Bitcoin Core 30.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8#include <net.h>
9
10#include <addrdb.h>
11#include <addrman.h>
12#include <banman.h>
13#include <clientversion.h>
14#include <common/args.h>
15#include <common/netif.h>
16#include <compat/compat.h>
17#include <consensus/consensus.h>
18#include <crypto/sha256.h>
19#include <i2p.h>
20#include <key.h>
21#include <logging.h>
22#include <memusage.h>
23#include <net_permissions.h>
24#include <netaddress.h>
25#include <netbase.h>
26#include <node/eviction.h>
27#include <node/interface_ui.h>
28#include <protocol.h>
29#include <random.h>
30#include <scheduler.h>
31#include <util/fs.h>
32#include <util/sock.h>
33#include <util/strencodings.h>
34#include <util/thread.h>
35#include <util/threadinterrupt.h>
36#include <util/trace.h>
37#include <util/translation.h>
38#include <util/vector.h>
39
40#include <algorithm>
41#include <array>
42#include <cmath>
43#include <cstdint>
44#include <cstring>
45#include <functional>
46#include <optional>
47#include <string_view>
48#include <unordered_map>
49
50TRACEPOINT_SEMAPHORE(net, closed_connection);
51TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
52TRACEPOINT_SEMAPHORE(net, inbound_connection);
53TRACEPOINT_SEMAPHORE(net, outbound_connection);
54TRACEPOINT_SEMAPHORE(net, outbound_message);
55
57static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
58static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
60const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
61
62// How often to dump addresses to peers.dat
63static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
64
66static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
67
69static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
70
80static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
81static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
82static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
83
85static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
86
87// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
88static constexpr auto FEELER_SLEEP_WINDOW{1s};
89
91static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
92
96 BF_REPORT_ERROR = (1U << 0),
101 BF_DONT_ADVERTISE = (1U << 1),
102};
103
104// The set of sockets cannot be modified while waiting
105// The sleep time needs to be small to avoid new sockets stalling
106static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
107
108const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
109
110static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
111static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
112static const uint64_t RANDOMIZER_ID_NETWORKKEY = 0x0e8a2b136c592a7dULL; // SHA256("networkkey")[0:8]
113//
114// Global state variables
115//
116bool fDiscover = true;
117bool fListen = true;
119std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
120std::string strSubVersion;
121
123{
124 return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
125}
126
127size_t CNetMessage::GetMemoryUsage() const noexcept
128{
129 return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
130}
131
132void CConnman::AddAddrFetch(const std::string& strDest)
133{
135 m_addr_fetches.push_back(strDest);
136}
137
139{
140 // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
141 for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
142 constexpr uint16_t dummy_port = 0;
143
144 const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
145 if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
146 }
147
148 // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
149 // (-whitebind= is required to have ":port").
150 for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
151 NetWhitebindPermissions whitebind;
152 bilingual_str error;
153 if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
155 return whitebind.m_service.GetPort();
156 }
157 }
158 }
159
160 // Otherwise, if -port= is provided, use that. Otherwise use the default port.
161 return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
162}
163
164// Determine the "best" local address for a particular peer.
165[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
166{
167 if (!fListen) return std::nullopt;
168
169 std::optional<CService> addr;
170 int nBestScore = -1;
171 int nBestReachability = -1;
172 {
174 for (const auto& [local_addr, local_service_info] : mapLocalHost) {
175 // For privacy reasons, don't advertise our privacy-network address
176 // to other networks and don't advertise our other-network address
177 // to privacy networks.
178 if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
179 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
180 continue;
181 }
182 const int nScore{local_service_info.nScore};
183 const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
184 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
185 addr.emplace(CService{local_addr, local_service_info.nPort});
186 nBestReachability = nReachability;
187 nBestScore = nScore;
188 }
189 }
190 }
191 return addr;
192}
193
195static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
196{
197 // It'll only connect to one or two seed nodes because once it connects,
198 // it'll get a pile of addresses with newer timestamps.
199 // Seed nodes are given a random 'last seen time' of between one and two
200 // weeks ago.
201 const auto one_week{7 * 24h};
202 std::vector<CAddress> vSeedsOut;
205 while (!s.eof()) {
206 CService endpoint;
207 s >> endpoint;
208 CAddress addr{endpoint, SeedsServiceFlags()};
209 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
210 LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
211 vSeedsOut.push_back(addr);
212 }
213 return vSeedsOut;
214}
215
216// Determine the "best" local address for a particular peer.
217// If none, return the unroutable 0.0.0.0 but filled in with
218// the normal parameters, since the IP may be changed to a useful
219// one by discovery.
221{
222 return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
223}
224
225static int GetnScore(const CService& addr)
226{
228 const auto it = mapLocalHost.find(addr);
229 return (it != mapLocalHost.end()) ? it->second.nScore : 0;
230}
231
232// Is our peer's addrLocal potentially useful as an external IP source?
233[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
234{
235 CService addrLocal = pnode->GetAddrLocal();
236 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
237 g_reachable_nets.Contains(addrLocal);
238}
239
240std::optional<CService> GetLocalAddrForPeer(CNode& node)
241{
242 CService addrLocal{GetLocalAddress(node)};
243 // If discovery is enabled, sometimes give our peer the address it
244 // tells us that it sees us as in case it has a better idea of our
245 // address than we do.
247 if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
248 rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
249 {
250 if (node.IsInboundConn()) {
251 // For inbound connections, assume both the address and the port
252 // as seen from the peer.
253 addrLocal = CService{node.GetAddrLocal()};
254 } else {
255 // For outbound connections, assume just the address as seen from
256 // the peer and leave the port in `addrLocal` as returned by
257 // `GetLocalAddress()` above. The peer has no way to observe our
258 // listening port when we have initiated the connection.
259 addrLocal.SetIP(node.GetAddrLocal());
260 }
261 }
262 if (addrLocal.IsRoutable()) {
263 LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
264 return addrLocal;
265 }
266 // Address is unroutable. Don't advertise.
267 return std::nullopt;
268}
269
271{
273 return mapLocalHost.clear();
274}
275
276// learn a new local address
277bool AddLocal(const CService& addr_, int nScore)
278{
279 CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280
281 if (!addr.IsRoutable())
282 return false;
283
284 if (!fDiscover && nScore < LOCAL_MANUAL)
285 return false;
286
287 if (!g_reachable_nets.Contains(addr))
288 return false;
289
290 LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291
292 {
294 const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295 LocalServiceInfo &info = it->second;
296 if (is_newly_added || nScore >= info.nScore) {
297 info.nScore = nScore + (is_newly_added ? 0 : 1);
298 info.nPort = addr.GetPort();
299 }
300 }
301
302 return true;
303}
304
305bool AddLocal(const CNetAddr &addr, int nScore)
306{
307 return AddLocal(CService(addr, GetListenPort()), nScore);
308}
309
310void RemoveLocal(const CService& addr)
311{
313 LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314 mapLocalHost.erase(addr);
315}
316
318bool SeenLocal(const CService& addr)
319{
321 const auto it = mapLocalHost.find(addr);
322 if (it == mapLocalHost.end()) return false;
323 ++it->second.nScore;
324 return true;
325}
326
327
329bool IsLocal(const CService& addr)
330{
332 return mapLocalHost.count(addr) > 0;
333}
334
335bool CConnman::AlreadyConnectedToHost(std::string_view host) const
336{
338 return std::ranges::any_of(m_nodes, [&host](CNode* node) { return node->m_addr_name == host; });
339}
340
342{
344 return std::ranges::any_of(m_nodes, [&addr_port](CNode* node) { return node->addr == addr_port; });
345}
346
348{
350 return std::ranges::any_of(m_nodes, [&addr](CNode* node) { return node->addr == addr; });
351}
352
354{
356 for (const CNode* pnode : m_nodes) {
357 if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
358 return false;
359 }
360 return true;
361}
362
364static CService GetBindAddress(const Sock& sock)
365{
366 CService addr_bind;
367 struct sockaddr_storage sockaddr_bind;
368 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
369 if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
370 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
371 } else {
372 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
373 }
374 return addr_bind;
375}
376
378 const char* pszDest,
379 bool fCountFailure,
380 ConnectionType conn_type,
381 bool use_v2transport,
382 const std::optional<Proxy>& proxy_override)
383{
385 assert(conn_type != ConnectionType::INBOUND);
386
387 if (pszDest == nullptr) {
388 if (IsLocal(addrConnect))
389 return nullptr;
390
391 // Look for an existing connection
392 if (AlreadyConnectedToAddressPort(addrConnect)) {
393 LogInfo("Failed to open new connection to %s, already connected", addrConnect.ToStringAddrPort());
394 return nullptr;
395 }
396 }
397
398 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
399 use_v2transport ? "v2" : "v1",
400 pszDest ? pszDest : addrConnect.ToStringAddrPort(),
401 Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
402
403 // Resolve
404 const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
406
407 // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
408 std::vector<CAddress> connect_to{};
409 if (pszDest) {
410 std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
411 if (!resolved.empty()) {
412 std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
413 // If the connection is made by name, it can be the case that the name resolves to more than one address.
414 // We don't want to connect any more of them if we are already connected to one
415 for (const auto& r : resolved) {
416 addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
417 if (!addrConnect.IsValid()) {
418 LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
419 return nullptr;
420 }
421 // It is possible that we already have a connection to the IP/port pszDest resolved to.
422 // In that case, drop the connection that was just created.
423 if (AlreadyConnectedToAddressPort(addrConnect)) {
424 LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
425 return nullptr;
426 }
427 // Add the address to the resolved addresses vector so we can try to connect to it later on
428 connect_to.push_back(addrConnect);
429 }
430 } else {
431 // For resolution via proxy
432 connect_to.push_back(addrConnect);
433 }
434 } else {
435 // Connect via addrConnect directly
436 connect_to.push_back(addrConnect);
437 }
438
439 // Connect
440 std::unique_ptr<Sock> sock;
441 Proxy proxy;
442 CService addr_bind;
443 assert(!addr_bind.IsValid());
444 std::unique_ptr<i2p::sam::Session> i2p_transient_session;
445
446 for (auto& target_addr: connect_to) {
447 if (target_addr.IsValid()) {
448 bool use_proxy;
449 if (proxy_override.has_value()) {
450 use_proxy = true;
451 proxy = proxy_override.value();
452 } else {
453 use_proxy = GetProxy(target_addr.GetNetwork(), proxy);
454 }
455 bool proxyConnectionFailed = false;
456
457 if (target_addr.IsI2P() && use_proxy) {
458 i2p::Connection conn;
459 bool connected{false};
460
461 if (m_i2p_sam_session) {
462 connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
463 } else {
464 {
466 if (m_unused_i2p_sessions.empty()) {
467 i2p_transient_session =
468 std::make_unique<i2p::sam::Session>(proxy, m_interrupt_net);
469 } else {
470 i2p_transient_session.swap(m_unused_i2p_sessions.front());
471 m_unused_i2p_sessions.pop();
472 }
473 }
474 connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
475 if (!connected) {
477 if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
478 m_unused_i2p_sessions.emplace(i2p_transient_session.release());
479 }
480 }
481 }
482
483 if (connected) {
484 sock = std::move(conn.sock);
485 addr_bind = conn.me;
486 }
487 } else if (use_proxy) {
488 LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
489 sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
490 } else {
491 // no proxy needed (none set for target network)
492 sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
493 }
494 if (!proxyConnectionFailed) {
495 // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
496 // the proxy, mark this as an attempt.
497 addrman.Attempt(target_addr, fCountFailure);
498 }
499 } else if (pszDest && GetNameProxy(proxy)) {
500 std::string host;
501 uint16_t port{default_port};
502 SplitHostPort(std::string(pszDest), port, host);
503 bool proxyConnectionFailed;
504 sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
505 }
506 // Check any other resolved address (if any) if we fail to connect
507 if (!sock) {
508 continue;
509 }
510
512 std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
513 AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
514
515 // Add node
516 NodeId id = GetNewNodeId();
518 if (!addr_bind.IsValid()) {
519 addr_bind = GetBindAddress(*sock);
520 }
522 .Write(target_addr.GetNetClass())
523 .Write(addr_bind.GetAddrBytes())
524 // For outbound connections, the port of the bound address is randomly
525 // assigned by the OS and would therefore not be useful for seeding.
526 .Write(0)
527 .Finalize();
528 CNode* pnode = new CNode(id,
529 std::move(sock),
530 target_addr,
531 CalculateKeyedNetGroup(target_addr),
532 nonce,
533 addr_bind,
534 pszDest ? pszDest : "",
535 conn_type,
536 /*inbound_onion=*/false,
537 network_id,
539 .permission_flags = permission_flags,
540 .i2p_sam_session = std::move(i2p_transient_session),
541 .recv_flood_size = nReceiveFloodSize,
542 .use_v2transport = use_v2transport,
543 });
544 pnode->AddRef();
545
546 // We're making a new connection, harvest entropy from the time (and our peer count)
547 RandAddEvent((uint32_t)id);
548
549 return pnode;
550 }
551
552 return nullptr;
553}
554
556{
557 fDisconnect = true;
559 if (m_sock) {
560 LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
561 m_sock.reset();
562
563 TRACEPOINT(net, closed_connection,
564 GetId(),
565 m_addr_name.c_str(),
566 ConnectionTypeAsString().c_str(),
568 Ticks<std::chrono::seconds>(m_connected));
569 }
570 m_i2p_sam_session.reset();
571}
572
573void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, std::optional<CNetAddr> addr, const std::vector<NetWhitelistPermissions>& ranges) const {
574 for (const auto& subnet : ranges) {
575 if (addr.has_value() && subnet.m_subnet.Match(addr.value())) {
576 NetPermissions::AddFlag(flags, subnet.m_flags);
577 }
578 }
585 }
586}
587
589{
592 return m_addr_local;
593}
594
595void CNode::SetAddrLocal(const CService& addrLocalIn) {
598 if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
599 m_addr_local = addrLocalIn;
600 }
601}
602
604{
606}
607
609{
611}
612
613#undef X
614#define X(name) stats.name = name
616{
617 stats.nodeid = this->GetId();
618 X(addr);
619 X(addrBind);
621 X(m_last_send);
622 X(m_last_recv);
625 X(m_connected);
626 X(m_addr_name);
627 X(nVersion);
628 {
630 X(cleanSubVer);
631 }
632 stats.fInbound = IsInboundConn();
635 {
636 LOCK(cs_vSend);
637 X(mapSendBytesPerMsgType);
638 X(nSendBytes);
639 }
640 {
641 LOCK(cs_vRecv);
642 X(mapRecvBytesPerMsgType);
643 X(nRecvBytes);
644 Transport::Info info = m_transport->GetInfo();
645 stats.m_transport_type = info.transport_type;
646 if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
647 }
649
652
653 // Leave string empty if addrLocal invalid (not filled in yet)
654 CService addrLocalUnlocked = GetAddrLocal();
655 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
656
657 X(m_conn_type);
658}
659#undef X
660
661bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
662{
663 complete = false;
664 const auto time = GetTime<std::chrono::microseconds>();
665 LOCK(cs_vRecv);
666 m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
667 nRecvBytes += msg_bytes.size();
668 while (msg_bytes.size() > 0) {
669 // absorb network data
670 if (!m_transport->ReceivedBytes(msg_bytes)) {
671 // Serious transport problem, disconnect from the peer.
672 return false;
673 }
674
675 if (m_transport->ReceivedMessageComplete()) {
676 // decompose a transport agnostic CNetMessage from the deserializer
677 bool reject_message{false};
678 CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
679 if (reject_message) {
680 // Message deserialization failed. Drop the message but don't disconnect the peer.
681 // store the size of the corrupt message
682 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
683 continue;
684 }
685
686 // Store received bytes per message type.
687 // To prevent a memory DOS, only allow known message types.
688 auto i = mapRecvBytesPerMsgType.find(msg.m_type);
689 if (i == mapRecvBytesPerMsgType.end()) {
690 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
691 }
692 assert(i != mapRecvBytesPerMsgType.end());
693 i->second += msg.m_raw_message_size;
694
695 // push the message to the process queue,
696 vRecvMsg.push_back(std::move(msg));
697
698 complete = true;
699 }
700 }
701
702 return true;
703}
704
705std::string CNode::LogIP(bool log_ip) const
706{
707 return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
708}
709
710std::string CNode::DisconnectMsg(bool log_ip) const
711{
712 return strprintf("disconnecting peer=%d%s",
713 GetId(),
714 LogIP(log_ip));
715}
716
717V1Transport::V1Transport(const NodeId node_id) noexcept
718 : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
719{
720 LOCK(m_recv_mutex);
721 Reset();
722}
723
725{
726 return {.transport_type = TransportProtocolType::V1, .session_id = {}};
727}
728
729int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
730{
732 // copy data to temporary parsing buffer
733 unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
734 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
735
736 memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
737 nHdrPos += nCopy;
738
739 // if header incomplete, exit
740 if (nHdrPos < CMessageHeader::HEADER_SIZE)
741 return nCopy;
742
743 // deserialize to CMessageHeader
744 try {
745 hdrbuf >> hdr;
746 }
747 catch (const std::exception&) {
748 LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
749 return -1;
750 }
751
752 // Check start string, network magic
753 if (hdr.pchMessageStart != m_magic_bytes) {
754 LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
755 return -1;
756 }
757
758 // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
759 // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
760 // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
761 if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
762 LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
763 return -1;
764 }
765
766 // switch state to reading message data
767 in_data = true;
768
769 return nCopy;
770}
771
772int V1Transport::readData(std::span<const uint8_t> msg_bytes)
773{
775 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
776 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
777
778 if (vRecv.size() < nDataPos + nCopy) {
779 // Allocate up to 256 KiB ahead, but never more than the total message size.
780 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
781 }
782
783 hasher.Write(msg_bytes.first(nCopy));
784 memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
785 nDataPos += nCopy;
786
787 return nCopy;
788}
789
791{
794 if (data_hash.IsNull())
795 hasher.Finalize(data_hash);
796 return data_hash;
797}
798
799CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
800{
802 // Initialize out parameter
803 reject_message = false;
804 // decompose a single CNetMessage from the TransportDeserializer
806 CNetMessage msg(std::move(vRecv));
807
808 // store message type string, time, and sizes
809 msg.m_type = hdr.GetMessageType();
810 msg.m_time = time;
811 msg.m_message_size = hdr.nMessageSize;
812 msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
813
814 uint256 hash = GetMessageHash();
815
816 // We just received a message off the wire, harvest entropy from the time (and the message checksum)
817 RandAddEvent(ReadLE32(hash.begin()));
818
819 // Check checksum and header message type string
820 if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
821 LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
822 SanitizeString(msg.m_type), msg.m_message_size,
823 HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
824 HexStr(hdr.pchChecksum),
825 m_node_id);
826 reject_message = true;
827 } else if (!hdr.IsMessageTypeValid()) {
828 LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
829 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
830 reject_message = true;
831 }
832
833 // Always reset the network deserializer (prepare for the next message)
834 Reset();
835 return msg;
836}
837
839{
840 AssertLockNotHeld(m_send_mutex);
841 // Determine whether a new message can be set.
842 LOCK(m_send_mutex);
843 if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
844
845 // create dbl-sha256 checksum
846 uint256 hash = Hash(msg.data);
847
848 // create header
849 CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
851
852 // serialize header
853 m_header_to_send.clear();
854 VectorWriter{m_header_to_send, 0, hdr};
855
856 // update state
857 m_message_to_send = std::move(msg);
858 m_sending_header = true;
859 m_bytes_sent = 0;
860 return true;
861}
862
863Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
864{
865 AssertLockNotHeld(m_send_mutex);
866 LOCK(m_send_mutex);
867 if (m_sending_header) {
868 return {std::span{m_header_to_send}.subspan(m_bytes_sent),
869 // We have more to send after the header if the message has payload, or if there
870 // is a next message after that.
871 have_next_message || !m_message_to_send.data.empty(),
872 m_message_to_send.m_type
873 };
874 } else {
875 return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
876 // We only have more to send after this message's payload if there is another
877 // message.
878 have_next_message,
879 m_message_to_send.m_type
880 };
881 }
882}
883
884void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
885{
886 AssertLockNotHeld(m_send_mutex);
887 LOCK(m_send_mutex);
888 m_bytes_sent += bytes_sent;
889 if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
890 // We're done sending a message's header. Switch to sending its data bytes.
891 m_sending_header = false;
892 m_bytes_sent = 0;
893 } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
894 // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
895 ClearShrink(m_message_to_send.data);
896 m_bytes_sent = 0;
897 }
898}
899
900size_t V1Transport::GetSendMemoryUsage() const noexcept
901{
904 // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
905 return m_message_to_send.GetMemoryUsage();
906}
907
908namespace {
909
915const std::array<std::string, 33> V2_MESSAGE_IDS = {
916 "", // 12 bytes follow encoding the message type like in V1
945 // Unimplemented message types that are assigned in BIP324:
946 "",
947 "",
948 "",
949 ""
950};
951
952class V2MessageMap
953{
954 std::unordered_map<std::string, uint8_t> m_map;
955
956public:
957 V2MessageMap() noexcept
958 {
959 for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
960 m_map.emplace(V2_MESSAGE_IDS[i], i);
961 }
962 }
963
964 std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
965 {
966 auto it = m_map.find(message_name);
967 if (it == m_map.end()) return std::nullopt;
968 return it->second;
969 }
970};
971
972const V2MessageMap V2_MESSAGE_MAP;
973
974std::vector<uint8_t> GenerateRandomGarbage() noexcept
975{
976 std::vector<uint8_t> ret;
980 return ret;
981}
982
983} // namespace
984
986{
987 AssertLockHeld(m_send_mutex);
988 Assume(m_send_state == SendState::AWAITING_KEY);
989 Assume(m_send_buffer.empty());
990 // Initialize the send buffer with ellswift pubkey + provided garbage.
991 m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
992 std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
993 std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
994 // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
995}
996
997V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
998 : m_cipher{key, ent32},
999 m_initiating{initiating},
1000 m_nodeid{nodeid},
1001 m_v1_fallback{nodeid},
1002 m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1003 m_send_garbage{std::move(garbage)},
1004 m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1005{
1006 Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1007 // Start sending immediately if we're the initiator of the connection.
1008 if (initiating) {
1009 LOCK(m_send_mutex);
1010 StartSendingHandshake();
1011 }
1012}
1013
1014V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1015 : V2Transport{nodeid, initiating, GenerateRandomKey(),
1016 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1017
1019{
1020 AssertLockHeld(m_recv_mutex);
1021 // Enforce allowed state transitions.
1022 switch (m_recv_state) {
1023 case RecvState::KEY_MAYBE_V1:
1024 Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1025 break;
1026 case RecvState::KEY:
1027 Assume(recv_state == RecvState::GARB_GARBTERM);
1028 break;
1029 case RecvState::GARB_GARBTERM:
1030 Assume(recv_state == RecvState::VERSION);
1031 break;
1032 case RecvState::VERSION:
1033 Assume(recv_state == RecvState::APP);
1034 break;
1035 case RecvState::APP:
1036 Assume(recv_state == RecvState::APP_READY);
1037 break;
1038 case RecvState::APP_READY:
1039 Assume(recv_state == RecvState::APP);
1040 break;
1041 case RecvState::V1:
1042 Assume(false); // V1 state cannot be left
1043 break;
1044 }
1045 // Change state.
1046 m_recv_state = recv_state;
1047}
1048
1049void V2Transport::SetSendState(SendState send_state) noexcept
1050{
1051 AssertLockHeld(m_send_mutex);
1052 // Enforce allowed state transitions.
1053 switch (m_send_state) {
1054 case SendState::MAYBE_V1:
1055 Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1056 break;
1057 case SendState::AWAITING_KEY:
1058 Assume(send_state == SendState::READY);
1059 break;
1060 case SendState::READY:
1061 case SendState::V1:
1062 Assume(false); // Final states
1063 break;
1064 }
1065 // Change state.
1066 m_send_state = send_state;
1067}
1068
1070{
1071 AssertLockNotHeld(m_recv_mutex);
1072 LOCK(m_recv_mutex);
1073 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1074
1075 return m_recv_state == RecvState::APP_READY;
1076}
1077
1079{
1080 AssertLockHeld(m_recv_mutex);
1081 AssertLockNotHeld(m_send_mutex);
1082 Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1083 // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1084 // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1085 // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1086 // sending of the key.
1087 std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1088 std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1089 Assume(m_recv_buffer.size() <= v1_prefix.size());
1090 if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1091 // Mismatch with v1 prefix, so we can assume a v2 connection.
1092 SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1093 // Transition the sender to AWAITING_KEY state and start sending.
1094 LOCK(m_send_mutex);
1097 } else if (m_recv_buffer.size() == v1_prefix.size()) {
1098 // Full match with the v1 prefix, so fall back to v1 behavior.
1099 LOCK(m_send_mutex);
1100 std::span<const uint8_t> feedback{m_recv_buffer};
1101 // Feed already received bytes to v1 transport. It should always accept these, because it's
1102 // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1103 bool ret = m_v1_fallback.ReceivedBytes(feedback);
1104 Assume(feedback.empty());
1105 Assume(ret);
1108 // Reset v2 transport buffers to save memory.
1109 ClearShrink(m_recv_buffer);
1110 ClearShrink(m_send_buffer);
1111 } else {
1112 // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1113 }
1114}
1115
1117{
1118 AssertLockHeld(m_recv_mutex);
1119 AssertLockNotHeld(m_send_mutex);
1120 Assume(m_recv_state == RecvState::KEY);
1121 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1122
1123 // As a special exception, if bytes 4-16 of the key on a responder connection match the
1124 // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1125 // (if they did, we'd have switched to V1 state already), assume this is a peer from
1126 // another network, and disconnect them. They will almost certainly disconnect us too when
1127 // they receive our uniformly random key and garbage, but detecting this case specially
1128 // means we can log it.
1129 static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1130 static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1131 if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1132 if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1133 LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1134 HexStr(std::span(m_recv_buffer).first(OFFSET)));
1135 return false;
1136 }
1137 }
1138
1139 if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1140 // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1141 // our key to initialize the encryption ciphers.
1142
1143 // Initialize the ciphers.
1144 EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1145 LOCK(m_send_mutex);
1146 m_cipher.Initialize(ellswift, m_initiating);
1147
1148 // Switch receiver state to GARB_GARBTERM.
1150 m_recv_buffer.clear();
1151
1152 // Switch sender state to READY.
1154
1155 // Append the garbage terminator to the send buffer.
1156 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1157 std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1159 MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1160
1161 // Construct version packet in the send buffer, with the sent garbage data as AAD.
1162 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1164 /*contents=*/VERSION_CONTENTS,
1165 /*aad=*/MakeByteSpan(m_send_garbage),
1166 /*ignore=*/false,
1167 /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1168 // We no longer need the garbage.
1169 ClearShrink(m_send_garbage);
1170 } else {
1171 // We still have to receive more key bytes.
1172 }
1173 return true;
1174}
1175
1177{
1178 AssertLockHeld(m_recv_mutex);
1179 Assume(m_recv_state == RecvState::GARB_GARBTERM);
1181 if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1182 if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1183 // Garbage terminator received. Store garbage to authenticate it as AAD later.
1184 m_recv_aad = std::move(m_recv_buffer);
1185 m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1186 m_recv_buffer.clear();
1188 } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1189 // We've reached the maximum length for garbage + garbage terminator, and the
1190 // terminator still does not match. Abort.
1191 LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1192 return false;
1193 } else {
1194 // We still need to receive more garbage and/or garbage terminator bytes.
1195 }
1196 } else {
1197 // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1198 // more first.
1199 }
1200 return true;
1201}
1202
1204{
1205 AssertLockHeld(m_recv_mutex);
1206 Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1207
1208 // The maximum permitted contents length for a packet, consisting of:
1209 // - 0x00 byte: indicating long message type encoding
1210 // - 12 bytes of message type
1211 // - payload
1212 static constexpr size_t MAX_CONTENTS_LEN =
1214 std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1215
1216 if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1217 // Length descriptor received.
1218 m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1219 if (m_recv_len > MAX_CONTENTS_LEN) {
1220 LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1221 return false;
1222 }
1223 } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1224 // Ciphertext received, decrypt it into m_recv_decode_buffer.
1225 // Note that it is impossible to reach this branch without hitting the branch above first,
1226 // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1227 m_recv_decode_buffer.resize(m_recv_len);
1228 bool ignore{false};
1229 bool ret = m_cipher.Decrypt(
1230 /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1231 /*aad=*/MakeByteSpan(m_recv_aad),
1232 /*ignore=*/ignore,
1233 /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1234 if (!ret) {
1235 LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1236 return false;
1237 }
1238 // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1239 ClearShrink(m_recv_aad);
1240 // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1241 RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1242
1243 // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1244 // decoy, which we simply ignore, use the current state to decide what to do with it.
1245 if (!ignore) {
1246 switch (m_recv_state) {
1247 case RecvState::VERSION:
1248 // Version message received; transition to application phase. The contents is
1249 // ignored, but can be used for future extensions.
1251 break;
1252 case RecvState::APP:
1253 // Application message decrypted correctly. It can be extracted using GetMessage().
1255 break;
1256 default:
1257 // Any other state is invalid (this function should not have been called).
1258 Assume(false);
1259 }
1260 }
1261 // Wipe the receive buffer where the next packet will be received into.
1262 ClearShrink(m_recv_buffer);
1263 // In all but APP_READY state, we can wipe the decoded contents.
1264 if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1265 } else {
1266 // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1267 // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1268 }
1269 return true;
1270}
1271
1273{
1274 AssertLockHeld(m_recv_mutex);
1275 switch (m_recv_state) {
1277 // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1278 // receive buffer.
1279 Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1280 // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1281 // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1282 // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1283 // back into the m_v1_fallback V1 transport.
1284 return V1_PREFIX_LEN - m_recv_buffer.size();
1285 case RecvState::KEY:
1286 // During the KEY state, we only allow the 64-byte key into the receive buffer.
1287 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1288 // As long as we have not received the other side's public key, don't receive more than
1289 // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1290 // key exchange first.
1291 return EllSwiftPubKey::size() - m_recv_buffer.size();
1293 // Process garbage bytes one by one (because terminator may appear anywhere).
1294 return 1;
1295 case RecvState::VERSION:
1296 case RecvState::APP:
1297 // These three states all involve decoding a packet. Process the length descriptor first,
1298 // so that we know where the current packet ends (and we don't process bytes from the next
1299 // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1300 if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1301 return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1302 } else {
1303 // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1304 // and encoded packet size, which includes the 3 bytes due to the packet length.
1305 // When transitioning from receiving the packet length to receiving its ciphertext,
1306 // the encrypted packet length is left in the receive buffer.
1307 return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1308 }
1310 // No bytes can be processed until GetMessage() is called.
1311 return 0;
1312 case RecvState::V1:
1313 // Not allowed (must be dealt with by the caller).
1314 Assume(false);
1315 return 0;
1316 }
1317 Assume(false); // unreachable
1318 return 0;
1319}
1320
1321bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1322{
1323 AssertLockNotHeld(m_recv_mutex);
1325 static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1326
1327 LOCK(m_recv_mutex);
1328 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1329
1330 // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1331 // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1332 // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1333 // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1334 while (!msg_bytes.empty()) {
1335 // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1336 size_t max_read = GetMaxBytesToProcess();
1337
1338 // Reserve space in the buffer if there is not enough.
1339 if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1340 switch (m_recv_state) {
1341 case RecvState::KEY_MAYBE_V1:
1342 case RecvState::KEY:
1343 case RecvState::GARB_GARBTERM:
1344 // During the initial states (key/garbage), allocate once to fit the maximum (4111
1345 // bytes).
1346 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1347 break;
1348 case RecvState::VERSION:
1349 case RecvState::APP: {
1350 // During states where a packet is being received, as much as is expected but never
1351 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1352 // This means attackers that want to cause us to waste allocated memory are limited
1353 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1354 // MAX_RESERVE_AHEAD more than they've actually sent us.
1355 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1356 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1357 break;
1358 }
1359 case RecvState::APP_READY:
1360 // The buffer is empty in this state.
1361 Assume(m_recv_buffer.empty());
1362 break;
1363 case RecvState::V1:
1364 // Should have bailed out above.
1365 Assume(false);
1366 break;
1367 }
1368 }
1369
1370 // Can't read more than provided input.
1371 max_read = std::min(msg_bytes.size(), max_read);
1372 // Copy data to buffer.
1373 m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1374 msg_bytes = msg_bytes.subspan(max_read);
1375
1376 // Process data in the buffer.
1377 switch (m_recv_state) {
1378 case RecvState::KEY_MAYBE_V1:
1379 ProcessReceivedMaybeV1Bytes();
1380 if (m_recv_state == RecvState::V1) return true;
1381 break;
1382
1383 case RecvState::KEY:
1384 if (!ProcessReceivedKeyBytes()) return false;
1385 break;
1386
1387 case RecvState::GARB_GARBTERM:
1388 if (!ProcessReceivedGarbageBytes()) return false;
1389 break;
1390
1391 case RecvState::VERSION:
1392 case RecvState::APP:
1393 if (!ProcessReceivedPacketBytes()) return false;
1394 break;
1395
1396 case RecvState::APP_READY:
1397 return true;
1398
1399 case RecvState::V1:
1400 // We should have bailed out before.
1401 Assume(false);
1402 break;
1403 }
1404 // Make sure we have made progress before continuing.
1405 Assume(max_read > 0);
1406 }
1407
1408 return true;
1409}
1410
1411std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1412{
1413 if (contents.size() == 0) return std::nullopt; // Empty contents
1414 uint8_t first_byte = contents[0];
1415 contents = contents.subspan(1); // Strip first byte.
1416
1417 if (first_byte != 0) {
1418 // Short (1 byte) encoding.
1419 if (first_byte < std::size(V2_MESSAGE_IDS)) {
1420 // Valid short message id.
1421 return V2_MESSAGE_IDS[first_byte];
1422 } else {
1423 // Unknown short message id.
1424 return std::nullopt;
1425 }
1426 }
1427
1428 if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1429 return std::nullopt; // Long encoding needs 12 message type bytes.
1430 }
1431
1432 size_t msg_type_len{0};
1433 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1434 // Verify that message type bytes before the first 0x00 are in range.
1435 if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1436 return {};
1437 }
1438 ++msg_type_len;
1439 }
1440 std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1441 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1442 // Verify that message type bytes after the first 0x00 are also 0x00.
1443 if (contents[msg_type_len] != 0) return {};
1444 ++msg_type_len;
1445 }
1446 // Strip message type bytes of contents.
1447 contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1448 return ret;
1449}
1450
1451CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1452{
1453 AssertLockNotHeld(m_recv_mutex);
1454 LOCK(m_recv_mutex);
1455 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1456
1457 Assume(m_recv_state == RecvState::APP_READY);
1458 std::span<const uint8_t> contents{m_recv_decode_buffer};
1459 auto msg_type = GetMessageType(contents);
1461 // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1462 msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1463 if (msg_type) {
1464 reject_message = false;
1465 msg.m_type = std::move(*msg_type);
1466 msg.m_time = time;
1467 msg.m_message_size = contents.size();
1468 msg.m_recv.resize(contents.size());
1469 std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1470 } else {
1471 LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1472 reject_message = true;
1473 }
1474 ClearShrink(m_recv_decode_buffer);
1475 SetReceiveState(RecvState::APP);
1476
1477 return msg;
1478}
1479
1481{
1482 AssertLockNotHeld(m_send_mutex);
1483 LOCK(m_send_mutex);
1484 if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1485 // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1486 // is available) and the send buffer is empty. This limits the number of messages in the send
1487 // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1488 if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1489 // Construct contents (encoding message type + payload).
1490 std::vector<uint8_t> contents;
1491 auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1492 if (short_message_id) {
1493 contents.resize(1 + msg.data.size());
1494 contents[0] = *short_message_id;
1495 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1496 } else {
1497 // Initialize with zeroes, and then write the message type string starting at offset 1.
1498 // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1499 contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1500 std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1501 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1502 }
1503 // Construct ciphertext in send buffer.
1504 m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1505 m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1506 m_send_type = msg.m_type;
1507 // Release memory
1508 ClearShrink(msg.data);
1509 return true;
1510}
1511
1512Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1513{
1514 AssertLockNotHeld(m_send_mutex);
1515 LOCK(m_send_mutex);
1516 if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1517
1518 if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1519 Assume(m_send_pos <= m_send_buffer.size());
1520 return {
1521 std::span{m_send_buffer}.subspan(m_send_pos),
1522 // We only have more to send after the current m_send_buffer if there is a (next)
1523 // message to be sent, and we're capable of sending packets. */
1524 have_next_message && m_send_state == SendState::READY,
1525 m_send_type
1526 };
1527}
1528
1529void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1530{
1531 AssertLockNotHeld(m_send_mutex);
1532 LOCK(m_send_mutex);
1533 if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1534
1535 if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1536 LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1537 }
1538
1539 m_send_pos += bytes_sent;
1540 Assume(m_send_pos <= m_send_buffer.size());
1541 if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1542 m_sent_v1_header_worth = true;
1543 }
1544 // Wipe the buffer when everything is sent.
1545 if (m_send_pos == m_send_buffer.size()) {
1546 m_send_pos = 0;
1547 ClearShrink(m_send_buffer);
1548 }
1549}
1550
1552{
1553 AssertLockNotHeld(m_send_mutex);
1554 AssertLockNotHeld(m_recv_mutex);
1555 // Only outgoing connections need reconnection.
1556 if (!m_initiating) return false;
1557
1558 LOCK(m_recv_mutex);
1559 // We only reconnect in the very first state and when the receive buffer is empty. Together
1560 // these conditions imply nothing has been received so far.
1561 if (m_recv_state != RecvState::KEY) return false;
1562 if (!m_recv_buffer.empty()) return false;
1563 // Check if we've sent enough for the other side to disconnect us (if it was V1).
1564 LOCK(m_send_mutex);
1565 return m_sent_v1_header_worth;
1566}
1567
1568size_t V2Transport::GetSendMemoryUsage() const noexcept
1569{
1570 AssertLockNotHeld(m_send_mutex);
1571 LOCK(m_send_mutex);
1572 if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1573
1574 return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1575}
1576
1578{
1579 AssertLockNotHeld(m_recv_mutex);
1580 LOCK(m_recv_mutex);
1581 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1582
1583 Transport::Info info;
1584
1585 // Do not report v2 and session ID until the version packet has been received
1586 // and verified (confirming that the other side very likely has the same keys as us).
1587 if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1588 m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1591 } else {
1593 }
1594
1595 return info;
1596}
1597
1598std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1599{
1600 auto it = node.vSendMsg.begin();
1601 size_t nSentSize = 0;
1602 bool data_left{false};
1603 std::optional<bool> expected_more;
1604
1605 while (true) {
1606 if (it != node.vSendMsg.end()) {
1607 // If possible, move one message from the send queue to the transport. This fails when
1608 // there is an existing message still being sent, or (for v2 transports) when the
1609 // handshake has not yet completed.
1610 size_t memusage = it->GetMemoryUsage();
1611 if (node.m_transport->SetMessageToSend(*it)) {
1612 // Update memory usage of send buffer (as *it will be deleted).
1613 node.m_send_memusage -= memusage;
1614 ++it;
1615 }
1616 }
1617 const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1618 // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1619 // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1620 // verify that the previously returned 'more' was correct.
1621 if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1622 expected_more = more;
1623 data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1624 int nBytes = 0;
1625 if (!data.empty()) {
1626 LOCK(node.m_sock_mutex);
1627 // There is no socket in case we've already disconnected, or in test cases without
1628 // real connections. In these cases, we bail out immediately and just leave things
1629 // in the send queue and transport.
1630 if (!node.m_sock) {
1631 break;
1632 }
1634#ifdef MSG_MORE
1635 if (more) {
1636 flags |= MSG_MORE;
1637 }
1638#endif
1639 nBytes = node.m_sock->Send(data.data(), data.size(), flags);
1640 }
1641 if (nBytes > 0) {
1642 node.m_last_send = GetTime<std::chrono::seconds>();
1643 node.nSendBytes += nBytes;
1644 // Notify transport that bytes have been processed.
1645 node.m_transport->MarkBytesSent(nBytes);
1646 // Update statistics per message type.
1647 if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1648 node.AccountForSentBytes(msg_type, nBytes);
1649 }
1650 nSentSize += nBytes;
1651 if ((size_t)nBytes != data.size()) {
1652 // could not send full message; stop sending more
1653 break;
1654 }
1655 } else {
1656 if (nBytes < 0) {
1657 // error
1658 int nErr = WSAGetLastError();
1659 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1660 LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1661 node.CloseSocketDisconnect();
1662 }
1663 }
1664 break;
1665 }
1666 }
1667
1668 node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1669
1670 if (it == node.vSendMsg.end()) {
1671 assert(node.m_send_memusage == 0);
1672 }
1673 node.vSendMsg.erase(node.vSendMsg.begin(), it);
1674 return {nSentSize, data_left};
1675}
1676
1686{
1687 std::vector<NodeEvictionCandidate> vEvictionCandidates;
1688 {
1689
1691 for (const CNode* node : m_nodes) {
1692 if (node->fDisconnect)
1693 continue;
1694 NodeEvictionCandidate candidate{
1695 .id = node->GetId(),
1696 .m_connected = node->m_connected,
1697 .m_min_ping_time = node->m_min_ping_time,
1698 .m_last_block_time = node->m_last_block_time,
1699 .m_last_tx_time = node->m_last_tx_time,
1700 .fRelevantServices = node->m_has_all_wanted_services,
1701 .m_relay_txs = node->m_relays_txs.load(),
1702 .fBloomFilter = node->m_bloom_filter_loaded.load(),
1703 .nKeyedNetGroup = node->nKeyedNetGroup,
1704 .prefer_evict = node->m_prefer_evict,
1705 .m_is_local = node->addr.IsLocal(),
1706 .m_network = node->ConnectedThroughNetwork(),
1707 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1708 .m_conn_type = node->m_conn_type,
1709 };
1710 vEvictionCandidates.push_back(candidate);
1711 }
1712 }
1713 const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1714 if (!node_id_to_evict) {
1715 return false;
1716 }
1718 for (CNode* pnode : m_nodes) {
1719 if (pnode->GetId() == *node_id_to_evict) {
1720 LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1721 TRACEPOINT(net, evicted_inbound_connection,
1722 pnode->GetId(),
1723 pnode->m_addr_name.c_str(),
1724 pnode->ConnectionTypeAsString().c_str(),
1725 pnode->ConnectedThroughNetwork(),
1726 Ticks<std::chrono::seconds>(pnode->m_connected));
1727 pnode->fDisconnect = true;
1728 return true;
1729 }
1730 }
1731 return false;
1732}
1733
1734void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1735 struct sockaddr_storage sockaddr;
1736 socklen_t len = sizeof(sockaddr);
1737 auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1738
1739 if (!sock) {
1740 const int nErr = WSAGetLastError();
1741 if (nErr != WSAEWOULDBLOCK) {
1742 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1743 }
1744 return;
1745 }
1746
1747 CService addr;
1748 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1749 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1750 } else {
1751 addr = MaybeFlipIPv6toCJDNS(addr);
1752 }
1753
1754 const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1755
1757 hListenSocket.AddSocketPermissionFlags(permission_flags);
1758
1759 CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1760}
1761
1762void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1763 NetPermissionFlags permission_flags,
1764 const CService& addr_bind,
1765 const CService& addr)
1766{
1767 int nInbound = 0;
1768
1769 const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1770
1771 // Tor inbound connections do not reveal the peer's actual network address.
1772 // Therefore do not apply address-based whitelist permissions to them.
1773 AddWhitelistPermissionFlags(permission_flags, inbound_onion ? std::optional<CNetAddr>{} : addr, vWhitelistedRangeIncoming);
1774
1775 {
1777 for (const CNode* pnode : m_nodes) {
1778 if (pnode->IsInboundConn()) nInbound++;
1779 }
1780 }
1781
1782 if (!fNetworkActive) {
1783 LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1784 return;
1785 }
1786
1787 if (!sock->IsSelectable()) {
1788 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1789 return;
1790 }
1791
1792 // According to the internet TCP_NODELAY is not carried into accepted sockets
1793 // on all platforms. Set it again here just to be sure.
1794 const int on{1};
1795 if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1796 LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1797 addr.ToStringAddrPort());
1798 }
1799
1800 // Don't accept connections from banned peers.
1801 bool banned = m_banman && m_banman->IsBanned(addr);
1802 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1803 {
1804 LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1805 return;
1806 }
1807
1808 // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1809 bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1810 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1811 {
1812 LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1813 return;
1814 }
1815
1816 if (nInbound >= m_max_inbound)
1817 {
1818 if (!AttemptToEvictConnection()) {
1819 // No connection to evict, disconnect the new connection
1820 LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1821 return;
1822 }
1823 }
1824
1825 NodeId id = GetNewNodeId();
1827
1828 // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1829 // detected, so use it whenever we signal NODE_P2P_V2.
1830 ServiceFlags local_services = GetLocalServices();
1831 const bool use_v2transport(local_services & NODE_P2P_V2);
1832
1834 .Write(inbound_onion ? NET_ONION : addr.GetNetClass())
1835 .Write(addr_bind.GetAddrBytes())
1836 .Write(addr_bind.GetPort()) // inbound connections use bind port
1837 .Finalize();
1838 CNode* pnode = new CNode(id,
1839 std::move(sock),
1840 CAddress{addr, NODE_NONE},
1842 nonce,
1843 addr_bind,
1844 /*addrNameIn=*/"",
1846 inbound_onion,
1847 network_id,
1849 .permission_flags = permission_flags,
1850 .prefer_evict = discouraged,
1851 .recv_flood_size = nReceiveFloodSize,
1852 .use_v2transport = use_v2transport,
1853 });
1854 pnode->AddRef();
1855 m_msgproc->InitializeNode(*pnode, local_services);
1856 {
1858 m_nodes.push_back(pnode);
1859 }
1860 LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1861 TRACEPOINT(net, inbound_connection,
1862 pnode->GetId(),
1863 pnode->m_addr_name.c_str(),
1864 pnode->ConnectionTypeAsString().c_str(),
1865 pnode->ConnectedThroughNetwork(),
1867
1868 // We received a new connection, harvest entropy from the time (and our peer count)
1869 RandAddEvent((uint32_t)id);
1870}
1871
1872bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1873{
1875 std::optional<int> max_connections;
1876 switch (conn_type) {
1879 return false;
1881 max_connections = m_max_outbound_full_relay;
1882 break;
1884 max_connections = m_max_outbound_block_relay;
1885 break;
1886 // no limit for ADDR_FETCH because -seednode has no limit either
1888 break;
1889 // no limit for FEELER connections since they're short-lived
1891 break;
1892 } // no default case, so the compiler can warn about missing cases
1893
1894 // Count existing connections
1895 int existing_connections = WITH_LOCK(m_nodes_mutex,
1896 return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1897
1898 // Max connections of specified type already exist
1899 if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1900
1901 // Max total outbound connections already exist
1903 if (!grant) return false;
1904
1905 OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1906 return true;
1907}
1908
1910{
1913
1914 // Use a temporary variable to accumulate desired reconnections, so we don't need
1915 // m_reconnections_mutex while holding m_nodes_mutex.
1916 decltype(m_reconnections) reconnections_to_add;
1917
1918 {
1920
1921 const bool network_active{fNetworkActive};
1922 if (!network_active) {
1923 // Disconnect any connected nodes
1924 for (CNode* pnode : m_nodes) {
1925 if (!pnode->fDisconnect) {
1926 LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1927 pnode->fDisconnect = true;
1928 }
1929 }
1930 }
1931
1932 // Disconnect unused nodes
1933 std::vector<CNode*> nodes_copy = m_nodes;
1934 for (CNode* pnode : nodes_copy)
1935 {
1936 if (pnode->fDisconnect)
1937 {
1938 // remove from m_nodes
1939 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1940
1941 // Add to reconnection list if appropriate. We don't reconnect right here, because
1942 // the creation of a connection is a blocking operation (up to several seconds),
1943 // and we don't want to hold up the socket handler thread for that long.
1944 if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1945 reconnections_to_add.push_back({
1946 .addr_connect = pnode->addr,
1947 .grant = std::move(pnode->grantOutbound),
1948 .destination = pnode->m_dest,
1949 .conn_type = pnode->m_conn_type,
1950 .use_v2transport = false});
1951 LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1952 }
1953
1954 // release outbound grant (if any)
1955 pnode->grantOutbound.Release();
1956
1957 // close socket and cleanup
1958 pnode->CloseSocketDisconnect();
1959
1960 // update connection count by network
1961 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1962
1963 // hold in disconnected pool until all refs are released
1964 pnode->Release();
1965 m_nodes_disconnected.push_back(pnode);
1966 }
1967 }
1968 }
1969 {
1970 // Delete disconnected nodes
1971 std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1972 for (CNode* pnode : nodes_disconnected_copy)
1973 {
1974 // Destroy the object only after other threads have stopped using it.
1975 if (pnode->GetRefCount() <= 0) {
1976 m_nodes_disconnected.remove(pnode);
1977 DeleteNode(pnode);
1978 }
1979 }
1980 }
1981 {
1982 // Move entries from reconnections_to_add to m_reconnections.
1984 m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1985 }
1986}
1987
1989{
1990 size_t nodes_size;
1991 {
1993 nodes_size = m_nodes.size();
1994 }
1995 if(nodes_size != nPrevNodeCount) {
1996 nPrevNodeCount = nodes_size;
1997 if (m_client_interface) {
1998 m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1999 }
2000 }
2001}
2002
2003bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
2004{
2005 return node.m_connected + m_peer_connect_timeout < now;
2006}
2007
2009{
2010 // Tests that see disconnects after using mocktime can start nodes with a
2011 // large timeout. For example, -peertimeout=999999999.
2012 const auto now{GetTime<std::chrono::seconds>()};
2013 const auto last_send{node.m_last_send.load()};
2014 const auto last_recv{node.m_last_recv.load()};
2015
2016 if (!ShouldRunInactivityChecks(node, now)) return false;
2017
2018 bool has_received{last_recv.count() != 0};
2019 bool has_sent{last_send.count() != 0};
2020
2021 if (!has_received || !has_sent) {
2022 std::string has_never;
2023 if (!has_received) has_never += ", never received from peer";
2024 if (!has_sent) has_never += ", never sent to peer";
2026 "socket no message in first %i seconds%s, %s\n",
2028 has_never,
2029 node.DisconnectMsg(fLogIPs)
2030 );
2031 return true;
2032 }
2033
2034 if (now > last_send + TIMEOUT_INTERVAL) {
2036 "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2037 node.DisconnectMsg(fLogIPs)
2038 );
2039 return true;
2040 }
2041
2042 if (now > last_recv + TIMEOUT_INTERVAL) {
2044 "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2045 node.DisconnectMsg(fLogIPs)
2046 );
2047 return true;
2048 }
2049
2050 if (!node.fSuccessfullyConnected) {
2051 if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2052 LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2053 } else {
2054 LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2055 }
2056 return true;
2057 }
2058
2059 return false;
2060}
2061
2063{
2064 Sock::EventsPerSock events_per_sock;
2065
2066 for (const ListenSocket& hListenSocket : vhListenSocket) {
2067 events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2068 }
2069
2070 for (CNode* pnode : nodes) {
2071 bool select_recv = !pnode->fPauseRecv;
2072 bool select_send;
2073 {
2074 LOCK(pnode->cs_vSend);
2075 // Sending is possible if either there are bytes to send right now, or if there will be
2076 // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2077 // determines both of these in a single call.
2078 const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2079 select_send = !to_send.empty() || more;
2080 }
2081 if (!select_recv && !select_send) continue;
2082
2083 LOCK(pnode->m_sock_mutex);
2084 if (pnode->m_sock) {
2085 Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2086 events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2087 }
2088 }
2089
2090 return events_per_sock;
2091}
2092
2094{
2096
2097 Sock::EventsPerSock events_per_sock;
2098
2099 {
2100 const NodesSnapshot snap{*this, /*shuffle=*/false};
2101
2102 const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2103
2104 // Check for the readiness of the already connected sockets and the
2105 // listening sockets in one call ("readiness" as in poll(2) or
2106 // select(2)). If none are ready, wait for a short while and return
2107 // empty sets.
2108 events_per_sock = GenerateWaitSockets(snap.Nodes());
2109 if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2110 m_interrupt_net->sleep_for(timeout);
2111 }
2112
2113 // Service (send/receive) each of the already connected nodes.
2114 SocketHandlerConnected(snap.Nodes(), events_per_sock);
2115 }
2116
2117 // Accept new connections from listening sockets.
2118 SocketHandlerListening(events_per_sock);
2119}
2120
2121void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2122 const Sock::EventsPerSock& events_per_sock)
2123{
2125
2126 for (CNode* pnode : nodes) {
2127 if (m_interrupt_net->interrupted()) {
2128 return;
2129 }
2130
2131 //
2132 // Receive
2133 //
2134 bool recvSet = false;
2135 bool sendSet = false;
2136 bool errorSet = false;
2137 {
2138 LOCK(pnode->m_sock_mutex);
2139 if (!pnode->m_sock) {
2140 continue;
2141 }
2142 const auto it = events_per_sock.find(pnode->m_sock);
2143 if (it != events_per_sock.end()) {
2144 recvSet = it->second.occurred & Sock::RECV;
2145 sendSet = it->second.occurred & Sock::SEND;
2146 errorSet = it->second.occurred & Sock::ERR;
2147 }
2148 }
2149
2150 if (sendSet) {
2151 // Send data
2152 auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2153 if (bytes_sent) {
2154 RecordBytesSent(bytes_sent);
2155
2156 // If both receiving and (non-optimistic) sending were possible, we first attempt
2157 // sending. If that succeeds, but does not fully drain the send queue, do not
2158 // attempt to receive. This avoids needlessly queueing data if the remote peer
2159 // is slow at receiving data, by means of TCP flow control. We only do this when
2160 // sending actually succeeded to make sure progress is always made; otherwise a
2161 // deadlock would be possible when both sides have data to send, but neither is
2162 // receiving.
2163 if (data_left) recvSet = false;
2164 }
2165 }
2166
2167 if (recvSet || errorSet)
2168 {
2169 // typical socket buffer is 8K-64K
2170 uint8_t pchBuf[0x10000];
2171 int nBytes = 0;
2172 {
2173 LOCK(pnode->m_sock_mutex);
2174 if (!pnode->m_sock) {
2175 continue;
2176 }
2177 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2178 }
2179 if (nBytes > 0)
2180 {
2181 bool notify = false;
2182 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2184 "receiving message bytes failed, %s\n",
2185 pnode->DisconnectMsg(fLogIPs)
2186 );
2187 pnode->CloseSocketDisconnect();
2188 }
2189 RecordBytesRecv(nBytes);
2190 if (notify) {
2191 pnode->MarkReceivedMsgsForProcessing();
2193 }
2194 }
2195 else if (nBytes == 0)
2196 {
2197 // socket closed gracefully
2198 if (!pnode->fDisconnect) {
2199 LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2200 }
2201 pnode->CloseSocketDisconnect();
2202 }
2203 else if (nBytes < 0)
2204 {
2205 // error
2206 int nErr = WSAGetLastError();
2207 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2208 {
2209 if (!pnode->fDisconnect) {
2210 LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2211 }
2212 pnode->CloseSocketDisconnect();
2213 }
2214 }
2215 }
2216
2217 if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2218 }
2219}
2220
2222{
2223 for (const ListenSocket& listen_socket : vhListenSocket) {
2224 if (m_interrupt_net->interrupted()) {
2225 return;
2226 }
2227 const auto it = events_per_sock.find(listen_socket.sock);
2228 if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2229 AcceptConnection(listen_socket);
2230 }
2231 }
2232}
2233
2235{
2237
2238 while (!m_interrupt_net->interrupted()) {
2241 SocketHandler();
2242 }
2243}
2244
2246{
2247 {
2249 fMsgProcWake = true;
2250 }
2251 condMsgProc.notify_one();
2252}
2253
2255{
2256 int outbound_connection_count = 0;
2257
2258 if (!gArgs.GetArgs("-seednode").empty()) {
2259 auto start = NodeClock::now();
2260 constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2261 LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2262 while (!m_interrupt_net->interrupted()) {
2263 if (!m_interrupt_net->sleep_for(500ms)) {
2264 return;
2265 }
2266
2267 // Abort if we have spent enough time without reaching our target.
2268 // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2269 if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2270 LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2271 break;
2272 }
2273
2274 outbound_connection_count = GetFullOutboundConnCount();
2275 if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2276 LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2277 break;
2278 }
2279 }
2280 }
2281
2283 std::vector<std::string> seeds = m_params.DNSSeeds();
2284 std::shuffle(seeds.begin(), seeds.end(), rng);
2285 int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2286
2287 if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2288 // When -forcednsseed is provided, query all.
2289 seeds_right_now = seeds.size();
2290 } else if (addrman.Size() == 0) {
2291 // If we have no known peers, query all.
2292 // This will occur on the first run, or if peers.dat has been
2293 // deleted.
2294 seeds_right_now = seeds.size();
2295 }
2296
2297 // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2298 if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2299 // goal: only query DNS seed if address need is acute
2300 // * If we have a reasonable number of peers in addrman, spend
2301 // some time trying them first. This improves user privacy by
2302 // creating fewer identifying DNS requests, reduces trust by
2303 // giving seeds less influence on the network topology, and
2304 // reduces traffic to the seeds.
2305 // * When querying DNS seeds query a few at once, this ensures
2306 // that we don't give DNS seeds the ability to eclipse nodes
2307 // that query them.
2308 // * If we continue having problems, eventually query all the
2309 // DNS seeds, and if that fails too, also try the fixed seeds.
2310 // (done in ThreadOpenConnections)
2311 int found = 0;
2312 const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2313
2314 for (const std::string& seed : seeds) {
2315 if (seeds_right_now == 0) {
2316 seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2317
2318 if (addrman.Size() > 0) {
2319 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2320 std::chrono::seconds to_wait = seeds_wait_time;
2321 while (to_wait.count() > 0) {
2322 // if sleeping for the MANY_PEERS interval, wake up
2323 // early to see if we have enough peers and can stop
2324 // this thread entirely freeing up its resources
2325 std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2326 if (!m_interrupt_net->sleep_for(w)) return;
2327 to_wait -= w;
2328
2330 if (found > 0) {
2331 LogPrintf("%d addresses found from DNS seeds\n", found);
2332 LogPrintf("P2P peers available. Finished DNS seeding.\n");
2333 } else {
2334 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2335 }
2336 return;
2337 }
2338 }
2339 }
2340 }
2341
2342 if (m_interrupt_net->interrupted()) return;
2343
2344 // hold off on querying seeds if P2P network deactivated
2345 if (!fNetworkActive) {
2346 LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2347 do {
2348 if (!m_interrupt_net->sleep_for(1s)) return;
2349 } while (!fNetworkActive);
2350 }
2351
2352 LogPrintf("Loading addresses from DNS seed %s\n", seed);
2353 // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2354 // for the base dns seed domain in chainparams
2355 if (HaveNameProxy()) {
2356 AddAddrFetch(seed);
2357 } else {
2358 std::vector<CAddress> vAdd;
2359 constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2360 std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2361 CNetAddr resolveSource;
2362 if (!resolveSource.SetInternal(host)) {
2363 continue;
2364 }
2365 // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2366 // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2367 // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2368 // returned.
2369 unsigned int nMaxIPs = 32;
2370 const auto addresses{LookupHost(host, nMaxIPs, true)};
2371 if (!addresses.empty()) {
2372 for (const CNetAddr& ip : addresses) {
2373 CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2374 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2375 vAdd.push_back(addr);
2376 found++;
2377 }
2378 addrman.Add(vAdd, resolveSource);
2379 } else {
2380 // If the seed does not support a subdomain with our desired service bits,
2381 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2382 // base dns seed domain in chainparams
2383 AddAddrFetch(seed);
2384 }
2385 }
2386 --seeds_right_now;
2387 }
2388 LogPrintf("%d addresses found from DNS seeds\n", found);
2389 } else {
2390 LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2391 }
2392}
2393
2395{
2396 const auto start{SteadyClock::now()};
2397
2399
2400 LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2401 addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2402}
2403
2405{
2407 std::string strDest;
2408 {
2410 if (m_addr_fetches.empty())
2411 return;
2412 strDest = m_addr_fetches.front();
2413 m_addr_fetches.pop_front();
2414 }
2415 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2416 // peer doesn't support it or immediately disconnects us for another reason.
2418 CAddress addr;
2419 CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2420 if (grant) {
2421 OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2422 }
2423}
2424
2426{
2428}
2429
2431{
2433 LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2434}
2435
2437{
2438 LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2440}
2441
2442// Return the number of outbound connections that are full relay (not blocks only)
2444{
2445 int nRelevant = 0;
2446 {
2448 for (const CNode* pnode : m_nodes) {
2449 if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2450 }
2451 }
2452 return nRelevant;
2453}
2454
2455// Return the number of peers we have over our outbound connection limit
2456// Exclude peers that are marked for disconnect, or are going to be
2457// disconnected soon (eg ADDR_FETCH and FEELER)
2458// Also exclude peers that haven't finished initial connection handshake yet
2459// (so that we don't decide we're over our desired connection limit, and then
2460// evict some peer that has finished the handshake)
2462{
2463 int full_outbound_peers = 0;
2464 {
2466 for (const CNode* pnode : m_nodes) {
2467 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2468 ++full_outbound_peers;
2469 }
2470 }
2471 }
2472 return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2473}
2474
2476{
2477 int block_relay_peers = 0;
2478 {
2480 for (const CNode* pnode : m_nodes) {
2481 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2482 ++block_relay_peers;
2483 }
2484 }
2485 }
2486 return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2487}
2488
2489std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2490{
2491 std::unordered_set<Network> networks{};
2492 for (int n = 0; n < NET_MAX; n++) {
2493 enum Network net = (enum Network)n;
2494 if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2495 if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2496 networks.insert(net);
2497 }
2498 }
2499 return networks;
2500}
2501
2503{
2505 return m_network_conn_counts[net] > 1;
2506}
2507
2508bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2509{
2510 std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2511 std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2512
2514 for (const auto net : nets) {
2515 if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2516 network = net;
2517 return true;
2518 }
2519 }
2520
2521 return false;
2522}
2523
2524void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2525{
2529 // Connect to specific addresses
2530 if (!connect.empty())
2531 {
2532 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2533 // peer doesn't support it or immediately disconnects us for another reason.
2535 for (int64_t nLoop = 0;; nLoop++)
2536 {
2537 for (const std::string& strAddr : connect)
2538 {
2539 CAddress addr(CService(), NODE_NONE);
2540 OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2541 for (int i = 0; i < 10 && i < nLoop; i++)
2542 {
2543 if (!m_interrupt_net->sleep_for(500ms)) {
2544 return;
2545 }
2546 }
2547 }
2548 if (!m_interrupt_net->sleep_for(500ms)) {
2549 return;
2550 }
2552 }
2553 }
2554
2555 // Initiate network connections
2556 auto start = GetTime<std::chrono::microseconds>();
2557
2558 // Minimum time before next feeler connection (in microseconds).
2559 auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2560 auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2561 auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2562 const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2563 bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2564 const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2565
2566 auto seed_node_timer = NodeClock::now();
2567 bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2568 constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2569
2570 if (!add_fixed_seeds) {
2571 LogPrintf("Fixed seeds are disabled\n");
2572 }
2573
2574 while (!m_interrupt_net->interrupted()) {
2575 if (add_addr_fetch) {
2576 add_addr_fetch = false;
2577 const auto& seed{SpanPopBack(seed_nodes)};
2578 AddAddrFetch(seed);
2579
2580 if (addrman.Size() == 0) {
2581 LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2582 } else {
2583 LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2584 }
2585 }
2586
2588
2589 if (!m_interrupt_net->sleep_for(500ms)) {
2590 return;
2591 }
2592
2594
2596 if (m_interrupt_net->interrupted()) {
2597 return;
2598 }
2599
2600 const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2601 if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2602 // When the node starts with an empty peers.dat, there are a few other sources of peers before
2603 // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2604 // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2605 // 60 seconds for any of those sources to populate addrman.
2606 bool add_fixed_seeds_now = false;
2607 // It is cheapest to check if enough time has passed first.
2608 if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2609 add_fixed_seeds_now = true;
2610 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2611 }
2612
2613 // Perform cheap checks before locking a mutex.
2614 else if (!dnsseed && !use_seednodes) {
2616 if (m_added_node_params.empty()) {
2617 add_fixed_seeds_now = true;
2618 LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2619 }
2620 }
2621
2622 if (add_fixed_seeds_now) {
2623 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2624 // We will not make outgoing connections to peers that are unreachable
2625 // (e.g. because of -onlynet configuration).
2626 // Therefore, we do not add them to addrman in the first place.
2627 // In case previously unreachable networks become reachable
2628 // (e.g. in case of -onlynet changes by the user), fixed seeds will
2629 // be loaded only for networks for which we have no addresses.
2630 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2631 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2632 seed_addrs.end());
2633 CNetAddr local;
2634 local.SetInternal("fixedseeds");
2635 addrman.Add(seed_addrs, local);
2636 add_fixed_seeds = false;
2637 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2638 }
2639 }
2640
2641 //
2642 // Choose an address to connect to based on most recently seen
2643 //
2644 CAddress addrConnect;
2645
2646 // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2647 int nOutboundFullRelay = 0;
2648 int nOutboundBlockRelay = 0;
2649 int outbound_privacy_network_peers = 0;
2650 std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2651
2652 {
2654 for (const CNode* pnode : m_nodes) {
2655 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2656 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2657
2658 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2659 switch (pnode->m_conn_type) {
2660 // We currently don't take inbound connections into account. Since they are
2661 // free to make, an attacker could make them to prevent us from connecting to
2662 // certain peers.
2664 // Short-lived outbound connections should not affect how we select outbound
2665 // peers from addrman.
2668 break;
2672 const CAddress address{pnode->addr};
2673 if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2674 // Since our addrman-groups for these networks are
2675 // random, without relation to the route we
2676 // take to connect to these peers or to the
2677 // difficulty in obtaining addresses with diverse
2678 // groups, we don't worry about diversity with
2679 // respect to our addrman groups when connecting to
2680 // these networks.
2681 ++outbound_privacy_network_peers;
2682 } else {
2683 outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2684 }
2685 } // no default case, so the compiler can warn about missing cases
2686 }
2687 }
2688
2689 if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2690 if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2691 seed_node_timer = NodeClock::now();
2692 add_addr_fetch = true;
2693 }
2694 }
2695
2697 auto now = GetTime<std::chrono::microseconds>();
2698 bool anchor = false;
2699 bool fFeeler = false;
2700 std::optional<Network> preferred_net;
2701
2702 // Determine what type of connection to open. Opening
2703 // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2704 // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2705 // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2706 // until we hit our block-relay-only peer limit.
2707 // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2708 // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2709 // these conditions are met, check to see if it's time to try an extra
2710 // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2711 // timer to decide if we should open a FEELER.
2712
2713 if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2714 conn_type = ConnectionType::BLOCK_RELAY;
2715 anchor = true;
2716 } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2717 // OUTBOUND_FULL_RELAY
2718 } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2719 conn_type = ConnectionType::BLOCK_RELAY;
2720 } else if (GetTryNewOutboundPeer()) {
2721 // OUTBOUND_FULL_RELAY
2722 } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2723 // Periodically connect to a peer (using regular outbound selection
2724 // methodology from addrman) and stay connected long enough to sync
2725 // headers, but not much else.
2726 //
2727 // Then disconnect the peer, if we haven't learned anything new.
2728 //
2729 // The idea is to make eclipse attacks very difficult to pull off,
2730 // because every few minutes we're finding a new peer to learn headers
2731 // from.
2732 //
2733 // This is similar to the logic for trying extra outbound (full-relay)
2734 // peers, except:
2735 // - we do this all the time on an exponential timer, rather than just when
2736 // our tip is stale
2737 // - we potentially disconnect our next-youngest block-relay-only peer, if our
2738 // newest block-relay-only peer delivers a block more recently.
2739 // See the eviction logic in net_processing.cpp.
2740 //
2741 // Because we can promote these connections to block-relay-only
2742 // connections, they do not get their own ConnectionType enum
2743 // (similar to how we deal with extra outbound peers).
2744 next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2745 conn_type = ConnectionType::BLOCK_RELAY;
2746 } else if (now > next_feeler) {
2747 next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2748 conn_type = ConnectionType::FEELER;
2749 fFeeler = true;
2750 } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2752 now > next_extra_network_peer &&
2753 MaybePickPreferredNetwork(preferred_net)) {
2754 // Full outbound connection management: Attempt to get at least one
2755 // outbound peer from each reachable network by making extra connections
2756 // and then protecting "only" peers from a network during outbound eviction.
2757 // This is not attempted if the user changed -maxconnections to a value
2758 // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2759 // to prevent interactions with otherwise protected outbound peers.
2760 next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2761 } else {
2762 // skip to next iteration of while loop
2763 continue;
2764 }
2765
2767
2768 const auto current_time{NodeClock::now()};
2769 int nTries = 0;
2770 const auto reachable_nets{g_reachable_nets.All()};
2771
2772 while (!m_interrupt_net->interrupted()) {
2773 if (anchor && !m_anchors.empty()) {
2774 const CAddress addr = m_anchors.back();
2775 m_anchors.pop_back();
2776 if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2777 !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2778 outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2779 addrConnect = addr;
2780 LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2781 break;
2782 }
2783
2784 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2785 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2786 // already-connected network ranges, ...) before trying new addrman addresses.
2787 nTries++;
2788 if (nTries > 100)
2789 break;
2790
2791 CAddress addr;
2792 NodeSeconds addr_last_try{0s};
2793
2794 if (fFeeler) {
2795 // First, try to get a tried table collision address. This returns
2796 // an empty (invalid) address if there are no collisions to try.
2797 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2798
2799 if (!addr.IsValid()) {
2800 // No tried table collisions. Select a new table address
2801 // for our feeler.
2802 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2803 } else if (AlreadyConnectedToAddress(addr)) {
2804 // If test-before-evict logic would have us connect to a
2805 // peer that we're already connected to, just mark that
2806 // address as Good(). We won't be able to initiate the
2807 // connection anyway, so this avoids inadvertently evicting
2808 // a currently-connected peer.
2809 addrman.Good(addr);
2810 // Select a new table address for our feeler instead.
2811 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2812 }
2813 } else {
2814 // Not a feeler
2815 // If preferred_net has a value set, pick an extra outbound
2816 // peer from that network. The eviction logic in net_processing
2817 // ensures that a peer from another network will be evicted.
2818 std::tie(addr, addr_last_try) = preferred_net.has_value()
2819 ? addrman.Select(false, {*preferred_net})
2820 : addrman.Select(false, reachable_nets);
2821 }
2822
2823 // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2824 if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2825 continue;
2826 }
2827
2828 // if we selected an invalid or local address, restart
2829 if (!addr.IsValid() || IsLocal(addr)) {
2830 break;
2831 }
2832
2833 if (!g_reachable_nets.Contains(addr)) {
2834 continue;
2835 }
2836
2837 // only consider very recently tried nodes after 30 failed attempts
2838 if (current_time - addr_last_try < 10min && nTries < 30) {
2839 continue;
2840 }
2841
2842 // for non-feelers, require all the services we'll want,
2843 // for feelers, only require they be a full node (only because most
2844 // SPV clients don't have a good address DB available)
2845 if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2846 continue;
2847 } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2848 continue;
2849 }
2850
2851 // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2852 if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2853 continue;
2854 }
2855
2856 // Do not make automatic outbound connections to addnode peers, to
2857 // not use our limited outbound slots for them and to ensure
2858 // addnode connections benefit from their intended protections.
2859 if (AddedNodesContain(addr)) {
2860 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2861 preferred_net.has_value() ? "network-specific " : "",
2863 fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2864 continue;
2865 }
2866
2867 addrConnect = addr;
2868 break;
2869 }
2870
2871 if (addrConnect.IsValid()) {
2872 if (fFeeler) {
2873 // Add small amount of random noise before connection to avoid synchronization.
2875 return;
2876 }
2877 LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2878 }
2879
2880 if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2881
2882 // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2883 // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2884 // Don't record addrman failure attempts when node is offline. This can be identified since all local
2885 // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2886 const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2887 // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2888 const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2889 OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*pszDest=*/nullptr, conn_type, use_v2transport);
2890 }
2891 }
2892}
2893
2894std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2895{
2896 std::vector<CAddress> ret;
2898 for (const CNode* pnode : m_nodes) {
2899 if (pnode->IsBlockOnlyConn()) {
2900 ret.push_back(pnode->addr);
2901 }
2902 }
2903
2904 return ret;
2905}
2906
2907std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2908{
2909 std::vector<AddedNodeInfo> ret;
2910
2911 std::list<AddedNodeParams> lAddresses(0);
2912 {
2914 ret.reserve(m_added_node_params.size());
2915 std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2916 }
2917
2918
2919 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2920 std::map<CService, bool> mapConnected;
2921 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2922 {
2924 for (const CNode* pnode : m_nodes) {
2925 if (pnode->addr.IsValid()) {
2926 mapConnected[pnode->addr] = pnode->IsInboundConn();
2927 }
2928 std::string addrName{pnode->m_addr_name};
2929 if (!addrName.empty()) {
2930 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2931 }
2932 }
2933 }
2934
2935 for (const auto& addr : lAddresses) {
2936 CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2937 AddedNodeInfo addedNode{addr, CService(), false, false};
2938 if (service.IsValid()) {
2939 // strAddNode is an IP:port
2940 auto it = mapConnected.find(service);
2941 if (it != mapConnected.end()) {
2942 if (!include_connected) {
2943 continue;
2944 }
2945 addedNode.resolvedAddress = service;
2946 addedNode.fConnected = true;
2947 addedNode.fInbound = it->second;
2948 }
2949 } else {
2950 // strAddNode is a name
2951 auto it = mapConnectedByName.find(addr.m_added_node);
2952 if (it != mapConnectedByName.end()) {
2953 if (!include_connected) {
2954 continue;
2955 }
2956 addedNode.resolvedAddress = it->second.second;
2957 addedNode.fConnected = true;
2958 addedNode.fInbound = it->second.first;
2959 }
2960 }
2961 ret.emplace_back(std::move(addedNode));
2962 }
2963
2964 return ret;
2965}
2966
2968{
2971 while (true)
2972 {
2974 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2975 bool tried = false;
2976 for (const AddedNodeInfo& info : vInfo) {
2977 if (!grant) {
2978 // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2979 // the addednodeinfo state might change.
2980 break;
2981 }
2982 tried = true;
2983 CAddress addr(CService(), NODE_NONE);
2984 OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2985 if (!m_interrupt_net->sleep_for(500ms)) return;
2986 grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2987 }
2988 // See if any reconnections are desired.
2990 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2991 if (!m_interrupt_net->sleep_for(tried ? 60s : 2s)) {
2992 return;
2993 }
2994 }
2995}
2996
2997// if successful, this moves the passed grant to the constructed node
2999 bool fCountFailure,
3000 CountingSemaphoreGrant<>&& grant_outbound,
3001 const char* pszDest,
3002 ConnectionType conn_type,
3003 bool use_v2transport,
3004 const std::optional<Proxy>& proxy_override)
3005{
3007 assert(conn_type != ConnectionType::INBOUND);
3008
3009 //
3010 // Initiate outbound network connection
3011 //
3012 if (m_interrupt_net->interrupted()) {
3013 return false;
3014 }
3015 if (!fNetworkActive) {
3016 return false;
3017 }
3018 if (!pszDest) {
3019 bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
3020 if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
3021 return false;
3022 }
3023 } else if (AlreadyConnectedToHost(pszDest)) {
3024 return false;
3025 }
3026
3027 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport, proxy_override);
3028
3029 if (!pnode)
3030 return false;
3031 pnode->grantOutbound = std::move(grant_outbound);
3032
3033 m_msgproc->InitializeNode(*pnode, m_local_services);
3034 {
3036 m_nodes.push_back(pnode);
3037
3038 // update connection count by network
3039 if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3040 }
3041
3042 TRACEPOINT(net, outbound_connection,
3043 pnode->GetId(),
3044 pnode->m_addr_name.c_str(),
3045 pnode->ConnectionTypeAsString().c_str(),
3046 pnode->ConnectedThroughNetwork(),
3048
3049 return true;
3050}
3051
3053
3055{
3057
3058 while (!flagInterruptMsgProc)
3059 {
3060 bool fMoreWork = false;
3061
3062 {
3063 // Randomize the order in which we process messages from/to our peers.
3064 // This prevents attacks in which an attacker exploits having multiple
3065 // consecutive connections in the m_nodes list.
3066 const NodesSnapshot snap{*this, /*shuffle=*/true};
3067
3068 for (CNode* pnode : snap.Nodes()) {
3069 if (pnode->fDisconnect)
3070 continue;
3071
3072 // Receive messages
3073 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3074 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3076 return;
3077 // Send messages
3078 m_msgproc->SendMessages(pnode);
3079
3081 return;
3082 }
3083 }
3084
3085 WAIT_LOCK(mutexMsgProc, lock);
3086 if (!fMoreWork) {
3087 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3088 }
3089 fMsgProcWake = false;
3090 }
3091}
3092
3094{
3095 static constexpr auto err_wait_begin = 1s;
3096 static constexpr auto err_wait_cap = 5min;
3097 auto err_wait = err_wait_begin;
3098
3099 bool advertising_listen_addr = false;
3100 i2p::Connection conn;
3101
3102 auto SleepOnFailure = [&]() {
3103 m_interrupt_net->sleep_for(err_wait);
3104 if (err_wait < err_wait_cap) {
3105 err_wait += 1s;
3106 }
3107 };
3108
3109 while (!m_interrupt_net->interrupted()) {
3110
3111 if (!m_i2p_sam_session->Listen(conn)) {
3112 if (advertising_listen_addr && conn.me.IsValid()) {
3113 RemoveLocal(conn.me);
3114 advertising_listen_addr = false;
3115 }
3116 SleepOnFailure();
3117 continue;
3118 }
3119
3120 if (!advertising_listen_addr) {
3121 AddLocal(conn.me, LOCAL_MANUAL);
3122 advertising_listen_addr = true;
3123 }
3124
3125 if (!m_i2p_sam_session->Accept(conn)) {
3126 SleepOnFailure();
3127 continue;
3128 }
3129
3131
3132 err_wait = err_wait_begin;
3133 }
3134}
3135
3136bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3137{
3138 int nOne = 1;
3139
3140 // Create socket for listening for incoming connections
3141 struct sockaddr_storage sockaddr;
3142 socklen_t len = sizeof(sockaddr);
3143 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3144 {
3145 strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3147 return false;
3148 }
3149
3150 std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3151 if (!sock) {
3152 strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3154 return false;
3155 }
3156
3157 // Allow binding if the port is still in TIME_WAIT state after
3158 // the program was closed and restarted.
3159 if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &nOne, sizeof(int)) == SOCKET_ERROR) {
3160 strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3161 LogPrintf("%s\n", strError.original);
3162 }
3163
3164 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3165 // and enable it by default or not. Try to enable it, if possible.
3166 if (addrBind.IsIPv6()) {
3167#ifdef IPV6_V6ONLY
3168 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, &nOne, sizeof(int)) == SOCKET_ERROR) {
3169 strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3170 LogPrintf("%s\n", strError.original);
3171 }
3172#endif
3173#ifdef WIN32
3174 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3175 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, &nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3176 strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3177 LogPrintf("%s\n", strError.original);
3178 }
3179#endif
3180 }
3181
3182 if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3183 int nErr = WSAGetLastError();
3184 if (nErr == WSAEADDRINUSE)
3185 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3186 else
3187 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3189 return false;
3190 }
3191 LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3192
3193 // Listen for incoming connections
3194 if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3195 {
3196 strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3198 return false;
3199 }
3200
3201 vhListenSocket.emplace_back(std::move(sock), permissions);
3202 return true;
3203}
3204
3206{
3207 if (!fDiscover)
3208 return;
3209
3210 for (const CNetAddr &addr: GetLocalAddresses()) {
3211 if (AddLocal(addr, LOCAL_IF))
3212 LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3213 }
3214}
3215
3217{
3218 LogPrintf("%s: %s\n", __func__, active);
3219
3220 if (fNetworkActive == active) {
3221 return;
3222 }
3223
3224 fNetworkActive = active;
3225
3226 if (m_client_interface) {
3227 m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3228 }
3229}
3230
3231CConnman::CConnman(uint64_t nSeed0In,
3232 uint64_t nSeed1In,
3233 AddrMan& addrman_in,
3234 const NetGroupManager& netgroupman,
3235 const CChainParams& params,
3236 bool network_active,
3237 std::shared_ptr<CThreadInterrupt> interrupt_net)
3238 : addrman(addrman_in)
3239 , m_netgroupman{netgroupman}
3240 , nSeed0(nSeed0In)
3241 , nSeed1(nSeed1In)
3242 , m_interrupt_net{interrupt_net}
3243 , m_params(params)
3244{
3245 SetTryNewOutboundPeer(false);
3246
3247 Options connOptions;
3248 Init(connOptions);
3249 SetNetworkActive(network_active);
3250}
3251
3253{
3254 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3255}
3256
3258{
3259 return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3260}
3261
3262uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3263{
3264 CNetAddr a;
3266}
3267
3268bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3269{
3270 const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3271
3272 bilingual_str strError;
3273 if (!BindListenPort(addr, strError, permissions)) {
3275 m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3276 }
3277 return false;
3278 }
3279
3280 if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3281 AddLocal(addr, LOCAL_BIND);
3282 }
3283
3284 return true;
3285}
3286
3287bool CConnman::InitBinds(const Options& options)
3288{
3289 for (const auto& addrBind : options.vBinds) {
3291 return false;
3292 }
3293 }
3294 for (const auto& addrBind : options.vWhiteBinds) {
3295 if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3296 return false;
3297 }
3298 }
3299 for (const auto& addr_bind : options.onion_binds) {
3301 return false;
3302 }
3303 }
3304 if (options.bind_on_any) {
3305 // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3306 // may not have IPv6 support and the user did not explicitly ask us to
3307 // bind on that.
3308 const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3310
3311 struct in_addr inaddr_any;
3312 inaddr_any.s_addr = htonl(INADDR_ANY);
3313 const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3315 return false;
3316 }
3317 }
3318 return true;
3319}
3320
3321bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3322{
3324 Init(connOptions);
3325
3326 if (fListen && !InitBinds(connOptions)) {
3327 if (m_client_interface) {
3328 m_client_interface->ThreadSafeMessageBox(
3329 _("Failed to listen on any port. Use -listen=0 if you want this."),
3331 }
3332 return false;
3333 }
3334
3335 Proxy i2p_sam;
3336 if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3337 m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3338 i2p_sam, m_interrupt_net);
3339 }
3340
3341 // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3342 std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3343 if (!seed_nodes.empty()) {
3344 std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3345 }
3346
3348 // Load addresses from anchors.dat
3352 }
3353 LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3354 }
3355
3356 if (m_client_interface) {
3357 m_client_interface->InitMessage(_("Starting network threads…"));
3358 }
3359
3360 fAddressesInitialized = true;
3361
3362 if (semOutbound == nullptr) {
3363 // initialize semaphore
3364 semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3365 }
3366 if (semAddnode == nullptr) {
3367 // initialize semaphore
3368 semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3369 }
3370
3371 //
3372 // Start threads
3373 //
3375 m_interrupt_net->reset();
3376 flagInterruptMsgProc = false;
3377
3378 {
3380 fMsgProcWake = false;
3381 }
3382
3383 // Send and receive from sockets, accept connections
3384 threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3385
3386 if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3387 LogPrintf("DNS seeding disabled\n");
3388 else
3389 threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3390
3391 // Initiate manual connections
3392 threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3393
3394 if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3395 if (m_client_interface) {
3396 m_client_interface->ThreadSafeMessageBox(
3397 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3399 }
3400 return false;
3401 }
3402 if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3403 threadOpenConnections = std::thread(
3404 &util::TraceThread, "opencon",
3405 [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3406 }
3407
3408 // Process messages
3409 threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3410
3411 if (m_i2p_sam_session) {
3413 std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3414 }
3415
3416 // Dump network addresses
3417 scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3418
3419 // Run the ASMap Health check once and then schedule it to run every 24h.
3420 if (m_netgroupman.UsingASMap()) {
3423 }
3424
3425 return true;
3426}
3427
3429{
3430public:
3431 CNetCleanup() = default;
3432
3434 {
3435#ifdef WIN32
3436 // Shutdown Windows Sockets
3437 WSACleanup();
3438#endif
3439 }
3440};
3442
3444{
3445 {
3447 flagInterruptMsgProc = true;
3448 }
3449 condMsgProc.notify_all();
3450
3451 (*m_interrupt_net)();
3453
3454 if (semOutbound) {
3455 for (int i=0; i<m_max_automatic_outbound; i++) {
3456 semOutbound->release();
3457 }
3458 }
3459
3460 if (semAddnode) {
3461 for (int i=0; i<m_max_addnode; i++) {
3462 semAddnode->release();
3463 }
3464 }
3465}
3466
3468{
3469 if (threadI2PAcceptIncoming.joinable()) {
3471 }
3472 if (threadMessageHandler.joinable())
3473 threadMessageHandler.join();
3474 if (threadOpenConnections.joinable())
3475 threadOpenConnections.join();
3476 if (threadOpenAddedConnections.joinable())
3478 if (threadDNSAddressSeed.joinable())
3479 threadDNSAddressSeed.join();
3480 if (threadSocketHandler.joinable())
3481 threadSocketHandler.join();
3482}
3483
3485{
3487 DumpAddresses();
3488 fAddressesInitialized = false;
3489
3491 // Anchor connections are only dumped during clean shutdown.
3492 std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3493 if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3494 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3495 }
3497 }
3498 }
3499
3500 // Delete peer connections.
3501 std::vector<CNode*> nodes;
3502 WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3503 for (CNode* pnode : nodes) {
3504 LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3505 pnode->CloseSocketDisconnect();
3506 DeleteNode(pnode);
3507 }
3508
3509 for (CNode* pnode : m_nodes_disconnected) {
3510 DeleteNode(pnode);
3511 }
3512 m_nodes_disconnected.clear();
3513 vhListenSocket.clear();
3514 semOutbound.reset();
3515 semAddnode.reset();
3516}
3517
3519{
3520 assert(pnode);
3521 m_msgproc->FinalizeNode(*pnode);
3522 delete pnode;
3523}
3524
3526{
3527 Interrupt();
3528 Stop();
3529}
3530
3531std::vector<CAddress> CConnman::GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3532{
3533 std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3534 if (m_banman) {
3535 addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3536 [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3537 addresses.end());
3538 }
3539 return addresses;
3540}
3541
3542std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3543{
3544 uint64_t network_id = requestor.m_network_key;
3545 const auto current_time = GetTime<std::chrono::microseconds>();
3546 auto r = m_addr_response_caches.emplace(network_id, CachedAddrResponse{});
3547 CachedAddrResponse& cache_entry = r.first->second;
3548 if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3549 cache_entry.m_addrs_response_cache = GetAddressesUnsafe(max_addresses, max_pct, /*network=*/std::nullopt);
3550 // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3551 // and the usefulness of ADDR responses to honest users.
3552 //
3553 // Longer cache lifetime makes it more difficult for an attacker to scrape
3554 // enough AddrMan data to maliciously infer something useful.
3555 // By the time an attacker scraped enough AddrMan records, most of
3556 // the records should be old enough to not leak topology info by
3557 // e.g. analyzing real-time changes in timestamps.
3558 //
3559 // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3560 // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3561 // most of it could be scraped (considering that timestamps are updated via
3562 // ADDR self-announcements and when nodes communicate).
3563 // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3564 // (because even several timestamps of the same handful of nodes may leak privacy).
3565 //
3566 // On the other hand, longer cache lifetime makes ADDR responses
3567 // outdated and less useful for an honest requestor, e.g. if most nodes
3568 // in the ADDR response are no longer active.
3569 //
3570 // However, the churn in the network is known to be rather low. Since we consider
3571 // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3572 // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3573 // in terms of the freshness of the response.
3574 cache_entry.m_cache_entry_expiration = current_time +
3575 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3576 }
3577 return cache_entry.m_addrs_response_cache;
3578}
3579
3581{
3583 const bool resolved_is_valid{resolved.IsValid()};
3584
3586 for (const auto& it : m_added_node_params) {
3587 if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3588 }
3589
3590 m_added_node_params.push_back(add);
3591 return true;
3592}
3593
3594bool CConnman::RemoveAddedNode(std::string_view node)
3595{
3597 for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3598 if (node == it->m_added_node) {
3599 m_added_node_params.erase(it);
3600 return true;
3601 }
3602 }
3603 return false;
3604}
3605
3607{
3609 const std::string addr_str{addr.ToStringAddr()};
3610 const std::string addr_port_str{addr.ToStringAddrPort()};
3612 return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3613 && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3614 [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3615}
3616
3618{
3620 if (flags == ConnectionDirection::Both) // Shortcut if we want total
3621 return m_nodes.size();
3622
3623 int nNum = 0;
3624 for (const auto& pnode : m_nodes) {
3625 if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3626 nNum++;
3627 }
3628 }
3629
3630 return nNum;
3631}
3632
3633
3634std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3635{
3637 return mapLocalHost;
3638}
3639
3640uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3641{
3642 return m_netgroupman.GetMappedAS(addr);
3643}
3644
3645void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3646{
3647 vstats.clear();
3649 vstats.reserve(m_nodes.size());
3650 for (CNode* pnode : m_nodes) {
3651 vstats.emplace_back();
3652 pnode->CopyStats(vstats.back());
3653 vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3654 }
3655}
3656
3657bool CConnman::DisconnectNode(std::string_view strNode)
3658{
3660 auto it = std::ranges::find_if(m_nodes, [&strNode](CNode* node) { return node->m_addr_name == strNode; });
3661 if (it != m_nodes.end()) {
3662 CNode* node{*it};
3663 LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), node->DisconnectMsg(fLogIPs));
3664 node->fDisconnect = true;
3665 return true;
3666 }
3667 return false;
3668}
3669
3671{
3672 bool disconnected = false;
3674 for (CNode* pnode : m_nodes) {
3675 if (subnet.Match(pnode->addr)) {
3676 LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3677 pnode->fDisconnect = true;
3678 disconnected = true;
3679 }
3680 }
3681 return disconnected;
3682}
3683
3685{
3686 return DisconnectNode(CSubNet(addr));
3687}
3688
3690{
3692 for(CNode* pnode : m_nodes) {
3693 if (id == pnode->GetId()) {
3694 LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3695 pnode->fDisconnect = true;
3696 return true;
3697 }
3698 }
3699 return false;
3700}
3701
3702void CConnman::RecordBytesRecv(uint64_t bytes)
3703{
3704 nTotalBytesRecv += bytes;
3705}
3706
3707void CConnman::RecordBytesSent(uint64_t bytes)
3708{
3711
3712 nTotalBytesSent += bytes;
3713
3714 const auto now = GetTime<std::chrono::seconds>();
3715 if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3716 {
3717 // timeframe expired, reset cycle
3718 nMaxOutboundCycleStartTime = now;
3719 nMaxOutboundTotalBytesSentInCycle = 0;
3720 }
3721
3722 nMaxOutboundTotalBytesSentInCycle += bytes;
3723}
3724
3726{
3729 return nMaxOutboundLimit;
3730}
3731
3732std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3733{
3734 return MAX_UPLOAD_TIMEFRAME;
3735}
3736
3738{
3742}
3743
3745{
3747
3748 if (nMaxOutboundLimit == 0)
3749 return 0s;
3750
3751 if (nMaxOutboundCycleStartTime.count() == 0)
3752 return MAX_UPLOAD_TIMEFRAME;
3753
3754 const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3755 const auto now = GetTime<std::chrono::seconds>();
3756 return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3757}
3758
3759bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3760{
3763 if (nMaxOutboundLimit == 0)
3764 return false;
3765
3766 if (historicalBlockServingLimit)
3767 {
3768 // keep a large enough buffer to at least relay each block once
3769 const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3770 const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3771 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3772 return true;
3773 }
3774 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3775 return true;
3776
3777 return false;
3778}
3779
3781{
3784 if (nMaxOutboundLimit == 0)
3785 return 0;
3786
3787 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3788}
3789
3791{
3792 return nTotalBytesRecv;
3793}
3794
3796{
3799 return nTotalBytesSent;
3800}
3801
3803{
3804 return m_local_services;
3805}
3806
3807static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3808{
3809 if (use_v2transport) {
3810 return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3811 } else {
3812 return std::make_unique<V1Transport>(id);
3813 }
3814}
3815
3817 std::shared_ptr<Sock> sock,
3818 const CAddress& addrIn,
3819 uint64_t nKeyedNetGroupIn,
3820 uint64_t nLocalHostNonceIn,
3821 const CService& addrBindIn,
3822 const std::string& addrNameIn,
3823 ConnectionType conn_type_in,
3824 bool inbound_onion,
3825 uint64_t network_key,
3826 CNodeOptions&& node_opts)
3827 : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3828 m_permission_flags{node_opts.permission_flags},
3829 m_sock{sock},
3830 m_connected{GetTime<std::chrono::seconds>()},
3831 addr{addrIn},
3832 addrBind{addrBindIn},
3833 m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3834 m_dest(addrNameIn),
3835 m_inbound_onion{inbound_onion},
3836 m_prefer_evict{node_opts.prefer_evict},
3837 nKeyedNetGroup{nKeyedNetGroupIn},
3838 m_network_key{network_key},
3839 m_conn_type{conn_type_in},
3840 id{idIn},
3841 nLocalHostNonce{nLocalHostNonceIn},
3842 m_recv_flood_size{node_opts.recv_flood_size},
3843 m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3844{
3845 if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3846
3847 for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3848 mapRecvBytesPerMsgType[msg] = 0;
3849 }
3850 mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3851
3852 if (fLogIPs) {
3853 LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3854 } else {
3855 LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3856 }
3857}
3858
3860{
3862
3863 size_t nSizeAdded = 0;
3864 for (const auto& msg : vRecvMsg) {
3865 // vRecvMsg contains only completed CNetMessage
3866 // the single possible partially deserialized message are held by TransportDeserializer
3867 nSizeAdded += msg.GetMemoryUsage();
3868 }
3869
3871 m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3872 m_msg_process_queue_size += nSizeAdded;
3873 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3874}
3875
3876std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3877{
3879 if (m_msg_process_queue.empty()) return std::nullopt;
3880
3881 std::list<CNetMessage> msgs;
3882 // Just take one message
3883 msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3884 m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3885 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3886
3887 return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3888}
3889
3891{
3892 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3893}
3894
3896{
3898 size_t nMessageSize = msg.data.size();
3899 LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3900 if (gArgs.GetBoolArg("-capturemessages", false)) {
3901 CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3902 }
3903
3904 TRACEPOINT(net, outbound_message,
3905 pnode->GetId(),
3906 pnode->m_addr_name.c_str(),
3907 pnode->ConnectionTypeAsString().c_str(),
3908 msg.m_type.c_str(),
3909 msg.data.size(),
3910 msg.data.data()
3911 );
3912
3913 size_t nBytesSent = 0;
3914 {
3915 LOCK(pnode->cs_vSend);
3916 // Check if the transport still has unsent bytes, and indicate to it that we're about to
3917 // give it a message to send.
3918 const auto& [to_send, more, _msg_type] =
3919 pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3920 const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3921
3922 // Update memory usage of send buffer.
3923 pnode->m_send_memusage += msg.GetMemoryUsage();
3924 if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3925 // Move message to vSendMsg queue.
3926 pnode->vSendMsg.push_back(std::move(msg));
3927
3928 // If there was nothing to send before, and there is now (predicted by the "more" value
3929 // returned by the GetBytesToSend call above), attempt "optimistic write":
3930 // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3931 // doing a send, try sending from the calling thread if the queue was empty before.
3932 // With a V1Transport, more will always be true here, because adding a message always
3933 // results in sendable bytes there, but with V2Transport this is not the case (it may
3934 // still be in the handshake).
3935 if (queue_was_empty && more) {
3936 std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3937 }
3938 }
3939 if (nBytesSent) RecordBytesSent(nBytesSent);
3940}
3941
3942bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3943{
3944 CNode* found = nullptr;
3946 for (auto&& pnode : m_nodes) {
3947 if(pnode->GetId() == id) {
3948 found = pnode;
3949 break;
3950 }
3951 }
3952 return found != nullptr && NodeFullyConnected(found) && func(found);
3953}
3954
3956{
3957 return CSipHasher(nSeed0, nSeed1).Write(id);
3958}
3959
3960uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3961{
3962 std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3963
3965}
3966
3968{
3971 while (true) {
3972 // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3973 decltype(m_reconnections) todo;
3974 {
3976 if (m_reconnections.empty()) break;
3977 todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3978 }
3979
3980 auto& item = *todo.begin();
3981 OpenNetworkConnection(item.addr_connect,
3982 // We only reconnect if the first attempt to connect succeeded at
3983 // connection time, but then failed after the CNode object was
3984 // created. Since we already know connecting is possible, do not
3985 // count failure to reconnect.
3986 /*fCountFailure=*/false,
3987 std::move(item.grant),
3988 item.destination.empty() ? nullptr : item.destination.c_str(),
3989 item.conn_type,
3990 item.use_v2transport);
3991 }
3992}
3993
3995{
3996 const std::vector<CAddress> v4_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV4, /*filtered=*/false)};
3997 const std::vector<CAddress> v6_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV6, /*filtered=*/false)};
3998 std::vector<CNetAddr> clearnet_addrs;
3999 clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
4000 std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
4001 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
4002 std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
4003 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
4004 m_netgroupman.ASMapHealthCheck(clearnet_addrs);
4005}
4006
4007// Dump binary message to file, with timestamp.
4008static void CaptureMessageToFile(const CAddress& addr,
4009 const std::string& msg_type,
4010 std::span<const unsigned char> data,
4011 bool is_incoming)
4012{
4013 // Note: This function captures the message at the time of processing,
4014 // not at socket receive/send time.
4015 // This ensures that the messages are always in order from an application
4016 // layer (processing) perspective.
4017 auto now = GetTime<std::chrono::microseconds>();
4018
4019 // Windows folder names cannot include a colon
4020 std::string clean_addr = addr.ToStringAddrPort();
4021 std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4022
4023 fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
4024 fs::create_directories(base_path);
4025
4026 fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4027 AutoFile f{fsbridge::fopen(path, "ab")};
4028
4029 ser_writedata64(f, now.count());
4030 f << std::span{msg_type};
4031 for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4032 f << uint8_t{'\0'};
4033 }
4034 uint32_t size = data.size();
4035 ser_writedata32(f, size);
4036 f << data;
4037
4038 if (f.fclose() != 0) {
4039 throw std::ios_base::failure(
4040 strprintf("Error closing %s after write, file contents are likely incomplete", fs::PathToString(path)));
4041 }
4042}
4043
4044std::function<void(const CAddress& addr,
4045 const std::string& msg_type,
4046 std::span<const unsigned char> data,
4047 bool is_incoming)>
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:185
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:234
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:228
ArgsManager gArgs
Definition: args.cpp:40
int ret
int flags
Definition: bitcoin-tx.cpp:529
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:125
Stochastic address manager.
Definition: addrman.h:89
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, const std::unordered_set< Network > &networks={}) const
Choose an address to connect to.
Definition: addrman.cpp:1327
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1312
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1297
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1317
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1322
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1332
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:366
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:235
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:486
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:511
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:371
bool Decrypt(std::span< const std::byte > input, std::span< const std::byte > aad, bool &ignore, std::span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
std::span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(std::span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
std::span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
std::span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
void Encrypt(std::span< const std::byte > contents, std::span< const std::byte > aad, bool ignore, std::span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:78
const MessageStartChars & MessageStart() const
Definition: chainparams.h:91
uint16_t GetDefaultPort() const
Definition: chainparams.h:92
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:114
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:117
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1716
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2489
std::condition_variable condMsgProc
Definition: net.h:1615
std::thread threadMessageHandler
Definition: net.h:1636
nSendBufferMaxSize
Definition: net.h:1105
bool AlreadyConnectedToHost(std::string_view host) const
Determine whether we're already connected to a given "host:port".
Definition: net.cpp:335
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3054
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3942
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1909
m_max_outbound_full_relay
Definition: net.h:1097
void DeleteNode(CNode *pnode)
Definition: net.cpp:3518
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1685
whitelist_relay
Definition: net.h:1125
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1709
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2425
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3531
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3257
void Stop()
Definition: net.h:1142
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3967
std::thread threadI2PAcceptIncoming
Definition: net.h:1637
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3542
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2430
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport, const std::optional< Proxy > &proxy_override) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Open a new P2P connection.
Definition: net.cpp:377
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1617
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CService &addr_bind, const CService &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1762
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3443
std::map< CNetAddr, LocalServiceInfo > getNetLocalAddresses() const
Definition: net.cpp:3634
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2254
m_onion_binds
Definition: net.h:1123
int GetFullOutboundConnCount() const
Definition: net.cpp:2443
NodeId GetNewNodeId()
Definition: net.cpp:3252
std::atomic< NodeId > nLastNodeId
Definition: net.h:1524
m_max_automatic_outbound
Definition: net.h:1099
int GetExtraBlockRelayCount() const
Definition: net.cpp:2475
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2245
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3759
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3725
std::thread threadDNSAddressSeed
Definition: net.h:1632
void ASMapHealthCheck()
Definition: net.cpp:3994
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2121
void ThreadI2PAcceptIncoming()
Definition: net.cpp:3093
const uint64_t nSeed1
Definition: net.h:1610
void StartExtraBlockRelayPeers()
Definition: net.cpp:2436
const NetGroupManager & m_netgroupman
Definition: net.h:1513
bool DisconnectNode(std::string_view node)
Definition: net.cpp:3657
m_banman
Definition: net.h:1103
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1607
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3732
uint64_t CalculateKeyedNetGroup(const CNetAddr &ad) const
Definition: net.cpp:3960
unsigned int nPrevNodeCount
Definition: net.h:1525
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, std::optional< CNetAddr > addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:573
void NotifyNumConnectionsChanged()
Definition: net.cpp:1988
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3802
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3580
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1642
bool InitBinds(const Options &options)
Definition: net.cpp:3287
vWhitelistedRangeOutgoing
Definition: net.h:1113
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:132
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1509
bool AlreadyConnectedToAddress(const CNetAddr &addr) const
Determine whether we're already connected to a given address.
Definition: net.cpp:347
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2894
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3955
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1872
Mutex m_total_bytes_sent_mutex
Definition: net.h:1488
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2907
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2967
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3268
std::thread threadOpenConnections
Definition: net.h:1635
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3617
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3640
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2404
Mutex m_addr_fetches_mutex
Definition: net.h:1515
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:2008
m_peer_connect_timeout
Definition: net.h:1107
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1685
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3645
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3321
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1610
m_local_services
Definition: net.h:1095
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2093
int GetExtraFullOutboundCount() const
Definition: net.cpp:2461
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3744
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3790
bool OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CountingSemaphoreGrant<> &&grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport, const std::optional< Proxy > &proxy_override=std::nullopt) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Open a new P2P connection and initialize it with the PeerManager at m_msgproc.
Definition: net.cpp:2998
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1598
RecursiveMutex m_nodes_mutex
Definition: net.h:1523
m_max_outbound_block_relay
Definition: net.h:1098
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3890
std::unique_ptr< std::counting_semaphore<> > semOutbound
Definition: net.h:1570
m_client_interface
Definition: net.h:1102
nReceiveFloodSize
Definition: net.h:1106
const CChainParams & m_params
Definition: net.h:1748
void SetNetworkActive(bool active)
Definition: net.cpp:3216
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2502
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3606
whitelist_forcerelay
Definition: net.h:1124
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3737
const std::shared_ptr< CThreadInterrupt > m_interrupt_net
This is signaled when network activity should cease.
Definition: net.h:1623
AddrMan & addrman
Definition: net.h:1512
m_max_automatic_connections
Definition: net.h:1096
void ThreadOpenConnections(std::vector< std::string > connect, std::span< const std::string > seed_nodes) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2524
m_msgproc
Definition: net.h:1104
Mutex mutexMsgProc
Definition: net.h:1616
m_max_inbound
Definition: net.h:1100
bool RemoveAddedNode(std::string_view node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3594
bool fAddressesInitialized
Definition: net.h:1511
~CConnman()
Definition: net.cpp:3525
void StopThreads()
Definition: net.cpp:3467
std::thread threadOpenAddedConnections
Definition: net.h:1634
Mutex m_added_nodes_mutex
Definition: net.h:1520
vWhitelistedRangeIncoming
Definition: net.h:1112
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2234
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3707
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:353
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1671
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3795
std::unique_ptr< std::counting_semaphore<> > semAddnode
Definition: net.h:1571
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2508
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3702
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:2003
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3780
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3895
void StopNodes()
Definition: net.cpp:3484
int m_max_addnode
Definition: net.h:1592
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1522
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1630
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1555
Sock::EventsPerSock GenerateWaitSockets(std::span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:2062
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1489
std::atomic< bool > fNetworkActive
Definition: net.h:1510
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1648
m_use_addrman_outgoing
Definition: net.h:1101
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2221
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true, std::shared_ptr< CThreadInterrupt > interrupt_net=std::make_shared< CThreadInterrupt >())
Definition: net.cpp:3231
void DumpAddresses()
Definition: net.cpp:2394
bool AlreadyConnectedToAddressPort(const CService &addr_port) const
Determine whether we're already connected to a given address:port.
Definition: net.cpp:341
std::thread threadSocketHandler
Definition: net.h:1633
nMaxOutboundLimit
Definition: net.h:1110
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1734
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:3136
An encapsulated private key.
Definition: key.h:36
Message header.
Definition: protocol.h:29
static constexpr size_t MESSAGE_TYPE_SIZE
Definition: protocol.h:31
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
Network address.
Definition: netaddress.h:113
Network GetNetClass() const
Definition: netaddress.cpp:674
std::string ToStringAddr() const
Definition: netaddress.cpp:580
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:692
bool IsRoutable() const
Definition: netaddress.cpp:462
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:189
bool SetSpecial(std::string_view addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:212
bool IsValid() const
Definition: netaddress.cpp:424
bool IsIPv4() const
Definition: netaddress.h:158
bool IsIPv6() const
Definition: netaddress.h:159
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:173
enum Network GetNetwork() const
Definition: netaddress.cpp:496
~CNetCleanup()
Definition: net.cpp:3433
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:234
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:127
std::string m_type
Definition: net.h:240
DataStream m_recv
received message data
Definition: net.h:236
Information about a peer.
Definition: net.h:676
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:709
std::atomic< int > nVersion
Definition: net.h:719
bool IsInboundConn() const
Definition: net.h:818
CountingSemaphoreGrant grantOutbound
Definition: net.h:735
std::atomic_bool fPauseRecv
Definition: net.h:739
NodeId GetId() const
Definition: net.h:902
const std::string m_addr_name
Definition: net.h:714
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:608
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:615
std::string ConnectionTypeAsString() const
Definition: net.h:956
const CService addrBind
Definition: net.h:713
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:853
std::list< CNetMessage > vRecvMsg
Definition: net.h:986
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:855
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:731
const CAddress addr
Definition: net.h:711
bool ReceiveMsgBytes(std::span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:661
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:595
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CService &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, uint64_t network_key, CNodeOptions &&node_opts={})
Definition: net.cpp:3816
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3859
Mutex m_subver_mutex
Definition: net.h:720
Mutex cs_vSend
Definition: net.h:700
CNode * AddRef()
Definition: net.h:941
const uint64_t m_network_key
Network key used to prevent fingerprinting our node across networks.
Definition: net.h:744
std::atomic_bool fPauseSend
Definition: net.h:740
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3876
Mutex m_msg_process_queue_mutex
Definition: net.h:988
const ConnectionType m_conn_type
Definition: net.h:746
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:603
const size_t m_recv_flood_size
Definition: net.h:985
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:882
bool IsManualOrFullOutboundConn() const
Definition: net.h:790
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:705
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:680
const NetPermissionFlags m_permission_flags
Definition: net.h:682
Mutex m_addr_local_mutex
Definition: net.h:994
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:718
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:886
Mutex cs_vRecv
Definition: net.h:702
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:873
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:710
Mutex m_sock_mutex
Definition: net.h:701
std::atomic_bool fDisconnect
Definition: net.h:734
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:707
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:879
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:588
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:555
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:706
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:225
std::string addrLocal
Definition: net.h:213
bool fInbound
Definition: net.h:199
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:223
Network m_network
Definition: net.h:219
NodeId nodeid
Definition: net.h:190
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:532
bool SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
Set CService from a network sockaddr.
Definition: netaddress.cpp:806
uint16_t GetPort() const
Definition: netaddress.cpp:835
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:822
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:862
std::string ToStringAddrPort() const
Definition: netaddress.cpp:903
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:81
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:32
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
RAII-style semaphore lock.
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: streams.cpp:140
Fast randomness source.
Definition: random.h:386
void fillrand(std::span< std::byte > output) noexcept
Fill a byte span with random bytes.
Definition: random.cpp:626
Different type to mark Mutex at global scope.
Definition: sync.h:135
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1019
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream.
Definition: serialize.h:1107
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range) noexcept
Return the time point advanced by a uniform random duration.
Definition: random.h:329
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:336
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
Return a duration sampled from an exponential distribution (https://en.wikipedia.org/wiki/Exponential...
Definition: random.h:365
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
std::unordered_set< Network > All() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:144
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:131
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
std::tuple< std::span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:314
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:838
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:724
int readData(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:772
const NodeId m_node_id
Definition: net.h:374
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:409
const MessageStartChars m_magic_bytes
Definition: net.h:373
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:900
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:790
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:884
int readHeader(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:729
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:717
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:401
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:430
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:863
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:389
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:375
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:422
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:799
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1529
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:637
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:583
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1272
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:579
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1568
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1078
SendState
State type that controls the sender side.
Definition: net.h:548
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:585
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:462
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:985
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1203
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1116
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:581
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1577
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1512
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:1018
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1176
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1069
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1451
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:458
static std::optional< std::string > GetMessageType(std::span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1411
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1321
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1551
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1480
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:1014
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:483
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1049
constexpr unsigned char * begin()
Definition: uint256.h:101
256-bit opaque blob.
Definition: uint256.h:196
#define WSAEWOULDBLOCK
Definition: compat.h:49
#define SOCKET_ERROR
Definition: compat.h:56
#define WSAGetLastError()
Definition: compat.h:47
#define WSAEMSGSIZE
Definition: compat.h:51
#define MSG_NOSIGNAL
Definition: compat.h:98
#define MSG_DONTWAIT
Definition: compat.h:103
#define WSAEINPROGRESS
Definition: compat.h:53
#define WSAEADDRINUSE
Definition: compat.h:54
#define WSAEINTR
Definition: compat.h:52
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
static path u8path(std::string_view utf8_str)
Definition: fs.h:81
static std::string PathToString(const path &path)
Convert path object to a byte string.
Definition: fs.h:157
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:31
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:475
bool fLogIPs
Definition: logging.cpp:47
#define LogPrintLevel(category, level,...)
Definition: logging.h:384
#define LogInfo(...)
Definition: logging.h:368
#define LogDebug(category,...)
Definition: logging.h:393
#define LogPrintf(...)
Definition: logging.h:373
unsigned int nonce
Definition: miner_tests.cpp:81
@ PROXY
Definition: logging.h:81
@ NET
Definition: logging.h:66
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:25
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
Definition: messages.h:21
static const unsigned char VERSION[]
Definition: netaddress.cpp:188
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:44
uint16_t GetListenPort()
Definition: net.cpp:138
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:66
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:329
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:110
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:106
static const uint64_t RANDOMIZER_ID_NETWORKKEY
Definition: net.cpp:112
void RemoveLocal(const CService &addr)
Definition: net.cpp:310
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:94
@ BF_REPORT_ERROR
Definition: net.cpp:96
@ BF_NONE
Definition: net.cpp:95
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:101
bool fDiscover
Definition: net.cpp:116
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:111
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:63
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:91
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD
Minimum number of outbound connections under which we will keep fetching our address seeds.
Definition: net.cpp:69
void ClearLocal()
Definition: net.cpp:270
static CService GetBindAddress(const Sock &sock)
Get the bind address for a socket as CService.
Definition: net.cpp:364
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:277
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:88
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:82
bool fListen
Definition: net.cpp:117
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:57
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:233
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:80
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:120
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:240
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:108
TRACEPOINT_SEMAPHORE(net, closed_connection)
#define X(name)
Definition: net.cpp:614
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3807
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:60
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:195
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:4008
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:220
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:118
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:165
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4048
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:81
static int GetnScore(const CService &addr)
Definition: net.cpp:225
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3441
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:85
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3205
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:59
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:93
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:65
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:63
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:91
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:92
int64_t NodeId
Definition: net.h:99
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:89
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:61
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:69
@ LOCAL_MANUAL
Definition: net.h:154
@ LOCAL_BIND
Definition: net.h:152
@ LOCAL_IF
Definition: net.h:151
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:73
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:105
Network
A network type.
Definition: netaddress.h:33
@ NET_I2P
I2P.
Definition: netaddress.h:47
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:50
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:57
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:44
@ NET_IPV6
IPv6.
Definition: netaddress.h:41
@ NET_IPV4
IPv4.
Definition: netaddress.h:38
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:35
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:54
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:649
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:177
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:118
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:738
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:195
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:946
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:713
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:789
std::function< std::unique_ptr< Sock >(int, int, int)> CreateSock
Socket factory.
Definition: netbase.cpp:581
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:730
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:220
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:851
ConnectionDirection
Definition: netbase.h:33
std::vector< CNetAddr > GetLocalAddresses()
Return all local non-loopback IPv4 and IPv6 network addresses.
Definition: netif.cpp:318
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:354
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_P2P_V2
Definition: protocol.h:330
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:617
uint256 GetRandHash() noexcept
Generate a random uint256.
Definition: random.h:463
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:63
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:73
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
auto MakeByteSpan(const V &v) noexcept
Definition: span.h:84
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
T & SpanPopBack(std::span< T > &span)
A span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:75
auto MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:89
unsigned char * UCharCast(char *c)
Definition: span.h:95
std::string m_added_node
Definition: net.h:102
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1536
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1538
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1537
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1324
std::shared_ptr< Sock > sock
Definition: net.h:1323
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1077
std::vector< CService > onion_binds
Definition: net.h:1079
std::vector< std::string > m_specified_outgoing
Definition: net.h:1084
std::vector< CService > vBinds
Definition: net.h:1078
bool m_i2p_accept_incoming
Definition: net.h:1086
std::vector< std::string > vSeedNodes
Definition: net.h:1074
bool m_use_addrman_outgoing
Definition: net.h:1083
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1082
NetPermissionFlags permission_flags
Definition: net.h:667
std::string m_type
Definition: net.h:133
std::vector< unsigned char > data
Definition: net.h:132
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:122
An ElligatorSwift-encoded public key.
Definition: pubkey.h:314
static constexpr size_t size()
Definition: pubkey.h:331
uint16_t nPort
Definition: net.h:178
int nScore
Definition: net.h:177
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:264
TransportProtocolType transport_type
Definition: net.h:263
Bilingual messages:
Definition: translation.h:24
std::string original
Definition: translation.h:25
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
CService peer
The peer's I2P address.
Definition: i2p.h:40
#define WAIT_LOCK(cs, name)
Definition: sync.h:265
#define AssertLockNotHeld(cs)
Definition: sync.h:142
#define LOCK(cs)
Definition: sync.h:259
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:290
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:56
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:82
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:77
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56