Bitcoin Core  22.99.0
P2P Digital Currency
tests_exhaustive.c
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2016 Andrew Poelstra *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 
7 #if defined HAVE_CONFIG_H
8 #include "libsecp256k1-config.h"
9 #endif
10 
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <time.h>
14 
15 #undef USE_ECMULT_STATIC_PRECOMPUTATION
16 
17 #ifndef EXHAUSTIVE_TEST_ORDER
18 /* see group_impl.h for allowable values */
19 #define EXHAUSTIVE_TEST_ORDER 13
20 #endif
21 
22 #include "secp256k1.c"
23 #include "../include/secp256k1.h"
24 #include "assumptions.h"
25 #include "group.h"
26 #include "testrand_impl.h"
27 
28 static int count = 2;
29 
31 void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
32  CHECK(a->infinity == b->infinity);
33  if (a->infinity) {
34  return;
35  }
36  CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
37  CHECK(secp256k1_fe_equal_var(&a->y, &b->y));
38 }
39 
40 void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
41  secp256k1_fe z2s;
42  secp256k1_fe u1, u2, s1, s2;
43  CHECK(a->infinity == b->infinity);
44  if (a->infinity) {
45  return;
46  }
47  /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
48  secp256k1_fe_sqr(&z2s, &b->z);
49  secp256k1_fe_mul(&u1, &a->x, &z2s);
50  u2 = b->x; secp256k1_fe_normalize_weak(&u2);
51  secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
52  s2 = b->y; secp256k1_fe_normalize_weak(&s2);
53  CHECK(secp256k1_fe_equal_var(&u1, &u2));
54  CHECK(secp256k1_fe_equal_var(&s1, &s2));
55 }
56 
58  unsigned char bin[32];
59  do {
61  if (secp256k1_fe_set_b32(x, bin)) {
62  return;
63  }
64  } while(1);
65 }
68 static uint32_t num_cores = 1;
69 static uint32_t this_core = 0;
70 
71 SECP256K1_INLINE static int skip_section(uint64_t* iter) {
72  if (num_cores == 1) return 0;
73  *iter += 0xe7037ed1a0b428dbULL;
74  return ((((uint32_t)*iter ^ (*iter >> 32)) * num_cores) >> 32) != this_core;
75 }
76 
77 int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
78  const unsigned char *key32, const unsigned char *algo16,
79  void *data, unsigned int attempt) {
81  int *idata = data;
82  (void)msg32;
83  (void)key32;
84  (void)algo16;
85  /* Some nonces cannot be used because they'd cause s and/or r to be zero.
86  * The signing function has retry logic here that just re-calls the nonce
87  * function with an increased `attempt`. So if attempt > 0 this means we
88  * need to change the nonce to avoid an infinite loop. */
89  if (attempt > 0) {
90  *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
91  }
92  secp256k1_scalar_set_int(&s, *idata);
93  secp256k1_scalar_get_b32(nonce32, &s);
94  return 1;
95 }
96 
98  int i;
99  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
100  secp256k1_ge res;
101  secp256k1_ge_mul_lambda(&res, &group[i]);
102  ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
103  }
104 }
105 
106 void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj) {
107  int i, j;
108  uint64_t iter = 0;
109 
110  /* Sanity-check (and check infinity functions) */
111  CHECK(secp256k1_ge_is_infinity(&group[0]));
112  CHECK(secp256k1_gej_is_infinity(&groupj[0]));
113  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
114  CHECK(!secp256k1_ge_is_infinity(&group[i]));
115  CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
116  }
117 
118  /* Check all addition formulae */
119  for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
120  secp256k1_fe fe_inv;
121  if (skip_section(&iter)) continue;
122  secp256k1_fe_inv(&fe_inv, &groupj[j].z);
123  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
124  secp256k1_ge zless_gej;
125  secp256k1_gej tmp;
126  /* add_var */
127  secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
128  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
129  /* add_ge */
130  if (j > 0) {
131  secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
132  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
133  }
134  /* add_ge_var */
135  secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
136  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
137  /* add_zinv_var */
138  zless_gej.infinity = groupj[j].infinity;
139  zless_gej.x = groupj[j].x;
140  zless_gej.y = groupj[j].y;
141  secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
142  ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
143  }
144  }
145 
146  /* Check doubling */
147  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
148  secp256k1_gej tmp;
149  secp256k1_gej_double(&tmp, &groupj[i]);
150  ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
151  secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
152  ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
153  }
154 
155  /* Check negation */
156  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
157  secp256k1_ge tmp;
158  secp256k1_gej tmpj;
159  secp256k1_ge_neg(&tmp, &group[i]);
160  ge_equals_ge(&group[EXHAUSTIVE_TEST_ORDER - i], &tmp);
161  secp256k1_gej_neg(&tmpj, &groupj[i]);
162  ge_equals_gej(&group[EXHAUSTIVE_TEST_ORDER - i], &tmpj);
163  }
164 }
165 
166 void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj) {
167  int i, j, r_log;
168  uint64_t iter = 0;
169  for (r_log = 1; r_log < EXHAUSTIVE_TEST_ORDER; r_log++) {
170  for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
171  if (skip_section(&iter)) continue;
172  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
173  secp256k1_gej tmp;
174  secp256k1_scalar na, ng;
175  secp256k1_scalar_set_int(&na, i);
176  secp256k1_scalar_set_int(&ng, j);
177 
178  secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
179  ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
180 
181  if (i > 0) {
182  secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
183  ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);
184  }
185  }
186  }
187  }
188 }
189 
190 typedef struct {
194 
195 static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata) {
196  ecmult_multi_data *data = (ecmult_multi_data*) cbdata;
197  *sc = data->sc[idx];
198  *pt = data->pt[idx];
199  return 1;
200 }
201 
203  int i, j, k, x, y;
204  uint64_t iter = 0;
206  for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
207  for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
208  for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
209  for (x = 0; x < EXHAUSTIVE_TEST_ORDER; x++) {
210  if (skip_section(&iter)) continue;
211  for (y = 0; y < EXHAUSTIVE_TEST_ORDER; y++) {
212  secp256k1_gej tmp;
213  secp256k1_scalar g_sc;
214  ecmult_multi_data data;
215 
216  secp256k1_scalar_set_int(&data.sc[0], i);
217  secp256k1_scalar_set_int(&data.sc[1], j);
218  secp256k1_scalar_set_int(&g_sc, k);
219  data.pt[0] = group[x];
220  data.pt[1] = group[y];
221 
222  secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
223  ge_equals_gej(&group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER], &tmp);
224  }
225  }
226  }
227  }
228  }
230 }
231 
232 void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int* overflow) {
233  secp256k1_fe x;
234  unsigned char x_bin[32];
236  x = group[k].x;
238  secp256k1_fe_get_b32(x_bin, &x);
239  secp256k1_scalar_set_b32(r, x_bin, overflow);
240 }
241 
243  int s, r, msg, key;
244  uint64_t iter = 0;
245  for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) {
246  for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) {
247  for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) {
248  for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) {
249  secp256k1_ge nonconst_ge;
251  secp256k1_pubkey pk;
252  secp256k1_scalar sk_s, msg_s, r_s, s_s;
253  secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
254  int k, should_verify;
255  unsigned char msg32[32];
256 
257  if (skip_section(&iter)) continue;
258 
259  secp256k1_scalar_set_int(&s_s, s);
260  secp256k1_scalar_set_int(&r_s, r);
261  secp256k1_scalar_set_int(&msg_s, msg);
262  secp256k1_scalar_set_int(&sk_s, key);
263 
264  /* Verify by hand */
265  /* Run through every k value that gives us this r and check that *one* works.
266  * Note there could be none, there could be multiple, ECDSA is weird. */
267  should_verify = 0;
268  for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
269  secp256k1_scalar check_x_s;
270  r_from_k(&check_x_s, group, k, NULL);
271  if (r_s == check_x_s) {
272  secp256k1_scalar_set_int(&s_times_k_s, k);
273  secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
274  secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
275  secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
276  should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
277  }
278  }
279  /* nb we have a "high s" rule */
280  should_verify &= !secp256k1_scalar_is_high(&s_s);
281 
282  /* Verify by calling verify */
283  secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
284  memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
285  secp256k1_pubkey_save(&pk, &nonconst_ge);
286  secp256k1_scalar_get_b32(msg32, &msg_s);
287  CHECK(should_verify ==
288  secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
289  }
290  }
291  }
292  }
293 }
294 
296  int i, j, k;
297  uint64_t iter = 0;
298 
299  /* Loop */
300  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */
301  for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */
302  if (skip_section(&iter)) continue;
303  for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */
304  const int starting_k = k;
305  int ret;
307  secp256k1_scalar sk, msg, r, s, expected_r;
308  unsigned char sk32[32], msg32[32];
309  secp256k1_scalar_set_int(&msg, i);
310  secp256k1_scalar_set_int(&sk, j);
311  secp256k1_scalar_get_b32(sk32, &sk);
312  secp256k1_scalar_get_b32(msg32, &msg);
313 
314  ret = secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
315  CHECK(ret == 1);
316 
317  secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
318  /* Note that we compute expected_r *after* signing -- this is important
319  * because our nonce-computing function function might change k during
320  * signing. */
321  r_from_k(&expected_r, group, k, NULL);
322  CHECK(r == expected_r);
323  CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER ||
324  (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER);
325 
326  /* Overflow means we've tried every possible nonce */
327  if (k < starting_k) {
328  break;
329  }
330  }
331  }
332  }
333 
334  /* We would like to verify zero-knowledge here by counting how often every
335  * possible (s, r) tuple appears, but because the group order is larger
336  * than the field order, when coercing the x-values to scalar values, some
337  * appear more often than others, so we are actually not zero-knowledge.
338  * (This effect also appears in the real code, but the difference is on the
339  * order of 1/2^128th the field order, so the deviation is not useful to a
340  * computationally bounded attacker.)
341  */
342 }
343 
344 #ifdef ENABLE_MODULE_RECOVERY
346 #endif
347 
348 #ifdef ENABLE_MODULE_EXTRAKEYS
350 #endif
351 
352 #ifdef ENABLE_MODULE_SCHNORRSIG
354 #endif
355 
356 int main(int argc, char** argv) {
357  int i;
360  unsigned char rand32[32];
362 
363  /* Disable buffering for stdout to improve reliability of getting
364  * diagnostic information. Happens right at the start of main because
365  * setbuf must be used before any other operation on the stream. */
366  setbuf(stdout, NULL);
367  /* Also disable buffering for stderr because it's not guaranteed that it's
368  * unbuffered on all systems. */
369  setbuf(stderr, NULL);
370 
371  printf("Exhaustive tests for order %lu\n", (unsigned long)EXHAUSTIVE_TEST_ORDER);
372 
373  /* find iteration count */
374  if (argc > 1) {
375  count = strtol(argv[1], NULL, 0);
376  }
377  printf("test count = %i\n", count);
378 
379  /* find random seed */
380  secp256k1_testrand_init(argc > 2 ? argv[2] : NULL);
381 
382  /* set up split processing */
383  if (argc > 4) {
384  num_cores = strtol(argv[3], NULL, 0);
385  this_core = strtol(argv[4], NULL, 0);
386  if (num_cores < 1 || this_core >= num_cores) {
387  fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]);
388  return 1;
389  }
390  printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1);
391  }
392 
393  while (count--) {
394  /* Build context */
396  secp256k1_testrand256(rand32);
398 
399  /* Generate the entire group */
400  secp256k1_gej_set_infinity(&groupj[0]);
401  secp256k1_ge_set_gej(&group[0], &groupj[0]);
402  for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
403  secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
404  secp256k1_ge_set_gej(&group[i], &groupj[i]);
405  if (count != 0) {
406  /* Set a different random z-value for each Jacobian point, except z=1
407  is used in the last iteration. */
408  secp256k1_fe z;
409  random_fe(&z);
410  secp256k1_gej_rescale(&groupj[i], &z);
411  }
412 
413  /* Verify against ecmult_gen */
414  {
415  secp256k1_scalar scalar_i;
416  secp256k1_gej generatedj;
417  secp256k1_ge generated;
418 
419  secp256k1_scalar_set_int(&scalar_i, i);
420  secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
421  secp256k1_ge_set_gej(&generated, &generatedj);
422 
423  CHECK(group[i].infinity == 0);
424  CHECK(generated.infinity == 0);
425  CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
426  CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
427  }
428  }
429 
430  /* Run the tests */
432  test_exhaustive_addition(group, groupj);
433  test_exhaustive_ecmult(ctx, group, groupj);
435  test_exhaustive_sign(ctx, group);
436  test_exhaustive_verify(ctx, group);
437 
438 #ifdef ENABLE_MODULE_RECOVERY
440 #endif
441 #ifdef ENABLE_MODULE_EXTRAKEYS
443 #endif
444 #ifdef ENABLE_MODULE_SCHNORRSIG
446 #endif
447 
449  }
450 
452 
453  printf("no problems found\n");
454  return 0;
455 }
secp256k1_testrand_finish
static void secp256k1_testrand_finish(void)
Print final test information.
test_exhaustive_endomorphism
void test_exhaustive_endomorphism(const secp256k1_ge *group)
Definition: tests_exhaustive.c:97
secp256k1_ecdsa_signature
Opaque data structured that holds a parsed ECDSA signature.
Definition: secp256k1.h:83
secp256k1_gej::infinity
int infinity
Definition: group.h:27
secp256k1_gej_set_infinity
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
test_exhaustive_extrakeys
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge *group)
Definition: tests_exhaustive_impl.h:13
secp256k1_fe_inv
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the (modular) inverse of another.
SECP256K1_CONTEXT_VERIFY
#define SECP256K1_CONTEXT_VERIFY
Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and secp256k1_context...
Definition: secp256k1.h:184
secp256k1_ge::y
secp256k1_fe y
Definition: group.h:19
SECP256K1_CONTEXT_SIGN
#define SECP256K1_CONTEXT_SIGN
Definition: secp256k1.h:185
secp256k1_scalar_get_b32
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
EXHAUSTIVE_TEST_ORDER
#define EXHAUSTIVE_TEST_ORDER
Definition: tests_exhaustive.c:19
secp256k1_testrand256
static void secp256k1_testrand256(unsigned char *b32)
Generate a pseudorandom 32-byte array.
ecmult_multi_data::sc
secp256k1_scalar * sc
Definition: tests.c:3723
secp256k1_context_struct
Definition: secp256k1.c:75
secp256k1_ecdsa_signature_load
static void secp256k1_ecdsa_signature_load(const secp256k1_context *ctx, secp256k1_scalar *r, secp256k1_scalar *s, const secp256k1_ecdsa_signature *sig)
Definition: secp256k1.c:351
secp256k1_nonce_function_smallint
int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt)
Definition: tests_exhaustive.c:77
secp256k1_fe_set_b32
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a)
Set a field element equal to 32-byte big endian value.
secp256k1_fe_normalize
static void secp256k1_fe_normalize(secp256k1_fe *r)
Field element module.
secp256k1_scalar_is_high
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
Check whether a scalar is higher than the group order divided by 2.
secp256k1_gej::x
secp256k1_fe x
Definition: group.h:24
group.h
test_exhaustive_ecmult_multi
void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group)
Definition: tests_exhaustive.c:202
tinyformat::printf
void printf(const char *fmt, const Args &... args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1079
ecmult_multi_data
Definition: tests.c:3722
secp256k1_ge_mul_lambda
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast.
secp256k1_scratch_space_struct
Definition: scratch.h:12
secp256k1_scratch_destroy
static void secp256k1_scratch_destroy(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
secp256k1_gej::z
secp256k1_fe z
Definition: group.h:26
testrand_impl.h
secp256k1_context_destroy
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:202
ge_equals_gej
void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b)
Definition: tests_exhaustive.c:40
secp256k1_gej_rescale
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
tests_exhaustive_impl.h
secp256k1_context_create
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:158
secp256k1_gej_add_ge
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b)
Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity).
secp256k1_scalar_add
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
secp256k1_pubkey_save
static void secp256k1_pubkey_save(secp256k1_pubkey *pubkey, secp256k1_ge *ge)
Definition: secp256k1.c:270
tests_exhaustive_impl.h
secp256k1_ecdsa_verify
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:456
ecmult_multi_callback
static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *cbdata)
Definition: tests_exhaustive.c:195
secp256k1_scalar
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
num_cores
static uint32_t num_cores
END stolen from tests.c.
Definition: tests_exhaustive.c:68
secp256k1_ecmult
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
secp256k1_ecmult_gen
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
secp256k1_ge_const_g
static const secp256k1_ge secp256k1_ge_const_g
Generator for secp256k1, value 'g' defined in "Standards for Efficient Cryptography" (SEC2) 2....
Definition: group_impl.h:52
secp256k1_gej
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:23
test_exhaustive_recovery
static void test_exhaustive_recovery(const secp256k1_context *ctx, const secp256k1_ge *group)
Definition: tests_exhaustive_impl.h:144
assumptions.h
secp256k1_fe_equal_var
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b)
Same as secp256k1_fe_equal, but may be variable time.
test_exhaustive_addition
void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj)
Definition: tests_exhaustive.c:106
secp256k1_fe_mul
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe *SECP256K1_RESTRICT b)
Sets a field element to be the product of two others.
secp256k1.c
ecmult_multi_data::pt
secp256k1_ge * pt
Definition: tests.c:3724
secp256k1_fe
Definition: field_10x26.h:12
time.h
secp256k1_context_struct::ecmult_gen_ctx
secp256k1_ecmult_gen_context ecmult_gen_ctx
Definition: secp256k1.c:77
secp256k1_context_struct::ecmult_ctx
secp256k1_ecmult_context ecmult_ctx
Definition: secp256k1.c:76
secp256k1_gej_neg
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
test_exhaustive_ecmult
void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj)
Definition: tests_exhaustive.c:166
secp256k1_gej::y
secp256k1_fe y
Definition: group.h:25
secp256k1_ge_neg
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
main
int main(int argc, char **argv)
Definition: tests_exhaustive.c:356
secp256k1_ecmult_const
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits)
Multiply: R = q*A (in constant-time) Here bits should be set to the maximum bitlength of the absolute...
secp256k1_fe_get_b32
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a)
Convert a field element to a 32-byte big endian value.
skip_section
static SECP256K1_INLINE int skip_section(uint64_t *iter)
Definition: tests_exhaustive.c:71
secp256k1_ecdsa_sign
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:567
secp256k1_context_struct::error_callback
secp256k1_callback error_callback
Definition: secp256k1.c:79
secp256k1_gej_add_var
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
secp256k1_scalar_eq
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
r_from_k
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int *overflow)
Definition: tests_exhaustive.c:232
secp256k1_fe_sqr
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a)
Sets a field element to be the square of another.
secp256k1_ge::infinity
int infinity
Definition: group.h:20
secp256k1_ecmult_multi_var
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
test_exhaustive_sign
void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group)
Definition: tests_exhaustive.c:295
libsecp256k1-config.h
secp256k1_testrand_init
static void secp256k1_testrand_init(const char *hexseed)
Initialize the test RNG using (hex encoded) array up to 16 bytes, or randomly if hexseed is NULL.
ge_equals_ge
void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b)
stolen from tests.c
Definition: tests_exhaustive.c:31
secp256k1_gej_add_ge_var
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
test_exhaustive_schnorrsig
static void test_exhaustive_schnorrsig(const secp256k1_context *ctx)
Definition: tests_exhaustive_impl.h:186
secp256k1_gej_double_var
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
secp256k1_ecdsa_signature_save
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature *sig, const secp256k1_scalar *r, const secp256k1_scalar *s)
Definition: secp256k1.c:365
secp256k1_scalar_mul
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
secp256k1_gej_double
static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a)
Set r equal to the double of a.
SECP256K1_INLINE
#define SECP256K1_INLINE
Definition: secp256k1.h:127
secp256k1_gej_is_infinity
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
secp256k1_gej_add_zinv_var
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
secp256k1_fe_normalize_weak
static void secp256k1_fe_normalize_weak(secp256k1_fe *r)
Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize.
random_fe
void random_fe(secp256k1_fe *x)
Definition: tests_exhaustive.c:57
secp256k1_ge::x
secp256k1_fe x
Definition: group.h:18
secp256k1_scratch_create
static secp256k1_scratch * secp256k1_scratch_create(const secp256k1_callback *error_callback, size_t max_size)
secp256k1_ge_is_infinity
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
CHECK
#define CHECK(cond)
Definition: util.h:53
secp256k1_scalar_set_b32
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
secp256k1_pubkey
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:70
test_exhaustive_verify
void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group)
Definition: tests_exhaustive.c:242
secp256k1_ge
A group element of the secp256k1 curve, in affine coordinates.
Definition: group.h:13
ctx
static secp256k1_context * ctx
Definition: tests.c:42
tests_exhaustive_impl.h
this_core
static uint32_t this_core
Definition: tests_exhaustive.c:69
secp256k1_ge_set_gej
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
secp256k1_scalar_set_int
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
secp256k1_context_randomize
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Updates the context randomization to protect against side-channel leakage.
Definition: secp256k1.c:761
count
static int count
Definition: tests_exhaustive.c:28