Bitcoin Core  27.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2022 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #if defined(HAVE_CONFIG_H)
8 #endif
9 
10 #include <net.h>
11 
12 #include <addrdb.h>
13 #include <addrman.h>
14 #include <banman.h>
15 #include <clientversion.h>
16 #include <common/args.h>
17 #include <compat/compat.h>
18 #include <consensus/consensus.h>
19 #include <crypto/sha256.h>
20 #include <i2p.h>
21 #include <key.h>
22 #include <logging.h>
23 #include <memusage.h>
24 #include <net_permissions.h>
25 #include <netaddress.h>
26 #include <netbase.h>
27 #include <node/eviction.h>
28 #include <node/interface_ui.h>
29 #include <protocol.h>
30 #include <random.h>
31 #include <scheduler.h>
32 #include <util/fs.h>
33 #include <util/sock.h>
34 #include <util/strencodings.h>
35 #include <util/thread.h>
36 #include <util/threadinterrupt.h>
37 #include <util/trace.h>
38 #include <util/translation.h>
39 #include <util/vector.h>
40 
41 #ifdef WIN32
42 #include <string.h>
43 #endif
44 
45 #if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
46 #include <ifaddrs.h>
47 #endif
48 
49 #include <algorithm>
50 #include <array>
51 #include <cstdint>
52 #include <functional>
53 #include <optional>
54 #include <unordered_map>
55 
56 #include <math.h>
57 
59 static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
60 static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
62 const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
63 
64 // How often to dump addresses to peers.dat
65 static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
66 
68 static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
69 
79 static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80 static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81 static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82 
84 static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85 
86 // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87 static constexpr auto FEELER_SLEEP_WINDOW{1s};
88 
90 static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91 
93 enum BindFlags {
94  BF_NONE = 0,
95  BF_REPORT_ERROR = (1U << 0),
100  BF_DONT_ADVERTISE = (1U << 1),
101 };
102 
103 // The set of sockets cannot be modified while waiting
104 // The sleep time needs to be small to avoid new sockets stalling
105 static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106 
107 const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108 
109 static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110 static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111 static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
112 //
113 // Global state variables
114 //
115 bool fDiscover = true;
116 bool fListen = true;
118 std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119 std::string strSubVersion;
120 
121 size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
122 {
123  // Don't count the dynamic memory used for the m_type string, by assuming it fits in the
124  // "small string" optimization area (which stores data inside the object itself, up to some
125  // size; 15 bytes in modern libstdc++).
126  return sizeof(*this) + memusage::DynamicUsage(data);
127 }
128 
129 void CConnman::AddAddrFetch(const std::string& strDest)
130 {
132  m_addr_fetches.push_back(strDest);
133 }
134 
135 uint16_t GetListenPort()
136 {
137  // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
138  for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
139  constexpr uint16_t dummy_port = 0;
140 
141  const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
142  if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
143  }
144 
145  // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
146  // (-whitebind= is required to have ":port").
147  for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
148  NetWhitebindPermissions whitebind;
149  bilingual_str error;
150  if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
152  return whitebind.m_service.GetPort();
153  }
154  }
155  }
156 
157  // Otherwise, if -port= is provided, use that. Otherwise use the default port.
158  return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
159 }
160 
161 // Determine the "best" local address for a particular peer.
162 [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
163 {
164  if (!fListen) return std::nullopt;
165 
166  std::optional<CService> addr;
167  int nBestScore = -1;
168  int nBestReachability = -1;
169  {
171  for (const auto& [local_addr, local_service_info] : mapLocalHost) {
172  // For privacy reasons, don't advertise our privacy-network address
173  // to other networks and don't advertise our other-network address
174  // to privacy networks.
175  if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
176  && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
177  continue;
178  }
179  const int nScore{local_service_info.nScore};
180  const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
181  if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
182  addr.emplace(CService{local_addr, local_service_info.nPort});
183  nBestReachability = nReachability;
184  nBestScore = nScore;
185  }
186  }
187  }
188  return addr;
189 }
190 
192 static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
193 {
194  // It'll only connect to one or two seed nodes because once it connects,
195  // it'll get a pile of addresses with newer timestamps.
196  // Seed nodes are given a random 'last seen time' of between one and two
197  // weeks ago.
198  const auto one_week{7 * 24h};
199  std::vector<CAddress> vSeedsOut;
200  FastRandomContext rng;
201  DataStream underlying_stream{vSeedsIn};
202  ParamsStream s{CAddress::V2_NETWORK, underlying_stream};
203  while (!s.eof()) {
204  CService endpoint;
205  s >> endpoint;
206  CAddress addr{endpoint, SeedsServiceFlags()};
207  addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
208  LogPrint(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
209  vSeedsOut.push_back(addr);
210  }
211  return vSeedsOut;
212 }
213 
214 // Determine the "best" local address for a particular peer.
215 // If none, return the unroutable 0.0.0.0 but filled in with
216 // the normal parameters, since the IP may be changed to a useful
217 // one by discovery.
219 {
220  return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
221 }
222 
223 static int GetnScore(const CService& addr)
224 {
226  const auto it = mapLocalHost.find(addr);
227  return (it != mapLocalHost.end()) ? it->second.nScore : 0;
228 }
229 
230 // Is our peer's addrLocal potentially useful as an external IP source?
231 [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
232 {
233  CService addrLocal = pnode->GetAddrLocal();
234  return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
235  g_reachable_nets.Contains(addrLocal);
236 }
237 
238 std::optional<CService> GetLocalAddrForPeer(CNode& node)
239 {
240  CService addrLocal{GetLocalAddress(node)};
241  // If discovery is enabled, sometimes give our peer the address it
242  // tells us that it sees us as in case it has a better idea of our
243  // address than we do.
244  FastRandomContext rng;
245  if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
246  rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
247  {
248  if (node.IsInboundConn()) {
249  // For inbound connections, assume both the address and the port
250  // as seen from the peer.
251  addrLocal = CService{node.GetAddrLocal()};
252  } else {
253  // For outbound connections, assume just the address as seen from
254  // the peer and leave the port in `addrLocal` as returned by
255  // `GetLocalAddress()` above. The peer has no way to observe our
256  // listening port when we have initiated the connection.
257  addrLocal.SetIP(node.GetAddrLocal());
258  }
259  }
260  if (addrLocal.IsRoutable()) {
261  LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
262  return addrLocal;
263  }
264  // Address is unroutable. Don't advertise.
265  return std::nullopt;
266 }
267 
268 // learn a new local address
269 bool AddLocal(const CService& addr_, int nScore)
270 {
271  CService addr{MaybeFlipIPv6toCJDNS(addr_)};
272 
273  if (!addr.IsRoutable())
274  return false;
275 
276  if (!fDiscover && nScore < LOCAL_MANUAL)
277  return false;
278 
279  if (!g_reachable_nets.Contains(addr))
280  return false;
281 
282  LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
283 
284  {
286  const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
287  LocalServiceInfo &info = it->second;
288  if (is_newly_added || nScore >= info.nScore) {
289  info.nScore = nScore + (is_newly_added ? 0 : 1);
290  info.nPort = addr.GetPort();
291  }
292  }
293 
294  return true;
295 }
296 
297 bool AddLocal(const CNetAddr &addr, int nScore)
298 {
299  return AddLocal(CService(addr, GetListenPort()), nScore);
300 }
301 
302 void RemoveLocal(const CService& addr)
303 {
305  LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
306  mapLocalHost.erase(addr);
307 }
308 
310 bool SeenLocal(const CService& addr)
311 {
313  const auto it = mapLocalHost.find(addr);
314  if (it == mapLocalHost.end()) return false;
315  ++it->second.nScore;
316  return true;
317 }
318 
319 
321 bool IsLocal(const CService& addr)
322 {
324  return mapLocalHost.count(addr) > 0;
325 }
326 
328 {
330  for (CNode* pnode : m_nodes) {
331  if (static_cast<CNetAddr>(pnode->addr) == ip) {
332  return pnode;
333  }
334  }
335  return nullptr;
336 }
337 
338 CNode* CConnman::FindNode(const std::string& addrName)
339 {
341  for (CNode* pnode : m_nodes) {
342  if (pnode->m_addr_name == addrName) {
343  return pnode;
344  }
345  }
346  return nullptr;
347 }
348 
350 {
352  for (CNode* pnode : m_nodes) {
353  if (static_cast<CService>(pnode->addr) == addr) {
354  return pnode;
355  }
356  }
357  return nullptr;
358 }
359 
361 {
362  return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
363 }
364 
366 {
368  for (const CNode* pnode : m_nodes) {
369  if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
370  return false;
371  }
372  return true;
373 }
374 
376 static CAddress GetBindAddress(const Sock& sock)
377 {
378  CAddress addr_bind;
379  struct sockaddr_storage sockaddr_bind;
380  socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
381  if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
382  addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
383  } else {
384  LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
385  }
386  return addr_bind;
387 }
388 
389 CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
390 {
392  assert(conn_type != ConnectionType::INBOUND);
393 
394  if (pszDest == nullptr) {
395  if (IsLocal(addrConnect))
396  return nullptr;
397 
398  // Look for an existing connection
399  CNode* pnode = FindNode(static_cast<CService>(addrConnect));
400  if (pnode)
401  {
402  LogPrintf("Failed to open new connection, already connected\n");
403  return nullptr;
404  }
405  }
406 
407  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
408  use_v2transport ? "v2" : "v1",
409  pszDest ? pszDest : addrConnect.ToStringAddrPort(),
410  Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
411 
412  // Resolve
413  const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
415  if (pszDest) {
416  std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
417  if (!resolved.empty()) {
418  Shuffle(resolved.begin(), resolved.end(), FastRandomContext());
419  // If the connection is made by name, it can be the case that the name resolves to more than one address.
420  // We don't want to connect any more of them if we are already connected to one
421  for (const auto& r : resolved) {
422  addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
423  if (!addrConnect.IsValid()) {
424  LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
425  return nullptr;
426  }
427  // It is possible that we already have a connection to the IP/port pszDest resolved to.
428  // In that case, drop the connection that was just created.
430  CNode* pnode = FindNode(static_cast<CService>(addrConnect));
431  if (pnode) {
432  LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
433  return nullptr;
434  }
435  }
436  }
437  }
438 
439  // Connect
440  std::unique_ptr<Sock> sock;
441  Proxy proxy;
442  CAddress addr_bind;
443  assert(!addr_bind.IsValid());
444  std::unique_ptr<i2p::sam::Session> i2p_transient_session;
445 
446  if (addrConnect.IsValid()) {
447  const bool use_proxy{GetProxy(addrConnect.GetNetwork(), proxy)};
448  bool proxyConnectionFailed = false;
449 
450  if (addrConnect.IsI2P() && use_proxy) {
451  i2p::Connection conn;
452  bool connected{false};
453 
454  if (m_i2p_sam_session) {
455  connected = m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed);
456  } else {
457  {
459  if (m_unused_i2p_sessions.empty()) {
460  i2p_transient_session =
461  std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
462  } else {
463  i2p_transient_session.swap(m_unused_i2p_sessions.front());
464  m_unused_i2p_sessions.pop();
465  }
466  }
467  connected = i2p_transient_session->Connect(addrConnect, conn, proxyConnectionFailed);
468  if (!connected) {
470  if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
471  m_unused_i2p_sessions.emplace(i2p_transient_session.release());
472  }
473  }
474  }
475 
476  if (connected) {
477  sock = std::move(conn.sock);
478  addr_bind = CAddress{conn.me, NODE_NONE};
479  }
480  } else if (use_proxy) {
481  LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s:%s\n", proxy.ToString(), addrConnect.ToStringAddr(), addrConnect.GetPort());
482  sock = ConnectThroughProxy(proxy, addrConnect.ToStringAddr(), addrConnect.GetPort(), proxyConnectionFailed);
483  } else {
484  // no proxy needed (none set for target network)
485  sock = ConnectDirectly(addrConnect, conn_type == ConnectionType::MANUAL);
486  }
487  if (!proxyConnectionFailed) {
488  // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
489  // the proxy, mark this as an attempt.
490  addrman.Attempt(addrConnect, fCountFailure);
491  }
492  } else if (pszDest && GetNameProxy(proxy)) {
493  std::string host;
494  uint16_t port{default_port};
495  SplitHostPort(std::string(pszDest), port, host);
496  bool proxyConnectionFailed;
497  sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
498  }
499  if (!sock) {
500  return nullptr;
501  }
502 
503  NetPermissionFlags permission_flags = NetPermissionFlags::None;
504  std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
505  AddWhitelistPermissionFlags(permission_flags, addrConnect, whitelist_permissions);
506 
507  // Add node
508  NodeId id = GetNewNodeId();
510  if (!addr_bind.IsValid()) {
511  addr_bind = GetBindAddress(*sock);
512  }
513  CNode* pnode = new CNode(id,
514  std::move(sock),
515  addrConnect,
516  CalculateKeyedNetGroup(addrConnect),
517  nonce,
518  addr_bind,
519  pszDest ? pszDest : "",
520  conn_type,
521  /*inbound_onion=*/false,
522  CNodeOptions{
523  .permission_flags = permission_flags,
524  .i2p_sam_session = std::move(i2p_transient_session),
525  .recv_flood_size = nReceiveFloodSize,
526  .use_v2transport = use_v2transport,
527  });
528  pnode->AddRef();
529 
530  // We're making a new connection, harvest entropy from the time (and our peer count)
531  RandAddEvent((uint32_t)id);
532 
533  return pnode;
534 }
535 
537 {
538  fDisconnect = true;
540  if (m_sock) {
541  LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
542  m_sock.reset();
543  }
544  m_i2p_sam_session.reset();
545 }
546 
547 void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
548  for (const auto& subnet : ranges) {
549  if (subnet.m_subnet.Match(addr)) {
550  NetPermissions::AddFlag(flags, subnet.m_flags);
551  }
552  }
559  }
560 }
561 
563 {
566  return addrLocal;
567 }
568 
569 void CNode::SetAddrLocal(const CService& addrLocalIn) {
572  if (addrLocal.IsValid()) {
573  LogError("Addr local already set for node: %i. Refusing to change from %s to %s\n", id, addrLocal.ToStringAddrPort(), addrLocalIn.ToStringAddrPort());
574  } else {
575  addrLocal = addrLocalIn;
576  }
577 }
578 
580 {
582 }
583 
585 {
586  return m_inbound_onion || addr.IsPrivacyNet();
587 }
588 
589 #undef X
590 #define X(name) stats.name = name
592 {
593  stats.nodeid = this->GetId();
594  X(addr);
595  X(addrBind);
597  X(m_last_send);
598  X(m_last_recv);
599  X(m_last_tx_time);
601  X(m_connected);
602  X(nTimeOffset);
603  X(m_addr_name);
604  X(nVersion);
605  {
607  X(cleanSubVer);
608  }
609  stats.fInbound = IsInboundConn();
612  {
613  LOCK(cs_vSend);
614  X(mapSendBytesPerMsgType);
615  X(nSendBytes);
616  }
617  {
618  LOCK(cs_vRecv);
619  X(mapRecvBytesPerMsgType);
620  X(nRecvBytes);
621  Transport::Info info = m_transport->GetInfo();
622  stats.m_transport_type = info.transport_type;
623  if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
624  }
626 
629 
630  // Leave string empty if addrLocal invalid (not filled in yet)
631  CService addrLocalUnlocked = GetAddrLocal();
632  stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
633 
634  X(m_conn_type);
635 }
636 #undef X
637 
638 bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
639 {
640  complete = false;
641  const auto time = GetTime<std::chrono::microseconds>();
642  LOCK(cs_vRecv);
643  m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
644  nRecvBytes += msg_bytes.size();
645  while (msg_bytes.size() > 0) {
646  // absorb network data
647  if (!m_transport->ReceivedBytes(msg_bytes)) {
648  // Serious transport problem, disconnect from the peer.
649  return false;
650  }
651 
652  if (m_transport->ReceivedMessageComplete()) {
653  // decompose a transport agnostic CNetMessage from the deserializer
654  bool reject_message{false};
655  CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
656  if (reject_message) {
657  // Message deserialization failed. Drop the message but don't disconnect the peer.
658  // store the size of the corrupt message
659  mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
660  continue;
661  }
662 
663  // Store received bytes per message type.
664  // To prevent a memory DOS, only allow known message types.
665  auto i = mapRecvBytesPerMsgType.find(msg.m_type);
666  if (i == mapRecvBytesPerMsgType.end()) {
667  i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
668  }
669  assert(i != mapRecvBytesPerMsgType.end());
670  i->second += msg.m_raw_message_size;
671 
672  // push the message to the process queue,
673  vRecvMsg.push_back(std::move(msg));
674 
675  complete = true;
676  }
677  }
678 
679  return true;
680 }
681 
682 V1Transport::V1Transport(const NodeId node_id) noexcept
683  : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
684 {
685  LOCK(m_recv_mutex);
686  Reset();
687 }
688 
690 {
691  return {.transport_type = TransportProtocolType::V1, .session_id = {}};
692 }
693 
695 {
697  // copy data to temporary parsing buffer
698  unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
699  unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
700 
701  memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
702  nHdrPos += nCopy;
703 
704  // if header incomplete, exit
705  if (nHdrPos < CMessageHeader::HEADER_SIZE)
706  return nCopy;
707 
708  // deserialize to CMessageHeader
709  try {
710  hdrbuf >> hdr;
711  }
712  catch (const std::exception&) {
713  LogPrint(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
714  return -1;
715  }
716 
717  // Check start string, network magic
718  if (hdr.pchMessageStart != m_magic_bytes) {
719  LogPrint(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
720  return -1;
721  }
722 
723  // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
724  if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
725  LogPrint(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
726  return -1;
727  }
728 
729  // switch state to reading message data
730  in_data = true;
731 
732  return nCopy;
733 }
734 
736 {
738  unsigned int nRemaining = hdr.nMessageSize - nDataPos;
739  unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740 
741  if (vRecv.size() < nDataPos + nCopy) {
742  // Allocate up to 256 KiB ahead, but never more than the total message size.
743  vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
744  }
745 
746  hasher.Write(msg_bytes.first(nCopy));
747  memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
748  nDataPos += nCopy;
749 
750  return nCopy;
751 }
752 
754 {
757  if (data_hash.IsNull())
758  hasher.Finalize(data_hash);
759  return data_hash;
760 }
761 
762 CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
763 {
765  // Initialize out parameter
766  reject_message = false;
767  // decompose a single CNetMessage from the TransportDeserializer
769  CNetMessage msg(std::move(vRecv));
770 
771  // store message type string, time, and sizes
772  msg.m_type = hdr.GetCommand();
773  msg.m_time = time;
774  msg.m_message_size = hdr.nMessageSize;
775  msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
776 
777  uint256 hash = GetMessageHash();
778 
779  // We just received a message off the wire, harvest entropy from the time (and the message checksum)
780  RandAddEvent(ReadLE32(hash.begin()));
781 
782  // Check checksum and header message type string
783  if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
784  LogPrint(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
785  SanitizeString(msg.m_type), msg.m_message_size,
787  HexStr(hdr.pchChecksum),
788  m_node_id);
789  reject_message = true;
790  } else if (!hdr.IsCommandValid()) {
791  LogPrint(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
792  SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
793  reject_message = true;
794  }
795 
796  // Always reset the network deserializer (prepare for the next message)
797  Reset();
798  return msg;
799 }
800 
802 {
803  AssertLockNotHeld(m_send_mutex);
804  // Determine whether a new message can be set.
805  LOCK(m_send_mutex);
806  if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
807 
808  // create dbl-sha256 checksum
809  uint256 hash = Hash(msg.data);
810 
811  // create header
812  CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
813  memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
814 
815  // serialize header
816  m_header_to_send.clear();
817  VectorWriter{m_header_to_send, 0, hdr};
818 
819  // update state
820  m_message_to_send = std::move(msg);
821  m_sending_header = true;
822  m_bytes_sent = 0;
823  return true;
824 }
825 
826 Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
827 {
828  AssertLockNotHeld(m_send_mutex);
829  LOCK(m_send_mutex);
830  if (m_sending_header) {
831  return {Span{m_header_to_send}.subspan(m_bytes_sent),
832  // We have more to send after the header if the message has payload, or if there
833  // is a next message after that.
834  have_next_message || !m_message_to_send.data.empty(),
835  m_message_to_send.m_type
836  };
837  } else {
838  return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
839  // We only have more to send after this message's payload if there is another
840  // message.
841  have_next_message,
842  m_message_to_send.m_type
843  };
844  }
845 }
846 
847 void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
848 {
849  AssertLockNotHeld(m_send_mutex);
850  LOCK(m_send_mutex);
851  m_bytes_sent += bytes_sent;
852  if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
853  // We're done sending a message's header. Switch to sending its data bytes.
854  m_sending_header = false;
855  m_bytes_sent = 0;
856  } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
857  // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
858  ClearShrink(m_message_to_send.data);
859  m_bytes_sent = 0;
860  }
861 }
862 
863 size_t V1Transport::GetSendMemoryUsage() const noexcept
864 {
867  // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
868  return m_message_to_send.GetMemoryUsage();
869 }
870 
871 namespace {
872 
878 const std::array<std::string, 33> V2_MESSAGE_IDS = {
879  "", // 12 bytes follow encoding the message type like in V1
908  // Unimplemented message types that are assigned in BIP324:
909  "",
910  "",
911  "",
912  ""
913 };
914 
915 class V2MessageMap
916 {
917  std::unordered_map<std::string, uint8_t> m_map;
918 
919 public:
920  V2MessageMap() noexcept
921  {
922  for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
923  m_map.emplace(V2_MESSAGE_IDS[i], i);
924  }
925  }
926 
927  std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
928  {
929  auto it = m_map.find(message_name);
930  if (it == m_map.end()) return std::nullopt;
931  return it->second;
932  }
933 };
934 
935 const V2MessageMap V2_MESSAGE_MAP;
936 
937 std::vector<uint8_t> GenerateRandomGarbage() noexcept
938 {
939  std::vector<uint8_t> ret;
940  FastRandomContext rng;
941  ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
943  return ret;
944 }
945 
946 } // namespace
947 
949 {
950  AssertLockHeld(m_send_mutex);
951  Assume(m_send_state == SendState::AWAITING_KEY);
952  Assume(m_send_buffer.empty());
953  // Initialize the send buffer with ellswift pubkey + provided garbage.
954  m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
955  std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
956  std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
957  // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
958 }
959 
960 V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
961  : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
962  m_v1_fallback{nodeid},
963  m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
964  m_send_garbage{std::move(garbage)},
965  m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
966 {
967  Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
968  // Start sending immediately if we're the initiator of the connection.
969  if (initiating) {
970  LOCK(m_send_mutex);
971  StartSendingHandshake();
972  }
973 }
974 
975 V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
976  : V2Transport{nodeid, initiating, GenerateRandomKey(),
977  MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
978 
979 void V2Transport::SetReceiveState(RecvState recv_state) noexcept
980 {
981  AssertLockHeld(m_recv_mutex);
982  // Enforce allowed state transitions.
983  switch (m_recv_state) {
984  case RecvState::KEY_MAYBE_V1:
985  Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
986  break;
987  case RecvState::KEY:
988  Assume(recv_state == RecvState::GARB_GARBTERM);
989  break;
990  case RecvState::GARB_GARBTERM:
991  Assume(recv_state == RecvState::VERSION);
992  break;
993  case RecvState::VERSION:
994  Assume(recv_state == RecvState::APP);
995  break;
996  case RecvState::APP:
997  Assume(recv_state == RecvState::APP_READY);
998  break;
999  case RecvState::APP_READY:
1000  Assume(recv_state == RecvState::APP);
1001  break;
1002  case RecvState::V1:
1003  Assume(false); // V1 state cannot be left
1004  break;
1005  }
1006  // Change state.
1007  m_recv_state = recv_state;
1008 }
1009 
1010 void V2Transport::SetSendState(SendState send_state) noexcept
1011 {
1012  AssertLockHeld(m_send_mutex);
1013  // Enforce allowed state transitions.
1014  switch (m_send_state) {
1015  case SendState::MAYBE_V1:
1016  Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1017  break;
1018  case SendState::AWAITING_KEY:
1019  Assume(send_state == SendState::READY);
1020  break;
1021  case SendState::READY:
1022  case SendState::V1:
1023  Assume(false); // Final states
1024  break;
1025  }
1026  // Change state.
1027  m_send_state = send_state;
1028 }
1029 
1031 {
1032  AssertLockNotHeld(m_recv_mutex);
1033  LOCK(m_recv_mutex);
1034  if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1035 
1036  return m_recv_state == RecvState::APP_READY;
1037 }
1038 
1040 {
1041  AssertLockHeld(m_recv_mutex);
1042  AssertLockNotHeld(m_send_mutex);
1043  Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1044  // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1045  // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1046  // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1047  // sending of the key.
1048  std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1049  std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1050  Assume(m_recv_buffer.size() <= v1_prefix.size());
1051  if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1052  // Mismatch with v1 prefix, so we can assume a v2 connection.
1053  SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1054  // Transition the sender to AWAITING_KEY state and start sending.
1055  LOCK(m_send_mutex);
1058  } else if (m_recv_buffer.size() == v1_prefix.size()) {
1059  // Full match with the v1 prefix, so fall back to v1 behavior.
1060  LOCK(m_send_mutex);
1061  Span<const uint8_t> feedback{m_recv_buffer};
1062  // Feed already received bytes to v1 transport. It should always accept these, because it's
1063  // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1064  bool ret = m_v1_fallback.ReceivedBytes(feedback);
1065  Assume(feedback.empty());
1066  Assume(ret);
1069  // Reset v2 transport buffers to save memory.
1070  ClearShrink(m_recv_buffer);
1071  ClearShrink(m_send_buffer);
1072  } else {
1073  // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1074  }
1075 }
1076 
1078 {
1079  AssertLockHeld(m_recv_mutex);
1080  AssertLockNotHeld(m_send_mutex);
1081  Assume(m_recv_state == RecvState::KEY);
1082  Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1083 
1084  // As a special exception, if bytes 4-16 of the key on a responder connection match the
1085  // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1086  // (if they did, we'd have switched to V1 state already), assume this is a peer from
1087  // another network, and disconnect them. They will almost certainly disconnect us too when
1088  // they receive our uniformly random key and garbage, but detecting this case specially
1089  // means we can log it.
1090  static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1091  static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1092  if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1093  if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1094  LogPrint(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1095  HexStr(Span(m_recv_buffer).first(OFFSET)));
1096  return false;
1097  }
1098  }
1099 
1100  if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1101  // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1102  // our key to initialize the encryption ciphers.
1103 
1104  // Initialize the ciphers.
1105  EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1106  LOCK(m_send_mutex);
1107  m_cipher.Initialize(ellswift, m_initiating);
1108 
1109  // Switch receiver state to GARB_GARBTERM.
1111  m_recv_buffer.clear();
1112 
1113  // Switch sender state to READY.
1115 
1116  // Append the garbage terminator to the send buffer.
1117  m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1118  std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1120  MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1121 
1122  // Construct version packet in the send buffer, with the sent garbage data as AAD.
1123  m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1124  m_cipher.Encrypt(
1125  /*contents=*/VERSION_CONTENTS,
1126  /*aad=*/MakeByteSpan(m_send_garbage),
1127  /*ignore=*/false,
1128  /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1129  // We no longer need the garbage.
1130  ClearShrink(m_send_garbage);
1131  } else {
1132  // We still have to receive more key bytes.
1133  }
1134  return true;
1135 }
1136 
1138 {
1139  AssertLockHeld(m_recv_mutex);
1140  Assume(m_recv_state == RecvState::GARB_GARBTERM);
1141  Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1142  if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1144  // Garbage terminator received. Store garbage to authenticate it as AAD later.
1145  m_recv_aad = std::move(m_recv_buffer);
1146  m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1147  m_recv_buffer.clear();
1149  } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1150  // We've reached the maximum length for garbage + garbage terminator, and the
1151  // terminator still does not match. Abort.
1152  LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1153  return false;
1154  } else {
1155  // We still need to receive more garbage and/or garbage terminator bytes.
1156  }
1157  } else {
1158  // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1159  // more first.
1160  }
1161  return true;
1162 }
1163 
1165 {
1166  AssertLockHeld(m_recv_mutex);
1167  Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1168 
1169  // The maximum permitted contents length for a packet, consisting of:
1170  // - 0x00 byte: indicating long message type encoding
1171  // - 12 bytes of message type
1172  // - payload
1173  static constexpr size_t MAX_CONTENTS_LEN =
1175  std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1176 
1177  if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1178  // Length descriptor received.
1179  m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1180  if (m_recv_len > MAX_CONTENTS_LEN) {
1181  LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1182  return false;
1183  }
1184  } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1185  // Ciphertext received, decrypt it into m_recv_decode_buffer.
1186  // Note that it is impossible to reach this branch without hitting the branch above first,
1187  // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1188  m_recv_decode_buffer.resize(m_recv_len);
1189  bool ignore{false};
1190  bool ret = m_cipher.Decrypt(
1191  /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1192  /*aad=*/MakeByteSpan(m_recv_aad),
1193  /*ignore=*/ignore,
1194  /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1195  if (!ret) {
1196  LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1197  return false;
1198  }
1199  // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1200  ClearShrink(m_recv_aad);
1201  // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1202  RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1203 
1204  // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1205  // decoy, which we simply ignore, use the current state to decide what to do with it.
1206  if (!ignore) {
1207  switch (m_recv_state) {
1208  case RecvState::VERSION:
1209  // Version message received; transition to application phase. The contents is
1210  // ignored, but can be used for future extensions.
1212  break;
1213  case RecvState::APP:
1214  // Application message decrypted correctly. It can be extracted using GetMessage().
1216  break;
1217  default:
1218  // Any other state is invalid (this function should not have been called).
1219  Assume(false);
1220  }
1221  }
1222  // Wipe the receive buffer where the next packet will be received into.
1223  ClearShrink(m_recv_buffer);
1224  // In all but APP_READY state, we can wipe the decoded contents.
1225  if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1226  } else {
1227  // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1228  // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1229  }
1230  return true;
1231 }
1232 
1234 {
1235  AssertLockHeld(m_recv_mutex);
1236  switch (m_recv_state) {
1238  // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1239  // receive buffer.
1240  Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1241  // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1242  // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1243  // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1244  // back into the m_v1_fallback V1 transport.
1245  return V1_PREFIX_LEN - m_recv_buffer.size();
1246  case RecvState::KEY:
1247  // During the KEY state, we only allow the 64-byte key into the receive buffer.
1248  Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1249  // As long as we have not received the other side's public key, don't receive more than
1250  // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1251  // key exchange first.
1252  return EllSwiftPubKey::size() - m_recv_buffer.size();
1254  // Process garbage bytes one by one (because terminator may appear anywhere).
1255  return 1;
1256  case RecvState::VERSION:
1257  case RecvState::APP:
1258  // These three states all involve decoding a packet. Process the length descriptor first,
1259  // so that we know where the current packet ends (and we don't process bytes from the next
1260  // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1261  if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1262  return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1263  } else {
1264  // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1265  // and encoded packet size, which includes the 3 bytes due to the packet length.
1266  // When transitioning from receiving the packet length to receiving its ciphertext,
1267  // the encrypted packet length is left in the receive buffer.
1268  return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1269  }
1270  case RecvState::APP_READY:
1271  // No bytes can be processed until GetMessage() is called.
1272  return 0;
1273  case RecvState::V1:
1274  // Not allowed (must be dealt with by the caller).
1275  Assume(false);
1276  return 0;
1277  }
1278  Assume(false); // unreachable
1279  return 0;
1280 }
1281 
1283 {
1284  AssertLockNotHeld(m_recv_mutex);
1286  static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1287 
1288  LOCK(m_recv_mutex);
1289  if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1290 
1291  // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1292  // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1293  // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1294  // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1295  while (!msg_bytes.empty()) {
1296  // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1297  size_t max_read = GetMaxBytesToProcess();
1298 
1299  // Reserve space in the buffer if there is not enough.
1300  if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1301  switch (m_recv_state) {
1302  case RecvState::KEY_MAYBE_V1:
1303  case RecvState::KEY:
1304  case RecvState::GARB_GARBTERM:
1305  // During the initial states (key/garbage), allocate once to fit the maximum (4111
1306  // bytes).
1307  m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1308  break;
1309  case RecvState::VERSION:
1310  case RecvState::APP: {
1311  // During states where a packet is being received, as much as is expected but never
1312  // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1313  // This means attackers that want to cause us to waste allocated memory are limited
1314  // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1315  // MAX_RESERVE_AHEAD more than they've actually sent us.
1316  size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1317  m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1318  break;
1319  }
1320  case RecvState::APP_READY:
1321  // The buffer is empty in this state.
1322  Assume(m_recv_buffer.empty());
1323  break;
1324  case RecvState::V1:
1325  // Should have bailed out above.
1326  Assume(false);
1327  break;
1328  }
1329  }
1330 
1331  // Can't read more than provided input.
1332  max_read = std::min(msg_bytes.size(), max_read);
1333  // Copy data to buffer.
1334  m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1335  msg_bytes = msg_bytes.subspan(max_read);
1336 
1337  // Process data in the buffer.
1338  switch (m_recv_state) {
1339  case RecvState::KEY_MAYBE_V1:
1340  ProcessReceivedMaybeV1Bytes();
1341  if (m_recv_state == RecvState::V1) return true;
1342  break;
1343 
1344  case RecvState::KEY:
1345  if (!ProcessReceivedKeyBytes()) return false;
1346  break;
1347 
1348  case RecvState::GARB_GARBTERM:
1349  if (!ProcessReceivedGarbageBytes()) return false;
1350  break;
1351 
1352  case RecvState::VERSION:
1353  case RecvState::APP:
1354  if (!ProcessReceivedPacketBytes()) return false;
1355  break;
1356 
1357  case RecvState::APP_READY:
1358  return true;
1359 
1360  case RecvState::V1:
1361  // We should have bailed out before.
1362  Assume(false);
1363  break;
1364  }
1365  // Make sure we have made progress before continuing.
1366  Assume(max_read > 0);
1367  }
1368 
1369  return true;
1370 }
1371 
1372 std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1373 {
1374  if (contents.size() == 0) return std::nullopt; // Empty contents
1375  uint8_t first_byte = contents[0];
1376  contents = contents.subspan(1); // Strip first byte.
1377 
1378  if (first_byte != 0) {
1379  // Short (1 byte) encoding.
1380  if (first_byte < std::size(V2_MESSAGE_IDS)) {
1381  // Valid short message id.
1382  return V2_MESSAGE_IDS[first_byte];
1383  } else {
1384  // Unknown short message id.
1385  return std::nullopt;
1386  }
1387  }
1388 
1389  if (contents.size() < CMessageHeader::COMMAND_SIZE) {
1390  return std::nullopt; // Long encoding needs 12 message type bytes.
1391  }
1392 
1393  size_t msg_type_len{0};
1394  while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
1395  // Verify that message type bytes before the first 0x00 are in range.
1396  if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1397  return {};
1398  }
1399  ++msg_type_len;
1400  }
1401  std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1402  while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
1403  // Verify that message type bytes after the first 0x00 are also 0x00.
1404  if (contents[msg_type_len] != 0) return {};
1405  ++msg_type_len;
1406  }
1407  // Strip message type bytes of contents.
1408  contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
1409  return ret;
1410 }
1411 
1412 CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1413 {
1414  AssertLockNotHeld(m_recv_mutex);
1415  LOCK(m_recv_mutex);
1416  if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1417 
1418  Assume(m_recv_state == RecvState::APP_READY);
1419  Span<const uint8_t> contents{m_recv_decode_buffer};
1420  auto msg_type = GetMessageType(contents);
1422  // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1423  msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1424  if (msg_type) {
1425  reject_message = false;
1426  msg.m_type = std::move(*msg_type);
1427  msg.m_time = time;
1428  msg.m_message_size = contents.size();
1429  msg.m_recv.resize(contents.size());
1430  std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1431  } else {
1432  LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1433  reject_message = true;
1434  }
1435  ClearShrink(m_recv_decode_buffer);
1436  SetReceiveState(RecvState::APP);
1437 
1438  return msg;
1439 }
1440 
1442 {
1443  AssertLockNotHeld(m_send_mutex);
1444  LOCK(m_send_mutex);
1445  if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1446  // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1447  // is available) and the send buffer is empty. This limits the number of messages in the send
1448  // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1449  if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1450  // Construct contents (encoding message type + payload).
1451  std::vector<uint8_t> contents;
1452  auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1453  if (short_message_id) {
1454  contents.resize(1 + msg.data.size());
1455  contents[0] = *short_message_id;
1456  std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1457  } else {
1458  // Initialize with zeroes, and then write the message type string starting at offset 1.
1459  // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1460  contents.resize(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
1461  std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1462  std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
1463  }
1464  // Construct ciphertext in send buffer.
1465  m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1466  m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1467  m_send_type = msg.m_type;
1468  // Release memory
1469  ClearShrink(msg.data);
1470  return true;
1471 }
1472 
1473 Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1474 {
1475  AssertLockNotHeld(m_send_mutex);
1476  LOCK(m_send_mutex);
1477  if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1478 
1479  if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1480  Assume(m_send_pos <= m_send_buffer.size());
1481  return {
1482  Span{m_send_buffer}.subspan(m_send_pos),
1483  // We only have more to send after the current m_send_buffer if there is a (next)
1484  // message to be sent, and we're capable of sending packets. */
1485  have_next_message && m_send_state == SendState::READY,
1486  m_send_type
1487  };
1488 }
1489 
1490 void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1491 {
1492  AssertLockNotHeld(m_send_mutex);
1493  LOCK(m_send_mutex);
1494  if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1495 
1496  if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1497  LogPrint(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1498  }
1499 
1500  m_send_pos += bytes_sent;
1501  Assume(m_send_pos <= m_send_buffer.size());
1502  if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1503  m_sent_v1_header_worth = true;
1504  }
1505  // Wipe the buffer when everything is sent.
1506  if (m_send_pos == m_send_buffer.size()) {
1507  m_send_pos = 0;
1508  ClearShrink(m_send_buffer);
1509  }
1510 }
1511 
1512 bool V2Transport::ShouldReconnectV1() const noexcept
1513 {
1514  AssertLockNotHeld(m_send_mutex);
1515  AssertLockNotHeld(m_recv_mutex);
1516  // Only outgoing connections need reconnection.
1517  if (!m_initiating) return false;
1518 
1519  LOCK(m_recv_mutex);
1520  // We only reconnect in the very first state and when the receive buffer is empty. Together
1521  // these conditions imply nothing has been received so far.
1522  if (m_recv_state != RecvState::KEY) return false;
1523  if (!m_recv_buffer.empty()) return false;
1524  // Check if we've sent enough for the other side to disconnect us (if it was V1).
1525  LOCK(m_send_mutex);
1526  return m_sent_v1_header_worth;
1527 }
1528 
1529 size_t V2Transport::GetSendMemoryUsage() const noexcept
1530 {
1531  AssertLockNotHeld(m_send_mutex);
1532  LOCK(m_send_mutex);
1533  if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1534 
1535  return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1536 }
1537 
1539 {
1540  AssertLockNotHeld(m_recv_mutex);
1541  LOCK(m_recv_mutex);
1542  if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1543 
1544  Transport::Info info;
1545 
1546  // Do not report v2 and session ID until the version packet has been received
1547  // and verified (confirming that the other side very likely has the same keys as us).
1548  if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1549  m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1552  } else {
1554  }
1555 
1556  return info;
1557 }
1558 
1559 std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1560 {
1561  auto it = node.vSendMsg.begin();
1562  size_t nSentSize = 0;
1563  bool data_left{false};
1564  std::optional<bool> expected_more;
1565 
1566  while (true) {
1567  if (it != node.vSendMsg.end()) {
1568  // If possible, move one message from the send queue to the transport. This fails when
1569  // there is an existing message still being sent, or (for v2 transports) when the
1570  // handshake has not yet completed.
1571  size_t memusage = it->GetMemoryUsage();
1572  if (node.m_transport->SetMessageToSend(*it)) {
1573  // Update memory usage of send buffer (as *it will be deleted).
1574  node.m_send_memusage -= memusage;
1575  ++it;
1576  }
1577  }
1578  const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1579  // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1580  // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1581  // verify that the previously returned 'more' was correct.
1582  if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1583  expected_more = more;
1584  data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1585  int nBytes = 0;
1586  if (!data.empty()) {
1587  LOCK(node.m_sock_mutex);
1588  // There is no socket in case we've already disconnected, or in test cases without
1589  // real connections. In these cases, we bail out immediately and just leave things
1590  // in the send queue and transport.
1591  if (!node.m_sock) {
1592  break;
1593  }
1595 #ifdef MSG_MORE
1596  if (more) {
1597  flags |= MSG_MORE;
1598  }
1599 #endif
1600  nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1601  }
1602  if (nBytes > 0) {
1603  node.m_last_send = GetTime<std::chrono::seconds>();
1604  node.nSendBytes += nBytes;
1605  // Notify transport that bytes have been processed.
1606  node.m_transport->MarkBytesSent(nBytes);
1607  // Update statistics per message type.
1608  if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1609  node.AccountForSentBytes(msg_type, nBytes);
1610  }
1611  nSentSize += nBytes;
1612  if ((size_t)nBytes != data.size()) {
1613  // could not send full message; stop sending more
1614  break;
1615  }
1616  } else {
1617  if (nBytes < 0) {
1618  // error
1619  int nErr = WSAGetLastError();
1620  if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1621  LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
1622  node.CloseSocketDisconnect();
1623  }
1624  }
1625  break;
1626  }
1627  }
1628 
1629  node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1630 
1631  if (it == node.vSendMsg.end()) {
1632  assert(node.m_send_memusage == 0);
1633  }
1634  node.vSendMsg.erase(node.vSendMsg.begin(), it);
1635  return {nSentSize, data_left};
1636 }
1637 
1647 {
1648  std::vector<NodeEvictionCandidate> vEvictionCandidates;
1649  {
1650 
1652  for (const CNode* node : m_nodes) {
1653  if (node->fDisconnect)
1654  continue;
1655  NodeEvictionCandidate candidate{
1656  .id = node->GetId(),
1657  .m_connected = node->m_connected,
1658  .m_min_ping_time = node->m_min_ping_time,
1659  .m_last_block_time = node->m_last_block_time,
1660  .m_last_tx_time = node->m_last_tx_time,
1661  .fRelevantServices = node->m_has_all_wanted_services,
1662  .m_relay_txs = node->m_relays_txs.load(),
1663  .fBloomFilter = node->m_bloom_filter_loaded.load(),
1664  .nKeyedNetGroup = node->nKeyedNetGroup,
1665  .prefer_evict = node->m_prefer_evict,
1666  .m_is_local = node->addr.IsLocal(),
1667  .m_network = node->ConnectedThroughNetwork(),
1668  .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1669  .m_conn_type = node->m_conn_type,
1670  };
1671  vEvictionCandidates.push_back(candidate);
1672  }
1673  }
1674  const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1675  if (!node_id_to_evict) {
1676  return false;
1677  }
1679  for (CNode* pnode : m_nodes) {
1680  if (pnode->GetId() == *node_id_to_evict) {
1681  LogPrint(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
1682  pnode->fDisconnect = true;
1683  return true;
1684  }
1685  }
1686  return false;
1687 }
1688 
1689 void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1690  struct sockaddr_storage sockaddr;
1691  socklen_t len = sizeof(sockaddr);
1692  auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1693  CAddress addr;
1694 
1695  if (!sock) {
1696  const int nErr = WSAGetLastError();
1697  if (nErr != WSAEWOULDBLOCK) {
1698  LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1699  }
1700  return;
1701  }
1702 
1703  if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1704  LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1705  } else {
1706  addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
1707  }
1708 
1709  const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
1710 
1711  NetPermissionFlags permission_flags = NetPermissionFlags::None;
1712  hListenSocket.AddSocketPermissionFlags(permission_flags);
1713 
1714  CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1715 }
1716 
1717 void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1718  NetPermissionFlags permission_flags,
1719  const CAddress& addr_bind,
1720  const CAddress& addr)
1721 {
1722  int nInbound = 0;
1723 
1724  AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1725 
1726  {
1728  for (const CNode* pnode : m_nodes) {
1729  if (pnode->IsInboundConn()) nInbound++;
1730  }
1731  }
1732 
1733  if (!fNetworkActive) {
1734  LogPrint(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1735  return;
1736  }
1737 
1738  if (!sock->IsSelectable()) {
1739  LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1740  return;
1741  }
1742 
1743  // According to the internet TCP_NODELAY is not carried into accepted sockets
1744  // on all platforms. Set it again here just to be sure.
1745  const int on{1};
1746  if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1747  LogPrint(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1748  addr.ToStringAddrPort());
1749  }
1750 
1751  // Don't accept connections from banned peers.
1752  bool banned = m_banman && m_banman->IsBanned(addr);
1753  if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1754  {
1755  LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1756  return;
1757  }
1758 
1759  // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1760  bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1761  if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1762  {
1763  LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1764  return;
1765  }
1766 
1767  if (nInbound >= m_max_inbound)
1768  {
1769  if (!AttemptToEvictConnection()) {
1770  // No connection to evict, disconnect the new connection
1771  LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1772  return;
1773  }
1774  }
1775 
1776  NodeId id = GetNewNodeId();
1778 
1779  const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1780  // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1781  // detected, so use it whenever we signal NODE_P2P_V2.
1783 
1784  CNode* pnode = new CNode(id,
1785  std::move(sock),
1786  addr,
1787  CalculateKeyedNetGroup(addr),
1788  nonce,
1789  addr_bind,
1790  /*addrNameIn=*/"",
1792  inbound_onion,
1793  CNodeOptions{
1794  .permission_flags = permission_flags,
1795  .prefer_evict = discouraged,
1796  .recv_flood_size = nReceiveFloodSize,
1797  .use_v2transport = use_v2transport,
1798  });
1799  pnode->AddRef();
1800  m_msgproc->InitializeNode(*pnode, nLocalServices);
1801 
1802  LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1803 
1804  {
1806  m_nodes.push_back(pnode);
1807  }
1808 
1809  // We received a new connection, harvest entropy from the time (and our peer count)
1810  RandAddEvent((uint32_t)id);
1811 }
1812 
1813 bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1814 {
1816  std::optional<int> max_connections;
1817  switch (conn_type) {
1820  return false;
1822  max_connections = m_max_outbound_full_relay;
1823  break;
1825  max_connections = m_max_outbound_block_relay;
1826  break;
1827  // no limit for ADDR_FETCH because -seednode has no limit either
1829  break;
1830  // no limit for FEELER connections since they're short-lived
1832  break;
1833  } // no default case, so the compiler can warn about missing cases
1834 
1835  // Count existing connections
1836  int existing_connections = WITH_LOCK(m_nodes_mutex,
1837  return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1838 
1839  // Max connections of specified type already exist
1840  if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1841 
1842  // Max total outbound connections already exist
1843  CSemaphoreGrant grant(*semOutbound, true);
1844  if (!grant) return false;
1845 
1846  OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1847  return true;
1848 }
1849 
1851 {
1854 
1855  // Use a temporary variable to accumulate desired reconnections, so we don't need
1856  // m_reconnections_mutex while holding m_nodes_mutex.
1857  decltype(m_reconnections) reconnections_to_add;
1858 
1859  {
1861 
1862  if (!fNetworkActive) {
1863  // Disconnect any connected nodes
1864  for (CNode* pnode : m_nodes) {
1865  if (!pnode->fDisconnect) {
1866  LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
1867  pnode->fDisconnect = true;
1868  }
1869  }
1870  }
1871 
1872  // Disconnect unused nodes
1873  std::vector<CNode*> nodes_copy = m_nodes;
1874  for (CNode* pnode : nodes_copy)
1875  {
1876  if (pnode->fDisconnect)
1877  {
1878  // remove from m_nodes
1879  m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1880 
1881  // Add to reconnection list if appropriate. We don't reconnect right here, because
1882  // the creation of a connection is a blocking operation (up to several seconds),
1883  // and we don't want to hold up the socket handler thread for that long.
1884  if (pnode->m_transport->ShouldReconnectV1()) {
1885  reconnections_to_add.push_back({
1886  .addr_connect = pnode->addr,
1887  .grant = std::move(pnode->grantOutbound),
1888  .destination = pnode->m_dest,
1889  .conn_type = pnode->m_conn_type,
1890  .use_v2transport = false});
1891  LogPrint(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1892  }
1893 
1894  // release outbound grant (if any)
1895  pnode->grantOutbound.Release();
1896 
1897  // close socket and cleanup
1898  pnode->CloseSocketDisconnect();
1899 
1900  // update connection count by network
1901  if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1902 
1903  // hold in disconnected pool until all refs are released
1904  pnode->Release();
1905  m_nodes_disconnected.push_back(pnode);
1906  }
1907  }
1908  }
1909  {
1910  // Delete disconnected nodes
1911  std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1912  for (CNode* pnode : nodes_disconnected_copy)
1913  {
1914  // Destroy the object only after other threads have stopped using it.
1915  if (pnode->GetRefCount() <= 0) {
1916  m_nodes_disconnected.remove(pnode);
1917  DeleteNode(pnode);
1918  }
1919  }
1920  }
1921  {
1922  // Move entries from reconnections_to_add to m_reconnections.
1924  m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1925  }
1926 }
1927 
1929 {
1930  size_t nodes_size;
1931  {
1933  nodes_size = m_nodes.size();
1934  }
1935  if(nodes_size != nPrevNodeCount) {
1936  nPrevNodeCount = nodes_size;
1937  if (m_client_interface) {
1938  m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1939  }
1940  }
1941 }
1942 
1943 bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1944 {
1945  return node.m_connected + m_peer_connect_timeout < now;
1946 }
1947 
1949 {
1950  // Tests that see disconnects after using mocktime can start nodes with a
1951  // large timeout. For example, -peertimeout=999999999.
1952  const auto now{GetTime<std::chrono::seconds>()};
1953  const auto last_send{node.m_last_send.load()};
1954  const auto last_recv{node.m_last_recv.load()};
1955 
1956  if (!ShouldRunInactivityChecks(node, now)) return false;
1957 
1958  if (last_recv.count() == 0 || last_send.count() == 0) {
1959  LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
1960  return true;
1961  }
1962 
1963  if (now > last_send + TIMEOUT_INTERVAL) {
1964  LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
1965  return true;
1966  }
1967 
1968  if (now > last_recv + TIMEOUT_INTERVAL) {
1969  LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
1970  return true;
1971  }
1972 
1973  if (!node.fSuccessfullyConnected) {
1974  LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
1975  return true;
1976  }
1977 
1978  return false;
1979 }
1980 
1982 {
1983  Sock::EventsPerSock events_per_sock;
1984 
1985  for (const ListenSocket& hListenSocket : vhListenSocket) {
1986  events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
1987  }
1988 
1989  for (CNode* pnode : nodes) {
1990  bool select_recv = !pnode->fPauseRecv;
1991  bool select_send;
1992  {
1993  LOCK(pnode->cs_vSend);
1994  // Sending is possible if either there are bytes to send right now, or if there will be
1995  // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
1996  // determines both of these in a single call.
1997  const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
1998  select_send = !to_send.empty() || more;
1999  }
2000  if (!select_recv && !select_send) continue;
2001 
2002  LOCK(pnode->m_sock_mutex);
2003  if (pnode->m_sock) {
2004  Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2005  events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2006  }
2007  }
2008 
2009  return events_per_sock;
2010 }
2011 
2013 {
2015 
2016  Sock::EventsPerSock events_per_sock;
2017 
2018  {
2019  const NodesSnapshot snap{*this, /*shuffle=*/false};
2020 
2021  const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2022 
2023  // Check for the readiness of the already connected sockets and the
2024  // listening sockets in one call ("readiness" as in poll(2) or
2025  // select(2)). If none are ready, wait for a short while and return
2026  // empty sets.
2027  events_per_sock = GenerateWaitSockets(snap.Nodes());
2028  if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2029  interruptNet.sleep_for(timeout);
2030  }
2031 
2032  // Service (send/receive) each of the already connected nodes.
2033  SocketHandlerConnected(snap.Nodes(), events_per_sock);
2034  }
2035 
2036  // Accept new connections from listening sockets.
2037  SocketHandlerListening(events_per_sock);
2038 }
2039 
2040 void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2041  const Sock::EventsPerSock& events_per_sock)
2042 {
2044 
2045  for (CNode* pnode : nodes) {
2046  if (interruptNet)
2047  return;
2048 
2049  //
2050  // Receive
2051  //
2052  bool recvSet = false;
2053  bool sendSet = false;
2054  bool errorSet = false;
2055  {
2056  LOCK(pnode->m_sock_mutex);
2057  if (!pnode->m_sock) {
2058  continue;
2059  }
2060  const auto it = events_per_sock.find(pnode->m_sock);
2061  if (it != events_per_sock.end()) {
2062  recvSet = it->second.occurred & Sock::RECV;
2063  sendSet = it->second.occurred & Sock::SEND;
2064  errorSet = it->second.occurred & Sock::ERR;
2065  }
2066  }
2067 
2068  if (sendSet) {
2069  // Send data
2070  auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2071  if (bytes_sent) {
2072  RecordBytesSent(bytes_sent);
2073 
2074  // If both receiving and (non-optimistic) sending were possible, we first attempt
2075  // sending. If that succeeds, but does not fully drain the send queue, do not
2076  // attempt to receive. This avoids needlessly queueing data if the remote peer
2077  // is slow at receiving data, by means of TCP flow control. We only do this when
2078  // sending actually succeeded to make sure progress is always made; otherwise a
2079  // deadlock would be possible when both sides have data to send, but neither is
2080  // receiving.
2081  if (data_left) recvSet = false;
2082  }
2083  }
2084 
2085  if (recvSet || errorSet)
2086  {
2087  // typical socket buffer is 8K-64K
2088  uint8_t pchBuf[0x10000];
2089  int nBytes = 0;
2090  {
2091  LOCK(pnode->m_sock_mutex);
2092  if (!pnode->m_sock) {
2093  continue;
2094  }
2095  nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2096  }
2097  if (nBytes > 0)
2098  {
2099  bool notify = false;
2100  if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2101  pnode->CloseSocketDisconnect();
2102  }
2103  RecordBytesRecv(nBytes);
2104  if (notify) {
2105  pnode->MarkReceivedMsgsForProcessing();
2107  }
2108  }
2109  else if (nBytes == 0)
2110  {
2111  // socket closed gracefully
2112  if (!pnode->fDisconnect) {
2113  LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
2114  }
2115  pnode->CloseSocketDisconnect();
2116  }
2117  else if (nBytes < 0)
2118  {
2119  // error
2120  int nErr = WSAGetLastError();
2121  if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2122  {
2123  if (!pnode->fDisconnect) {
2124  LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
2125  }
2126  pnode->CloseSocketDisconnect();
2127  }
2128  }
2129  }
2130 
2131  if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2132  }
2133 }
2134 
2136 {
2137  for (const ListenSocket& listen_socket : vhListenSocket) {
2138  if (interruptNet) {
2139  return;
2140  }
2141  const auto it = events_per_sock.find(listen_socket.sock);
2142  if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2143  AcceptConnection(listen_socket);
2144  }
2145  }
2146 }
2147 
2149 {
2151 
2152  while (!interruptNet)
2153  {
2154  DisconnectNodes();
2156  SocketHandler();
2157  }
2158 }
2159 
2161 {
2162  {
2163  LOCK(mutexMsgProc);
2164  fMsgProcWake = true;
2165  }
2166  condMsgProc.notify_one();
2167 }
2168 
2170 {
2171  FastRandomContext rng;
2172  std::vector<std::string> seeds = m_params.DNSSeeds();
2173  Shuffle(seeds.begin(), seeds.end(), rng);
2174  int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2175  int found = 0;
2176 
2177  if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2178  // When -forcednsseed is provided, query all.
2179  seeds_right_now = seeds.size();
2180  } else if (addrman.Size() == 0) {
2181  // If we have no known peers, query all.
2182  // This will occur on the first run, or if peers.dat has been
2183  // deleted.
2184  seeds_right_now = seeds.size();
2185  }
2186 
2187  // goal: only query DNS seed if address need is acute
2188  // * If we have a reasonable number of peers in addrman, spend
2189  // some time trying them first. This improves user privacy by
2190  // creating fewer identifying DNS requests, reduces trust by
2191  // giving seeds less influence on the network topology, and
2192  // reduces traffic to the seeds.
2193  // * When querying DNS seeds query a few at once, this ensures
2194  // that we don't give DNS seeds the ability to eclipse nodes
2195  // that query them.
2196  // * If we continue having problems, eventually query all the
2197  // DNS seeds, and if that fails too, also try the fixed seeds.
2198  // (done in ThreadOpenConnections)
2199  const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2200 
2201  for (const std::string& seed : seeds) {
2202  if (seeds_right_now == 0) {
2203  seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2204 
2205  if (addrman.Size() > 0) {
2206  LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2207  std::chrono::seconds to_wait = seeds_wait_time;
2208  while (to_wait.count() > 0) {
2209  // if sleeping for the MANY_PEERS interval, wake up
2210  // early to see if we have enough peers and can stop
2211  // this thread entirely freeing up its resources
2212  std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2213  if (!interruptNet.sleep_for(w)) return;
2214  to_wait -= w;
2215 
2216  int nRelevant = 0;
2217  {
2219  for (const CNode* pnode : m_nodes) {
2220  if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2221  }
2222  }
2223  if (nRelevant >= 2) {
2224  if (found > 0) {
2225  LogPrintf("%d addresses found from DNS seeds\n", found);
2226  LogPrintf("P2P peers available. Finished DNS seeding.\n");
2227  } else {
2228  LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2229  }
2230  return;
2231  }
2232  }
2233  }
2234  }
2235 
2236  if (interruptNet) return;
2237 
2238  // hold off on querying seeds if P2P network deactivated
2239  if (!fNetworkActive) {
2240  LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2241  do {
2242  if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2243  } while (!fNetworkActive);
2244  }
2245 
2246  LogPrintf("Loading addresses from DNS seed %s\n", seed);
2247  // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2248  // for the base dns seed domain in chainparams
2249  if (HaveNameProxy()) {
2250  AddAddrFetch(seed);
2251  } else {
2252  std::vector<CAddress> vAdd;
2253  constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2254  std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2255  CNetAddr resolveSource;
2256  if (!resolveSource.SetInternal(host)) {
2257  continue;
2258  }
2259  // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2260  // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2261  // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2262  // returned.
2263  unsigned int nMaxIPs = 32;
2264  const auto addresses{LookupHost(host, nMaxIPs, true)};
2265  if (!addresses.empty()) {
2266  for (const CNetAddr& ip : addresses) {
2267  CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2268  addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2269  vAdd.push_back(addr);
2270  found++;
2271  }
2272  addrman.Add(vAdd, resolveSource);
2273  } else {
2274  // If the seed does not support a subdomain with our desired service bits,
2275  // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2276  // base dns seed domain in chainparams
2277  AddAddrFetch(seed);
2278  }
2279  }
2280  --seeds_right_now;
2281  }
2282  LogPrintf("%d addresses found from DNS seeds\n", found);
2283 }
2284 
2286 {
2287  const auto start{SteadyClock::now()};
2288 
2290 
2291  LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2292  addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2293 }
2294 
2296 {
2298  std::string strDest;
2299  {
2301  if (m_addr_fetches.empty())
2302  return;
2303  strDest = m_addr_fetches.front();
2304  m_addr_fetches.pop_front();
2305  }
2306  // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2307  // peer doesn't support it or immediately disconnects us for another reason.
2309  CAddress addr;
2310  CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2311  if (grant) {
2312  OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2313  }
2314 }
2315 
2317 {
2319 }
2320 
2322 {
2324  LogPrint(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2325 }
2326 
2328 {
2329  LogPrint(BCLog::NET, "enabling extra block-relay-only peers\n");
2331 }
2332 
2333 // Return the number of peers we have over our outbound connection limit
2334 // Exclude peers that are marked for disconnect, or are going to be
2335 // disconnected soon (eg ADDR_FETCH and FEELER)
2336 // Also exclude peers that haven't finished initial connection handshake yet
2337 // (so that we don't decide we're over our desired connection limit, and then
2338 // evict some peer that has finished the handshake)
2340 {
2341  int full_outbound_peers = 0;
2342  {
2344  for (const CNode* pnode : m_nodes) {
2345  if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2346  ++full_outbound_peers;
2347  }
2348  }
2349  }
2350  return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2351 }
2352 
2354 {
2355  int block_relay_peers = 0;
2356  {
2358  for (const CNode* pnode : m_nodes) {
2359  if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2360  ++block_relay_peers;
2361  }
2362  }
2363  }
2364  return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2365 }
2366 
2367 std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2368 {
2369  std::unordered_set<Network> networks{};
2370  for (int n = 0; n < NET_MAX; n++) {
2371  enum Network net = (enum Network)n;
2372  if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2373  if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2374  networks.insert(net);
2375  }
2376  }
2377  return networks;
2378 }
2379 
2381 {
2383  return m_network_conn_counts[net] > 1;
2384 }
2385 
2386 bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2387 {
2388  std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2389  Shuffle(nets.begin(), nets.end(), FastRandomContext());
2390 
2392  for (const auto net : nets) {
2393  if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2394  network = net;
2395  return true;
2396  }
2397  }
2398 
2399  return false;
2400 }
2401 
2402 void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
2403 {
2406  FastRandomContext rng;
2407  // Connect to specific addresses
2408  if (!connect.empty())
2409  {
2410  // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2411  // peer doesn't support it or immediately disconnects us for another reason.
2413  for (int64_t nLoop = 0;; nLoop++)
2414  {
2415  for (const std::string& strAddr : connect)
2416  {
2417  CAddress addr(CService(), NODE_NONE);
2418  OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2419  for (int i = 0; i < 10 && i < nLoop; i++)
2420  {
2421  if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2422  return;
2423  }
2424  }
2425  if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2426  return;
2428  }
2429  }
2430 
2431  // Initiate network connections
2432  auto start = GetTime<std::chrono::microseconds>();
2433 
2434  // Minimum time before next feeler connection (in microseconds).
2435  auto next_feeler = GetExponentialRand(start, FEELER_INTERVAL);
2436  auto next_extra_block_relay = GetExponentialRand(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2437  auto next_extra_network_peer{GetExponentialRand(start, EXTRA_NETWORK_PEER_INTERVAL)};
2438  const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2439  bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2440  const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2441 
2442  if (!add_fixed_seeds) {
2443  LogPrintf("Fixed seeds are disabled\n");
2444  }
2445 
2446  while (!interruptNet)
2447  {
2448  ProcessAddrFetch();
2449 
2450  if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2451  return;
2452 
2454 
2455  CSemaphoreGrant grant(*semOutbound);
2456  if (interruptNet)
2457  return;
2458 
2459  const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2460  if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2461  // When the node starts with an empty peers.dat, there are a few other sources of peers before
2462  // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2463  // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2464  // 60 seconds for any of those sources to populate addrman.
2465  bool add_fixed_seeds_now = false;
2466  // It is cheapest to check if enough time has passed first.
2467  if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2468  add_fixed_seeds_now = true;
2469  LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2470  }
2471 
2472  // Perform cheap checks before locking a mutex.
2473  else if (!dnsseed && !use_seednodes) {
2475  if (m_added_node_params.empty()) {
2476  add_fixed_seeds_now = true;
2477  LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2478  }
2479  }
2480 
2481  if (add_fixed_seeds_now) {
2482  std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2483  // We will not make outgoing connections to peers that are unreachable
2484  // (e.g. because of -onlynet configuration).
2485  // Therefore, we do not add them to addrman in the first place.
2486  // In case previously unreachable networks become reachable
2487  // (e.g. in case of -onlynet changes by the user), fixed seeds will
2488  // be loaded only for networks for which we have no addresses.
2489  seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2490  [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2491  seed_addrs.end());
2492  CNetAddr local;
2493  local.SetInternal("fixedseeds");
2494  addrman.Add(seed_addrs, local);
2495  add_fixed_seeds = false;
2496  LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2497  }
2498  }
2499 
2500  //
2501  // Choose an address to connect to based on most recently seen
2502  //
2503  CAddress addrConnect;
2504 
2505  // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2506  int nOutboundFullRelay = 0;
2507  int nOutboundBlockRelay = 0;
2508  int outbound_privacy_network_peers = 0;
2509  std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2510 
2511  {
2513  for (const CNode* pnode : m_nodes) {
2514  if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2515  if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2516 
2517  // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2518  switch (pnode->m_conn_type) {
2519  // We currently don't take inbound connections into account. Since they are
2520  // free to make, an attacker could make them to prevent us from connecting to
2521  // certain peers.
2523  // Short-lived outbound connections should not affect how we select outbound
2524  // peers from addrman.
2527  break;
2531  const CAddress address{pnode->addr};
2532  if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2533  // Since our addrman-groups for these networks are
2534  // random, without relation to the route we
2535  // take to connect to these peers or to the
2536  // difficulty in obtaining addresses with diverse
2537  // groups, we don't worry about diversity with
2538  // respect to our addrman groups when connecting to
2539  // these networks.
2540  ++outbound_privacy_network_peers;
2541  } else {
2542  outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2543  }
2544  } // no default case, so the compiler can warn about missing cases
2545  }
2546  }
2547 
2549  auto now = GetTime<std::chrono::microseconds>();
2550  bool anchor = false;
2551  bool fFeeler = false;
2552  std::optional<Network> preferred_net;
2553 
2554  // Determine what type of connection to open. Opening
2555  // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2556  // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2557  // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2558  // until we hit our block-relay-only peer limit.
2559  // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2560  // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2561  // these conditions are met, check to see if it's time to try an extra
2562  // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2563  // timer to decide if we should open a FEELER.
2564 
2565  if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2566  conn_type = ConnectionType::BLOCK_RELAY;
2567  anchor = true;
2568  } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2569  // OUTBOUND_FULL_RELAY
2570  } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2571  conn_type = ConnectionType::BLOCK_RELAY;
2572  } else if (GetTryNewOutboundPeer()) {
2573  // OUTBOUND_FULL_RELAY
2574  } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2575  // Periodically connect to a peer (using regular outbound selection
2576  // methodology from addrman) and stay connected long enough to sync
2577  // headers, but not much else.
2578  //
2579  // Then disconnect the peer, if we haven't learned anything new.
2580  //
2581  // The idea is to make eclipse attacks very difficult to pull off,
2582  // because every few minutes we're finding a new peer to learn headers
2583  // from.
2584  //
2585  // This is similar to the logic for trying extra outbound (full-relay)
2586  // peers, except:
2587  // - we do this all the time on an exponential timer, rather than just when
2588  // our tip is stale
2589  // - we potentially disconnect our next-youngest block-relay-only peer, if our
2590  // newest block-relay-only peer delivers a block more recently.
2591  // See the eviction logic in net_processing.cpp.
2592  //
2593  // Because we can promote these connections to block-relay-only
2594  // connections, they do not get their own ConnectionType enum
2595  // (similar to how we deal with extra outbound peers).
2596  next_extra_block_relay = GetExponentialRand(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2597  conn_type = ConnectionType::BLOCK_RELAY;
2598  } else if (now > next_feeler) {
2599  next_feeler = GetExponentialRand(now, FEELER_INTERVAL);
2600  conn_type = ConnectionType::FEELER;
2601  fFeeler = true;
2602  } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2604  now > next_extra_network_peer &&
2605  MaybePickPreferredNetwork(preferred_net)) {
2606  // Full outbound connection management: Attempt to get at least one
2607  // outbound peer from each reachable network by making extra connections
2608  // and then protecting "only" peers from a network during outbound eviction.
2609  // This is not attempted if the user changed -maxconnections to a value
2610  // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2611  // to prevent interactions with otherwise protected outbound peers.
2612  next_extra_network_peer = GetExponentialRand(now, EXTRA_NETWORK_PEER_INTERVAL);
2613  } else {
2614  // skip to next iteration of while loop
2615  continue;
2616  }
2617 
2619 
2620  const auto current_time{NodeClock::now()};
2621  int nTries = 0;
2622  while (!interruptNet)
2623  {
2624  if (anchor && !m_anchors.empty()) {
2625  const CAddress addr = m_anchors.back();
2626  m_anchors.pop_back();
2627  if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2628  !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2629  outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2630  addrConnect = addr;
2631  LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2632  break;
2633  }
2634 
2635  // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2636  // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2637  // already-connected network ranges, ...) before trying new addrman addresses.
2638  nTries++;
2639  if (nTries > 100)
2640  break;
2641 
2642  CAddress addr;
2643  NodeSeconds addr_last_try{0s};
2644 
2645  if (fFeeler) {
2646  // First, try to get a tried table collision address. This returns
2647  // an empty (invalid) address if there are no collisions to try.
2648  std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2649 
2650  if (!addr.IsValid()) {
2651  // No tried table collisions. Select a new table address
2652  // for our feeler.
2653  std::tie(addr, addr_last_try) = addrman.Select(true);
2654  } else if (AlreadyConnectedToAddress(addr)) {
2655  // If test-before-evict logic would have us connect to a
2656  // peer that we're already connected to, just mark that
2657  // address as Good(). We won't be able to initiate the
2658  // connection anyway, so this avoids inadvertently evicting
2659  // a currently-connected peer.
2660  addrman.Good(addr);
2661  // Select a new table address for our feeler instead.
2662  std::tie(addr, addr_last_try) = addrman.Select(true);
2663  }
2664  } else {
2665  // Not a feeler
2666  // If preferred_net has a value set, pick an extra outbound
2667  // peer from that network. The eviction logic in net_processing
2668  // ensures that a peer from another network will be evicted.
2669  std::tie(addr, addr_last_try) = addrman.Select(false, preferred_net);
2670  }
2671 
2672  // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2673  if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2674  continue;
2675  }
2676 
2677  // if we selected an invalid or local address, restart
2678  if (!addr.IsValid() || IsLocal(addr)) {
2679  break;
2680  }
2681 
2682  if (!g_reachable_nets.Contains(addr)) {
2683  continue;
2684  }
2685 
2686  // only consider very recently tried nodes after 30 failed attempts
2687  if (current_time - addr_last_try < 10min && nTries < 30) {
2688  continue;
2689  }
2690 
2691  // for non-feelers, require all the services we'll want,
2692  // for feelers, only require they be a full node (only because most
2693  // SPV clients don't have a good address DB available)
2694  if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2695  continue;
2696  } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2697  continue;
2698  }
2699 
2700  // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2701  if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2702  continue;
2703  }
2704 
2705  // Do not make automatic outbound connections to addnode peers, to
2706  // not use our limited outbound slots for them and to ensure
2707  // addnode connections benefit from their intended protections.
2708  if (AddedNodesContain(addr)) {
2709  LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2710  preferred_net.has_value() ? "network-specific " : "",
2711  ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2712  fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2713  continue;
2714  }
2715 
2716  addrConnect = addr;
2717  break;
2718  }
2719 
2720  if (addrConnect.IsValid()) {
2721  if (fFeeler) {
2722  // Add small amount of random noise before connection to avoid synchronization.
2724  return;
2725  }
2726  LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2727  }
2728 
2729  if (preferred_net != std::nullopt) LogPrint(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2730 
2731  // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2732  // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2733  // Don't record addrman failure attempts when node is offline. This can be identified since all local
2734  // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2735  const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2736  // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2737  const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2738  OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2739  }
2740  }
2741 }
2742 
2743 std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2744 {
2745  std::vector<CAddress> ret;
2747  for (const CNode* pnode : m_nodes) {
2748  if (pnode->IsBlockOnlyConn()) {
2749  ret.push_back(pnode->addr);
2750  }
2751  }
2752 
2753  return ret;
2754 }
2755 
2756 std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2757 {
2758  std::vector<AddedNodeInfo> ret;
2759 
2760  std::list<AddedNodeParams> lAddresses(0);
2761  {
2763  ret.reserve(m_added_node_params.size());
2764  std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2765  }
2766 
2767 
2768  // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2769  std::map<CService, bool> mapConnected;
2770  std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2771  {
2773  for (const CNode* pnode : m_nodes) {
2774  if (pnode->addr.IsValid()) {
2775  mapConnected[pnode->addr] = pnode->IsInboundConn();
2776  }
2777  std::string addrName{pnode->m_addr_name};
2778  if (!addrName.empty()) {
2779  mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2780  }
2781  }
2782  }
2783 
2784  for (const auto& addr : lAddresses) {
2785  CService service(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)));
2786  AddedNodeInfo addedNode{addr, CService(), false, false};
2787  if (service.IsValid()) {
2788  // strAddNode is an IP:port
2789  auto it = mapConnected.find(service);
2790  if (it != mapConnected.end()) {
2791  if (!include_connected) {
2792  continue;
2793  }
2794  addedNode.resolvedAddress = service;
2795  addedNode.fConnected = true;
2796  addedNode.fInbound = it->second;
2797  }
2798  } else {
2799  // strAddNode is a name
2800  auto it = mapConnectedByName.find(addr.m_added_node);
2801  if (it != mapConnectedByName.end()) {
2802  if (!include_connected) {
2803  continue;
2804  }
2805  addedNode.resolvedAddress = it->second.second;
2806  addedNode.fConnected = true;
2807  addedNode.fInbound = it->second.first;
2808  }
2809  }
2810  ret.emplace_back(std::move(addedNode));
2811  }
2812 
2813  return ret;
2814 }
2815 
2817 {
2820  while (true)
2821  {
2822  CSemaphoreGrant grant(*semAddnode);
2823  std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2824  bool tried = false;
2825  for (const AddedNodeInfo& info : vInfo) {
2826  if (!grant) {
2827  // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2828  // the addednodeinfo state might change.
2829  break;
2830  }
2831  tried = true;
2832  CAddress addr(CService(), NODE_NONE);
2833  OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2834  if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2835  grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2836  }
2837  // See if any reconnections are desired.
2839  // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2840  if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2841  return;
2842  }
2843 }
2844 
2845 // if successful, this moves the passed grant to the constructed node
2846 void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2847 {
2849  assert(conn_type != ConnectionType::INBOUND);
2850 
2851  //
2852  // Initiate outbound network connection
2853  //
2854  if (interruptNet) {
2855  return;
2856  }
2857  if (!fNetworkActive) {
2858  return;
2859  }
2860  if (!pszDest) {
2861  bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
2862  if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
2863  return;
2864  }
2865  } else if (FindNode(std::string(pszDest)))
2866  return;
2867 
2868  CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
2869 
2870  if (!pnode)
2871  return;
2872  pnode->grantOutbound = std::move(grant_outbound);
2873 
2874  m_msgproc->InitializeNode(*pnode, nLocalServices);
2875  {
2877  m_nodes.push_back(pnode);
2878 
2879  // update connection count by network
2880  if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
2881  }
2882 }
2883 
2885 
2887 {
2889 
2890  while (!flagInterruptMsgProc)
2891  {
2892  bool fMoreWork = false;
2893 
2894  {
2895  // Randomize the order in which we process messages from/to our peers.
2896  // This prevents attacks in which an attacker exploits having multiple
2897  // consecutive connections in the m_nodes list.
2898  const NodesSnapshot snap{*this, /*shuffle=*/true};
2899 
2900  for (CNode* pnode : snap.Nodes()) {
2901  if (pnode->fDisconnect)
2902  continue;
2903 
2904  // Receive messages
2905  bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
2906  fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
2908  return;
2909  // Send messages
2910  m_msgproc->SendMessages(pnode);
2911 
2913  return;
2914  }
2915  }
2916 
2917  WAIT_LOCK(mutexMsgProc, lock);
2918  if (!fMoreWork) {
2919  condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
2920  }
2921  fMsgProcWake = false;
2922  }
2923 }
2924 
2926 {
2927  static constexpr auto err_wait_begin = 1s;
2928  static constexpr auto err_wait_cap = 5min;
2929  auto err_wait = err_wait_begin;
2930 
2931  bool advertising_listen_addr = false;
2932  i2p::Connection conn;
2933 
2934  auto SleepOnFailure = [&]() {
2935  interruptNet.sleep_for(err_wait);
2936  if (err_wait < err_wait_cap) {
2937  err_wait += 1s;
2938  }
2939  };
2940 
2941  while (!interruptNet) {
2942 
2943  if (!m_i2p_sam_session->Listen(conn)) {
2944  if (advertising_listen_addr && conn.me.IsValid()) {
2945  RemoveLocal(conn.me);
2946  advertising_listen_addr = false;
2947  }
2948  SleepOnFailure();
2949  continue;
2950  }
2951 
2952  if (!advertising_listen_addr) {
2953  AddLocal(conn.me, LOCAL_MANUAL);
2954  advertising_listen_addr = true;
2955  }
2956 
2957  if (!m_i2p_sam_session->Accept(conn)) {
2958  SleepOnFailure();
2959  continue;
2960  }
2961 
2963  CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
2964 
2965  err_wait = err_wait_begin;
2966  }
2967 }
2968 
2969 bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
2970 {
2971  int nOne = 1;
2972 
2973  // Create socket for listening for incoming connections
2974  struct sockaddr_storage sockaddr;
2975  socklen_t len = sizeof(sockaddr);
2976  if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
2977  {
2978  strError = strprintf(Untranslated("Bind address family for %s not supported"), addrBind.ToStringAddrPort());
2980  return false;
2981  }
2982 
2983  std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily());
2984  if (!sock) {
2985  strError = strprintf(Untranslated("Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
2987  return false;
2988  }
2989 
2990  // Allow binding if the port is still in TIME_WAIT state after
2991  // the program was closed and restarted.
2992  if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
2993  strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
2994  LogPrintf("%s\n", strError.original);
2995  }
2996 
2997  // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
2998  // and enable it by default or not. Try to enable it, if possible.
2999  if (addrBind.IsIPv6()) {
3000 #ifdef IPV6_V6ONLY
3001  if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3002  strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3003  LogPrintf("%s\n", strError.original);
3004  }
3005 #endif
3006 #ifdef WIN32
3007  int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3008  if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3009  strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
3010  LogPrintf("%s\n", strError.original);
3011  }
3012 #endif
3013  }
3014 
3015  if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3016  int nErr = WSAGetLastError();
3017  if (nErr == WSAEADDRINUSE)
3018  strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), PACKAGE_NAME);
3019  else
3020  strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3022  return false;
3023  }
3024  LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3025 
3026  // Listen for incoming connections
3027  if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3028  {
3029  strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3031  return false;
3032  }
3033 
3034  vhListenSocket.emplace_back(std::move(sock), permissions);
3035  return true;
3036 }
3037 
3038 void Discover()
3039 {
3040  if (!fDiscover)
3041  return;
3042 
3043 #ifdef WIN32
3044  // Get local host IP
3045  char pszHostName[256] = "";
3046  if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
3047  {
3048  const std::vector<CNetAddr> addresses{LookupHost(pszHostName, 0, true)};
3049  for (const CNetAddr& addr : addresses)
3050  {
3051  if (AddLocal(addr, LOCAL_IF))
3052  LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToStringAddr());
3053  }
3054  }
3055 #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
3056  // Get local host ip
3057  struct ifaddrs* myaddrs;
3058  if (getifaddrs(&myaddrs) == 0)
3059  {
3060  for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
3061  {
3062  if (ifa->ifa_addr == nullptr) continue;
3063  if ((ifa->ifa_flags & IFF_UP) == 0) continue;
3064  if (strcmp(ifa->ifa_name, "lo") == 0) continue;
3065  if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
3066  if (ifa->ifa_addr->sa_family == AF_INET)
3067  {
3068  struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
3069  CNetAddr addr(s4->sin_addr);
3070  if (AddLocal(addr, LOCAL_IF))
3071  LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
3072  }
3073  else if (ifa->ifa_addr->sa_family == AF_INET6)
3074  {
3075  struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
3076  CNetAddr addr(s6->sin6_addr);
3077  if (AddLocal(addr, LOCAL_IF))
3078  LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToStringAddr());
3079  }
3080  }
3081  freeifaddrs(myaddrs);
3082  }
3083 #endif
3084 }
3085 
3087 {
3088  LogPrintf("%s: %s\n", __func__, active);
3089 
3090  if (fNetworkActive == active) {
3091  return;
3092  }
3093 
3094  fNetworkActive = active;
3095 
3096  if (m_client_interface) {
3097  m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3098  }
3099 }
3100 
3101 CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3102  const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3103  : addrman(addrman_in)
3104  , m_netgroupman{netgroupman}
3105  , nSeed0(nSeed0In)
3106  , nSeed1(nSeed1In)
3107  , m_params(params)
3108 {
3109  SetTryNewOutboundPeer(false);
3110 
3111  Options connOptions;
3112  Init(connOptions);
3113  SetNetworkActive(network_active);
3114 }
3115 
3117 {
3118  return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3119 }
3120 
3122 {
3123  return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3124 }
3125 
3126 uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3127 {
3128  CNetAddr a;
3129  return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
3130 }
3131 
3132 bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3133 {
3134  const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3135 
3136  bilingual_str strError;
3137  if (!BindListenPort(addr, strError, permissions)) {
3139  m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3140  }
3141  return false;
3142  }
3143 
3144  if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3145  AddLocal(addr, LOCAL_BIND);
3146  }
3147 
3148  return true;
3149 }
3150 
3151 bool CConnman::InitBinds(const Options& options)
3152 {
3153  bool fBound = false;
3154  for (const auto& addrBind : options.vBinds) {
3155  fBound |= Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None);
3156  }
3157  for (const auto& addrBind : options.vWhiteBinds) {
3158  fBound |= Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags);
3159  }
3160  for (const auto& addr_bind : options.onion_binds) {
3161  fBound |= Bind(addr_bind, BF_DONT_ADVERTISE, NetPermissionFlags::None);
3162  }
3163  if (options.bind_on_any) {
3164  struct in_addr inaddr_any;
3165  inaddr_any.s_addr = htonl(INADDR_ANY);
3166  struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
3167  fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::None);
3168  fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::None);
3169  }
3170  return fBound;
3171 }
3172 
3173 bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3174 {
3176  Init(connOptions);
3177 
3178  if (fListen && !InitBinds(connOptions)) {
3179  if (m_client_interface) {
3180  m_client_interface->ThreadSafeMessageBox(
3181  _("Failed to listen on any port. Use -listen=0 if you want this."),
3183  }
3184  return false;
3185  }
3186 
3187  Proxy i2p_sam;
3188  if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3189  m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3190  i2p_sam, &interruptNet);
3191  }
3192 
3193  for (const auto& strDest : connOptions.vSeedNodes) {
3194  AddAddrFetch(strDest);
3195  }
3196 
3197  if (m_use_addrman_outgoing) {
3198  // Load addresses from anchors.dat
3200  if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3202  }
3203  LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3204  }
3205 
3206  if (m_client_interface) {
3207  m_client_interface->InitMessage(_("Starting network threads…").translated);
3208  }
3209 
3210  fAddressesInitialized = true;
3211 
3212  if (semOutbound == nullptr) {
3213  // initialize semaphore
3214  semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3215  }
3216  if (semAddnode == nullptr) {
3217  // initialize semaphore
3218  semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3219  }
3220 
3221  //
3222  // Start threads
3223  //
3224  assert(m_msgproc);
3225  interruptNet.reset();
3226  flagInterruptMsgProc = false;
3227 
3228  {
3229  LOCK(mutexMsgProc);
3230  fMsgProcWake = false;
3231  }
3232 
3233  // Send and receive from sockets, accept connections
3234  threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3235 
3236  if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3237  LogPrintf("DNS seeding disabled\n");
3238  else
3239  threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3240 
3241  // Initiate manual connections
3242  threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3243 
3244  if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3245  if (m_client_interface) {
3246  m_client_interface->ThreadSafeMessageBox(
3247  _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3249  }
3250  return false;
3251  }
3252  if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3253  threadOpenConnections = std::thread(
3254  &util::TraceThread, "opencon",
3255  [this, connect = connOptions.m_specified_outgoing] { ThreadOpenConnections(connect); });
3256  }
3257 
3258  // Process messages
3259  threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3260 
3261  if (m_i2p_sam_session) {
3263  std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3264  }
3265 
3266  // Dump network addresses
3267  scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3268 
3269  // Run the ASMap Health check once and then schedule it to run every 24h.
3270  if (m_netgroupman.UsingASMap()) {
3271  ASMapHealthCheck();
3273  }
3274 
3275  return true;
3276 }
3277 
3279 {
3280 public:
3281  CNetCleanup() = default;
3282 
3284  {
3285 #ifdef WIN32
3286  // Shutdown Windows Sockets
3287  WSACleanup();
3288 #endif
3289  }
3290 };
3292 
3294 {
3295  {
3296  LOCK(mutexMsgProc);
3297  flagInterruptMsgProc = true;
3298  }
3299  condMsgProc.notify_all();
3300 
3301  interruptNet();
3303 
3304  if (semOutbound) {
3305  for (int i=0; i<m_max_automatic_outbound; i++) {
3306  semOutbound->post();
3307  }
3308  }
3309 
3310  if (semAddnode) {
3311  for (int i=0; i<m_max_addnode; i++) {
3312  semAddnode->post();
3313  }
3314  }
3315 }
3316 
3318 {
3319  if (threadI2PAcceptIncoming.joinable()) {
3320  threadI2PAcceptIncoming.join();
3321  }
3322  if (threadMessageHandler.joinable())
3323  threadMessageHandler.join();
3324  if (threadOpenConnections.joinable())
3325  threadOpenConnections.join();
3326  if (threadOpenAddedConnections.joinable())
3328  if (threadDNSAddressSeed.joinable())
3329  threadDNSAddressSeed.join();
3330  if (threadSocketHandler.joinable())
3331  threadSocketHandler.join();
3332 }
3333 
3335 {
3336  if (fAddressesInitialized) {
3337  DumpAddresses();
3338  fAddressesInitialized = false;
3339 
3340  if (m_use_addrman_outgoing) {
3341  // Anchor connections are only dumped during clean shutdown.
3342  std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3343  if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3344  anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3345  }
3347  }
3348  }
3349 
3350  // Delete peer connections.
3351  std::vector<CNode*> nodes;
3352  WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3353  for (CNode* pnode : nodes) {
3354  pnode->CloseSocketDisconnect();
3355  DeleteNode(pnode);
3356  }
3357 
3358  for (CNode* pnode : m_nodes_disconnected) {
3359  DeleteNode(pnode);
3360  }
3361  m_nodes_disconnected.clear();
3362  vhListenSocket.clear();
3363  semOutbound.reset();
3364  semAddnode.reset();
3365 }
3366 
3368 {
3369  assert(pnode);
3370  m_msgproc->FinalizeNode(*pnode);
3371  delete pnode;
3372 }
3373 
3375 {
3376  Interrupt();
3377  Stop();
3378 }
3379 
3380 std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3381 {
3382  std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3383  if (m_banman) {
3384  addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3385  [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3386  addresses.end());
3387  }
3388  return addresses;
3389 }
3390 
3391 std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3392 {
3393  auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3395  .Write(requestor.ConnectedThroughNetwork())
3396  .Write(local_socket_bytes)
3397  // For outbound connections, the port of the bound address is randomly
3398  // assigned by the OS and would therefore not be useful for seeding.
3399  .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3400  .Finalize();
3401  const auto current_time = GetTime<std::chrono::microseconds>();
3402  auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3403  CachedAddrResponse& cache_entry = r.first->second;
3404  if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3405  cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3406  // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3407  // and the usefulness of ADDR responses to honest users.
3408  //
3409  // Longer cache lifetime makes it more difficult for an attacker to scrape
3410  // enough AddrMan data to maliciously infer something useful.
3411  // By the time an attacker scraped enough AddrMan records, most of
3412  // the records should be old enough to not leak topology info by
3413  // e.g. analyzing real-time changes in timestamps.
3414  //
3415  // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3416  // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3417  // most of it could be scraped (considering that timestamps are updated via
3418  // ADDR self-announcements and when nodes communicate).
3419  // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3420  // (because even several timestamps of the same handful of nodes may leak privacy).
3421  //
3422  // On the other hand, longer cache lifetime makes ADDR responses
3423  // outdated and less useful for an honest requestor, e.g. if most nodes
3424  // in the ADDR response are no longer active.
3425  //
3426  // However, the churn in the network is known to be rather low. Since we consider
3427  // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3428  // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3429  // in terms of the freshness of the response.
3430  cache_entry.m_cache_entry_expiration = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6));
3431  }
3432  return cache_entry.m_addrs_response_cache;
3433 }
3434 
3436 {
3437  const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3438  const bool resolved_is_valid{resolved.IsValid()};
3439 
3441  for (const auto& it : m_added_node_params) {
3442  if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3443  }
3444 
3445  m_added_node_params.push_back(add);
3446  return true;
3447 }
3448 
3449 bool CConnman::RemoveAddedNode(const std::string& strNode)
3450 {
3452  for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3453  if (strNode == it->m_added_node) {
3454  m_added_node_params.erase(it);
3455  return true;
3456  }
3457  }
3458  return false;
3459 }
3460 
3461 bool CConnman::AddedNodesContain(const CAddress& addr) const
3462 {
3464  const std::string addr_str{addr.ToStringAddr()};
3465  const std::string addr_port_str{addr.ToStringAddrPort()};
3467  return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3468  && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3469  [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3470 }
3471 
3473 {
3475  if (flags == ConnectionDirection::Both) // Shortcut if we want total
3476  return m_nodes.size();
3477 
3478  int nNum = 0;
3479  for (const auto& pnode : m_nodes) {
3480  if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3481  nNum++;
3482  }
3483  }
3484 
3485  return nNum;
3486 }
3487 
3488 uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3489 {
3490  return m_netgroupman.GetMappedAS(addr);
3491 }
3492 
3493 void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3494 {
3495  vstats.clear();
3497  vstats.reserve(m_nodes.size());
3498  for (CNode* pnode : m_nodes) {
3499  vstats.emplace_back();
3500  pnode->CopyStats(vstats.back());
3501  vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3502  }
3503 }
3504 
3505 bool CConnman::DisconnectNode(const std::string& strNode)
3506 {
3508  if (CNode* pnode = FindNode(strNode)) {
3509  LogPrint(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
3510  pnode->fDisconnect = true;
3511  return true;
3512  }
3513  return false;
3514 }
3515 
3517 {
3518  bool disconnected = false;
3520  for (CNode* pnode : m_nodes) {
3521  if (subnet.Match(pnode->addr)) {
3522  LogPrint(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
3523  pnode->fDisconnect = true;
3524  disconnected = true;
3525  }
3526  }
3527  return disconnected;
3528 }
3529 
3531 {
3532  return DisconnectNode(CSubNet(addr));
3533 }
3534 
3536 {
3538  for(CNode* pnode : m_nodes) {
3539  if (id == pnode->GetId()) {
3540  LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
3541  pnode->fDisconnect = true;
3542  return true;
3543  }
3544  }
3545  return false;
3546 }
3547 
3548 void CConnman::RecordBytesRecv(uint64_t bytes)
3549 {
3550  nTotalBytesRecv += bytes;
3551 }
3552 
3553 void CConnman::RecordBytesSent(uint64_t bytes)
3554 {
3557 
3558  nTotalBytesSent += bytes;
3559 
3560  const auto now = GetTime<std::chrono::seconds>();
3561  if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3562  {
3563  // timeframe expired, reset cycle
3564  nMaxOutboundCycleStartTime = now;
3565  nMaxOutboundTotalBytesSentInCycle = 0;
3566  }
3567 
3568  nMaxOutboundTotalBytesSentInCycle += bytes;
3569 }
3570 
3572 {
3575  return nMaxOutboundLimit;
3576 }
3577 
3578 std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3579 {
3580  return MAX_UPLOAD_TIMEFRAME;
3581 }
3582 
3583 std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3584 {
3588 }
3589 
3590 std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3591 {
3593 
3594  if (nMaxOutboundLimit == 0)
3595  return 0s;
3596 
3597  if (nMaxOutboundCycleStartTime.count() == 0)
3598  return MAX_UPLOAD_TIMEFRAME;
3599 
3600  const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3601  const auto now = GetTime<std::chrono::seconds>();
3602  return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3603 }
3604 
3605 bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3606 {
3609  if (nMaxOutboundLimit == 0)
3610  return false;
3611 
3612  if (historicalBlockServingLimit)
3613  {
3614  // keep a large enough buffer to at least relay each block once
3615  const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3616  const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3617  if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3618  return true;
3619  }
3620  else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3621  return true;
3622 
3623  return false;
3624 }
3625 
3627 {
3630  if (nMaxOutboundLimit == 0)
3631  return 0;
3632 
3633  return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3634 }
3635 
3637 {
3638  return nTotalBytesRecv;
3639 }
3640 
3642 {
3645  return nTotalBytesSent;
3646 }
3647 
3649 {
3650  return nLocalServices;
3651 }
3652 
3653 static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3654 {
3655  if (use_v2transport) {
3656  return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3657  } else {
3658  return std::make_unique<V1Transport>(id);
3659  }
3660 }
3661 
3663  std::shared_ptr<Sock> sock,
3664  const CAddress& addrIn,
3665  uint64_t nKeyedNetGroupIn,
3666  uint64_t nLocalHostNonceIn,
3667  const CAddress& addrBindIn,
3668  const std::string& addrNameIn,
3669  ConnectionType conn_type_in,
3670  bool inbound_onion,
3671  CNodeOptions&& node_opts)
3672  : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3673  m_permission_flags{node_opts.permission_flags},
3674  m_sock{sock},
3675  m_connected{GetTime<std::chrono::seconds>()},
3676  addr{addrIn},
3677  addrBind{addrBindIn},
3678  m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3679  m_dest(addrNameIn),
3680  m_inbound_onion{inbound_onion},
3681  m_prefer_evict{node_opts.prefer_evict},
3682  nKeyedNetGroup{nKeyedNetGroupIn},
3683  m_conn_type{conn_type_in},
3684  id{idIn},
3685  nLocalHostNonce{nLocalHostNonceIn},
3686  m_recv_flood_size{node_opts.recv_flood_size},
3687  m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3688 {
3689  if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3690 
3691  for (const std::string &msg : getAllNetMessageTypes())
3692  mapRecvBytesPerMsgType[msg] = 0;
3693  mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3694 
3695  if (fLogIPs) {
3696  LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3697  } else {
3698  LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
3699  }
3700 }
3701 
3703 {
3705 
3706  size_t nSizeAdded = 0;
3707  for (const auto& msg : vRecvMsg) {
3708  // vRecvMsg contains only completed CNetMessage
3709  // the single possible partially deserialized message are held by TransportDeserializer
3710  nSizeAdded += msg.m_raw_message_size;
3711  }
3712 
3714  m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3715  m_msg_process_queue_size += nSizeAdded;
3716  fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3717 }
3718 
3719 std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3720 {
3722  if (m_msg_process_queue.empty()) return std::nullopt;
3723 
3724  std::list<CNetMessage> msgs;
3725  // Just take one message
3726  msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3727  m_msg_process_queue_size -= msgs.front().m_raw_message_size;
3728  fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3729 
3730  return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3731 }
3732 
3734 {
3735  return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3736 }
3737 
3739 {
3741  size_t nMessageSize = msg.data.size();
3742  LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3743  if (gArgs.GetBoolArg("-capturemessages", false)) {
3744  CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3745  }
3746 
3747  TRACE6(net, outbound_message,
3748  pnode->GetId(),
3749  pnode->m_addr_name.c_str(),
3750  pnode->ConnectionTypeAsString().c_str(),
3751  msg.m_type.c_str(),
3752  msg.data.size(),
3753  msg.data.data()
3754  );
3755 
3756  size_t nBytesSent = 0;
3757  {
3758  LOCK(pnode->cs_vSend);
3759  // Check if the transport still has unsent bytes, and indicate to it that we're about to
3760  // give it a message to send.
3761  const auto& [to_send, more, _msg_type] =
3762  pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3763  const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3764 
3765  // Update memory usage of send buffer.
3766  pnode->m_send_memusage += msg.GetMemoryUsage();
3767  if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3768  // Move message to vSendMsg queue.
3769  pnode->vSendMsg.push_back(std::move(msg));
3770 
3771  // If there was nothing to send before, and there is now (predicted by the "more" value
3772  // returned by the GetBytesToSend call above), attempt "optimistic write":
3773  // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3774  // doing a send, try sending from the calling thread if the queue was empty before.
3775  // With a V1Transport, more will always be true here, because adding a message always
3776  // results in sendable bytes there, but with V2Transport this is not the case (it may
3777  // still be in the handshake).
3778  if (queue_was_empty && more) {
3779  std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3780  }
3781  }
3782  if (nBytesSent) RecordBytesSent(nBytesSent);
3783 }
3784 
3785 bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3786 {
3787  CNode* found = nullptr;
3789  for (auto&& pnode : m_nodes) {
3790  if(pnode->GetId() == id) {
3791  found = pnode;
3792  break;
3793  }
3794  }
3795  return found != nullptr && NodeFullyConnected(found) && func(found);
3796 }
3797 
3799 {
3800  return CSipHasher(nSeed0, nSeed1).Write(id);
3801 }
3802 
3803 uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3804 {
3805  std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3806 
3808 }
3809 
3811 {
3814  while (true) {
3815  // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3816  decltype(m_reconnections) todo;
3817  {
3819  if (m_reconnections.empty()) break;
3820  todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3821  }
3822 
3823  auto& item = *todo.begin();
3824  OpenNetworkConnection(item.addr_connect,
3825  // We only reconnect if the first attempt to connect succeeded at
3826  // connection time, but then failed after the CNode object was
3827  // created. Since we already know connecting is possible, do not
3828  // count failure to reconnect.
3829  /*fCountFailure=*/false,
3830  std::move(item.grant),
3831  item.destination.empty() ? nullptr : item.destination.c_str(),
3832  item.conn_type,
3833  item.use_v2transport);
3834  }
3835 }
3836 
3838 {
3839  const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3840  const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3841  std::vector<CNetAddr> clearnet_addrs;
3842  clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3843  std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3844  [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3845  std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3846  [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3847  m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3848 }
3849 
3850 // Dump binary message to file, with timestamp.
3851 static void CaptureMessageToFile(const CAddress& addr,
3852  const std::string& msg_type,
3854  bool is_incoming)
3855 {
3856  // Note: This function captures the message at the time of processing,
3857  // not at socket receive/send time.
3858  // This ensures that the messages are always in order from an application
3859  // layer (processing) perspective.
3860  auto now = GetTime<std::chrono::microseconds>();
3861 
3862  // Windows folder names cannot include a colon
3863  std::string clean_addr = addr.ToStringAddrPort();
3864  std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3865 
3866  fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3867  fs::create_directories(base_path);
3868 
3869  fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
3870  AutoFile f{fsbridge::fopen(path, "ab")};
3871 
3872  ser_writedata64(f, now.count());
3873  f << Span{msg_type};
3874  for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
3875  f << uint8_t{'\0'};
3876  }
3877  uint32_t size = data.size();
3878  ser_writedata32(f, size);
3879  f << data;
3880 }
3881 
3882 std::function<void(const CAddress& addr,
3883  const std::string& msg_type,
3885  bool is_incoming)>
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:231
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:182
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:225
ArgsManager gArgs
Definition: args.cpp:41
int ret
#define PACKAGE_NAME
int flags
Definition: bitcoin-tx.cpp:530
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:89
Stochastic address manager.
Definition: addrman.h:88
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, std::optional< Network > network=std::nullopt) const
Choose an address to connect to.
Definition: addrman.cpp:1320
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1305
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1290
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1310
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1300
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1315
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1295
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1325
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:360
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:232
bool IsArgSet(const std::string &strArg) const
Return true if the given argument has been manually set.
Definition: args.cpp:369
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:480
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:505
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:389
Span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
Span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(Span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
bool Decrypt(Span< const std::byte > input, Span< const std::byte > aad, bool &ignore, Span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
void Encrypt(Span< const std::byte > contents, Span< const std::byte > aad, bool ignore, Span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
Span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
A CService with information about it as peer.
Definition: protocol.h:332
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:423
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:421
static constexpr SerParams V2_NETWORK
Definition: protocol.h:374
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:81
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:116
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:119
uint16_t GetDefaultPort() const
Definition: chainparams.h:95
const MessageStartChars & MessageStart() const
Definition: chainparams.h:94
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1617
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2367
std::condition_variable condMsgProc
Definition: net.h:1514
std::thread threadMessageHandler
Definition: net.h:1537
nSendBufferMaxSize
Definition: net.h:1081
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2886
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3785
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1850
m_max_outbound_full_relay
Definition: net.h:1073
void DeleteNode(CNode *pnode)
Definition: net.cpp:3367
bool RemoveAddedNode(const std::string &node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3449
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1646
bool AlreadyConnectedToAddress(const CAddress &addr)
Determine whether we're already connected to a given address, in order to avoid initiating duplicate ...
Definition: net.cpp:360
whitelist_relay
Definition: net.h:1101
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1610
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true)
Definition: net.cpp:3101
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2316
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3121
void Stop()
Definition: net.h:1113
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3810
std::thread threadI2PAcceptIncoming
Definition: net.h:1538
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2321
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1516
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3293
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2169
m_onion_binds
Definition: net.h:1099
Sock::EventsPerSock GenerateWaitSockets(Span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:1981
NodeId GetNewNodeId()
Definition: net.cpp:3116
CThreadInterrupt interruptNet
This is signaled when network activity should cease.
Definition: net.h:1524
std::unique_ptr< CSemaphore > semAddnode
Definition: net.h:1470
std::atomic< NodeId > nLastNodeId
Definition: net.h:1424
m_max_automatic_outbound
Definition: net.h:1075
int GetExtraBlockRelayCount() const
Definition: net.cpp:2353
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2160
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3605
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3571
std::thread threadDNSAddressSeed
Definition: net.h:1533
void ASMapHealthCheck()
Definition: net.cpp:3837
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2040
void ThreadI2PAcceptIncoming()
Definition: net.cpp:2925
const uint64_t nSeed1
Definition: net.h:1509
void StartExtraBlockRelayPeers()
Definition: net.cpp:2327
const NetGroupManager & m_netgroupman
Definition: net.h:1413
m_banman
Definition: net.h:1079
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1506
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3578
unsigned int nPrevNodeCount
Definition: net.h:1425
void NotifyNumConnectionsChanged()
Definition: net.cpp:1928
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3648
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3435
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3505
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1543
bool InitBinds(const Options &options)
Definition: net.cpp:3151
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:389
vWhitelistedRangeOutgoing
Definition: net.h:1089
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:129
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1409
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2743
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3798
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1813
Mutex m_total_bytes_sent_mutex
Definition: net.h:1388
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2756
std::unique_ptr< CSemaphore > semOutbound
Definition: net.h:1469
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2816
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3132
std::thread threadOpenConnections
Definition: net.h:1536
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3472
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3488
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2295
Mutex m_addr_fetches_mutex
Definition: net.h:1415
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:1948
m_peer_connect_timeout
Definition: net.h:1083
CNode * FindNode(const CNetAddr &ip)
Definition: net.cpp:327
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1586
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3493
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3173
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1509
void ThreadOpenConnections(std::vector< std::string > connect) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2402
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2012
int GetExtraFullOutboundCount() const
Definition: net.cpp:2339
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3590
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3636
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1559
RecursiveMutex m_nodes_mutex
Definition: net.h:1423
m_max_outbound_block_relay
Definition: net.h:1074
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3733
m_client_interface
Definition: net.h:1078
nReceiveFloodSize
Definition: net.h:1082
const CChainParams & m_params
Definition: net.h:1649
void SetNetworkActive(bool active)
Definition: net.cpp:3086
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2380
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3461
whitelist_forcerelay
Definition: net.h:1100
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3583
AddrMan & addrman
Definition: net.h:1412
m_max_automatic_connections
Definition: net.h:1072
uint64_t CalculateKeyedNetGroup(const CAddress &ad) const
Definition: net.cpp:3803
m_msgproc
Definition: net.h:1080
Mutex mutexMsgProc
Definition: net.h:1515
m_max_inbound
Definition: net.h:1076
bool fAddressesInitialized
Definition: net.h:1411
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3380
~CConnman()
Definition: net.cpp:3374
void StopThreads()
Definition: net.cpp:3317
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant &&grant_outbound, const char *strDest, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:2846
std::thread threadOpenAddedConnections
Definition: net.h:1535
Mutex m_added_nodes_mutex
Definition: net.h:1420
vWhitelistedRangeIncoming
Definition: net.h:1088
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2148
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:547
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3553
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:365
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1572
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3641
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2386
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3548
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1943
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3626
nLocalServices
Definition: net.h:1071
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CAddress &addr_bind, const CAddress &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1717
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3738
void StopNodes()
Definition: net.cpp:3334
int m_max_addnode
Definition: net.h:1491
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1422
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1531
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1455
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1389
std::atomic< bool > fNetworkActive
Definition: net.h:1410
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1549
m_use_addrman_outgoing
Definition: net.h:1077
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2135
void DumpAddresses()
Definition: net.cpp:2285
std::thread threadSocketHandler
Definition: net.h:1534
nMaxOutboundLimit
Definition: net.h:1086
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1689
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:2969
An encapsulated private key.
Definition: key.h:33
Message header.
Definition: protocol.h:29
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
static constexpr size_t COMMAND_SIZE
Definition: protocol.h:31
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:675
std::string ToStringAddr() const
Definition: netaddress.cpp:581
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:208
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:693
bool IsRoutable() const
Definition: netaddress.cpp:463
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:188
bool IsValid() const
Definition: netaddress.cpp:425
bool IsIPv4() const
Definition: netaddress.h:157
bool IsIPv6() const
Definition: netaddress.h:158
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:169
enum Network GetNetwork() const
Definition: netaddress.cpp:497
bool IsI2P() const
Definition: netaddress.h:175
~CNetCleanup()
Definition: net.cpp:3283
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:233
Information about a peer.
Definition: net.h:672
const CAddress addrBind
Definition: net.h:710
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:705
std::atomic< int > nVersion
Definition: net.h:716
bool IsInboundConn() const
Definition: net.h:811
std::atomic_bool fPauseRecv
Definition: net.h:736
NodeId GetId() const
Definition: net.h:894
std::atomic< int64_t > nTimeOffset
Definition: net.h:706
const std::string m_addr_name
Definition: net.h:711
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:584
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:591
std::string ConnectionTypeAsString() const
Definition: net.h:948
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::list< CNetMessage > vRecvMsg
Definition: net.h:962
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:569
CSemaphoreGrant grantOutbound
Definition: net.h:732
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3702
Mutex m_subver_mutex
Definition: net.h:717
Mutex cs_vSend
Definition: net.h:696
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3719
Mutex m_msg_process_queue_mutex
Definition: net.h:964
const ConnectionType m_conn_type
Definition: net.h:739
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:579
const size_t m_recv_flood_size
Definition: net.h:961
bool ReceiveMsgBytes(Span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:638
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:875
bool IsManualOrFullOutboundConn() const
Definition: net.h:783
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:676
const NetPermissionFlags m_permission_flags
Definition: net.h:678
Mutex m_addr_local_mutex
Definition: net.h:970
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:879
Mutex cs_vRecv
Definition: net.h:698
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
Mutex m_sock_mutex
Definition: net.h:697
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:703
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:562
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, CNodeOptions &&node_opts={})
Definition: net.cpp:3662
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:536
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:702
CNode * AddRef()
Definition: net.h:933
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:224
std::string addrLocal
Definition: net.h:212
bool fInbound
Definition: net.h:198
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:222
Network m_network
Definition: net.h:218
NodeId nodeid
Definition: net.h:188
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
RAII-style semaphore lock.
Definition: sync.h:353
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
uint16_t GetPort() const
Definition: netaddress.cpp:834
bool SetSockAddr(const struct sockaddr *paddr)
Definition: netaddress.cpp:807
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:821
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:861
std::string ToStringAddrPort() const
Definition: netaddress.cpp:902
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
bool sleep_for(Clock::duration rel_time) EXCLUSIVE_LOCKS_REQUIRED(!mut)
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
Fast randomness source.
Definition: random.h:145
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:239
void fillrand(Span< std::byte > output)
Fill a byte Span with random bytes.
Definition: random.cpp:682
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range)
Return the time point advanced by a uniform random duration.
Definition: random.h:232
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:185
uint64_t randrange(uint64_t range) noexcept
Generate a random integer in the range [0..range).
Definition: random.h:203
Different type to mark Mutex at global scope.
Definition: sync.h:140
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:995
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream (and hides GetVersion/GetType).
Definition: serialize.h:1124
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
constexpr std::size_t size() const noexcept
Definition: span.h:187
constexpr C * data() const noexcept
Definition: span.h:174
constexpr C * end() const noexcept
Definition: span.h:176
constexpr C * begin() const noexcept
Definition: span.h:175
CONSTEXPR_IF_NOT_DEBUG Span< C > first(std::size_t count) const noexcept
Definition: span.h:205
CONSTEXPR_IF_NOT_DEBUG Span< C > subspan(std::size_t offset) const noexcept
Definition: span.h:195
std::tuple< Span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:310
int readData(Span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:735
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:801
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:689
const NodeId m_node_id
Definition: net.h:370
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:405
const MessageStartChars m_magic_bytes
Definition: net.h:369
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:863
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:753
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:847
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:682
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:397
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:826
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:385
bool ReceivedBytes(Span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:426
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:371
int readHeader(Span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:694
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:418
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:762
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1490
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:633
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:579
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1233
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:575
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1529
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1039
SendState
State type that controls the sender side.
Definition: net.h:544
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:581
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:458
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:948
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1164
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1077
bool ReceivedBytes(Span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1282
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:577
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1538
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1473
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:979
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1137
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1030
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1412
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:454
static std::optional< std::string > GetMessageType(Span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1372
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1512
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1441
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:975
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:479
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1010
constexpr unsigned char * begin()
Definition: uint256.h:68
Path class wrapper to block calls to the fs::path(std::string) implicit constructor and the fs::path:...
Definition: fs.h:33
256-bit opaque blob.
Definition: uint256.h:106
#define WSAEWOULDBLOCK
Definition: compat.h:50
#define SOCKET_ERROR
Definition: compat.h:57
#define WSAGetLastError()
Definition: compat.h:48
#define WSAEMSGSIZE
Definition: compat.h:52
#define MSG_NOSIGNAL
Definition: compat.h:107
#define MSG_DONTWAIT
Definition: compat.h:112
void * sockopt_arg_type
Definition: compat.h:82
#define WSAEINPROGRESS
Definition: compat.h:54
#define WSAEADDRINUSE
Definition: compat.h:55
#define WSAEINTR
Definition: compat.h:53
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
static uint32_t ReadLE32(const unsigned char *ptr)
Definition: common.h:20
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:372
#define VERSION
bool fLogIPs
Definition: logging.cpp:40
#define LogPrintLevel(category, level,...)
Definition: logging.h:251
#define LogPrint(category,...)
Definition: logging.h:263
#define LogError(...)
Definition: logging.h:241
#define LogPrintf(...)
Definition: logging.h:244
unsigned int nonce
Definition: miner_tests.cpp:71
@ PROXY
Definition: logging.h:56
@ NET
Definition: logging.h:41
const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.cpp:31
const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.cpp:43
const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.cpp:41
const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.cpp:25
const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.cpp:33
const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.cpp:24
const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.cpp:16
const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.cpp:29
const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.cpp:36
const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.cpp:44
const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.cpp:30
const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.cpp:37
const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.cpp:27
const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.cpp:40
const char * TX
The tx message transmits a single transaction.
Definition: protocol.cpp:23
const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.cpp:32
const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.cpp:15
const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.cpp:21
const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.cpp:35
const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.cpp:22
const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.cpp:19
const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.cpp:39
const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.cpp:42
const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.cpp:28
const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.cpp:20
const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.cpp:45
const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.cpp:38
const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.cpp:18
static path u8path(const std::string &utf8_str)
Definition: fs.h:75
static bool create_directories(const std::filesystem::path &p)
Create directory (and if necessary its parents), unless the leaf directory already exists or is a sym...
Definition: fs.h:190
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:26
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:30
Definition: init.h:25
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:49
uint16_t GetListenPort()
Definition: net.cpp:135
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:192
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:68
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:321
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:109
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:105
void RemoveLocal(const CService &addr)
Definition: net.cpp:302
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:238
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:93
@ BF_REPORT_ERROR
Definition: net.cpp:95
@ BF_NONE
Definition: net.cpp:94
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:100
bool fDiscover
Definition: net.cpp:115
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:110
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:65
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:90
static CAddress GetBindAddress(const Sock &sock)
Get the bind address for a socket as CAddress.
Definition: net.cpp:376
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:269
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:87
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:81
bool fListen
Definition: net.cpp:116
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:59
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:231
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:79
static const uint64_t RANDOMIZER_ID_ADDRCACHE
Definition: net.cpp:111
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:119
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:107
#define X(name)
Definition: net.cpp:590
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:62
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:218
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:117
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:3851
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:80
static int GetnScore(const CService &addr)
Definition: net.cpp:223
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:162
std::function< void(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:3886
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3291
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3653
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:84
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3038
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:310
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:91
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:63
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:61
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:89
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:90
int64_t NodeId
Definition: net.h:97
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:87
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:59
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:67
@ LOCAL_MANUAL
Definition: net.h:153
@ LOCAL_BIND
Definition: net.h:151
@ LOCAL_IF
Definition: net.h:150
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:71
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:104
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:184
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:107
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:699
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:713
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:867
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:674
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:166
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:610
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:691
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:209
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:777
std::function< std::unique_ptr< Sock >const sa_family_t &)> CreateSock
Socket factory.
Definition: netbase.cpp:543
ConnectionDirection
Definition: netbase.h:33
const std::vector< std::string > & getAllNetMessageTypes()
Definition: protocol.cpp:167
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:319
ServiceFlags
nServices flags
Definition: protocol.h:274
@ NODE_NONE
Definition: protocol.h:277
@ NODE_P2P_V2
Definition: protocol.h:295
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:325
std::chrono::microseconds GetExponentialRand(std::chrono::microseconds now, std::chrono::seconds average_interval)
Return a timestamp in the future sampled from an exponential distribution (https://en....
Definition: random.cpp:764
uint256 GetRandHash() noexcept
Definition: random.cpp:650
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:641
constexpr auto GetRandMillis
Definition: random.h:98
void Shuffle(I first, I last, R &&rng)
More efficient than using std::shuffle on a FastRandomContext.
Definition: random.h:265
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:68
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:78
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
constexpr auto MakeUCharSpan(V &&v) -> decltype(UCharSpanCast(Span{std::forward< V >(v)}))
Like the Span constructor, but for (const) unsigned char member types only.
Definition: span.h:304
unsigned char * UCharCast(char *c)
Definition: span.h:288
Span(T *, EndOrSize) -> Span< T >
Span< const std::byte > MakeByteSpan(V &&v) noexcept
Definition: span.h:277
Span< std::byte > MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:282
std::string m_added_node
Definition: net.h:100
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1436
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1438
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1437
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1255
std::shared_ptr< Sock > sock
Definition: net.h:1254
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1053
std::vector< CService > onion_binds
Definition: net.h:1055
std::vector< std::string > m_specified_outgoing
Definition: net.h:1060
std::vector< CService > vBinds
Definition: net.h:1054
bool m_i2p_accept_incoming
Definition: net.h:1062
std::vector< std::string > vSeedNodes
Definition: net.h:1050
bool m_use_addrman_outgoing
Definition: net.h:1059
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1058
NetPermissionFlags permission_flags
Definition: net.h:663
std::vector< unsigned char > data
Definition: net.h:130
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:121
An ElligatorSwift-encoded public key.
Definition: pubkey.h:305
static constexpr size_t size()
Definition: pubkey.h:322
uint16_t nPort
Definition: net.h:176
int nScore
Definition: net.h:175
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:21
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:260
TransportProtocolType transport_type
Definition: net.h:259
Bilingual messages:
Definition: translation.h:18
std::string original
Definition: translation.h:19
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
#define WAIT_LOCK(cs, name)
Definition: sync.h:262
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
int64_t GetTime()
Definition: time.cpp:48
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:54
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:23
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1162
#define TRACE6(context, event, a, b, c, d, e, f)
Definition: trace.h:38
bilingual_str _(const char *psz)
Translation function.
Definition: translation.h:74
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:48
std::string HexStr(const Span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56