Bitcoin Core 30.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8#include <net.h>
9
10#include <addrdb.h>
11#include <addrman.h>
12#include <banman.h>
13#include <clientversion.h>
14#include <common/args.h>
15#include <common/netif.h>
16#include <compat/compat.h>
17#include <consensus/consensus.h>
18#include <crypto/sha256.h>
19#include <i2p.h>
20#include <key.h>
21#include <logging.h>
22#include <memusage.h>
23#include <net_permissions.h>
24#include <netaddress.h>
25#include <netbase.h>
26#include <node/eviction.h>
27#include <node/interface_ui.h>
28#include <protocol.h>
29#include <random.h>
30#include <scheduler.h>
31#include <util/fs.h>
32#include <util/sock.h>
33#include <util/strencodings.h>
34#include <util/thread.h>
35#include <util/threadinterrupt.h>
36#include <util/trace.h>
37#include <util/translation.h>
38#include <util/vector.h>
39
40#include <algorithm>
41#include <array>
42#include <cstring>
43#include <cmath>
44#include <cstdint>
45#include <functional>
46#include <optional>
47#include <unordered_map>
48
49TRACEPOINT_SEMAPHORE(net, closed_connection);
50TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
51TRACEPOINT_SEMAPHORE(net, inbound_connection);
52TRACEPOINT_SEMAPHORE(net, outbound_connection);
53TRACEPOINT_SEMAPHORE(net, outbound_message);
54
56static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
57static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
59const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
60
61// How often to dump addresses to peers.dat
62static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
63
65static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
66
68static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
69
79static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82
84static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85
86// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87static constexpr auto FEELER_SLEEP_WINDOW{1s};
88
90static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91
95 BF_REPORT_ERROR = (1U << 0),
100 BF_DONT_ADVERTISE = (1U << 1),
101};
102
103// The set of sockets cannot be modified while waiting
104// The sleep time needs to be small to avoid new sockets stalling
105static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106
107const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108
109static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111static const uint64_t RANDOMIZER_ID_NETWORKKEY = 0x0e8a2b136c592a7dULL; // SHA256("networkkey")[0:8]
112//
113// Global state variables
114//
115bool fDiscover = true;
116bool fListen = true;
118std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119std::string strSubVersion;
120
122{
123 return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
124}
125
126size_t CNetMessage::GetMemoryUsage() const noexcept
127{
128 return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
129}
130
131void CConnman::AddAddrFetch(const std::string& strDest)
132{
134 m_addr_fetches.push_back(strDest);
135}
136
138{
139 // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
140 for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
141 constexpr uint16_t dummy_port = 0;
142
143 const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
144 if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
145 }
146
147 // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
148 // (-whitebind= is required to have ":port").
149 for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
150 NetWhitebindPermissions whitebind;
151 bilingual_str error;
152 if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
154 return whitebind.m_service.GetPort();
155 }
156 }
157 }
158
159 // Otherwise, if -port= is provided, use that. Otherwise use the default port.
160 return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
161}
162
163// Determine the "best" local address for a particular peer.
164[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
165{
166 if (!fListen) return std::nullopt;
167
168 std::optional<CService> addr;
169 int nBestScore = -1;
170 int nBestReachability = -1;
171 {
173 for (const auto& [local_addr, local_service_info] : mapLocalHost) {
174 // For privacy reasons, don't advertise our privacy-network address
175 // to other networks and don't advertise our other-network address
176 // to privacy networks.
177 if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
178 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
179 continue;
180 }
181 const int nScore{local_service_info.nScore};
182 const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
183 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
184 addr.emplace(CService{local_addr, local_service_info.nPort});
185 nBestReachability = nReachability;
186 nBestScore = nScore;
187 }
188 }
189 }
190 return addr;
191}
192
194static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
195{
196 // It'll only connect to one or two seed nodes because once it connects,
197 // it'll get a pile of addresses with newer timestamps.
198 // Seed nodes are given a random 'last seen time' of between one and two
199 // weeks ago.
200 const auto one_week{7 * 24h};
201 std::vector<CAddress> vSeedsOut;
204 while (!s.eof()) {
205 CService endpoint;
206 s >> endpoint;
207 CAddress addr{endpoint, SeedsServiceFlags()};
208 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
209 LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
210 vSeedsOut.push_back(addr);
211 }
212 return vSeedsOut;
213}
214
215// Determine the "best" local address for a particular peer.
216// If none, return the unroutable 0.0.0.0 but filled in with
217// the normal parameters, since the IP may be changed to a useful
218// one by discovery.
220{
221 return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
222}
223
224static int GetnScore(const CService& addr)
225{
227 const auto it = mapLocalHost.find(addr);
228 return (it != mapLocalHost.end()) ? it->second.nScore : 0;
229}
230
231// Is our peer's addrLocal potentially useful as an external IP source?
232[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
233{
234 CService addrLocal = pnode->GetAddrLocal();
235 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
236 g_reachable_nets.Contains(addrLocal);
237}
238
239std::optional<CService> GetLocalAddrForPeer(CNode& node)
240{
241 CService addrLocal{GetLocalAddress(node)};
242 // If discovery is enabled, sometimes give our peer the address it
243 // tells us that it sees us as in case it has a better idea of our
244 // address than we do.
246 if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
247 rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
248 {
249 if (node.IsInboundConn()) {
250 // For inbound connections, assume both the address and the port
251 // as seen from the peer.
252 addrLocal = CService{node.GetAddrLocal()};
253 } else {
254 // For outbound connections, assume just the address as seen from
255 // the peer and leave the port in `addrLocal` as returned by
256 // `GetLocalAddress()` above. The peer has no way to observe our
257 // listening port when we have initiated the connection.
258 addrLocal.SetIP(node.GetAddrLocal());
259 }
260 }
261 if (addrLocal.IsRoutable()) {
262 LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
263 return addrLocal;
264 }
265 // Address is unroutable. Don't advertise.
266 return std::nullopt;
267}
268
270{
272 return mapLocalHost.clear();
273}
274
275// learn a new local address
276bool AddLocal(const CService& addr_, int nScore)
277{
278 CService addr{MaybeFlipIPv6toCJDNS(addr_)};
279
280 if (!addr.IsRoutable())
281 return false;
282
283 if (!fDiscover && nScore < LOCAL_MANUAL)
284 return false;
285
286 if (!g_reachable_nets.Contains(addr))
287 return false;
288
289 LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
290
291 {
293 const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
294 LocalServiceInfo &info = it->second;
295 if (is_newly_added || nScore >= info.nScore) {
296 info.nScore = nScore + (is_newly_added ? 0 : 1);
297 info.nPort = addr.GetPort();
298 }
299 }
300
301 return true;
302}
303
304bool AddLocal(const CNetAddr &addr, int nScore)
305{
306 return AddLocal(CService(addr, GetListenPort()), nScore);
307}
308
309void RemoveLocal(const CService& addr)
310{
312 LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
313 mapLocalHost.erase(addr);
314}
315
317bool SeenLocal(const CService& addr)
318{
320 const auto it = mapLocalHost.find(addr);
321 if (it == mapLocalHost.end()) return false;
322 ++it->second.nScore;
323 return true;
324}
325
326
328bool IsLocal(const CService& addr)
329{
331 return mapLocalHost.count(addr) > 0;
332}
333
334bool CConnman::AlreadyConnectedToHost(const std::string& host) const
335{
337 return std::ranges::any_of(m_nodes, [&host](CNode* node) { return node->m_addr_name == host; });
338}
339
341{
343 return std::ranges::any_of(m_nodes, [&addr_port](CNode* node) { return node->addr == addr_port; });
344}
345
347{
349 return std::ranges::any_of(m_nodes, [&addr](CNode* node) { return node->addr == addr; });
350}
351
353{
355 for (const CNode* pnode : m_nodes) {
356 if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
357 return false;
358 }
359 return true;
360}
361
363static CService GetBindAddress(const Sock& sock)
364{
365 CService addr_bind;
366 struct sockaddr_storage sockaddr_bind;
367 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
368 if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
369 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
370 } else {
371 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
372 }
373 return addr_bind;
374}
375
377 const char* pszDest,
378 bool fCountFailure,
379 ConnectionType conn_type,
380 bool use_v2transport,
381 const std::optional<Proxy>& proxy_override)
382{
384 assert(conn_type != ConnectionType::INBOUND);
385
386 if (pszDest == nullptr) {
387 if (IsLocal(addrConnect))
388 return nullptr;
389
390 // Look for an existing connection
391 if (AlreadyConnectedToAddressPort(addrConnect)) {
392 LogInfo("Failed to open new connection to %s, already connected", addrConnect.ToStringAddrPort());
393 return nullptr;
394 }
395 }
396
397 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
398 use_v2transport ? "v2" : "v1",
399 pszDest ? pszDest : addrConnect.ToStringAddrPort(),
400 Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
401
402 // Resolve
403 const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
405
406 // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
407 std::vector<CAddress> connect_to{};
408 if (pszDest) {
409 std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
410 if (!resolved.empty()) {
411 std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
412 // If the connection is made by name, it can be the case that the name resolves to more than one address.
413 // We don't want to connect any more of them if we are already connected to one
414 for (const auto& r : resolved) {
415 addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
416 if (!addrConnect.IsValid()) {
417 LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
418 return nullptr;
419 }
420 // It is possible that we already have a connection to the IP/port pszDest resolved to.
421 // In that case, drop the connection that was just created.
422 if (AlreadyConnectedToAddressPort(addrConnect)) {
423 LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
424 return nullptr;
425 }
426 // Add the address to the resolved addresses vector so we can try to connect to it later on
427 connect_to.push_back(addrConnect);
428 }
429 } else {
430 // For resolution via proxy
431 connect_to.push_back(addrConnect);
432 }
433 } else {
434 // Connect via addrConnect directly
435 connect_to.push_back(addrConnect);
436 }
437
438 // Connect
439 std::unique_ptr<Sock> sock;
440 Proxy proxy;
441 CService addr_bind;
442 assert(!addr_bind.IsValid());
443 std::unique_ptr<i2p::sam::Session> i2p_transient_session;
444
445 for (auto& target_addr: connect_to) {
446 if (target_addr.IsValid()) {
447 bool use_proxy;
448 if (proxy_override.has_value()) {
449 use_proxy = true;
450 proxy = proxy_override.value();
451 } else {
452 use_proxy = GetProxy(target_addr.GetNetwork(), proxy);
453 }
454 bool proxyConnectionFailed = false;
455
456 if (target_addr.IsI2P() && use_proxy) {
457 i2p::Connection conn;
458 bool connected{false};
459
460 if (m_i2p_sam_session) {
461 connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
462 } else {
463 {
465 if (m_unused_i2p_sessions.empty()) {
466 i2p_transient_session =
467 std::make_unique<i2p::sam::Session>(proxy, m_interrupt_net);
468 } else {
469 i2p_transient_session.swap(m_unused_i2p_sessions.front());
470 m_unused_i2p_sessions.pop();
471 }
472 }
473 connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
474 if (!connected) {
476 if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
477 m_unused_i2p_sessions.emplace(i2p_transient_session.release());
478 }
479 }
480 }
481
482 if (connected) {
483 sock = std::move(conn.sock);
484 addr_bind = conn.me;
485 }
486 } else if (use_proxy) {
487 LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
488 sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
489 } else {
490 // no proxy needed (none set for target network)
491 sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
492 }
493 if (!proxyConnectionFailed) {
494 // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
495 // the proxy, mark this as an attempt.
496 addrman.Attempt(target_addr, fCountFailure);
497 }
498 } else if (pszDest && GetNameProxy(proxy)) {
499 std::string host;
500 uint16_t port{default_port};
501 SplitHostPort(std::string(pszDest), port, host);
502 bool proxyConnectionFailed;
503 sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
504 }
505 // Check any other resolved address (if any) if we fail to connect
506 if (!sock) {
507 continue;
508 }
509
511 std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
512 AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
513
514 // Add node
515 NodeId id = GetNewNodeId();
517 if (!addr_bind.IsValid()) {
518 addr_bind = GetBindAddress(*sock);
519 }
521 .Write(target_addr.GetNetClass())
522 .Write(addr_bind.GetAddrBytes())
523 // For outbound connections, the port of the bound address is randomly
524 // assigned by the OS and would therefore not be useful for seeding.
525 .Write(0)
526 .Finalize();
527 CNode* pnode = new CNode(id,
528 std::move(sock),
529 target_addr,
530 CalculateKeyedNetGroup(target_addr),
531 nonce,
532 addr_bind,
533 pszDest ? pszDest : "",
534 conn_type,
535 /*inbound_onion=*/false,
536 network_id,
538 .permission_flags = permission_flags,
539 .i2p_sam_session = std::move(i2p_transient_session),
540 .recv_flood_size = nReceiveFloodSize,
541 .use_v2transport = use_v2transport,
542 });
543 pnode->AddRef();
544
545 // We're making a new connection, harvest entropy from the time (and our peer count)
546 RandAddEvent((uint32_t)id);
547
548 return pnode;
549 }
550
551 return nullptr;
552}
553
555{
556 fDisconnect = true;
558 if (m_sock) {
559 LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
560 m_sock.reset();
561
562 TRACEPOINT(net, closed_connection,
563 GetId(),
564 m_addr_name.c_str(),
565 ConnectionTypeAsString().c_str(),
567 Ticks<std::chrono::seconds>(m_connected));
568 }
569 m_i2p_sam_session.reset();
570}
571
572void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, std::optional<CNetAddr> addr, const std::vector<NetWhitelistPermissions>& ranges) const {
573 for (const auto& subnet : ranges) {
574 if (addr.has_value() && subnet.m_subnet.Match(addr.value())) {
575 NetPermissions::AddFlag(flags, subnet.m_flags);
576 }
577 }
584 }
585}
586
588{
591 return m_addr_local;
592}
593
594void CNode::SetAddrLocal(const CService& addrLocalIn) {
597 if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
598 m_addr_local = addrLocalIn;
599 }
600}
601
603{
605}
606
608{
610}
611
612#undef X
613#define X(name) stats.name = name
615{
616 stats.nodeid = this->GetId();
617 X(addr);
618 X(addrBind);
620 X(m_last_send);
621 X(m_last_recv);
624 X(m_connected);
625 X(m_addr_name);
626 X(nVersion);
627 {
629 X(cleanSubVer);
630 }
631 stats.fInbound = IsInboundConn();
634 {
635 LOCK(cs_vSend);
636 X(mapSendBytesPerMsgType);
637 X(nSendBytes);
638 }
639 {
640 LOCK(cs_vRecv);
641 X(mapRecvBytesPerMsgType);
642 X(nRecvBytes);
643 Transport::Info info = m_transport->GetInfo();
644 stats.m_transport_type = info.transport_type;
645 if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
646 }
648
651
652 // Leave string empty if addrLocal invalid (not filled in yet)
653 CService addrLocalUnlocked = GetAddrLocal();
654 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
655
656 X(m_conn_type);
657}
658#undef X
659
660bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
661{
662 complete = false;
663 const auto time = GetTime<std::chrono::microseconds>();
664 LOCK(cs_vRecv);
665 m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
666 nRecvBytes += msg_bytes.size();
667 while (msg_bytes.size() > 0) {
668 // absorb network data
669 if (!m_transport->ReceivedBytes(msg_bytes)) {
670 // Serious transport problem, disconnect from the peer.
671 return false;
672 }
673
674 if (m_transport->ReceivedMessageComplete()) {
675 // decompose a transport agnostic CNetMessage from the deserializer
676 bool reject_message{false};
677 CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
678 if (reject_message) {
679 // Message deserialization failed. Drop the message but don't disconnect the peer.
680 // store the size of the corrupt message
681 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
682 continue;
683 }
684
685 // Store received bytes per message type.
686 // To prevent a memory DOS, only allow known message types.
687 auto i = mapRecvBytesPerMsgType.find(msg.m_type);
688 if (i == mapRecvBytesPerMsgType.end()) {
689 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
690 }
691 assert(i != mapRecvBytesPerMsgType.end());
692 i->second += msg.m_raw_message_size;
693
694 // push the message to the process queue,
695 vRecvMsg.push_back(std::move(msg));
696
697 complete = true;
698 }
699 }
700
701 return true;
702}
703
704std::string CNode::LogIP(bool log_ip) const
705{
706 return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
707}
708
709std::string CNode::DisconnectMsg(bool log_ip) const
710{
711 return strprintf("disconnecting peer=%d%s",
712 GetId(),
713 LogIP(log_ip));
714}
715
716V1Transport::V1Transport(const NodeId node_id) noexcept
717 : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
718{
719 LOCK(m_recv_mutex);
720 Reset();
721}
722
724{
725 return {.transport_type = TransportProtocolType::V1, .session_id = {}};
726}
727
728int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
729{
731 // copy data to temporary parsing buffer
732 unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
733 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
734
735 memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
736 nHdrPos += nCopy;
737
738 // if header incomplete, exit
739 if (nHdrPos < CMessageHeader::HEADER_SIZE)
740 return nCopy;
741
742 // deserialize to CMessageHeader
743 try {
744 hdrbuf >> hdr;
745 }
746 catch (const std::exception&) {
747 LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
748 return -1;
749 }
750
751 // Check start string, network magic
752 if (hdr.pchMessageStart != m_magic_bytes) {
753 LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
754 return -1;
755 }
756
757 // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
758 // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
759 // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
760 if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
761 LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
762 return -1;
763 }
764
765 // switch state to reading message data
766 in_data = true;
767
768 return nCopy;
769}
770
771int V1Transport::readData(std::span<const uint8_t> msg_bytes)
772{
774 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
775 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
776
777 if (vRecv.size() < nDataPos + nCopy) {
778 // Allocate up to 256 KiB ahead, but never more than the total message size.
779 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
780 }
781
782 hasher.Write(msg_bytes.first(nCopy));
783 memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
784 nDataPos += nCopy;
785
786 return nCopy;
787}
788
790{
793 if (data_hash.IsNull())
794 hasher.Finalize(data_hash);
795 return data_hash;
796}
797
798CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
799{
801 // Initialize out parameter
802 reject_message = false;
803 // decompose a single CNetMessage from the TransportDeserializer
805 CNetMessage msg(std::move(vRecv));
806
807 // store message type string, time, and sizes
808 msg.m_type = hdr.GetMessageType();
809 msg.m_time = time;
810 msg.m_message_size = hdr.nMessageSize;
811 msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
812
813 uint256 hash = GetMessageHash();
814
815 // We just received a message off the wire, harvest entropy from the time (and the message checksum)
816 RandAddEvent(ReadLE32(hash.begin()));
817
818 // Check checksum and header message type string
819 if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
820 LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
821 SanitizeString(msg.m_type), msg.m_message_size,
822 HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
823 HexStr(hdr.pchChecksum),
824 m_node_id);
825 reject_message = true;
826 } else if (!hdr.IsMessageTypeValid()) {
827 LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
828 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
829 reject_message = true;
830 }
831
832 // Always reset the network deserializer (prepare for the next message)
833 Reset();
834 return msg;
835}
836
838{
839 AssertLockNotHeld(m_send_mutex);
840 // Determine whether a new message can be set.
841 LOCK(m_send_mutex);
842 if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
843
844 // create dbl-sha256 checksum
845 uint256 hash = Hash(msg.data);
846
847 // create header
848 CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
850
851 // serialize header
852 m_header_to_send.clear();
853 VectorWriter{m_header_to_send, 0, hdr};
854
855 // update state
856 m_message_to_send = std::move(msg);
857 m_sending_header = true;
858 m_bytes_sent = 0;
859 return true;
860}
861
862Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
863{
864 AssertLockNotHeld(m_send_mutex);
865 LOCK(m_send_mutex);
866 if (m_sending_header) {
867 return {std::span{m_header_to_send}.subspan(m_bytes_sent),
868 // We have more to send after the header if the message has payload, or if there
869 // is a next message after that.
870 have_next_message || !m_message_to_send.data.empty(),
871 m_message_to_send.m_type
872 };
873 } else {
874 return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
875 // We only have more to send after this message's payload if there is another
876 // message.
877 have_next_message,
878 m_message_to_send.m_type
879 };
880 }
881}
882
883void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
884{
885 AssertLockNotHeld(m_send_mutex);
886 LOCK(m_send_mutex);
887 m_bytes_sent += bytes_sent;
888 if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
889 // We're done sending a message's header. Switch to sending its data bytes.
890 m_sending_header = false;
891 m_bytes_sent = 0;
892 } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
893 // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
894 ClearShrink(m_message_to_send.data);
895 m_bytes_sent = 0;
896 }
897}
898
899size_t V1Transport::GetSendMemoryUsage() const noexcept
900{
903 // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
904 return m_message_to_send.GetMemoryUsage();
905}
906
907namespace {
908
914const std::array<std::string, 33> V2_MESSAGE_IDS = {
915 "", // 12 bytes follow encoding the message type like in V1
944 // Unimplemented message types that are assigned in BIP324:
945 "",
946 "",
947 "",
948 ""
949};
950
951class V2MessageMap
952{
953 std::unordered_map<std::string, uint8_t> m_map;
954
955public:
956 V2MessageMap() noexcept
957 {
958 for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
959 m_map.emplace(V2_MESSAGE_IDS[i], i);
960 }
961 }
962
963 std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
964 {
965 auto it = m_map.find(message_name);
966 if (it == m_map.end()) return std::nullopt;
967 return it->second;
968 }
969};
970
971const V2MessageMap V2_MESSAGE_MAP;
972
973std::vector<uint8_t> GenerateRandomGarbage() noexcept
974{
975 std::vector<uint8_t> ret;
979 return ret;
980}
981
982} // namespace
983
985{
986 AssertLockHeld(m_send_mutex);
987 Assume(m_send_state == SendState::AWAITING_KEY);
988 Assume(m_send_buffer.empty());
989 // Initialize the send buffer with ellswift pubkey + provided garbage.
990 m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
991 std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
992 std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
993 // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
994}
995
996V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
997 : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
998 m_v1_fallback{nodeid},
999 m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1000 m_send_garbage{std::move(garbage)},
1001 m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1002{
1003 Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1004 // Start sending immediately if we're the initiator of the connection.
1005 if (initiating) {
1006 LOCK(m_send_mutex);
1007 StartSendingHandshake();
1008 }
1009}
1010
1011V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1012 : V2Transport{nodeid, initiating, GenerateRandomKey(),
1013 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1014
1016{
1017 AssertLockHeld(m_recv_mutex);
1018 // Enforce allowed state transitions.
1019 switch (m_recv_state) {
1020 case RecvState::KEY_MAYBE_V1:
1021 Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1022 break;
1023 case RecvState::KEY:
1024 Assume(recv_state == RecvState::GARB_GARBTERM);
1025 break;
1026 case RecvState::GARB_GARBTERM:
1027 Assume(recv_state == RecvState::VERSION);
1028 break;
1029 case RecvState::VERSION:
1030 Assume(recv_state == RecvState::APP);
1031 break;
1032 case RecvState::APP:
1033 Assume(recv_state == RecvState::APP_READY);
1034 break;
1035 case RecvState::APP_READY:
1036 Assume(recv_state == RecvState::APP);
1037 break;
1038 case RecvState::V1:
1039 Assume(false); // V1 state cannot be left
1040 break;
1041 }
1042 // Change state.
1043 m_recv_state = recv_state;
1044}
1045
1046void V2Transport::SetSendState(SendState send_state) noexcept
1047{
1048 AssertLockHeld(m_send_mutex);
1049 // Enforce allowed state transitions.
1050 switch (m_send_state) {
1051 case SendState::MAYBE_V1:
1052 Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1053 break;
1054 case SendState::AWAITING_KEY:
1055 Assume(send_state == SendState::READY);
1056 break;
1057 case SendState::READY:
1058 case SendState::V1:
1059 Assume(false); // Final states
1060 break;
1061 }
1062 // Change state.
1063 m_send_state = send_state;
1064}
1065
1067{
1068 AssertLockNotHeld(m_recv_mutex);
1069 LOCK(m_recv_mutex);
1070 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1071
1072 return m_recv_state == RecvState::APP_READY;
1073}
1074
1076{
1077 AssertLockHeld(m_recv_mutex);
1078 AssertLockNotHeld(m_send_mutex);
1079 Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1080 // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1081 // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1082 // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1083 // sending of the key.
1084 std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1085 std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1086 Assume(m_recv_buffer.size() <= v1_prefix.size());
1087 if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1088 // Mismatch with v1 prefix, so we can assume a v2 connection.
1089 SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1090 // Transition the sender to AWAITING_KEY state and start sending.
1091 LOCK(m_send_mutex);
1094 } else if (m_recv_buffer.size() == v1_prefix.size()) {
1095 // Full match with the v1 prefix, so fall back to v1 behavior.
1096 LOCK(m_send_mutex);
1097 std::span<const uint8_t> feedback{m_recv_buffer};
1098 // Feed already received bytes to v1 transport. It should always accept these, because it's
1099 // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1100 bool ret = m_v1_fallback.ReceivedBytes(feedback);
1101 Assume(feedback.empty());
1102 Assume(ret);
1105 // Reset v2 transport buffers to save memory.
1106 ClearShrink(m_recv_buffer);
1107 ClearShrink(m_send_buffer);
1108 } else {
1109 // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1110 }
1111}
1112
1114{
1115 AssertLockHeld(m_recv_mutex);
1116 AssertLockNotHeld(m_send_mutex);
1117 Assume(m_recv_state == RecvState::KEY);
1118 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1119
1120 // As a special exception, if bytes 4-16 of the key on a responder connection match the
1121 // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1122 // (if they did, we'd have switched to V1 state already), assume this is a peer from
1123 // another network, and disconnect them. They will almost certainly disconnect us too when
1124 // they receive our uniformly random key and garbage, but detecting this case specially
1125 // means we can log it.
1126 static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1127 static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1128 if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1129 if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1130 LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1131 HexStr(std::span(m_recv_buffer).first(OFFSET)));
1132 return false;
1133 }
1134 }
1135
1136 if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1137 // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1138 // our key to initialize the encryption ciphers.
1139
1140 // Initialize the ciphers.
1141 EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1142 LOCK(m_send_mutex);
1143 m_cipher.Initialize(ellswift, m_initiating);
1144
1145 // Switch receiver state to GARB_GARBTERM.
1147 m_recv_buffer.clear();
1148
1149 // Switch sender state to READY.
1151
1152 // Append the garbage terminator to the send buffer.
1153 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1154 std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1156 MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1157
1158 // Construct version packet in the send buffer, with the sent garbage data as AAD.
1159 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1161 /*contents=*/VERSION_CONTENTS,
1162 /*aad=*/MakeByteSpan(m_send_garbage),
1163 /*ignore=*/false,
1164 /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1165 // We no longer need the garbage.
1166 ClearShrink(m_send_garbage);
1167 } else {
1168 // We still have to receive more key bytes.
1169 }
1170 return true;
1171}
1172
1174{
1175 AssertLockHeld(m_recv_mutex);
1176 Assume(m_recv_state == RecvState::GARB_GARBTERM);
1178 if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1179 if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1180 // Garbage terminator received. Store garbage to authenticate it as AAD later.
1181 m_recv_aad = std::move(m_recv_buffer);
1182 m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1183 m_recv_buffer.clear();
1185 } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1186 // We've reached the maximum length for garbage + garbage terminator, and the
1187 // terminator still does not match. Abort.
1188 LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1189 return false;
1190 } else {
1191 // We still need to receive more garbage and/or garbage terminator bytes.
1192 }
1193 } else {
1194 // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1195 // more first.
1196 }
1197 return true;
1198}
1199
1201{
1202 AssertLockHeld(m_recv_mutex);
1203 Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1204
1205 // The maximum permitted contents length for a packet, consisting of:
1206 // - 0x00 byte: indicating long message type encoding
1207 // - 12 bytes of message type
1208 // - payload
1209 static constexpr size_t MAX_CONTENTS_LEN =
1211 std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1212
1213 if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1214 // Length descriptor received.
1215 m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1216 if (m_recv_len > MAX_CONTENTS_LEN) {
1217 LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1218 return false;
1219 }
1220 } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1221 // Ciphertext received, decrypt it into m_recv_decode_buffer.
1222 // Note that it is impossible to reach this branch without hitting the branch above first,
1223 // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1224 m_recv_decode_buffer.resize(m_recv_len);
1225 bool ignore{false};
1226 bool ret = m_cipher.Decrypt(
1227 /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1228 /*aad=*/MakeByteSpan(m_recv_aad),
1229 /*ignore=*/ignore,
1230 /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1231 if (!ret) {
1232 LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1233 return false;
1234 }
1235 // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1236 ClearShrink(m_recv_aad);
1237 // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1238 RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1239
1240 // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1241 // decoy, which we simply ignore, use the current state to decide what to do with it.
1242 if (!ignore) {
1243 switch (m_recv_state) {
1244 case RecvState::VERSION:
1245 // Version message received; transition to application phase. The contents is
1246 // ignored, but can be used for future extensions.
1248 break;
1249 case RecvState::APP:
1250 // Application message decrypted correctly. It can be extracted using GetMessage().
1252 break;
1253 default:
1254 // Any other state is invalid (this function should not have been called).
1255 Assume(false);
1256 }
1257 }
1258 // Wipe the receive buffer where the next packet will be received into.
1259 ClearShrink(m_recv_buffer);
1260 // In all but APP_READY state, we can wipe the decoded contents.
1261 if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1262 } else {
1263 // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1264 // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1265 }
1266 return true;
1267}
1268
1270{
1271 AssertLockHeld(m_recv_mutex);
1272 switch (m_recv_state) {
1274 // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1275 // receive buffer.
1276 Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1277 // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1278 // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1279 // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1280 // back into the m_v1_fallback V1 transport.
1281 return V1_PREFIX_LEN - m_recv_buffer.size();
1282 case RecvState::KEY:
1283 // During the KEY state, we only allow the 64-byte key into the receive buffer.
1284 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1285 // As long as we have not received the other side's public key, don't receive more than
1286 // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1287 // key exchange first.
1288 return EllSwiftPubKey::size() - m_recv_buffer.size();
1290 // Process garbage bytes one by one (because terminator may appear anywhere).
1291 return 1;
1292 case RecvState::VERSION:
1293 case RecvState::APP:
1294 // These three states all involve decoding a packet. Process the length descriptor first,
1295 // so that we know where the current packet ends (and we don't process bytes from the next
1296 // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1297 if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1298 return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1299 } else {
1300 // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1301 // and encoded packet size, which includes the 3 bytes due to the packet length.
1302 // When transitioning from receiving the packet length to receiving its ciphertext,
1303 // the encrypted packet length is left in the receive buffer.
1304 return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1305 }
1307 // No bytes can be processed until GetMessage() is called.
1308 return 0;
1309 case RecvState::V1:
1310 // Not allowed (must be dealt with by the caller).
1311 Assume(false);
1312 return 0;
1313 }
1314 Assume(false); // unreachable
1315 return 0;
1316}
1317
1318bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1319{
1320 AssertLockNotHeld(m_recv_mutex);
1322 static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1323
1324 LOCK(m_recv_mutex);
1325 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1326
1327 // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1328 // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1329 // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1330 // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1331 while (!msg_bytes.empty()) {
1332 // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1333 size_t max_read = GetMaxBytesToProcess();
1334
1335 // Reserve space in the buffer if there is not enough.
1336 if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1337 switch (m_recv_state) {
1338 case RecvState::KEY_MAYBE_V1:
1339 case RecvState::KEY:
1340 case RecvState::GARB_GARBTERM:
1341 // During the initial states (key/garbage), allocate once to fit the maximum (4111
1342 // bytes).
1343 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1344 break;
1345 case RecvState::VERSION:
1346 case RecvState::APP: {
1347 // During states where a packet is being received, as much as is expected but never
1348 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1349 // This means attackers that want to cause us to waste allocated memory are limited
1350 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1351 // MAX_RESERVE_AHEAD more than they've actually sent us.
1352 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1353 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1354 break;
1355 }
1356 case RecvState::APP_READY:
1357 // The buffer is empty in this state.
1358 Assume(m_recv_buffer.empty());
1359 break;
1360 case RecvState::V1:
1361 // Should have bailed out above.
1362 Assume(false);
1363 break;
1364 }
1365 }
1366
1367 // Can't read more than provided input.
1368 max_read = std::min(msg_bytes.size(), max_read);
1369 // Copy data to buffer.
1370 m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1371 msg_bytes = msg_bytes.subspan(max_read);
1372
1373 // Process data in the buffer.
1374 switch (m_recv_state) {
1375 case RecvState::KEY_MAYBE_V1:
1376 ProcessReceivedMaybeV1Bytes();
1377 if (m_recv_state == RecvState::V1) return true;
1378 break;
1379
1380 case RecvState::KEY:
1381 if (!ProcessReceivedKeyBytes()) return false;
1382 break;
1383
1384 case RecvState::GARB_GARBTERM:
1385 if (!ProcessReceivedGarbageBytes()) return false;
1386 break;
1387
1388 case RecvState::VERSION:
1389 case RecvState::APP:
1390 if (!ProcessReceivedPacketBytes()) return false;
1391 break;
1392
1393 case RecvState::APP_READY:
1394 return true;
1395
1396 case RecvState::V1:
1397 // We should have bailed out before.
1398 Assume(false);
1399 break;
1400 }
1401 // Make sure we have made progress before continuing.
1402 Assume(max_read > 0);
1403 }
1404
1405 return true;
1406}
1407
1408std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1409{
1410 if (contents.size() == 0) return std::nullopt; // Empty contents
1411 uint8_t first_byte = contents[0];
1412 contents = contents.subspan(1); // Strip first byte.
1413
1414 if (first_byte != 0) {
1415 // Short (1 byte) encoding.
1416 if (first_byte < std::size(V2_MESSAGE_IDS)) {
1417 // Valid short message id.
1418 return V2_MESSAGE_IDS[first_byte];
1419 } else {
1420 // Unknown short message id.
1421 return std::nullopt;
1422 }
1423 }
1424
1425 if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1426 return std::nullopt; // Long encoding needs 12 message type bytes.
1427 }
1428
1429 size_t msg_type_len{0};
1430 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1431 // Verify that message type bytes before the first 0x00 are in range.
1432 if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1433 return {};
1434 }
1435 ++msg_type_len;
1436 }
1437 std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1438 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1439 // Verify that message type bytes after the first 0x00 are also 0x00.
1440 if (contents[msg_type_len] != 0) return {};
1441 ++msg_type_len;
1442 }
1443 // Strip message type bytes of contents.
1444 contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1445 return ret;
1446}
1447
1448CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1449{
1450 AssertLockNotHeld(m_recv_mutex);
1451 LOCK(m_recv_mutex);
1452 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1453
1454 Assume(m_recv_state == RecvState::APP_READY);
1455 std::span<const uint8_t> contents{m_recv_decode_buffer};
1456 auto msg_type = GetMessageType(contents);
1458 // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1459 msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1460 if (msg_type) {
1461 reject_message = false;
1462 msg.m_type = std::move(*msg_type);
1463 msg.m_time = time;
1464 msg.m_message_size = contents.size();
1465 msg.m_recv.resize(contents.size());
1466 std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1467 } else {
1468 LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1469 reject_message = true;
1470 }
1471 ClearShrink(m_recv_decode_buffer);
1472 SetReceiveState(RecvState::APP);
1473
1474 return msg;
1475}
1476
1478{
1479 AssertLockNotHeld(m_send_mutex);
1480 LOCK(m_send_mutex);
1481 if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1482 // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1483 // is available) and the send buffer is empty. This limits the number of messages in the send
1484 // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1485 if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1486 // Construct contents (encoding message type + payload).
1487 std::vector<uint8_t> contents;
1488 auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1489 if (short_message_id) {
1490 contents.resize(1 + msg.data.size());
1491 contents[0] = *short_message_id;
1492 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1493 } else {
1494 // Initialize with zeroes, and then write the message type string starting at offset 1.
1495 // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1496 contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1497 std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1498 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1499 }
1500 // Construct ciphertext in send buffer.
1501 m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1502 m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1503 m_send_type = msg.m_type;
1504 // Release memory
1505 ClearShrink(msg.data);
1506 return true;
1507}
1508
1509Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1510{
1511 AssertLockNotHeld(m_send_mutex);
1512 LOCK(m_send_mutex);
1513 if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1514
1515 if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1516 Assume(m_send_pos <= m_send_buffer.size());
1517 return {
1518 std::span{m_send_buffer}.subspan(m_send_pos),
1519 // We only have more to send after the current m_send_buffer if there is a (next)
1520 // message to be sent, and we're capable of sending packets. */
1521 have_next_message && m_send_state == SendState::READY,
1522 m_send_type
1523 };
1524}
1525
1526void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1527{
1528 AssertLockNotHeld(m_send_mutex);
1529 LOCK(m_send_mutex);
1530 if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1531
1532 if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1533 LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1534 }
1535
1536 m_send_pos += bytes_sent;
1537 Assume(m_send_pos <= m_send_buffer.size());
1538 if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1539 m_sent_v1_header_worth = true;
1540 }
1541 // Wipe the buffer when everything is sent.
1542 if (m_send_pos == m_send_buffer.size()) {
1543 m_send_pos = 0;
1544 ClearShrink(m_send_buffer);
1545 }
1546}
1547
1549{
1550 AssertLockNotHeld(m_send_mutex);
1551 AssertLockNotHeld(m_recv_mutex);
1552 // Only outgoing connections need reconnection.
1553 if (!m_initiating) return false;
1554
1555 LOCK(m_recv_mutex);
1556 // We only reconnect in the very first state and when the receive buffer is empty. Together
1557 // these conditions imply nothing has been received so far.
1558 if (m_recv_state != RecvState::KEY) return false;
1559 if (!m_recv_buffer.empty()) return false;
1560 // Check if we've sent enough for the other side to disconnect us (if it was V1).
1561 LOCK(m_send_mutex);
1562 return m_sent_v1_header_worth;
1563}
1564
1565size_t V2Transport::GetSendMemoryUsage() const noexcept
1566{
1567 AssertLockNotHeld(m_send_mutex);
1568 LOCK(m_send_mutex);
1569 if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1570
1571 return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1572}
1573
1575{
1576 AssertLockNotHeld(m_recv_mutex);
1577 LOCK(m_recv_mutex);
1578 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1579
1580 Transport::Info info;
1581
1582 // Do not report v2 and session ID until the version packet has been received
1583 // and verified (confirming that the other side very likely has the same keys as us).
1584 if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1585 m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1588 } else {
1590 }
1591
1592 return info;
1593}
1594
1595std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1596{
1597 auto it = node.vSendMsg.begin();
1598 size_t nSentSize = 0;
1599 bool data_left{false};
1600 std::optional<bool> expected_more;
1601
1602 while (true) {
1603 if (it != node.vSendMsg.end()) {
1604 // If possible, move one message from the send queue to the transport. This fails when
1605 // there is an existing message still being sent, or (for v2 transports) when the
1606 // handshake has not yet completed.
1607 size_t memusage = it->GetMemoryUsage();
1608 if (node.m_transport->SetMessageToSend(*it)) {
1609 // Update memory usage of send buffer (as *it will be deleted).
1610 node.m_send_memusage -= memusage;
1611 ++it;
1612 }
1613 }
1614 const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1615 // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1616 // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1617 // verify that the previously returned 'more' was correct.
1618 if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1619 expected_more = more;
1620 data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1621 int nBytes = 0;
1622 if (!data.empty()) {
1623 LOCK(node.m_sock_mutex);
1624 // There is no socket in case we've already disconnected, or in test cases without
1625 // real connections. In these cases, we bail out immediately and just leave things
1626 // in the send queue and transport.
1627 if (!node.m_sock) {
1628 break;
1629 }
1631#ifdef MSG_MORE
1632 if (more) {
1633 flags |= MSG_MORE;
1634 }
1635#endif
1636 nBytes = node.m_sock->Send(data.data(), data.size(), flags);
1637 }
1638 if (nBytes > 0) {
1639 node.m_last_send = GetTime<std::chrono::seconds>();
1640 node.nSendBytes += nBytes;
1641 // Notify transport that bytes have been processed.
1642 node.m_transport->MarkBytesSent(nBytes);
1643 // Update statistics per message type.
1644 if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1645 node.AccountForSentBytes(msg_type, nBytes);
1646 }
1647 nSentSize += nBytes;
1648 if ((size_t)nBytes != data.size()) {
1649 // could not send full message; stop sending more
1650 break;
1651 }
1652 } else {
1653 if (nBytes < 0) {
1654 // error
1655 int nErr = WSAGetLastError();
1656 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1657 LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1658 node.CloseSocketDisconnect();
1659 }
1660 }
1661 break;
1662 }
1663 }
1664
1665 node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1666
1667 if (it == node.vSendMsg.end()) {
1668 assert(node.m_send_memusage == 0);
1669 }
1670 node.vSendMsg.erase(node.vSendMsg.begin(), it);
1671 return {nSentSize, data_left};
1672}
1673
1683{
1684 std::vector<NodeEvictionCandidate> vEvictionCandidates;
1685 {
1686
1688 for (const CNode* node : m_nodes) {
1689 if (node->fDisconnect)
1690 continue;
1691 NodeEvictionCandidate candidate{
1692 .id = node->GetId(),
1693 .m_connected = node->m_connected,
1694 .m_min_ping_time = node->m_min_ping_time,
1695 .m_last_block_time = node->m_last_block_time,
1696 .m_last_tx_time = node->m_last_tx_time,
1697 .fRelevantServices = node->m_has_all_wanted_services,
1698 .m_relay_txs = node->m_relays_txs.load(),
1699 .fBloomFilter = node->m_bloom_filter_loaded.load(),
1700 .nKeyedNetGroup = node->nKeyedNetGroup,
1701 .prefer_evict = node->m_prefer_evict,
1702 .m_is_local = node->addr.IsLocal(),
1703 .m_network = node->ConnectedThroughNetwork(),
1704 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1705 .m_conn_type = node->m_conn_type,
1706 };
1707 vEvictionCandidates.push_back(candidate);
1708 }
1709 }
1710 const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1711 if (!node_id_to_evict) {
1712 return false;
1713 }
1715 for (CNode* pnode : m_nodes) {
1716 if (pnode->GetId() == *node_id_to_evict) {
1717 LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1718 TRACEPOINT(net, evicted_inbound_connection,
1719 pnode->GetId(),
1720 pnode->m_addr_name.c_str(),
1721 pnode->ConnectionTypeAsString().c_str(),
1722 pnode->ConnectedThroughNetwork(),
1723 Ticks<std::chrono::seconds>(pnode->m_connected));
1724 pnode->fDisconnect = true;
1725 return true;
1726 }
1727 }
1728 return false;
1729}
1730
1731void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1732 struct sockaddr_storage sockaddr;
1733 socklen_t len = sizeof(sockaddr);
1734 auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1735
1736 if (!sock) {
1737 const int nErr = WSAGetLastError();
1738 if (nErr != WSAEWOULDBLOCK) {
1739 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1740 }
1741 return;
1742 }
1743
1744 CService addr;
1745 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1746 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1747 } else {
1748 addr = MaybeFlipIPv6toCJDNS(addr);
1749 }
1750
1751 const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1752
1754 hListenSocket.AddSocketPermissionFlags(permission_flags);
1755
1756 CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1757}
1758
1759void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1760 NetPermissionFlags permission_flags,
1761 const CService& addr_bind,
1762 const CService& addr)
1763{
1764 int nInbound = 0;
1765
1766 const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1767
1768 // Tor inbound connections do not reveal the peer's actual network address.
1769 // Therefore do not apply address-based whitelist permissions to them.
1770 AddWhitelistPermissionFlags(permission_flags, inbound_onion ? std::optional<CNetAddr>{} : addr, vWhitelistedRangeIncoming);
1771
1772 {
1774 for (const CNode* pnode : m_nodes) {
1775 if (pnode->IsInboundConn()) nInbound++;
1776 }
1777 }
1778
1779 if (!fNetworkActive) {
1780 LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1781 return;
1782 }
1783
1784 if (!sock->IsSelectable()) {
1785 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1786 return;
1787 }
1788
1789 // According to the internet TCP_NODELAY is not carried into accepted sockets
1790 // on all platforms. Set it again here just to be sure.
1791 const int on{1};
1792 if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1793 LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1794 addr.ToStringAddrPort());
1795 }
1796
1797 // Don't accept connections from banned peers.
1798 bool banned = m_banman && m_banman->IsBanned(addr);
1799 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1800 {
1801 LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1802 return;
1803 }
1804
1805 // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1806 bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1807 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1808 {
1809 LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1810 return;
1811 }
1812
1813 if (nInbound >= m_max_inbound)
1814 {
1815 if (!AttemptToEvictConnection()) {
1816 // No connection to evict, disconnect the new connection
1817 LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1818 return;
1819 }
1820 }
1821
1822 NodeId id = GetNewNodeId();
1824
1825 // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1826 // detected, so use it whenever we signal NODE_P2P_V2.
1827 ServiceFlags local_services = GetLocalServices();
1828 const bool use_v2transport(local_services & NODE_P2P_V2);
1829
1831 .Write(inbound_onion ? NET_ONION : addr.GetNetClass())
1832 .Write(addr_bind.GetAddrBytes())
1833 .Write(addr_bind.GetPort()) // inbound connections use bind port
1834 .Finalize();
1835 CNode* pnode = new CNode(id,
1836 std::move(sock),
1837 CAddress{addr, NODE_NONE},
1839 nonce,
1840 addr_bind,
1841 /*addrNameIn=*/"",
1843 inbound_onion,
1844 network_id,
1846 .permission_flags = permission_flags,
1847 .prefer_evict = discouraged,
1848 .recv_flood_size = nReceiveFloodSize,
1849 .use_v2transport = use_v2transport,
1850 });
1851 pnode->AddRef();
1852 m_msgproc->InitializeNode(*pnode, local_services);
1853 {
1855 m_nodes.push_back(pnode);
1856 }
1857 LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1858 TRACEPOINT(net, inbound_connection,
1859 pnode->GetId(),
1860 pnode->m_addr_name.c_str(),
1861 pnode->ConnectionTypeAsString().c_str(),
1862 pnode->ConnectedThroughNetwork(),
1864
1865 // We received a new connection, harvest entropy from the time (and our peer count)
1866 RandAddEvent((uint32_t)id);
1867}
1868
1869bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1870{
1872 std::optional<int> max_connections;
1873 switch (conn_type) {
1876 return false;
1878 max_connections = m_max_outbound_full_relay;
1879 break;
1881 max_connections = m_max_outbound_block_relay;
1882 break;
1883 // no limit for ADDR_FETCH because -seednode has no limit either
1885 break;
1886 // no limit for FEELER connections since they're short-lived
1888 break;
1889 } // no default case, so the compiler can warn about missing cases
1890
1891 // Count existing connections
1892 int existing_connections = WITH_LOCK(m_nodes_mutex,
1893 return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1894
1895 // Max connections of specified type already exist
1896 if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1897
1898 // Max total outbound connections already exist
1900 if (!grant) return false;
1901
1902 OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1903 return true;
1904}
1905
1907{
1910
1911 // Use a temporary variable to accumulate desired reconnections, so we don't need
1912 // m_reconnections_mutex while holding m_nodes_mutex.
1913 decltype(m_reconnections) reconnections_to_add;
1914
1915 {
1917
1918 const bool network_active{fNetworkActive};
1919 if (!network_active) {
1920 // Disconnect any connected nodes
1921 for (CNode* pnode : m_nodes) {
1922 if (!pnode->fDisconnect) {
1923 LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1924 pnode->fDisconnect = true;
1925 }
1926 }
1927 }
1928
1929 // Disconnect unused nodes
1930 std::vector<CNode*> nodes_copy = m_nodes;
1931 for (CNode* pnode : nodes_copy)
1932 {
1933 if (pnode->fDisconnect)
1934 {
1935 // remove from m_nodes
1936 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1937
1938 // Add to reconnection list if appropriate. We don't reconnect right here, because
1939 // the creation of a connection is a blocking operation (up to several seconds),
1940 // and we don't want to hold up the socket handler thread for that long.
1941 if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1942 reconnections_to_add.push_back({
1943 .addr_connect = pnode->addr,
1944 .grant = std::move(pnode->grantOutbound),
1945 .destination = pnode->m_dest,
1946 .conn_type = pnode->m_conn_type,
1947 .use_v2transport = false});
1948 LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1949 }
1950
1951 // release outbound grant (if any)
1952 pnode->grantOutbound.Release();
1953
1954 // close socket and cleanup
1955 pnode->CloseSocketDisconnect();
1956
1957 // update connection count by network
1958 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1959
1960 // hold in disconnected pool until all refs are released
1961 pnode->Release();
1962 m_nodes_disconnected.push_back(pnode);
1963 }
1964 }
1965 }
1966 {
1967 // Delete disconnected nodes
1968 std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1969 for (CNode* pnode : nodes_disconnected_copy)
1970 {
1971 // Destroy the object only after other threads have stopped using it.
1972 if (pnode->GetRefCount() <= 0) {
1973 m_nodes_disconnected.remove(pnode);
1974 DeleteNode(pnode);
1975 }
1976 }
1977 }
1978 {
1979 // Move entries from reconnections_to_add to m_reconnections.
1981 m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1982 }
1983}
1984
1986{
1987 size_t nodes_size;
1988 {
1990 nodes_size = m_nodes.size();
1991 }
1992 if(nodes_size != nPrevNodeCount) {
1993 nPrevNodeCount = nodes_size;
1994 if (m_client_interface) {
1995 m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1996 }
1997 }
1998}
1999
2000bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
2001{
2002 return node.m_connected + m_peer_connect_timeout < now;
2003}
2004
2006{
2007 // Tests that see disconnects after using mocktime can start nodes with a
2008 // large timeout. For example, -peertimeout=999999999.
2009 const auto now{GetTime<std::chrono::seconds>()};
2010 const auto last_send{node.m_last_send.load()};
2011 const auto last_recv{node.m_last_recv.load()};
2012
2013 if (!ShouldRunInactivityChecks(node, now)) return false;
2014
2015 bool has_received{last_recv.count() != 0};
2016 bool has_sent{last_send.count() != 0};
2017
2018 if (!has_received || !has_sent) {
2019 std::string has_never;
2020 if (!has_received) has_never += ", never received from peer";
2021 if (!has_sent) has_never += ", never sent to peer";
2023 "socket no message in first %i seconds%s, %s\n",
2025 has_never,
2026 node.DisconnectMsg(fLogIPs)
2027 );
2028 return true;
2029 }
2030
2031 if (now > last_send + TIMEOUT_INTERVAL) {
2033 "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2034 node.DisconnectMsg(fLogIPs)
2035 );
2036 return true;
2037 }
2038
2039 if (now > last_recv + TIMEOUT_INTERVAL) {
2041 "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2042 node.DisconnectMsg(fLogIPs)
2043 );
2044 return true;
2045 }
2046
2047 if (!node.fSuccessfullyConnected) {
2048 if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2049 LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2050 } else {
2051 LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2052 }
2053 return true;
2054 }
2055
2056 return false;
2057}
2058
2060{
2061 Sock::EventsPerSock events_per_sock;
2062
2063 for (const ListenSocket& hListenSocket : vhListenSocket) {
2064 events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2065 }
2066
2067 for (CNode* pnode : nodes) {
2068 bool select_recv = !pnode->fPauseRecv;
2069 bool select_send;
2070 {
2071 LOCK(pnode->cs_vSend);
2072 // Sending is possible if either there are bytes to send right now, or if there will be
2073 // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2074 // determines both of these in a single call.
2075 const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2076 select_send = !to_send.empty() || more;
2077 }
2078 if (!select_recv && !select_send) continue;
2079
2080 LOCK(pnode->m_sock_mutex);
2081 if (pnode->m_sock) {
2082 Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2083 events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2084 }
2085 }
2086
2087 return events_per_sock;
2088}
2089
2091{
2093
2094 Sock::EventsPerSock events_per_sock;
2095
2096 {
2097 const NodesSnapshot snap{*this, /*shuffle=*/false};
2098
2099 const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2100
2101 // Check for the readiness of the already connected sockets and the
2102 // listening sockets in one call ("readiness" as in poll(2) or
2103 // select(2)). If none are ready, wait for a short while and return
2104 // empty sets.
2105 events_per_sock = GenerateWaitSockets(snap.Nodes());
2106 if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2107 m_interrupt_net->sleep_for(timeout);
2108 }
2109
2110 // Service (send/receive) each of the already connected nodes.
2111 SocketHandlerConnected(snap.Nodes(), events_per_sock);
2112 }
2113
2114 // Accept new connections from listening sockets.
2115 SocketHandlerListening(events_per_sock);
2116}
2117
2118void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2119 const Sock::EventsPerSock& events_per_sock)
2120{
2122
2123 for (CNode* pnode : nodes) {
2124 if (m_interrupt_net->interrupted()) {
2125 return;
2126 }
2127
2128 //
2129 // Receive
2130 //
2131 bool recvSet = false;
2132 bool sendSet = false;
2133 bool errorSet = false;
2134 {
2135 LOCK(pnode->m_sock_mutex);
2136 if (!pnode->m_sock) {
2137 continue;
2138 }
2139 const auto it = events_per_sock.find(pnode->m_sock);
2140 if (it != events_per_sock.end()) {
2141 recvSet = it->second.occurred & Sock::RECV;
2142 sendSet = it->second.occurred & Sock::SEND;
2143 errorSet = it->second.occurred & Sock::ERR;
2144 }
2145 }
2146
2147 if (sendSet) {
2148 // Send data
2149 auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2150 if (bytes_sent) {
2151 RecordBytesSent(bytes_sent);
2152
2153 // If both receiving and (non-optimistic) sending were possible, we first attempt
2154 // sending. If that succeeds, but does not fully drain the send queue, do not
2155 // attempt to receive. This avoids needlessly queueing data if the remote peer
2156 // is slow at receiving data, by means of TCP flow control. We only do this when
2157 // sending actually succeeded to make sure progress is always made; otherwise a
2158 // deadlock would be possible when both sides have data to send, but neither is
2159 // receiving.
2160 if (data_left) recvSet = false;
2161 }
2162 }
2163
2164 if (recvSet || errorSet)
2165 {
2166 // typical socket buffer is 8K-64K
2167 uint8_t pchBuf[0x10000];
2168 int nBytes = 0;
2169 {
2170 LOCK(pnode->m_sock_mutex);
2171 if (!pnode->m_sock) {
2172 continue;
2173 }
2174 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2175 }
2176 if (nBytes > 0)
2177 {
2178 bool notify = false;
2179 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2181 "receiving message bytes failed, %s\n",
2182 pnode->DisconnectMsg(fLogIPs)
2183 );
2184 pnode->CloseSocketDisconnect();
2185 }
2186 RecordBytesRecv(nBytes);
2187 if (notify) {
2188 pnode->MarkReceivedMsgsForProcessing();
2190 }
2191 }
2192 else if (nBytes == 0)
2193 {
2194 // socket closed gracefully
2195 if (!pnode->fDisconnect) {
2196 LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2197 }
2198 pnode->CloseSocketDisconnect();
2199 }
2200 else if (nBytes < 0)
2201 {
2202 // error
2203 int nErr = WSAGetLastError();
2204 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2205 {
2206 if (!pnode->fDisconnect) {
2207 LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2208 }
2209 pnode->CloseSocketDisconnect();
2210 }
2211 }
2212 }
2213
2214 if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2215 }
2216}
2217
2219{
2220 for (const ListenSocket& listen_socket : vhListenSocket) {
2221 if (m_interrupt_net->interrupted()) {
2222 return;
2223 }
2224 const auto it = events_per_sock.find(listen_socket.sock);
2225 if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2226 AcceptConnection(listen_socket);
2227 }
2228 }
2229}
2230
2232{
2234
2235 while (!m_interrupt_net->interrupted()) {
2238 SocketHandler();
2239 }
2240}
2241
2243{
2244 {
2246 fMsgProcWake = true;
2247 }
2248 condMsgProc.notify_one();
2249}
2250
2252{
2253 int outbound_connection_count = 0;
2254
2255 if (!gArgs.GetArgs("-seednode").empty()) {
2256 auto start = NodeClock::now();
2257 constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2258 LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2259 while (!m_interrupt_net->interrupted()) {
2260 if (!m_interrupt_net->sleep_for(500ms)) {
2261 return;
2262 }
2263
2264 // Abort if we have spent enough time without reaching our target.
2265 // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2266 if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2267 LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2268 break;
2269 }
2270
2271 outbound_connection_count = GetFullOutboundConnCount();
2272 if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2273 LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2274 break;
2275 }
2276 }
2277 }
2278
2280 std::vector<std::string> seeds = m_params.DNSSeeds();
2281 std::shuffle(seeds.begin(), seeds.end(), rng);
2282 int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2283
2284 if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2285 // When -forcednsseed is provided, query all.
2286 seeds_right_now = seeds.size();
2287 } else if (addrman.Size() == 0) {
2288 // If we have no known peers, query all.
2289 // This will occur on the first run, or if peers.dat has been
2290 // deleted.
2291 seeds_right_now = seeds.size();
2292 }
2293
2294 // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2295 if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2296 // goal: only query DNS seed if address need is acute
2297 // * If we have a reasonable number of peers in addrman, spend
2298 // some time trying them first. This improves user privacy by
2299 // creating fewer identifying DNS requests, reduces trust by
2300 // giving seeds less influence on the network topology, and
2301 // reduces traffic to the seeds.
2302 // * When querying DNS seeds query a few at once, this ensures
2303 // that we don't give DNS seeds the ability to eclipse nodes
2304 // that query them.
2305 // * If we continue having problems, eventually query all the
2306 // DNS seeds, and if that fails too, also try the fixed seeds.
2307 // (done in ThreadOpenConnections)
2308 int found = 0;
2309 const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2310
2311 for (const std::string& seed : seeds) {
2312 if (seeds_right_now == 0) {
2313 seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2314
2315 if (addrman.Size() > 0) {
2316 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2317 std::chrono::seconds to_wait = seeds_wait_time;
2318 while (to_wait.count() > 0) {
2319 // if sleeping for the MANY_PEERS interval, wake up
2320 // early to see if we have enough peers and can stop
2321 // this thread entirely freeing up its resources
2322 std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2323 if (!m_interrupt_net->sleep_for(w)) return;
2324 to_wait -= w;
2325
2327 if (found > 0) {
2328 LogPrintf("%d addresses found from DNS seeds\n", found);
2329 LogPrintf("P2P peers available. Finished DNS seeding.\n");
2330 } else {
2331 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2332 }
2333 return;
2334 }
2335 }
2336 }
2337 }
2338
2339 if (m_interrupt_net->interrupted()) return;
2340
2341 // hold off on querying seeds if P2P network deactivated
2342 if (!fNetworkActive) {
2343 LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2344 do {
2345 if (!m_interrupt_net->sleep_for(1s)) return;
2346 } while (!fNetworkActive);
2347 }
2348
2349 LogPrintf("Loading addresses from DNS seed %s\n", seed);
2350 // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2351 // for the base dns seed domain in chainparams
2352 if (HaveNameProxy()) {
2353 AddAddrFetch(seed);
2354 } else {
2355 std::vector<CAddress> vAdd;
2356 constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2357 std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2358 CNetAddr resolveSource;
2359 if (!resolveSource.SetInternal(host)) {
2360 continue;
2361 }
2362 // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2363 // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2364 // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2365 // returned.
2366 unsigned int nMaxIPs = 32;
2367 const auto addresses{LookupHost(host, nMaxIPs, true)};
2368 if (!addresses.empty()) {
2369 for (const CNetAddr& ip : addresses) {
2370 CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2371 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2372 vAdd.push_back(addr);
2373 found++;
2374 }
2375 addrman.Add(vAdd, resolveSource);
2376 } else {
2377 // If the seed does not support a subdomain with our desired service bits,
2378 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2379 // base dns seed domain in chainparams
2380 AddAddrFetch(seed);
2381 }
2382 }
2383 --seeds_right_now;
2384 }
2385 LogPrintf("%d addresses found from DNS seeds\n", found);
2386 } else {
2387 LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2388 }
2389}
2390
2392{
2393 const auto start{SteadyClock::now()};
2394
2396
2397 LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2398 addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2399}
2400
2402{
2404 std::string strDest;
2405 {
2407 if (m_addr_fetches.empty())
2408 return;
2409 strDest = m_addr_fetches.front();
2410 m_addr_fetches.pop_front();
2411 }
2412 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2413 // peer doesn't support it or immediately disconnects us for another reason.
2415 CAddress addr;
2416 CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2417 if (grant) {
2418 OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2419 }
2420}
2421
2423{
2425}
2426
2428{
2430 LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2431}
2432
2434{
2435 LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2437}
2438
2439// Return the number of outbound connections that are full relay (not blocks only)
2441{
2442 int nRelevant = 0;
2443 {
2445 for (const CNode* pnode : m_nodes) {
2446 if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2447 }
2448 }
2449 return nRelevant;
2450}
2451
2452// Return the number of peers we have over our outbound connection limit
2453// Exclude peers that are marked for disconnect, or are going to be
2454// disconnected soon (eg ADDR_FETCH and FEELER)
2455// Also exclude peers that haven't finished initial connection handshake yet
2456// (so that we don't decide we're over our desired connection limit, and then
2457// evict some peer that has finished the handshake)
2459{
2460 int full_outbound_peers = 0;
2461 {
2463 for (const CNode* pnode : m_nodes) {
2464 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2465 ++full_outbound_peers;
2466 }
2467 }
2468 }
2469 return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2470}
2471
2473{
2474 int block_relay_peers = 0;
2475 {
2477 for (const CNode* pnode : m_nodes) {
2478 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2479 ++block_relay_peers;
2480 }
2481 }
2482 }
2483 return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2484}
2485
2486std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2487{
2488 std::unordered_set<Network> networks{};
2489 for (int n = 0; n < NET_MAX; n++) {
2490 enum Network net = (enum Network)n;
2491 if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2492 if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2493 networks.insert(net);
2494 }
2495 }
2496 return networks;
2497}
2498
2500{
2502 return m_network_conn_counts[net] > 1;
2503}
2504
2505bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2506{
2507 std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2508 std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2509
2511 for (const auto net : nets) {
2512 if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2513 network = net;
2514 return true;
2515 }
2516 }
2517
2518 return false;
2519}
2520
2521void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2522{
2526 // Connect to specific addresses
2527 if (!connect.empty())
2528 {
2529 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2530 // peer doesn't support it or immediately disconnects us for another reason.
2532 for (int64_t nLoop = 0;; nLoop++)
2533 {
2534 for (const std::string& strAddr : connect)
2535 {
2536 CAddress addr(CService(), NODE_NONE);
2537 OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2538 for (int i = 0; i < 10 && i < nLoop; i++)
2539 {
2540 if (!m_interrupt_net->sleep_for(500ms)) {
2541 return;
2542 }
2543 }
2544 }
2545 if (!m_interrupt_net->sleep_for(500ms)) {
2546 return;
2547 }
2549 }
2550 }
2551
2552 // Initiate network connections
2553 auto start = GetTime<std::chrono::microseconds>();
2554
2555 // Minimum time before next feeler connection (in microseconds).
2556 auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2557 auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2558 auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2559 const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2560 bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2561 const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2562
2563 auto seed_node_timer = NodeClock::now();
2564 bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2565 constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2566
2567 if (!add_fixed_seeds) {
2568 LogPrintf("Fixed seeds are disabled\n");
2569 }
2570
2571 while (!m_interrupt_net->interrupted()) {
2572 if (add_addr_fetch) {
2573 add_addr_fetch = false;
2574 const auto& seed{SpanPopBack(seed_nodes)};
2575 AddAddrFetch(seed);
2576
2577 if (addrman.Size() == 0) {
2578 LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2579 } else {
2580 LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2581 }
2582 }
2583
2585
2586 if (!m_interrupt_net->sleep_for(500ms)) {
2587 return;
2588 }
2589
2591
2593 if (m_interrupt_net->interrupted()) {
2594 return;
2595 }
2596
2597 const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2598 if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2599 // When the node starts with an empty peers.dat, there are a few other sources of peers before
2600 // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2601 // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2602 // 60 seconds for any of those sources to populate addrman.
2603 bool add_fixed_seeds_now = false;
2604 // It is cheapest to check if enough time has passed first.
2605 if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2606 add_fixed_seeds_now = true;
2607 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2608 }
2609
2610 // Perform cheap checks before locking a mutex.
2611 else if (!dnsseed && !use_seednodes) {
2613 if (m_added_node_params.empty()) {
2614 add_fixed_seeds_now = true;
2615 LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2616 }
2617 }
2618
2619 if (add_fixed_seeds_now) {
2620 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2621 // We will not make outgoing connections to peers that are unreachable
2622 // (e.g. because of -onlynet configuration).
2623 // Therefore, we do not add them to addrman in the first place.
2624 // In case previously unreachable networks become reachable
2625 // (e.g. in case of -onlynet changes by the user), fixed seeds will
2626 // be loaded only for networks for which we have no addresses.
2627 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2628 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2629 seed_addrs.end());
2630 CNetAddr local;
2631 local.SetInternal("fixedseeds");
2632 addrman.Add(seed_addrs, local);
2633 add_fixed_seeds = false;
2634 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2635 }
2636 }
2637
2638 //
2639 // Choose an address to connect to based on most recently seen
2640 //
2641 CAddress addrConnect;
2642
2643 // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2644 int nOutboundFullRelay = 0;
2645 int nOutboundBlockRelay = 0;
2646 int outbound_privacy_network_peers = 0;
2647 std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2648
2649 {
2651 for (const CNode* pnode : m_nodes) {
2652 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2653 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2654
2655 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2656 switch (pnode->m_conn_type) {
2657 // We currently don't take inbound connections into account. Since they are
2658 // free to make, an attacker could make them to prevent us from connecting to
2659 // certain peers.
2661 // Short-lived outbound connections should not affect how we select outbound
2662 // peers from addrman.
2665 break;
2669 const CAddress address{pnode->addr};
2670 if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2671 // Since our addrman-groups for these networks are
2672 // random, without relation to the route we
2673 // take to connect to these peers or to the
2674 // difficulty in obtaining addresses with diverse
2675 // groups, we don't worry about diversity with
2676 // respect to our addrman groups when connecting to
2677 // these networks.
2678 ++outbound_privacy_network_peers;
2679 } else {
2680 outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2681 }
2682 } // no default case, so the compiler can warn about missing cases
2683 }
2684 }
2685
2686 if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2687 if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2688 seed_node_timer = NodeClock::now();
2689 add_addr_fetch = true;
2690 }
2691 }
2692
2694 auto now = GetTime<std::chrono::microseconds>();
2695 bool anchor = false;
2696 bool fFeeler = false;
2697 std::optional<Network> preferred_net;
2698
2699 // Determine what type of connection to open. Opening
2700 // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2701 // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2702 // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2703 // until we hit our block-relay-only peer limit.
2704 // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2705 // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2706 // these conditions are met, check to see if it's time to try an extra
2707 // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2708 // timer to decide if we should open a FEELER.
2709
2710 if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2711 conn_type = ConnectionType::BLOCK_RELAY;
2712 anchor = true;
2713 } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2714 // OUTBOUND_FULL_RELAY
2715 } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2716 conn_type = ConnectionType::BLOCK_RELAY;
2717 } else if (GetTryNewOutboundPeer()) {
2718 // OUTBOUND_FULL_RELAY
2719 } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2720 // Periodically connect to a peer (using regular outbound selection
2721 // methodology from addrman) and stay connected long enough to sync
2722 // headers, but not much else.
2723 //
2724 // Then disconnect the peer, if we haven't learned anything new.
2725 //
2726 // The idea is to make eclipse attacks very difficult to pull off,
2727 // because every few minutes we're finding a new peer to learn headers
2728 // from.
2729 //
2730 // This is similar to the logic for trying extra outbound (full-relay)
2731 // peers, except:
2732 // - we do this all the time on an exponential timer, rather than just when
2733 // our tip is stale
2734 // - we potentially disconnect our next-youngest block-relay-only peer, if our
2735 // newest block-relay-only peer delivers a block more recently.
2736 // See the eviction logic in net_processing.cpp.
2737 //
2738 // Because we can promote these connections to block-relay-only
2739 // connections, they do not get their own ConnectionType enum
2740 // (similar to how we deal with extra outbound peers).
2741 next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2742 conn_type = ConnectionType::BLOCK_RELAY;
2743 } else if (now > next_feeler) {
2744 next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2745 conn_type = ConnectionType::FEELER;
2746 fFeeler = true;
2747 } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2749 now > next_extra_network_peer &&
2750 MaybePickPreferredNetwork(preferred_net)) {
2751 // Full outbound connection management: Attempt to get at least one
2752 // outbound peer from each reachable network by making extra connections
2753 // and then protecting "only" peers from a network during outbound eviction.
2754 // This is not attempted if the user changed -maxconnections to a value
2755 // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2756 // to prevent interactions with otherwise protected outbound peers.
2757 next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2758 } else {
2759 // skip to next iteration of while loop
2760 continue;
2761 }
2762
2764
2765 const auto current_time{NodeClock::now()};
2766 int nTries = 0;
2767 const auto reachable_nets{g_reachable_nets.All()};
2768
2769 while (!m_interrupt_net->interrupted()) {
2770 if (anchor && !m_anchors.empty()) {
2771 const CAddress addr = m_anchors.back();
2772 m_anchors.pop_back();
2773 if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2774 !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2775 outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2776 addrConnect = addr;
2777 LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2778 break;
2779 }
2780
2781 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2782 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2783 // already-connected network ranges, ...) before trying new addrman addresses.
2784 nTries++;
2785 if (nTries > 100)
2786 break;
2787
2788 CAddress addr;
2789 NodeSeconds addr_last_try{0s};
2790
2791 if (fFeeler) {
2792 // First, try to get a tried table collision address. This returns
2793 // an empty (invalid) address if there are no collisions to try.
2794 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2795
2796 if (!addr.IsValid()) {
2797 // No tried table collisions. Select a new table address
2798 // for our feeler.
2799 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2800 } else if (AlreadyConnectedToAddress(addr)) {
2801 // If test-before-evict logic would have us connect to a
2802 // peer that we're already connected to, just mark that
2803 // address as Good(). We won't be able to initiate the
2804 // connection anyway, so this avoids inadvertently evicting
2805 // a currently-connected peer.
2806 addrman.Good(addr);
2807 // Select a new table address for our feeler instead.
2808 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2809 }
2810 } else {
2811 // Not a feeler
2812 // If preferred_net has a value set, pick an extra outbound
2813 // peer from that network. The eviction logic in net_processing
2814 // ensures that a peer from another network will be evicted.
2815 std::tie(addr, addr_last_try) = preferred_net.has_value()
2816 ? addrman.Select(false, {*preferred_net})
2817 : addrman.Select(false, reachable_nets);
2818 }
2819
2820 // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2821 if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2822 continue;
2823 }
2824
2825 // if we selected an invalid or local address, restart
2826 if (!addr.IsValid() || IsLocal(addr)) {
2827 break;
2828 }
2829
2830 if (!g_reachable_nets.Contains(addr)) {
2831 continue;
2832 }
2833
2834 // only consider very recently tried nodes after 30 failed attempts
2835 if (current_time - addr_last_try < 10min && nTries < 30) {
2836 continue;
2837 }
2838
2839 // for non-feelers, require all the services we'll want,
2840 // for feelers, only require they be a full node (only because most
2841 // SPV clients don't have a good address DB available)
2842 if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2843 continue;
2844 } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2845 continue;
2846 }
2847
2848 // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2849 if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2850 continue;
2851 }
2852
2853 // Do not make automatic outbound connections to addnode peers, to
2854 // not use our limited outbound slots for them and to ensure
2855 // addnode connections benefit from their intended protections.
2856 if (AddedNodesContain(addr)) {
2857 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2858 preferred_net.has_value() ? "network-specific " : "",
2860 fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2861 continue;
2862 }
2863
2864 addrConnect = addr;
2865 break;
2866 }
2867
2868 if (addrConnect.IsValid()) {
2869 if (fFeeler) {
2870 // Add small amount of random noise before connection to avoid synchronization.
2872 return;
2873 }
2874 LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2875 }
2876
2877 if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2878
2879 // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2880 // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2881 // Don't record addrman failure attempts when node is offline. This can be identified since all local
2882 // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2883 const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2884 // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2885 const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2886 OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*pszDest=*/nullptr, conn_type, use_v2transport);
2887 }
2888 }
2889}
2890
2891std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2892{
2893 std::vector<CAddress> ret;
2895 for (const CNode* pnode : m_nodes) {
2896 if (pnode->IsBlockOnlyConn()) {
2897 ret.push_back(pnode->addr);
2898 }
2899 }
2900
2901 return ret;
2902}
2903
2904std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2905{
2906 std::vector<AddedNodeInfo> ret;
2907
2908 std::list<AddedNodeParams> lAddresses(0);
2909 {
2911 ret.reserve(m_added_node_params.size());
2912 std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2913 }
2914
2915
2916 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2917 std::map<CService, bool> mapConnected;
2918 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2919 {
2921 for (const CNode* pnode : m_nodes) {
2922 if (pnode->addr.IsValid()) {
2923 mapConnected[pnode->addr] = pnode->IsInboundConn();
2924 }
2925 std::string addrName{pnode->m_addr_name};
2926 if (!addrName.empty()) {
2927 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2928 }
2929 }
2930 }
2931
2932 for (const auto& addr : lAddresses) {
2933 CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2934 AddedNodeInfo addedNode{addr, CService(), false, false};
2935 if (service.IsValid()) {
2936 // strAddNode is an IP:port
2937 auto it = mapConnected.find(service);
2938 if (it != mapConnected.end()) {
2939 if (!include_connected) {
2940 continue;
2941 }
2942 addedNode.resolvedAddress = service;
2943 addedNode.fConnected = true;
2944 addedNode.fInbound = it->second;
2945 }
2946 } else {
2947 // strAddNode is a name
2948 auto it = mapConnectedByName.find(addr.m_added_node);
2949 if (it != mapConnectedByName.end()) {
2950 if (!include_connected) {
2951 continue;
2952 }
2953 addedNode.resolvedAddress = it->second.second;
2954 addedNode.fConnected = true;
2955 addedNode.fInbound = it->second.first;
2956 }
2957 }
2958 ret.emplace_back(std::move(addedNode));
2959 }
2960
2961 return ret;
2962}
2963
2965{
2968 while (true)
2969 {
2971 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2972 bool tried = false;
2973 for (const AddedNodeInfo& info : vInfo) {
2974 if (!grant) {
2975 // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2976 // the addednodeinfo state might change.
2977 break;
2978 }
2979 tried = true;
2980 CAddress addr(CService(), NODE_NONE);
2981 OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2982 if (!m_interrupt_net->sleep_for(500ms)) return;
2983 grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2984 }
2985 // See if any reconnections are desired.
2987 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2988 if (!m_interrupt_net->sleep_for(tried ? 60s : 2s)) {
2989 return;
2990 }
2991 }
2992}
2993
2994// if successful, this moves the passed grant to the constructed node
2996 bool fCountFailure,
2997 CountingSemaphoreGrant<>&& grant_outbound,
2998 const char* pszDest,
2999 ConnectionType conn_type,
3000 bool use_v2transport,
3001 const std::optional<Proxy>& proxy_override)
3002{
3004 assert(conn_type != ConnectionType::INBOUND);
3005
3006 //
3007 // Initiate outbound network connection
3008 //
3009 if (m_interrupt_net->interrupted()) {
3010 return false;
3011 }
3012 if (!fNetworkActive) {
3013 return false;
3014 }
3015 if (!pszDest) {
3016 bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
3017 if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
3018 return false;
3019 }
3020 } else if (AlreadyConnectedToHost(pszDest)) {
3021 return false;
3022 }
3023
3024 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport, proxy_override);
3025
3026 if (!pnode)
3027 return false;
3028 pnode->grantOutbound = std::move(grant_outbound);
3029
3030 m_msgproc->InitializeNode(*pnode, m_local_services);
3031 {
3033 m_nodes.push_back(pnode);
3034
3035 // update connection count by network
3036 if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3037 }
3038
3039 TRACEPOINT(net, outbound_connection,
3040 pnode->GetId(),
3041 pnode->m_addr_name.c_str(),
3042 pnode->ConnectionTypeAsString().c_str(),
3043 pnode->ConnectedThroughNetwork(),
3045
3046 return true;
3047}
3048
3050
3052{
3054
3055 while (!flagInterruptMsgProc)
3056 {
3057 bool fMoreWork = false;
3058
3059 {
3060 // Randomize the order in which we process messages from/to our peers.
3061 // This prevents attacks in which an attacker exploits having multiple
3062 // consecutive connections in the m_nodes list.
3063 const NodesSnapshot snap{*this, /*shuffle=*/true};
3064
3065 for (CNode* pnode : snap.Nodes()) {
3066 if (pnode->fDisconnect)
3067 continue;
3068
3069 // Receive messages
3070 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3071 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3073 return;
3074 // Send messages
3075 m_msgproc->SendMessages(pnode);
3076
3078 return;
3079 }
3080 }
3081
3082 WAIT_LOCK(mutexMsgProc, lock);
3083 if (!fMoreWork) {
3084 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3085 }
3086 fMsgProcWake = false;
3087 }
3088}
3089
3091{
3092 static constexpr auto err_wait_begin = 1s;
3093 static constexpr auto err_wait_cap = 5min;
3094 auto err_wait = err_wait_begin;
3095
3096 bool advertising_listen_addr = false;
3097 i2p::Connection conn;
3098
3099 auto SleepOnFailure = [&]() {
3100 m_interrupt_net->sleep_for(err_wait);
3101 if (err_wait < err_wait_cap) {
3102 err_wait += 1s;
3103 }
3104 };
3105
3106 while (!m_interrupt_net->interrupted()) {
3107
3108 if (!m_i2p_sam_session->Listen(conn)) {
3109 if (advertising_listen_addr && conn.me.IsValid()) {
3110 RemoveLocal(conn.me);
3111 advertising_listen_addr = false;
3112 }
3113 SleepOnFailure();
3114 continue;
3115 }
3116
3117 if (!advertising_listen_addr) {
3118 AddLocal(conn.me, LOCAL_MANUAL);
3119 advertising_listen_addr = true;
3120 }
3121
3122 if (!m_i2p_sam_session->Accept(conn)) {
3123 SleepOnFailure();
3124 continue;
3125 }
3126
3128
3129 err_wait = err_wait_begin;
3130 }
3131}
3132
3133bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3134{
3135 int nOne = 1;
3136
3137 // Create socket for listening for incoming connections
3138 struct sockaddr_storage sockaddr;
3139 socklen_t len = sizeof(sockaddr);
3140 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3141 {
3142 strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3144 return false;
3145 }
3146
3147 std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3148 if (!sock) {
3149 strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3151 return false;
3152 }
3153
3154 // Allow binding if the port is still in TIME_WAIT state after
3155 // the program was closed and restarted.
3156 if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &nOne, sizeof(int)) == SOCKET_ERROR) {
3157 strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3158 LogPrintf("%s\n", strError.original);
3159 }
3160
3161 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3162 // and enable it by default or not. Try to enable it, if possible.
3163 if (addrBind.IsIPv6()) {
3164#ifdef IPV6_V6ONLY
3165 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, &nOne, sizeof(int)) == SOCKET_ERROR) {
3166 strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3167 LogPrintf("%s\n", strError.original);
3168 }
3169#endif
3170#ifdef WIN32
3171 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3172 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, &nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3173 strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3174 LogPrintf("%s\n", strError.original);
3175 }
3176#endif
3177 }
3178
3179 if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3180 int nErr = WSAGetLastError();
3181 if (nErr == WSAEADDRINUSE)
3182 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3183 else
3184 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3186 return false;
3187 }
3188 LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3189
3190 // Listen for incoming connections
3191 if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3192 {
3193 strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3195 return false;
3196 }
3197
3198 vhListenSocket.emplace_back(std::move(sock), permissions);
3199 return true;
3200}
3201
3203{
3204 if (!fDiscover)
3205 return;
3206
3207 for (const CNetAddr &addr: GetLocalAddresses()) {
3208 if (AddLocal(addr, LOCAL_IF))
3209 LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3210 }
3211}
3212
3214{
3215 LogPrintf("%s: %s\n", __func__, active);
3216
3217 if (fNetworkActive == active) {
3218 return;
3219 }
3220
3221 fNetworkActive = active;
3222
3223 if (m_client_interface) {
3224 m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3225 }
3226}
3227
3228CConnman::CConnman(uint64_t nSeed0In,
3229 uint64_t nSeed1In,
3230 AddrMan& addrman_in,
3231 const NetGroupManager& netgroupman,
3232 const CChainParams& params,
3233 bool network_active,
3234 std::shared_ptr<CThreadInterrupt> interrupt_net)
3235 : addrman(addrman_in)
3236 , m_netgroupman{netgroupman}
3237 , nSeed0(nSeed0In)
3238 , nSeed1(nSeed1In)
3239 , m_interrupt_net{interrupt_net}
3240 , m_params(params)
3241{
3242 SetTryNewOutboundPeer(false);
3243
3244 Options connOptions;
3245 Init(connOptions);
3246 SetNetworkActive(network_active);
3247}
3248
3250{
3251 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3252}
3253
3255{
3256 return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3257}
3258
3259uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3260{
3261 CNetAddr a;
3263}
3264
3265bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3266{
3267 const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3268
3269 bilingual_str strError;
3270 if (!BindListenPort(addr, strError, permissions)) {
3272 m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3273 }
3274 return false;
3275 }
3276
3277 if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3278 AddLocal(addr, LOCAL_BIND);
3279 }
3280
3281 return true;
3282}
3283
3284bool CConnman::InitBinds(const Options& options)
3285{
3286 for (const auto& addrBind : options.vBinds) {
3288 return false;
3289 }
3290 }
3291 for (const auto& addrBind : options.vWhiteBinds) {
3292 if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3293 return false;
3294 }
3295 }
3296 for (const auto& addr_bind : options.onion_binds) {
3298 return false;
3299 }
3300 }
3301 if (options.bind_on_any) {
3302 // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3303 // may not have IPv6 support and the user did not explicitly ask us to
3304 // bind on that.
3305 const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3307
3308 struct in_addr inaddr_any;
3309 inaddr_any.s_addr = htonl(INADDR_ANY);
3310 const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3312 return false;
3313 }
3314 }
3315 return true;
3316}
3317
3318bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3319{
3321 Init(connOptions);
3322
3323 if (fListen && !InitBinds(connOptions)) {
3324 if (m_client_interface) {
3325 m_client_interface->ThreadSafeMessageBox(
3326 _("Failed to listen on any port. Use -listen=0 if you want this."),
3328 }
3329 return false;
3330 }
3331
3332 Proxy i2p_sam;
3333 if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3334 m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3335 i2p_sam, m_interrupt_net);
3336 }
3337
3338 // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3339 std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3340 if (!seed_nodes.empty()) {
3341 std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3342 }
3343
3345 // Load addresses from anchors.dat
3349 }
3350 LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3351 }
3352
3353 if (m_client_interface) {
3354 m_client_interface->InitMessage(_("Starting network threads…"));
3355 }
3356
3357 fAddressesInitialized = true;
3358
3359 if (semOutbound == nullptr) {
3360 // initialize semaphore
3361 semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3362 }
3363 if (semAddnode == nullptr) {
3364 // initialize semaphore
3365 semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3366 }
3367
3368 //
3369 // Start threads
3370 //
3372 m_interrupt_net->reset();
3373 flagInterruptMsgProc = false;
3374
3375 {
3377 fMsgProcWake = false;
3378 }
3379
3380 // Send and receive from sockets, accept connections
3381 threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3382
3383 if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3384 LogPrintf("DNS seeding disabled\n");
3385 else
3386 threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3387
3388 // Initiate manual connections
3389 threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3390
3391 if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3392 if (m_client_interface) {
3393 m_client_interface->ThreadSafeMessageBox(
3394 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3396 }
3397 return false;
3398 }
3399 if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3400 threadOpenConnections = std::thread(
3401 &util::TraceThread, "opencon",
3402 [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3403 }
3404
3405 // Process messages
3406 threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3407
3408 if (m_i2p_sam_session) {
3410 std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3411 }
3412
3413 // Dump network addresses
3414 scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3415
3416 // Run the ASMap Health check once and then schedule it to run every 24h.
3417 if (m_netgroupman.UsingASMap()) {
3420 }
3421
3422 return true;
3423}
3424
3426{
3427public:
3428 CNetCleanup() = default;
3429
3431 {
3432#ifdef WIN32
3433 // Shutdown Windows Sockets
3434 WSACleanup();
3435#endif
3436 }
3437};
3439
3441{
3442 {
3444 flagInterruptMsgProc = true;
3445 }
3446 condMsgProc.notify_all();
3447
3448 (*m_interrupt_net)();
3450
3451 if (semOutbound) {
3452 for (int i=0; i<m_max_automatic_outbound; i++) {
3453 semOutbound->release();
3454 }
3455 }
3456
3457 if (semAddnode) {
3458 for (int i=0; i<m_max_addnode; i++) {
3459 semAddnode->release();
3460 }
3461 }
3462}
3463
3465{
3466 if (threadI2PAcceptIncoming.joinable()) {
3468 }
3469 if (threadMessageHandler.joinable())
3470 threadMessageHandler.join();
3471 if (threadOpenConnections.joinable())
3472 threadOpenConnections.join();
3473 if (threadOpenAddedConnections.joinable())
3475 if (threadDNSAddressSeed.joinable())
3476 threadDNSAddressSeed.join();
3477 if (threadSocketHandler.joinable())
3478 threadSocketHandler.join();
3479}
3480
3482{
3484 DumpAddresses();
3485 fAddressesInitialized = false;
3486
3488 // Anchor connections are only dumped during clean shutdown.
3489 std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3490 if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3491 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3492 }
3494 }
3495 }
3496
3497 // Delete peer connections.
3498 std::vector<CNode*> nodes;
3499 WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3500 for (CNode* pnode : nodes) {
3501 LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3502 pnode->CloseSocketDisconnect();
3503 DeleteNode(pnode);
3504 }
3505
3506 for (CNode* pnode : m_nodes_disconnected) {
3507 DeleteNode(pnode);
3508 }
3509 m_nodes_disconnected.clear();
3510 vhListenSocket.clear();
3511 semOutbound.reset();
3512 semAddnode.reset();
3513}
3514
3516{
3517 assert(pnode);
3518 m_msgproc->FinalizeNode(*pnode);
3519 delete pnode;
3520}
3521
3523{
3524 Interrupt();
3525 Stop();
3526}
3527
3528std::vector<CAddress> CConnman::GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3529{
3530 std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3531 if (m_banman) {
3532 addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3533 [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3534 addresses.end());
3535 }
3536 return addresses;
3537}
3538
3539std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3540{
3541 auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3542 uint64_t network_id = requestor.m_network_key;
3543 const auto current_time = GetTime<std::chrono::microseconds>();
3544 auto r = m_addr_response_caches.emplace(network_id, CachedAddrResponse{});
3545 CachedAddrResponse& cache_entry = r.first->second;
3546 if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3547 cache_entry.m_addrs_response_cache = GetAddressesUnsafe(max_addresses, max_pct, /*network=*/std::nullopt);
3548 // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3549 // and the usefulness of ADDR responses to honest users.
3550 //
3551 // Longer cache lifetime makes it more difficult for an attacker to scrape
3552 // enough AddrMan data to maliciously infer something useful.
3553 // By the time an attacker scraped enough AddrMan records, most of
3554 // the records should be old enough to not leak topology info by
3555 // e.g. analyzing real-time changes in timestamps.
3556 //
3557 // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3558 // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3559 // most of it could be scraped (considering that timestamps are updated via
3560 // ADDR self-announcements and when nodes communicate).
3561 // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3562 // (because even several timestamps of the same handful of nodes may leak privacy).
3563 //
3564 // On the other hand, longer cache lifetime makes ADDR responses
3565 // outdated and less useful for an honest requestor, e.g. if most nodes
3566 // in the ADDR response are no longer active.
3567 //
3568 // However, the churn in the network is known to be rather low. Since we consider
3569 // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3570 // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3571 // in terms of the freshness of the response.
3572 cache_entry.m_cache_entry_expiration = current_time +
3573 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3574 }
3575 return cache_entry.m_addrs_response_cache;
3576}
3577
3579{
3581 const bool resolved_is_valid{resolved.IsValid()};
3582
3584 for (const auto& it : m_added_node_params) {
3585 if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3586 }
3587
3588 m_added_node_params.push_back(add);
3589 return true;
3590}
3591
3592bool CConnman::RemoveAddedNode(const std::string& strNode)
3593{
3595 for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3596 if (strNode == it->m_added_node) {
3597 m_added_node_params.erase(it);
3598 return true;
3599 }
3600 }
3601 return false;
3602}
3603
3605{
3607 const std::string addr_str{addr.ToStringAddr()};
3608 const std::string addr_port_str{addr.ToStringAddrPort()};
3610 return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3611 && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3612 [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3613}
3614
3616{
3618 if (flags == ConnectionDirection::Both) // Shortcut if we want total
3619 return m_nodes.size();
3620
3621 int nNum = 0;
3622 for (const auto& pnode : m_nodes) {
3623 if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3624 nNum++;
3625 }
3626 }
3627
3628 return nNum;
3629}
3630
3631
3632std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3633{
3635 return mapLocalHost;
3636}
3637
3638uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3639{
3640 return m_netgroupman.GetMappedAS(addr);
3641}
3642
3643void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3644{
3645 vstats.clear();
3647 vstats.reserve(m_nodes.size());
3648 for (CNode* pnode : m_nodes) {
3649 vstats.emplace_back();
3650 pnode->CopyStats(vstats.back());
3651 vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3652 }
3653}
3654
3655bool CConnman::DisconnectNode(const std::string& strNode)
3656{
3658 auto it = std::ranges::find_if(m_nodes, [&strNode](CNode* node) { return node->m_addr_name == strNode; });
3659 if (it != m_nodes.end()) {
3660 CNode* node{*it};
3661 LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), node->DisconnectMsg(fLogIPs));
3662 node->fDisconnect = true;
3663 return true;
3664 }
3665 return false;
3666}
3667
3669{
3670 bool disconnected = false;
3672 for (CNode* pnode : m_nodes) {
3673 if (subnet.Match(pnode->addr)) {
3674 LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3675 pnode->fDisconnect = true;
3676 disconnected = true;
3677 }
3678 }
3679 return disconnected;
3680}
3681
3683{
3684 return DisconnectNode(CSubNet(addr));
3685}
3686
3688{
3690 for(CNode* pnode : m_nodes) {
3691 if (id == pnode->GetId()) {
3692 LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3693 pnode->fDisconnect = true;
3694 return true;
3695 }
3696 }
3697 return false;
3698}
3699
3700void CConnman::RecordBytesRecv(uint64_t bytes)
3701{
3702 nTotalBytesRecv += bytes;
3703}
3704
3705void CConnman::RecordBytesSent(uint64_t bytes)
3706{
3709
3710 nTotalBytesSent += bytes;
3711
3712 const auto now = GetTime<std::chrono::seconds>();
3713 if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3714 {
3715 // timeframe expired, reset cycle
3716 nMaxOutboundCycleStartTime = now;
3717 nMaxOutboundTotalBytesSentInCycle = 0;
3718 }
3719
3720 nMaxOutboundTotalBytesSentInCycle += bytes;
3721}
3722
3724{
3727 return nMaxOutboundLimit;
3728}
3729
3730std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3731{
3732 return MAX_UPLOAD_TIMEFRAME;
3733}
3734
3736{
3740}
3741
3743{
3745
3746 if (nMaxOutboundLimit == 0)
3747 return 0s;
3748
3749 if (nMaxOutboundCycleStartTime.count() == 0)
3750 return MAX_UPLOAD_TIMEFRAME;
3751
3752 const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3753 const auto now = GetTime<std::chrono::seconds>();
3754 return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3755}
3756
3757bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3758{
3761 if (nMaxOutboundLimit == 0)
3762 return false;
3763
3764 if (historicalBlockServingLimit)
3765 {
3766 // keep a large enough buffer to at least relay each block once
3767 const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3768 const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3769 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3770 return true;
3771 }
3772 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3773 return true;
3774
3775 return false;
3776}
3777
3779{
3782 if (nMaxOutboundLimit == 0)
3783 return 0;
3784
3785 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3786}
3787
3789{
3790 return nTotalBytesRecv;
3791}
3792
3794{
3797 return nTotalBytesSent;
3798}
3799
3801{
3802 return m_local_services;
3803}
3804
3805static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3806{
3807 if (use_v2transport) {
3808 return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3809 } else {
3810 return std::make_unique<V1Transport>(id);
3811 }
3812}
3813
3815 std::shared_ptr<Sock> sock,
3816 const CAddress& addrIn,
3817 uint64_t nKeyedNetGroupIn,
3818 uint64_t nLocalHostNonceIn,
3819 const CService& addrBindIn,
3820 const std::string& addrNameIn,
3821 ConnectionType conn_type_in,
3822 bool inbound_onion,
3823 uint64_t network_key,
3824 CNodeOptions&& node_opts)
3825 : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3826 m_permission_flags{node_opts.permission_flags},
3827 m_sock{sock},
3828 m_connected{GetTime<std::chrono::seconds>()},
3829 addr{addrIn},
3830 addrBind{addrBindIn},
3831 m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3832 m_dest(addrNameIn),
3833 m_inbound_onion{inbound_onion},
3834 m_prefer_evict{node_opts.prefer_evict},
3835 nKeyedNetGroup{nKeyedNetGroupIn},
3836 m_network_key{network_key},
3837 m_conn_type{conn_type_in},
3838 id{idIn},
3839 nLocalHostNonce{nLocalHostNonceIn},
3840 m_recv_flood_size{node_opts.recv_flood_size},
3841 m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3842{
3843 if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3844
3845 for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3846 mapRecvBytesPerMsgType[msg] = 0;
3847 }
3848 mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3849
3850 if (fLogIPs) {
3851 LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3852 } else {
3853 LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3854 }
3855}
3856
3858{
3860
3861 size_t nSizeAdded = 0;
3862 for (const auto& msg : vRecvMsg) {
3863 // vRecvMsg contains only completed CNetMessage
3864 // the single possible partially deserialized message are held by TransportDeserializer
3865 nSizeAdded += msg.GetMemoryUsage();
3866 }
3867
3869 m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3870 m_msg_process_queue_size += nSizeAdded;
3871 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3872}
3873
3874std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3875{
3877 if (m_msg_process_queue.empty()) return std::nullopt;
3878
3879 std::list<CNetMessage> msgs;
3880 // Just take one message
3881 msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3882 m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3883 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3884
3885 return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3886}
3887
3889{
3890 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3891}
3892
3894{
3896 size_t nMessageSize = msg.data.size();
3897 LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3898 if (gArgs.GetBoolArg("-capturemessages", false)) {
3899 CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3900 }
3901
3902 TRACEPOINT(net, outbound_message,
3903 pnode->GetId(),
3904 pnode->m_addr_name.c_str(),
3905 pnode->ConnectionTypeAsString().c_str(),
3906 msg.m_type.c_str(),
3907 msg.data.size(),
3908 msg.data.data()
3909 );
3910
3911 size_t nBytesSent = 0;
3912 {
3913 LOCK(pnode->cs_vSend);
3914 // Check if the transport still has unsent bytes, and indicate to it that we're about to
3915 // give it a message to send.
3916 const auto& [to_send, more, _msg_type] =
3917 pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3918 const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3919
3920 // Update memory usage of send buffer.
3921 pnode->m_send_memusage += msg.GetMemoryUsage();
3922 if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3923 // Move message to vSendMsg queue.
3924 pnode->vSendMsg.push_back(std::move(msg));
3925
3926 // If there was nothing to send before, and there is now (predicted by the "more" value
3927 // returned by the GetBytesToSend call above), attempt "optimistic write":
3928 // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3929 // doing a send, try sending from the calling thread if the queue was empty before.
3930 // With a V1Transport, more will always be true here, because adding a message always
3931 // results in sendable bytes there, but with V2Transport this is not the case (it may
3932 // still be in the handshake).
3933 if (queue_was_empty && more) {
3934 std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3935 }
3936 }
3937 if (nBytesSent) RecordBytesSent(nBytesSent);
3938}
3939
3940bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3941{
3942 CNode* found = nullptr;
3944 for (auto&& pnode : m_nodes) {
3945 if(pnode->GetId() == id) {
3946 found = pnode;
3947 break;
3948 }
3949 }
3950 return found != nullptr && NodeFullyConnected(found) && func(found);
3951}
3952
3954{
3955 return CSipHasher(nSeed0, nSeed1).Write(id);
3956}
3957
3958uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3959{
3960 std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3961
3963}
3964
3966{
3969 while (true) {
3970 // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3971 decltype(m_reconnections) todo;
3972 {
3974 if (m_reconnections.empty()) break;
3975 todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3976 }
3977
3978 auto& item = *todo.begin();
3979 OpenNetworkConnection(item.addr_connect,
3980 // We only reconnect if the first attempt to connect succeeded at
3981 // connection time, but then failed after the CNode object was
3982 // created. Since we already know connecting is possible, do not
3983 // count failure to reconnect.
3984 /*fCountFailure=*/false,
3985 std::move(item.grant),
3986 item.destination.empty() ? nullptr : item.destination.c_str(),
3987 item.conn_type,
3988 item.use_v2transport);
3989 }
3990}
3991
3993{
3994 const std::vector<CAddress> v4_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV4, /*filtered=*/false)};
3995 const std::vector<CAddress> v6_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV6, /*filtered=*/false)};
3996 std::vector<CNetAddr> clearnet_addrs;
3997 clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3998 std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3999 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
4000 std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
4001 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
4002 m_netgroupman.ASMapHealthCheck(clearnet_addrs);
4003}
4004
4005// Dump binary message to file, with timestamp.
4006static void CaptureMessageToFile(const CAddress& addr,
4007 const std::string& msg_type,
4008 std::span<const unsigned char> data,
4009 bool is_incoming)
4010{
4011 // Note: This function captures the message at the time of processing,
4012 // not at socket receive/send time.
4013 // This ensures that the messages are always in order from an application
4014 // layer (processing) perspective.
4015 auto now = GetTime<std::chrono::microseconds>();
4016
4017 // Windows folder names cannot include a colon
4018 std::string clean_addr = addr.ToStringAddrPort();
4019 std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4020
4021 fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
4022 fs::create_directories(base_path);
4023
4024 fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4025 AutoFile f{fsbridge::fopen(path, "ab")};
4026
4027 ser_writedata64(f, now.count());
4028 f << std::span{msg_type};
4029 for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4030 f << uint8_t{'\0'};
4031 }
4032 uint32_t size = data.size();
4033 ser_writedata32(f, size);
4034 f << data;
4035
4036 if (f.fclose() != 0) {
4037 throw std::ios_base::failure(
4038 strprintf("Error closing %s after write, file contents are likely incomplete", fs::PathToString(path)));
4039 }
4040}
4041
4042std::function<void(const CAddress& addr,
4043 const std::string& msg_type,
4044 std::span<const unsigned char> data,
4045 bool is_incoming)>
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:185
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:234
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:228
ArgsManager gArgs
Definition: args.cpp:42
int ret
int flags
Definition: bitcoin-tx.cpp:529
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:118
Stochastic address manager.
Definition: addrman.h:89
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, const std::unordered_set< Network > &networks={}) const
Choose an address to connect to.
Definition: addrman.cpp:1327
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1312
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1297
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1317
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1322
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1332
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:368
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:235
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:488
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:513
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:371
bool Decrypt(std::span< const std::byte > input, std::span< const std::byte > aad, bool &ignore, std::span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
std::span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(std::span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
std::span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
std::span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
void Encrypt(std::span< const std::byte > contents, std::span< const std::byte > aad, bool ignore, std::span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:69
const MessageStartChars & MessageStart() const
Definition: chainparams.h:82
uint16_t GetDefaultPort() const
Definition: chainparams.h:83
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:105
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:108
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1715
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2486
std::condition_variable condMsgProc
Definition: net.h:1614
std::thread threadMessageHandler
Definition: net.h:1635
nSendBufferMaxSize
Definition: net.h:1104
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3051
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3940
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1906
m_max_outbound_full_relay
Definition: net.h:1096
void DeleteNode(CNode *pnode)
Definition: net.cpp:3515
bool RemoveAddedNode(const std::string &node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3592
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1682
whitelist_relay
Definition: net.h:1124
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1708
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2422
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3528
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3254
void Stop()
Definition: net.h:1141
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3965
std::thread threadI2PAcceptIncoming
Definition: net.h:1636
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3539
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2427
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport, const std::optional< Proxy > &proxy_override) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Open a new P2P connection.
Definition: net.cpp:376
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1616
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CService &addr_bind, const CService &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1759
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3440
std::map< CNetAddr, LocalServiceInfo > getNetLocalAddresses() const
Definition: net.cpp:3632
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2251
m_onion_binds
Definition: net.h:1122
int GetFullOutboundConnCount() const
Definition: net.cpp:2440
NodeId GetNewNodeId()
Definition: net.cpp:3249
std::atomic< NodeId > nLastNodeId
Definition: net.h:1523
m_max_automatic_outbound
Definition: net.h:1098
int GetExtraBlockRelayCount() const
Definition: net.cpp:2472
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2242
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3757
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3723
std::thread threadDNSAddressSeed
Definition: net.h:1631
void ASMapHealthCheck()
Definition: net.cpp:3992
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2118
void ThreadI2PAcceptIncoming()
Definition: net.cpp:3090
const uint64_t nSeed1
Definition: net.h:1609
void StartExtraBlockRelayPeers()
Definition: net.cpp:2433
const NetGroupManager & m_netgroupman
Definition: net.h:1512
m_banman
Definition: net.h:1102
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1606
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3730
uint64_t CalculateKeyedNetGroup(const CNetAddr &ad) const
Definition: net.cpp:3958
unsigned int nPrevNodeCount
Definition: net.h:1524
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, std::optional< CNetAddr > addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:572
void NotifyNumConnectionsChanged()
Definition: net.cpp:1985
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3800
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3578
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3655
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1641
bool InitBinds(const Options &options)
Definition: net.cpp:3284
vWhitelistedRangeOutgoing
Definition: net.h:1112
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:131
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1508
bool AlreadyConnectedToAddress(const CNetAddr &addr) const
Determine whether we're already connected to a given address.
Definition: net.cpp:346
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2891
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3953
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1869
Mutex m_total_bytes_sent_mutex
Definition: net.h:1487
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2904
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2964
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3265
std::thread threadOpenConnections
Definition: net.h:1634
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3615
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3638
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2401
Mutex m_addr_fetches_mutex
Definition: net.h:1514
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:2005
m_peer_connect_timeout
Definition: net.h:1106
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1684
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3643
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3318
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1609
m_local_services
Definition: net.h:1094
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2090
int GetExtraFullOutboundCount() const
Definition: net.cpp:2458
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3742
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3788
bool OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CountingSemaphoreGrant<> &&grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport, const std::optional< Proxy > &proxy_override=std::nullopt) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Open a new P2P connection and initialize it with the PeerManager at m_msgproc.
Definition: net.cpp:2995
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1595
RecursiveMutex m_nodes_mutex
Definition: net.h:1522
m_max_outbound_block_relay
Definition: net.h:1097
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3888
std::unique_ptr< std::counting_semaphore<> > semOutbound
Definition: net.h:1569
m_client_interface
Definition: net.h:1101
nReceiveFloodSize
Definition: net.h:1105
const CChainParams & m_params
Definition: net.h:1747
void SetNetworkActive(bool active)
Definition: net.cpp:3213
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2499
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3604
whitelist_forcerelay
Definition: net.h:1123
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3735
const std::shared_ptr< CThreadInterrupt > m_interrupt_net
This is signaled when network activity should cease.
Definition: net.h:1622
AddrMan & addrman
Definition: net.h:1511
m_max_automatic_connections
Definition: net.h:1095
void ThreadOpenConnections(std::vector< std::string > connect, std::span< const std::string > seed_nodes) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2521
m_msgproc
Definition: net.h:1103
Mutex mutexMsgProc
Definition: net.h:1615
m_max_inbound
Definition: net.h:1099
bool fAddressesInitialized
Definition: net.h:1510
~CConnman()
Definition: net.cpp:3522
void StopThreads()
Definition: net.cpp:3464
std::thread threadOpenAddedConnections
Definition: net.h:1633
Mutex m_added_nodes_mutex
Definition: net.h:1519
vWhitelistedRangeIncoming
Definition: net.h:1111
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2231
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3705
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:352
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
bool AlreadyConnectedToHost(const std::string &host) const
Determine whether we're already connected to a given "host:port".
Definition: net.cpp:334
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1670
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3793
std::unique_ptr< std::counting_semaphore<> > semAddnode
Definition: net.h:1570
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2505
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3700
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:2000
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3778
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3893
void StopNodes()
Definition: net.cpp:3481
int m_max_addnode
Definition: net.h:1591
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1521
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1629
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1554
Sock::EventsPerSock GenerateWaitSockets(std::span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:2059
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1488
std::atomic< bool > fNetworkActive
Definition: net.h:1509
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1647
m_use_addrman_outgoing
Definition: net.h:1100
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2218
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true, std::shared_ptr< CThreadInterrupt > interrupt_net=std::make_shared< CThreadInterrupt >())
Definition: net.cpp:3228
void DumpAddresses()
Definition: net.cpp:2391
bool AlreadyConnectedToAddressPort(const CService &addr_port) const
Determine whether we're already connected to a given address:port.
Definition: net.cpp:340
std::thread threadSocketHandler
Definition: net.h:1632
nMaxOutboundLimit
Definition: net.h:1109
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1731
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:3133
An encapsulated private key.
Definition: key.h:36
Message header.
Definition: protocol.h:29
static constexpr size_t MESSAGE_TYPE_SIZE
Definition: protocol.h:31
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:678
std::string ToStringAddr() const
Definition: netaddress.cpp:584
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:211
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:696
bool IsRoutable() const
Definition: netaddress.cpp:466
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:188
bool IsValid() const
Definition: netaddress.cpp:428
bool IsIPv4() const
Definition: netaddress.h:157
bool IsIPv6() const
Definition: netaddress.h:158
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:172
enum Network GetNetwork() const
Definition: netaddress.cpp:500
~CNetCleanup()
Definition: net.cpp:3430
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:233
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:126
std::string m_type
Definition: net.h:239
DataStream m_recv
received message data
Definition: net.h:235
Information about a peer.
Definition: net.h:675
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:708
std::atomic< int > nVersion
Definition: net.h:718
bool IsInboundConn() const
Definition: net.h:817
CountingSemaphoreGrant grantOutbound
Definition: net.h:734
std::atomic_bool fPauseRecv
Definition: net.h:738
NodeId GetId() const
Definition: net.h:901
const std::string m_addr_name
Definition: net.h:713
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:607
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:614
std::string ConnectionTypeAsString() const
Definition: net.h:955
const CService addrBind
Definition: net.h:712
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:852
std::list< CNetMessage > vRecvMsg
Definition: net.h:985
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:854
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:730
const CAddress addr
Definition: net.h:710
bool ReceiveMsgBytes(std::span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:660
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:594
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CService &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, uint64_t network_key, CNodeOptions &&node_opts={})
Definition: net.cpp:3814
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3857
Mutex m_subver_mutex
Definition: net.h:719
Mutex cs_vSend
Definition: net.h:699
CNode * AddRef()
Definition: net.h:940
const uint64_t m_network_key
Network key used to prevent fingerprinting our node across networks.
Definition: net.h:743
std::atomic_bool fPauseSend
Definition: net.h:739
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3874
Mutex m_msg_process_queue_mutex
Definition: net.h:987
const ConnectionType m_conn_type
Definition: net.h:745
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:602
const size_t m_recv_flood_size
Definition: net.h:984
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:881
bool IsManualOrFullOutboundConn() const
Definition: net.h:789
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:704
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:679
const NetPermissionFlags m_permission_flags
Definition: net.h:681
Mutex m_addr_local_mutex
Definition: net.h:993
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:717
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:885
Mutex cs_vRecv
Definition: net.h:701
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:872
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:709
Mutex m_sock_mutex
Definition: net.h:700
std::atomic_bool fDisconnect
Definition: net.h:733
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:706
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:878
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:587
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:554
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:705
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:224
std::string addrLocal
Definition: net.h:212
bool fInbound
Definition: net.h:198
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:222
Network m_network
Definition: net.h:218
NodeId nodeid
Definition: net.h:189
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
bool SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
Set CService from a network sockaddr.
Definition: netaddress.cpp:810
uint16_t GetPort() const
Definition: netaddress.cpp:839
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:826
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:866
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
RAII-style semaphore lock.
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: streams.cpp:126
Fast randomness source.
Definition: random.h:386
void fillrand(std::span< std::byte > output) noexcept
Fill a byte span with random bytes.
Definition: random.cpp:626
Different type to mark Mutex at global scope.
Definition: sync.h:135
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1018
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream.
Definition: serialize.h:1106
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range) noexcept
Return the time point advanced by a uniform random duration.
Definition: random.h:329
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:336
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
Return a duration sampled from an exponential distribution (https://en.wikipedia.org/wiki/Exponential...
Definition: random.h:365
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
std::unordered_set< Network > All() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:144
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:131
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
std::tuple< std::span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:313
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:837
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:723
int readData(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:771
const NodeId m_node_id
Definition: net.h:373
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:408
const MessageStartChars m_magic_bytes
Definition: net.h:372
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:899
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:789
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:883
int readHeader(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:728
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:716
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:400
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:429
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:862
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:388
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:374
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:421
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:798
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1526
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:636
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:582
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1269
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:578
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1565
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1075
SendState
State type that controls the sender side.
Definition: net.h:547
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:584
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:461
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:984
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1200
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1113
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:580
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1574
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1509
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:1015
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1173
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1066
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1448
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:457
static std::optional< std::string > GetMessageType(std::span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1408
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1318
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1548
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1477
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:1011
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:482
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1046
constexpr unsigned char * begin()
Definition: uint256.h:101
256-bit opaque blob.
Definition: uint256.h:196
#define WSAEWOULDBLOCK
Definition: compat.h:49
#define SOCKET_ERROR
Definition: compat.h:56
#define WSAGetLastError()
Definition: compat.h:47
#define WSAEMSGSIZE
Definition: compat.h:51
#define MSG_NOSIGNAL
Definition: compat.h:98
#define MSG_DONTWAIT
Definition: compat.h:103
#define WSAEINPROGRESS
Definition: compat.h:53
#define WSAEADDRINUSE
Definition: compat.h:54
#define WSAEINTR
Definition: compat.h:52
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
static path u8path(const std::string &utf8_str)
Definition: fs.h:75
static bool create_directories(const std::filesystem::path &p)
Create directory (and if necessary its parents), unless the leaf directory already exists or is a sym...
Definition: fs.h:190
static std::string PathToString(const path &path)
Convert path object to a byte string.
Definition: fs.h:151
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:475
bool fLogIPs
Definition: logging.cpp:47
#define LogPrintLevel(category, level,...)
Definition: logging.h:372
#define LogInfo(...)
Definition: logging.h:356
#define LogDebug(category,...)
Definition: logging.h:381
#define LogPrintf(...)
Definition: logging.h:361
unsigned int nonce
Definition: miner_tests.cpp:76
@ PROXY
Definition: logging.h:81
@ NET
Definition: logging.h:66
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:26
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
Definition: messages.h:20
static const unsigned char VERSION[]
Definition: netaddress.cpp:187
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:44
uint16_t GetListenPort()
Definition: net.cpp:137
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:65
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:328
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:109
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:105
static const uint64_t RANDOMIZER_ID_NETWORKKEY
Definition: net.cpp:111
void RemoveLocal(const CService &addr)
Definition: net.cpp:309
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:93
@ BF_REPORT_ERROR
Definition: net.cpp:95
@ BF_NONE
Definition: net.cpp:94
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:100
bool fDiscover
Definition: net.cpp:115
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:110
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:62
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:90
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD
Minimum number of outbound connections under which we will keep fetching our address seeds.
Definition: net.cpp:68
void ClearLocal()
Definition: net.cpp:269
static CService GetBindAddress(const Sock &sock)
Get the bind address for a socket as CService.
Definition: net.cpp:363
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:276
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:87
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:81
bool fListen
Definition: net.cpp:116
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:56
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:232
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:79
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:119
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:239
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:107
TRACEPOINT_SEMAPHORE(net, closed_connection)
#define X(name)
Definition: net.cpp:613
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3805
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:59
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:194
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:4006
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:219
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:117
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:164
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4046
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:80
static int GetnScore(const CService &addr)
Definition: net.cpp:224
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3438
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:84
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3202
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:317
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:58
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:92
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:64
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:62
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:90
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:91
int64_t NodeId
Definition: net.h:98
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:88
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:60
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:68
@ LOCAL_MANUAL
Definition: net.h:153
@ LOCAL_BIND
Definition: net.h:151
@ LOCAL_IF
Definition: net.h:150
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:72
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:104
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:649
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:177
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:118
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:738
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:195
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:946
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:713
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:789
std::function< std::unique_ptr< Sock >(int, int, int)> CreateSock
Socket factory.
Definition: netbase.cpp:581
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:730
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:220
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:851
ConnectionDirection
Definition: netbase.h:33
std::vector< CNetAddr > GetLocalAddresses()
Return all local non-loopback IPv4 and IPv6 network addresses.
Definition: netif.cpp:318
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:354
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_P2P_V2
Definition: protocol.h:330
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:617
uint256 GetRandHash() noexcept
Generate a random uint256.
Definition: random.h:463
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:63
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:73
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
auto MakeByteSpan(const V &v) noexcept
Definition: span.h:84
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
T & SpanPopBack(std::span< T > &span)
A span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:75
auto MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:89
unsigned char * UCharCast(char *c)
Definition: span.h:95
std::string m_added_node
Definition: net.h:101
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1535
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1537
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1536
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1323
std::shared_ptr< Sock > sock
Definition: net.h:1322
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1076
std::vector< CService > onion_binds
Definition: net.h:1078
std::vector< std::string > m_specified_outgoing
Definition: net.h:1083
std::vector< CService > vBinds
Definition: net.h:1077
bool m_i2p_accept_incoming
Definition: net.h:1085
std::vector< std::string > vSeedNodes
Definition: net.h:1073
bool m_use_addrman_outgoing
Definition: net.h:1082
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1081
NetPermissionFlags permission_flags
Definition: net.h:666
std::string m_type
Definition: net.h:132
std::vector< unsigned char > data
Definition: net.h:131
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:121
An ElligatorSwift-encoded public key.
Definition: pubkey.h:314
static constexpr size_t size()
Definition: pubkey.h:331
uint16_t nPort
Definition: net.h:177
int nScore
Definition: net.h:176
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:263
TransportProtocolType transport_type
Definition: net.h:262
Bilingual messages:
Definition: translation.h:24
std::string original
Definition: translation.h:25
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
CService peer
The peer's I2P address.
Definition: i2p.h:40
#define WAIT_LOCK(cs, name)
Definition: sync.h:265
#define AssertLockNotHeld(cs)
Definition: sync.h:142
#define LOCK(cs)
Definition: sync.h:259
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:290
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:56
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:82
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:77
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56