Bitcoin Core 28.99.0
P2P Digital Currency
lintrans.h
Go to the documentation of this file.
1/**********************************************************************
2 * Copyright (c) 2018 Pieter Wuille, Greg Maxwell, Gleb Naumenko *
3 * Distributed under the MIT software license, see the accompanying *
4 * file LICENSE or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef _MINISKETCH_LINTRANS_H_
8#define _MINISKETCH_LINTRANS_H_
9
10#include "int_utils.h"
11
13template<int N> struct Num {};
14
16template<typename I, int N> class LinTrans {
17private:
18 I table[1 << N];
19public:
20 LinTrans() = default;
21
22 /* Construct a transformation over 3 to 8 bits, using the images of each bit. */
23 constexpr LinTrans(I a, I b) : table{I(0), I(a), I(b), I(a ^ b)} {}
24 constexpr LinTrans(I a, I b, I c) : table{I(0), I(a), I(b), I(a ^ b), I(c), I(a ^ c), I(b ^ c), I(a ^ b ^ c)} {}
25 constexpr LinTrans(I a, I b, I c, I d) : table{I(0), I(a), I(b), I(a ^ b), I(c), I(a ^ c), I(b ^ c), I(a ^ b ^ c), I(d), I(a ^ d), I(b ^ d), I(a ^ b ^ d), I(c ^ d), I(a ^ c ^ d), I(b ^ c ^ d), I(a ^ b ^ c ^ d)} {}
26 constexpr LinTrans(I a, I b, I c, I d, I e) : table{I(0), I(a), I(b), I(a ^ b), I(c), I(a ^ c), I(b ^ c), I(a ^ b ^ c), I(d), I(a ^ d), I(b ^ d), I(a ^ b ^ d), I(c ^ d), I(a ^ c ^ d), I(b ^ c ^ d), I(a ^ b ^ c ^ d), I(e), I(a ^ e), I(b ^ e), I(a ^ b ^ e), I(c ^ e), I(a ^ c ^ e), I(b ^ c ^ e), I(a ^ b ^ c ^ e), I(d ^ e), I(a ^ d ^ e), I(b ^ d ^ e), I(a ^ b ^ d ^ e), I(c ^ d ^ e), I(a ^ c ^ d ^ e), I(b ^ c ^ d ^ e), I(a ^ b ^ c ^ d ^ e)} {}
27 constexpr LinTrans(I a, I b, I c, I d, I e, I f) : table{I(0), I(a), I(b), I(a ^ b), I(c), I(a ^ c), I(b ^ c), I(a ^ b ^ c), I(d), I(a ^ d), I(b ^ d), I(a ^ b ^ d), I(c ^ d), I(a ^ c ^ d), I(b ^ c ^ d), I(a ^ b ^ c ^ d), I(e), I(a ^ e), I(b ^ e), I(a ^ b ^ e), I(c ^ e), I(a ^ c ^ e), I(b ^ c ^ e), I(a ^ b ^ c ^ e), I(d ^ e), I(a ^ d ^ e), I(b ^ d ^ e), I(a ^ b ^ d ^ e), I(c ^ d ^ e), I(a ^ c ^ d ^ e), I(b ^ c ^ d ^ e), I(a ^ b ^ c ^ d ^ e), I(f), I(a ^ f), I(b^ f), I(a ^ b ^ f), I(c^ f), I(a ^ c ^ f), I(b ^ c ^ f), I(a ^ b ^ c ^ f), I(d ^ f), I(a ^ d ^ f), I(b ^ d ^ f), I(a ^ b ^ d ^ f), I(c ^ d ^ f), I(a ^ c ^ d ^ f), I(b ^ c ^ d ^ f), I(a ^ b ^ c ^ d ^ f), I(e ^ f), I(a ^ e ^ f), I(b ^ e ^ f), I(a ^ b ^ e ^ f), I(c ^ e ^ f), I(a ^ c ^ e ^ f), I(b ^ c ^ e ^ f), I(a ^ b ^ c ^ e ^ f), I(d ^ e ^ f), I(a ^ d ^ e ^ f), I(b ^ d ^ e ^ f), I(a ^ b ^ d ^ e ^ f), I(c ^ d ^ e ^ f), I(a ^ c ^ d ^ e ^ f), I(b ^ c ^ d ^ e ^ f), I(a ^ b ^ c ^ d ^ e ^ f)} {}
28 constexpr LinTrans(I a, I b, I c, I d, I e, I f, I g) : table{I(0), I(a), I(b), I(a ^ b), I(c), I(a ^ c), I(b ^ c), I(a ^ b ^ c), I(d), I(a ^ d), I(b ^ d), I(a ^ b ^ d), I(c ^ d), I(a ^ c ^ d), I(b ^ c ^ d), I(a ^ b ^ c ^ d), I(e), I(a ^ e), I(b ^ e), I(a ^ b ^ e), I(c ^ e), I(a ^ c ^ e), I(b ^ c ^ e), I(a ^ b ^ c ^ e), I(d ^ e), I(a ^ d ^ e), I(b ^ d ^ e), I(a ^ b ^ d ^ e), I(c ^ d ^ e), I(a ^ c ^ d ^ e), I(b ^ c ^ d ^ e), I(a ^ b ^ c ^ d ^ e), I(f), I(a ^ f), I(b^ f), I(a ^ b ^ f), I(c^ f), I(a ^ c ^ f), I(b ^ c ^ f), I(a ^ b ^ c ^ f), I(d ^ f), I(a ^ d ^ f), I(b ^ d ^ f), I(a ^ b ^ d ^ f), I(c ^ d ^ f), I(a ^ c ^ d ^ f), I(b ^ c ^ d ^ f), I(a ^ b ^ c ^ d ^ f), I(e ^ f), I(a ^ e ^ f), I(b ^ e ^ f), I(a ^ b ^ e ^ f), I(c ^ e ^ f), I(a ^ c ^ e ^ f), I(b ^ c ^ e ^ f), I(a ^ b ^ c ^ e ^ f), I(d ^ e ^ f), I(a ^ d ^ e ^ f), I(b ^ d ^ e ^ f), I(a ^ b ^ d ^ e ^ f), I(c ^ d ^ e ^ f), I(a ^ c ^ d ^ e ^ f), I(b ^ c ^ d ^ e ^ f), I(a ^ b ^ c ^ d ^ e ^ f), I(g), I(a ^ g), I(b ^ g), I(a ^ b ^ g), I(c ^ g), I(a ^ c ^ g), I(b ^ c ^ g), I(a ^ b ^ c ^ g), I(d ^ g), I(a ^ d ^ g), I(b ^ d ^ g), I(a ^ b ^ d ^ g), I(c ^ d ^ g), I(a ^ c ^ d ^ g), I(b ^ c ^ d ^ g), I(a ^ b ^ c ^ d ^ g), I(e ^ g), I(a ^ e ^ g), I(b ^ e ^ g), I(a ^ b ^ e ^ g), I(c ^ e ^ g), I(a ^ c ^ e ^ g), I(b ^ c ^ e ^ g), I(a ^ b ^ c ^ e ^ g), I(d ^ e ^ g), I(a ^ d ^ e ^ g), I(b ^ d ^ e ^ g), I(a ^ b ^ d ^ e ^ g), I(c ^ d ^ e ^ g), I(a ^ c ^ d ^ e ^ g), I(b ^ c ^ d ^ e ^ g), I(a ^ b ^ c ^ d ^ e ^ g), I(f ^ g), I(a ^ f ^ g), I(b^ f ^ g), I(a ^ b ^ f ^ g), I(c^ f ^ g), I(a ^ c ^ f ^ g), I(b ^ c ^ f ^ g), I(a ^ b ^ c ^ f ^ g), I(d ^ f ^ g), I(a ^ d ^ f ^ g), I(b ^ d ^ f ^ g), I(a ^ b ^ d ^ f ^ g), I(c ^ d ^ f ^ g), I(a ^ c ^ d ^ f ^ g), I(b ^ c ^ d ^ f ^ g), I(a ^ b ^ c ^ d ^ f ^ g), I(e ^ f ^ g), I(a ^ e ^ f ^ g), I(b ^ e ^ f ^ g), I(a ^ b ^ e ^ f ^ g), I(c ^ e ^ f ^ g), I(a ^ c ^ e ^ f ^ g), I(b ^ c ^ e ^ f ^ g), I(a ^ b ^ c ^ e ^ f ^ g), I(d ^ e ^ f ^ g), I(a ^ d ^ e ^ f ^ g), I(b ^ d ^ e ^ f ^ g), I(a ^ b ^ d ^ e ^ f ^ g), I(c ^ d ^ e ^ f ^ g), I(a ^ c ^ d ^ e ^ f ^ g), I(b ^ c ^ d ^ e ^ f ^ g), I(a ^ b ^ c ^ d ^ e ^ f ^ g)} {}
29 constexpr LinTrans(I a, I b, I c, I d, I e, I f, I g, I h) : table{I(0), I(a), I(b), I(a ^ b), I(c), I(a ^ c), I(b ^ c), I(a ^ b ^ c), I(d), I(a ^ d), I(b ^ d), I(a ^ b ^ d), I(c ^ d), I(a ^ c ^ d), I(b ^ c ^ d), I(a ^ b ^ c ^ d), I(e), I(a ^ e), I(b ^ e), I(a ^ b ^ e), I(c ^ e), I(a ^ c ^ e), I(b ^ c ^ e), I(a ^ b ^ c ^ e), I(d ^ e), I(a ^ d ^ e), I(b ^ d ^ e), I(a ^ b ^ d ^ e), I(c ^ d ^ e), I(a ^ c ^ d ^ e), I(b ^ c ^ d ^ e), I(a ^ b ^ c ^ d ^ e), I(f), I(a ^ f), I(b^ f), I(a ^ b ^ f), I(c^ f), I(a ^ c ^ f), I(b ^ c ^ f), I(a ^ b ^ c ^ f), I(d ^ f), I(a ^ d ^ f), I(b ^ d ^ f), I(a ^ b ^ d ^ f), I(c ^ d ^ f), I(a ^ c ^ d ^ f), I(b ^ c ^ d ^ f), I(a ^ b ^ c ^ d ^ f), I(e ^ f), I(a ^ e ^ f), I(b ^ e ^ f), I(a ^ b ^ e ^ f), I(c ^ e ^ f), I(a ^ c ^ e ^ f), I(b ^ c ^ e ^ f), I(a ^ b ^ c ^ e ^ f), I(d ^ e ^ f), I(a ^ d ^ e ^ f), I(b ^ d ^ e ^ f), I(a ^ b ^ d ^ e ^ f), I(c ^ d ^ e ^ f), I(a ^ c ^ d ^ e ^ f), I(b ^ c ^ d ^ e ^ f), I(a ^ b ^ c ^ d ^ e ^ f), I(g), I(a ^ g), I(b ^ g), I(a ^ b ^ g), I(c ^ g), I(a ^ c ^ g), I(b ^ c ^ g), I(a ^ b ^ c ^ g), I(d ^ g), I(a ^ d ^ g), I(b ^ d ^ g), I(a ^ b ^ d ^ g), I(c ^ d ^ g), I(a ^ c ^ d ^ g), I(b ^ c ^ d ^ g), I(a ^ b ^ c ^ d ^ g), I(e ^ g), I(a ^ e ^ g), I(b ^ e ^ g), I(a ^ b ^ e ^ g), I(c ^ e ^ g), I(a ^ c ^ e ^ g), I(b ^ c ^ e ^ g), I(a ^ b ^ c ^ e ^ g), I(d ^ e ^ g), I(a ^ d ^ e ^ g), I(b ^ d ^ e ^ g), I(a ^ b ^ d ^ e ^ g), I(c ^ d ^ e ^ g), I(a ^ c ^ d ^ e ^ g), I(b ^ c ^ d ^ e ^ g), I(a ^ b ^ c ^ d ^ e ^ g), I(f ^ g), I(a ^ f ^ g), I(b^ f ^ g), I(a ^ b ^ f ^ g), I(c^ f ^ g), I(a ^ c ^ f ^ g), I(b ^ c ^ f ^ g), I(a ^ b ^ c ^ f ^ g), I(d ^ f ^ g), I(a ^ d ^ f ^ g), I(b ^ d ^ f ^ g), I(a ^ b ^ d ^ f ^ g), I(c ^ d ^ f ^ g), I(a ^ c ^ d ^ f ^ g), I(b ^ c ^ d ^ f ^ g), I(a ^ b ^ c ^ d ^ f ^ g), I(e ^ f ^ g), I(a ^ e ^ f ^ g), I(b ^ e ^ f ^ g), I(a ^ b ^ e ^ f ^ g), I(c ^ e ^ f ^ g), I(a ^ c ^ e ^ f ^ g), I(b ^ c ^ e ^ f ^ g), I(a ^ b ^ c ^ e ^ f ^ g), I(d ^ e ^ f ^ g), I(a ^ d ^ e ^ f ^ g), I(b ^ d ^ e ^ f ^ g), I(a ^ b ^ d ^ e ^ f ^ g), I(c ^ d ^ e ^ f ^ g), I(a ^ c ^ d ^ e ^ f ^ g), I(b ^ c ^ d ^ e ^ f ^ g), I(a ^ b ^ c ^ d ^ e ^ f ^ g), I(h), I(a ^ h), I(b ^ h), I(a ^ b ^ h), I(c ^ h), I(a ^ c ^ h), I(b ^ c ^ h), I(a ^ b ^ c ^ h), I(d ^ h), I(a ^ d ^ h), I(b ^ d ^ h), I(a ^ b ^ d ^ h), I(c ^ d ^ h), I(a ^ c ^ d ^ h), I(b ^ c ^ d ^ h), I(a ^ b ^ c ^ d ^ h), I(e ^ h), I(a ^ e ^ h), I(b ^ e ^ h), I(a ^ b ^ e ^ h), I(c ^ e ^ h), I(a ^ c ^ e ^ h), I(b ^ c ^ e ^ h), I(a ^ b ^ c ^ e ^ h), I(d ^ e ^ h), I(a ^ d ^ e ^ h), I(b ^ d ^ e ^ h), I(a ^ b ^ d ^ e ^ h), I(c ^ d ^ e ^ h), I(a ^ c ^ d ^ e ^ h), I(b ^ c ^ d ^ e ^ h), I(a ^ b ^ c ^ d ^ e ^ h), I(f ^ h), I(a ^ f ^ h), I(b^ f ^ h), I(a ^ b ^ f ^ h), I(c^ f ^ h), I(a ^ c ^ f ^ h), I(b ^ c ^ f ^ h), I(a ^ b ^ c ^ f ^ h), I(d ^ f ^ h), I(a ^ d ^ f ^ h), I(b ^ d ^ f ^ h), I(a ^ b ^ d ^ f ^ h), I(c ^ d ^ f ^ h), I(a ^ c ^ d ^ f ^ h), I(b ^ c ^ d ^ f ^ h), I(a ^ b ^ c ^ d ^ f ^ h), I(e ^ f ^ h), I(a ^ e ^ f ^ h), I(b ^ e ^ f ^ h), I(a ^ b ^ e ^ f ^ h), I(c ^ e ^ f ^ h), I(a ^ c ^ e ^ f ^ h), I(b ^ c ^ e ^ f ^ h), I(a ^ b ^ c ^ e ^ f ^ h), I(d ^ e ^ f ^ h), I(a ^ d ^ e ^ f ^ h), I(b ^ d ^ e ^ f ^ h), I(a ^ b ^ d ^ e ^ f ^ h), I(c ^ d ^ e ^ f ^ h), I(a ^ c ^ d ^ e ^ f ^ h), I(b ^ c ^ d ^ e ^ f ^ h), I(a ^ b ^ c ^ d ^ e ^ f ^ h), I(g ^ h), I(a ^ g ^ h), I(b ^ g ^ h), I(a ^ b ^ g ^ h), I(c ^ g ^ h), I(a ^ c ^ g ^ h), I(b ^ c ^ g ^ h), I(a ^ b ^ c ^ g ^ h), I(d ^ g ^ h), I(a ^ d ^ g ^ h), I(b ^ d ^ g ^ h), I(a ^ b ^ d ^ g ^ h), I(c ^ d ^ g ^ h), I(a ^ c ^ d ^ g ^ h), I(b ^ c ^ d ^ g ^ h), I(a ^ b ^ c ^ d ^ g ^ h), I(e ^ g ^ h), I(a ^ e ^ g ^ h), I(b ^ e ^ g ^ h), I(a ^ b ^ e ^ g ^ h), I(c ^ e ^ g ^ h), I(a ^ c ^ e ^ g ^ h), I(b ^ c ^ e ^ g ^ h), I(a ^ b ^ c ^ e ^ g ^ h), I(d ^ e ^ g ^ h), I(a ^ d ^ e ^ g ^ h), I(b ^ d ^ e ^ g ^ h), I(a ^ b ^ d ^ e ^ g ^ h), I(c ^ d ^ e ^ g ^ h), I(a ^ c ^ d ^ e ^ g ^ h), I(b ^ c ^ d ^ e ^ g ^ h), I(a ^ b ^ c ^ d ^ e ^ g ^ h), I(f ^ g ^ h), I(a ^ f ^ g ^ h), I(b^ f ^ g ^ h), I(a ^ b ^ f ^ g ^ h), I(c^ f ^ g ^ h), I(a ^ c ^ f ^ g ^ h), I(b ^ c ^ f ^ g ^ h), I(a ^ b ^ c ^ f ^ g ^ h), I(d ^ f ^ g ^ h), I(a ^ d ^ f ^ g ^ h), I(b ^ d ^ f ^ g ^ h), I(a ^ b ^ d ^ f ^ g ^ h), I(c ^ d ^ f ^ g ^ h), I(a ^ c ^ d ^ f ^ g ^ h), I(b ^ c ^ d ^ f ^ g ^ h), I(a ^ b ^ c ^ d ^ f ^ g ^ h), I(e ^ f ^ g ^ h), I(a ^ e ^ f ^ g ^ h), I(b ^ e ^ f ^ g ^ h), I(a ^ b ^ e ^ f ^ g ^ h), I(c ^ e ^ f ^ g ^ h), I(a ^ c ^ e ^ f ^ g ^ h), I(b ^ c ^ e ^ f ^ g ^ h), I(a ^ b ^ c ^ e ^ f ^ g ^ h), I(d ^ e ^ f ^ g ^ h), I(a ^ d ^ e ^ f ^ g ^ h), I(b ^ d ^ e ^ f ^ g ^ h), I(a ^ b ^ d ^ e ^ f ^ g ^ h), I(c ^ d ^ e ^ f ^ g ^ h), I(a ^ c ^ d ^ e ^ f ^ g ^ h), I(b ^ c ^ d ^ e ^ f ^ g ^ h), I(a ^ b ^ c ^ d ^ e ^ f ^ g ^ h)} {}
30
31 /* Construct a transformation over 3 to 8 bits, using a pointer to the bit's images. */
32 constexpr LinTrans(const I* p, Num<2>) : LinTrans(I(p[0]), I(p[1])) {}
33 constexpr LinTrans(const I* p, Num<3>) : LinTrans(I(p[0]), I(p[1]), I(p[2])) {}
34 constexpr LinTrans(const I* p, Num<4>) : LinTrans(I(p[0]), I(p[1]), I(p[2]), I(p[3])) {}
35 constexpr LinTrans(const I* p, Num<5>) : LinTrans(I(p[0]), I(p[1]), I(p[2]), I(p[3]), I(p[4])) {}
36 constexpr LinTrans(const I* p, Num<6>) : LinTrans(I(p[0]), I(p[1]), I(p[2]), I(p[3]), I(p[4]), I(p[5])) {}
37 constexpr LinTrans(const I* p, Num<7>) : LinTrans(I(p[0]), I(p[1]), I(p[2]), I(p[3]), I(p[4]), I(p[5]), I(p[6])) {}
38 constexpr LinTrans(const I* p, Num<8>) : LinTrans(I(p[0]), I(p[1]), I(p[2]), I(p[3]), I(p[4]), I(p[5]), I(p[6]), I(p[7])) {}
39
40 template<I (*F)(const I&)>
41 inline I Build(Num<1>, I a)
42 {
43 table[0] = I(); table[1] = a;
44 return a;
45 }
46
47 template<I (*F)(const I&)>
48 inline I Build(Num<2>, I a)
49 {
50 I b = F(a);
51 table[0] = I(); table[1] = a; table[2] = b; table[3] = a ^ b;
52 return b;
53 }
54
55 template<I (*F)(const I&)>
56 inline I Build(Num<3>, I a)
57 {
58 I b = F(a), c = F(b);
59 table[0] = I(); table[1] = a; table[2] = b; table[3] = a ^ b; table[4] = c; table[5] = a ^ c; table[6] = b ^ c; table[7] = a ^ b ^ c;
60 return c;
61 }
62
63 template<I (*F)(const I&)>
64 inline I Build(Num<4>, I a)
65 {
66 I b = F(a), c = F(b), d = F(c);
67 table[0] = I(); table[1] = a; table[2] = b; table[3] = a ^ b; table[4] = c; table[5] = a ^ c; table[6] = b ^ c; table[7] = a ^ b ^ c;
68 table[8] = d; table[9] = a ^ d; table[10] = b ^ d; table[11] = a ^ b ^ d; table[12] = c ^ d; table[13] = a ^ c ^ d; table[14] = b ^ c ^ d; table[15] = a ^ b ^ c ^ d;
69 return d;
70 }
71
72 template<I (*F)(const I&)>
73 inline I Build(Num<5>, I a)
74 {
75 I b = F(a), c = F(b), d = F(c), e = F(d);
76 table[0] = I(); table[1] = a; table[2] = b; table[3] = a ^ b; table[4] = c; table[5] = a ^ c; table[6] = b ^ c; table[7] = a ^ b ^ c;
77 table[8] = d; table[9] = a ^ d; table[10] = b ^ d; table[11] = a ^ b ^ d; table[12] = c ^ d; table[13] = a ^ c ^ d; table[14] = b ^ c ^ d; table[15] = a ^ b ^ c ^ d;
78 table[16] = e; table[17] = a ^ e; table[18] = b ^ e; table[19] = a ^ b ^ e; table[20] = c ^ e; table[21] = a ^ c ^ e; table[22] = b ^ c ^ e; table[23] = a ^ b ^ c ^ e;
79 table[24] = d ^ e; table[25] = a ^ d ^ e; table[26] = b ^ d ^ e; table[27] = a ^ b ^ d ^ e; table[28] = c ^ d ^ e; table[29] = a ^ c ^ d ^ e; table[30] = b ^ c ^ d ^ e; table[31] = a ^ b ^ c ^ d ^ e;
80 return e;
81 }
82
83 template<I (*F)(const I&)>
84 inline I Build(Num<6>, I a)
85 {
86 I b = F(a), c = F(b), d = F(c), e = F(d), f = F(e);
87 table[0] = I(); table[1] = a; table[2] = b; table[3] = a ^ b; table[4] = c; table[5] = a ^ c; table[6] = b ^ c; table[7] = a ^ b ^ c;
88 table[8] = d; table[9] = a ^ d; table[10] = b ^ d; table[11] = a ^ b ^ d; table[12] = c ^ d; table[13] = a ^ c ^ d; table[14] = b ^ c ^ d; table[15] = a ^ b ^ c ^ d;
89 table[16] = e; table[17] = a ^ e; table[18] = b ^ e; table[19] = a ^ b ^ e; table[20] = c ^ e; table[21] = a ^ c ^ e; table[22] = b ^ c ^ e; table[23] = a ^ b ^ c ^ e;
90 table[24] = d ^ e; table[25] = a ^ d ^ e; table[26] = b ^ d ^ e; table[27] = a ^ b ^ d ^ e; table[28] = c ^ d ^ e; table[29] = a ^ c ^ d ^ e; table[30] = b ^ c ^ d ^ e; table[31] = a ^ b ^ c ^ d ^ e;
91 table[32] = f; table[33] = a ^ f; table[34] = b ^ f; table[35] = a ^ b ^ f; table[36] = c ^ f; table[37] = a ^ c ^ f; table[38] = b ^ c ^ f; table[39] = a ^ b ^ c ^ f;
92 table[40] = d ^ f; table[41] = a ^ d ^ f; table[42] = b ^ d ^ f; table[43] = a ^ b ^ d ^ f; table[44] = c ^ d ^ f; table[45] = a ^ c ^ d ^ f; table[46] = b ^ c ^ d ^ f; table[47] = a ^ b ^ c ^ d ^ f;
93 table[48] = e ^ f; table[49] = a ^ e ^ f; table[50] = b ^ e ^ f; table[51] = a ^ b ^ e ^ f; table[52] = c ^ e ^ f; table[53] = a ^ c ^ e ^ f; table[54] = b ^ c ^ e ^ f; table[55] = a ^ b ^ c ^ e ^ f;
94 table[56] = d ^ e ^ f; table[57] = a ^ d ^ e ^ f; table[58] = b ^ d ^ e ^ f; table[59] = a ^ b ^ d ^ e ^ f; table[60] = c ^ d ^ e ^ f; table[61] = a ^ c ^ d ^ e ^ f; table[62] = b ^ c ^ d ^ e ^ f; table[63] = a ^ b ^ c ^ d ^ e ^ f;
95 return f;
96 }
97
98 template<typename O, int P>
99 inline I constexpr Map(I a) const { return table[O::template MidBits<P, N>(a)]; }
100
101 template<typename O, int P>
102 inline I constexpr TopMap(I a) const { static_assert(P + N == O::SIZE, "TopMap inconsistency"); return table[O::template TopBits<N>(a)]; }
103};
104
105
107template<typename I, int... N> class RecLinTrans;
108
109template<typename I, int N> class RecLinTrans<I, N> {
111public:
112 static constexpr int BITS = N;
113 constexpr RecLinTrans(const I* p, Num<BITS>) : trans(p, Num<N>()) {}
114 constexpr RecLinTrans() = default;
115 constexpr RecLinTrans(const I (&init)[BITS]) : RecLinTrans(init, Num<BITS>()) {}
116
117 template<typename O, int P = 0>
118 inline I constexpr Map(I a) const { return trans.template TopMap<O, P>(a); }
119
120 template<I (*F)(const I&)>
121 inline void Build(I a) { trans.template Build<F>(Num<N>(), a); }
122};
123
124template<typename I, int N, int... X> class RecLinTrans<I, N, X...> {
127public:
128 static constexpr int BITS = RecLinTrans<I, X...>::BITS + N;
129 constexpr RecLinTrans(const I* p, Num<BITS>) : trans(p, Num<N>()), rec(p + N, Num<BITS - N>()) {}
130 constexpr RecLinTrans() = default;
131 constexpr RecLinTrans(const I (&init)[BITS]) : RecLinTrans(init, Num<BITS>()) {}
132
133 template<typename O, int P = 0>
134 inline I constexpr Map(I a) const { return trans.template Map<O, P>(a) ^ rec.template Map<O, P + N>(a); }
135
136 template<I (*F)(const I&)>
137 inline void Build(I a) { I n = trans.template Build<F>(Num<N>(), a); rec.template Build<F>(F(n)); }
138};
139
141class IdTrans {
142public:
143 template<typename O, typename I>
144 inline I constexpr Map(I a) const { return a; }
145};
146
148constexpr IdTrans ID_TRANS{};
149
150#endif
The identity transformation.
Definition: lintrans.h:141
I constexpr Map(I a) const
Definition: lintrans.h:144
A Linear N-bit transformation over the field I.
Definition: lintrans.h:16
constexpr LinTrans(const I *p, Num< 7 >)
Definition: lintrans.h:37
I table[1<< N]
Definition: lintrans.h:18
constexpr LinTrans(I a, I b)
Definition: lintrans.h:23
I constexpr TopMap(I a) const
Definition: lintrans.h:102
constexpr LinTrans(I a, I b, I c, I d, I e, I f, I g)
Definition: lintrans.h:28
I Build(Num< 4 >, I a)
Definition: lintrans.h:64
I constexpr Map(I a) const
Definition: lintrans.h:99
I Build(Num< 5 >, I a)
Definition: lintrans.h:73
constexpr LinTrans(const I *p, Num< 5 >)
Definition: lintrans.h:35
constexpr LinTrans(I a, I b, I c)
Definition: lintrans.h:24
I Build(Num< 2 >, I a)
Definition: lintrans.h:48
constexpr LinTrans(I a, I b, I c, I d, I e, I f, I g, I h)
Definition: lintrans.h:29
constexpr LinTrans(const I *p, Num< 3 >)
Definition: lintrans.h:33
I Build(Num< 6 >, I a)
Definition: lintrans.h:84
constexpr LinTrans(I a, I b, I c, I d)
Definition: lintrans.h:25
constexpr LinTrans(const I *p, Num< 6 >)
Definition: lintrans.h:36
LinTrans()=default
constexpr LinTrans(I a, I b, I c, I d, I e)
Definition: lintrans.h:26
I Build(Num< 3 >, I a)
Definition: lintrans.h:56
constexpr LinTrans(I a, I b, I c, I d, I e, I f)
Definition: lintrans.h:27
constexpr LinTrans(const I *p, Num< 4 >)
Definition: lintrans.h:34
I Build(Num< 1 >, I a)
Definition: lintrans.h:41
constexpr LinTrans(const I *p, Num< 8 >)
Definition: lintrans.h:38
constexpr LinTrans(const I *p, Num< 2 >)
Definition: lintrans.h:32
LinTrans< I, N > trans
Definition: lintrans.h:125
constexpr RecLinTrans()=default
I constexpr Map(I a) const
Definition: lintrans.h:134
RecLinTrans< I, X... > rec
Definition: lintrans.h:126
constexpr RecLinTrans(const I(&init)[BITS])
Definition: lintrans.h:131
constexpr RecLinTrans(const I *p, Num< BITS >)
Definition: lintrans.h:129
I constexpr Map(I a) const
Definition: lintrans.h:118
void Build(I a)
Definition: lintrans.h:121
constexpr RecLinTrans(const I(&init)[BITS])
Definition: lintrans.h:115
constexpr RecLinTrans()=default
constexpr RecLinTrans(const I *p, Num< BITS >)
Definition: lintrans.h:113
LinTrans< I, N > trans
Definition: lintrans.h:110
A linear transformation constructed using LinTrans tables for sections of bits.
Definition: lintrans.h:107
constexpr IdTrans ID_TRANS
A singleton for the identity transformation.
Definition: lintrans.h:148
#define X(name)
Definition: net.cpp:607
A type to represent integers in the type system.
Definition: lintrans.h:13