL...
static secp256k1_context * ctx
Definition: tests.c:36
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:534
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
int infinity
Definition: group.h:28
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the double of a.
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
Check whether a scalar is higher than the group order divided by 2.
void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj)
void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group)
secp256k1_ecmult_context ecmult_ctx
Definition: secp256k1.c:71
static uint32_t this_core
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:14
Opaque data structured that holds a parsed ECDSA signature.
Definition: secp256k1.h:80
secp256k1_fe x
Definition: group.h:15
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don&#39;t fully normalize.
#define CHECK(cond)
Definition: util.h:53
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast...
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
int infinity
Definition: group.h:17
static void secp256k1_ecdsa_signature_load(const secp256k1_context *ctx, secp256k1_scalar *r, secp256k1_scalar *s, const secp256k1_ecdsa_signature *sig)
Definition: secp256k1.c:318
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
Definition: secp256k1.h:170
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b)
Same as secp256k1_fe_equal, but may be variable time.
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge *group)
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
#define EXHAUSTIVE_TEST_ORDER
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
secp256k1_fe z
Definition: group.h:27
void * memcpy(void *a, const void *b, size_t c)
static void secp256k1_fe_normalize(secp256k1_fe *r)
Field element module.
void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group)
secp256k1_scalar * sc
Definition: tests.c:2835
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
static int count
secp256k1_callback error_callback
Definition: secp256k1.c:74
static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata)
void random_fe(secp256k1_fe *x)
secp256k1_fe y
Definition: group.h:26
static secp256k1_scratch * secp256k1_scratch_create(const secp256k1_callback *error_callback, size_t max_size)
void printf(const char *fmt, const Args &... args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1079
int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt)
void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b)
secp256k1_fe y
Definition: group.h:16
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:151
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:67
static void secp256k1_testrand_finish(void)
Print final test information.
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:423