Bitcoin Core 28.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2022 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8#include <net.h>
9
10#include <addrdb.h>
11#include <addrman.h>
12#include <banman.h>
13#include <clientversion.h>
14#include <common/args.h>
15#include <common/netif.h>
16#include <compat/compat.h>
17#include <consensus/consensus.h>
18#include <crypto/sha256.h>
19#include <i2p.h>
20#include <key.h>
21#include <logging.h>
22#include <memusage.h>
23#include <net_permissions.h>
24#include <netaddress.h>
25#include <netbase.h>
26#include <node/eviction.h>
27#include <node/interface_ui.h>
28#include <protocol.h>
29#include <random.h>
30#include <scheduler.h>
31#include <util/fs.h>
32#include <util/sock.h>
33#include <util/strencodings.h>
34#include <util/thread.h>
36#include <util/trace.h>
37#include <util/translation.h>
38#include <util/vector.h>
39
40#ifdef WIN32
41#include <string.h>
42#endif
43
44#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45#include <ifaddrs.h>
46#endif
47
48#include <algorithm>
49#include <array>
50#include <cmath>
51#include <cstdint>
52#include <functional>
53#include <optional>
54#include <unordered_map>
55
56TRACEPOINT_SEMAPHORE(net, outbound_message);
57
59static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
60static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
62const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
63
64// How often to dump addresses to peers.dat
65static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
66
68static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
69
71static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
72
82static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
83static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
84static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
85
87static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
88
89// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
90static constexpr auto FEELER_SLEEP_WINDOW{1s};
91
93static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
94
98 BF_REPORT_ERROR = (1U << 0),
103 BF_DONT_ADVERTISE = (1U << 1),
104};
105
106// The set of sockets cannot be modified while waiting
107// The sleep time needs to be small to avoid new sockets stalling
108static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
109
110const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
111
112static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
113static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
114static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
115//
116// Global state variables
117//
118bool fDiscover = true;
119bool fListen = true;
121std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
122std::string strSubVersion;
123
125{
126 return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
127}
128
129size_t CNetMessage::GetMemoryUsage() const noexcept
130{
131 return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
132}
133
134void CConnman::AddAddrFetch(const std::string& strDest)
135{
137 m_addr_fetches.push_back(strDest);
138}
139
141{
142 // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
143 for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
144 constexpr uint16_t dummy_port = 0;
145
146 const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
147 if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
148 }
149
150 // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
151 // (-whitebind= is required to have ":port").
152 for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
153 NetWhitebindPermissions whitebind;
154 bilingual_str error;
155 if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
157 return whitebind.m_service.GetPort();
158 }
159 }
160 }
161
162 // Otherwise, if -port= is provided, use that. Otherwise use the default port.
163 return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
164}
165
166// Determine the "best" local address for a particular peer.
167[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
168{
169 if (!fListen) return std::nullopt;
170
171 std::optional<CService> addr;
172 int nBestScore = -1;
173 int nBestReachability = -1;
174 {
176 for (const auto& [local_addr, local_service_info] : mapLocalHost) {
177 // For privacy reasons, don't advertise our privacy-network address
178 // to other networks and don't advertise our other-network address
179 // to privacy networks.
180 if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
181 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
182 continue;
183 }
184 const int nScore{local_service_info.nScore};
185 const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
186 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
187 addr.emplace(CService{local_addr, local_service_info.nPort});
188 nBestReachability = nReachability;
189 nBestScore = nScore;
190 }
191 }
192 }
193 return addr;
194}
195
197static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
198{
199 // It'll only connect to one or two seed nodes because once it connects,
200 // it'll get a pile of addresses with newer timestamps.
201 // Seed nodes are given a random 'last seen time' of between one and two
202 // weeks ago.
203 const auto one_week{7 * 24h};
204 std::vector<CAddress> vSeedsOut;
207 while (!s.eof()) {
208 CService endpoint;
209 s >> endpoint;
210 CAddress addr{endpoint, SeedsServiceFlags()};
211 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
212 LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
213 vSeedsOut.push_back(addr);
214 }
215 return vSeedsOut;
216}
217
218// Determine the "best" local address for a particular peer.
219// If none, return the unroutable 0.0.0.0 but filled in with
220// the normal parameters, since the IP may be changed to a useful
221// one by discovery.
223{
224 return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
225}
226
227static int GetnScore(const CService& addr)
228{
230 const auto it = mapLocalHost.find(addr);
231 return (it != mapLocalHost.end()) ? it->second.nScore : 0;
232}
233
234// Is our peer's addrLocal potentially useful as an external IP source?
235[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
236{
237 CService addrLocal = pnode->GetAddrLocal();
238 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
239 g_reachable_nets.Contains(addrLocal);
240}
241
242std::optional<CService> GetLocalAddrForPeer(CNode& node)
243{
244 CService addrLocal{GetLocalAddress(node)};
245 // If discovery is enabled, sometimes give our peer the address it
246 // tells us that it sees us as in case it has a better idea of our
247 // address than we do.
249 if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
250 rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
251 {
252 if (node.IsInboundConn()) {
253 // For inbound connections, assume both the address and the port
254 // as seen from the peer.
255 addrLocal = CService{node.GetAddrLocal()};
256 } else {
257 // For outbound connections, assume just the address as seen from
258 // the peer and leave the port in `addrLocal` as returned by
259 // `GetLocalAddress()` above. The peer has no way to observe our
260 // listening port when we have initiated the connection.
261 addrLocal.SetIP(node.GetAddrLocal());
262 }
263 }
264 if (addrLocal.IsRoutable()) {
265 LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
266 return addrLocal;
267 }
268 // Address is unroutable. Don't advertise.
269 return std::nullopt;
270}
271
272// learn a new local address
273bool AddLocal(const CService& addr_, int nScore)
274{
275 CService addr{MaybeFlipIPv6toCJDNS(addr_)};
276
277 if (!addr.IsRoutable())
278 return false;
279
280 if (!fDiscover && nScore < LOCAL_MANUAL)
281 return false;
282
283 if (!g_reachable_nets.Contains(addr))
284 return false;
285
286 LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
287
288 {
290 const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
291 LocalServiceInfo &info = it->second;
292 if (is_newly_added || nScore >= info.nScore) {
293 info.nScore = nScore + (is_newly_added ? 0 : 1);
294 info.nPort = addr.GetPort();
295 }
296 }
297
298 return true;
299}
300
301bool AddLocal(const CNetAddr &addr, int nScore)
302{
303 return AddLocal(CService(addr, GetListenPort()), nScore);
304}
305
306void RemoveLocal(const CService& addr)
307{
309 LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
310 mapLocalHost.erase(addr);
311}
312
314bool SeenLocal(const CService& addr)
315{
317 const auto it = mapLocalHost.find(addr);
318 if (it == mapLocalHost.end()) return false;
319 ++it->second.nScore;
320 return true;
321}
322
323
325bool IsLocal(const CService& addr)
326{
328 return mapLocalHost.count(addr) > 0;
329}
330
332{
334 for (CNode* pnode : m_nodes) {
335 if (static_cast<CNetAddr>(pnode->addr) == ip) {
336 return pnode;
337 }
338 }
339 return nullptr;
340}
341
342CNode* CConnman::FindNode(const std::string& addrName)
343{
345 for (CNode* pnode : m_nodes) {
346 if (pnode->m_addr_name == addrName) {
347 return pnode;
348 }
349 }
350 return nullptr;
351}
352
354{
356 for (CNode* pnode : m_nodes) {
357 if (static_cast<CService>(pnode->addr) == addr) {
358 return pnode;
359 }
360 }
361 return nullptr;
362}
363
365{
366 return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
367}
368
370{
372 for (const CNode* pnode : m_nodes) {
373 if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
374 return false;
375 }
376 return true;
377}
378
380static CAddress GetBindAddress(const Sock& sock)
381{
382 CAddress addr_bind;
383 struct sockaddr_storage sockaddr_bind;
384 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
385 if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
386 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
387 } else {
388 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
389 }
390 return addr_bind;
391}
392
393CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
394{
396 assert(conn_type != ConnectionType::INBOUND);
397
398 if (pszDest == nullptr) {
399 if (IsLocal(addrConnect))
400 return nullptr;
401
402 // Look for an existing connection
403 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
404 if (pnode)
405 {
406 LogPrintf("Failed to open new connection, already connected\n");
407 return nullptr;
408 }
409 }
410
411 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
412 use_v2transport ? "v2" : "v1",
413 pszDest ? pszDest : addrConnect.ToStringAddrPort(),
414 Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
415
416 // Resolve
417 const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
419
420 // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
421 std::vector<CAddress> connect_to{};
422 if (pszDest) {
423 std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
424 if (!resolved.empty()) {
425 std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
426 // If the connection is made by name, it can be the case that the name resolves to more than one address.
427 // We don't want to connect any more of them if we are already connected to one
428 for (const auto& r : resolved) {
429 addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
430 if (!addrConnect.IsValid()) {
431 LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
432 return nullptr;
433 }
434 // It is possible that we already have a connection to the IP/port pszDest resolved to.
435 // In that case, drop the connection that was just created.
437 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
438 if (pnode) {
439 LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
440 return nullptr;
441 }
442 // Add the address to the resolved addresses vector so we can try to connect to it later on
443 connect_to.push_back(addrConnect);
444 }
445 } else {
446 // For resolution via proxy
447 connect_to.push_back(addrConnect);
448 }
449 } else {
450 // Connect via addrConnect directly
451 connect_to.push_back(addrConnect);
452 }
453
454 // Connect
455 std::unique_ptr<Sock> sock;
456 Proxy proxy;
457 CAddress addr_bind;
458 assert(!addr_bind.IsValid());
459 std::unique_ptr<i2p::sam::Session> i2p_transient_session;
460
461 for (auto& target_addr: connect_to) {
462 if (target_addr.IsValid()) {
463 const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
464 bool proxyConnectionFailed = false;
465
466 if (target_addr.IsI2P() && use_proxy) {
467 i2p::Connection conn;
468 bool connected{false};
469
470 if (m_i2p_sam_session) {
471 connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
472 } else {
473 {
475 if (m_unused_i2p_sessions.empty()) {
476 i2p_transient_session =
477 std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
478 } else {
479 i2p_transient_session.swap(m_unused_i2p_sessions.front());
480 m_unused_i2p_sessions.pop();
481 }
482 }
483 connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
484 if (!connected) {
486 if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
487 m_unused_i2p_sessions.emplace(i2p_transient_session.release());
488 }
489 }
490 }
491
492 if (connected) {
493 sock = std::move(conn.sock);
494 addr_bind = CAddress{conn.me, NODE_NONE};
495 }
496 } else if (use_proxy) {
497 LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
498 sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
499 } else {
500 // no proxy needed (none set for target network)
501 sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
502 }
503 if (!proxyConnectionFailed) {
504 // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
505 // the proxy, mark this as an attempt.
506 addrman.Attempt(target_addr, fCountFailure);
507 }
508 } else if (pszDest && GetNameProxy(proxy)) {
509 std::string host;
510 uint16_t port{default_port};
511 SplitHostPort(std::string(pszDest), port, host);
512 bool proxyConnectionFailed;
513 sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
514 }
515 // Check any other resolved address (if any) if we fail to connect
516 if (!sock) {
517 continue;
518 }
519
521 std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
522 AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
523
524 // Add node
525 NodeId id = GetNewNodeId();
527 if (!addr_bind.IsValid()) {
528 addr_bind = GetBindAddress(*sock);
529 }
530 CNode* pnode = new CNode(id,
531 std::move(sock),
532 target_addr,
533 CalculateKeyedNetGroup(target_addr),
534 nonce,
535 addr_bind,
536 pszDest ? pszDest : "",
537 conn_type,
538 /*inbound_onion=*/false,
540 .permission_flags = permission_flags,
541 .i2p_sam_session = std::move(i2p_transient_session),
542 .recv_flood_size = nReceiveFloodSize,
543 .use_v2transport = use_v2transport,
544 });
545 pnode->AddRef();
546
547 // We're making a new connection, harvest entropy from the time (and our peer count)
548 RandAddEvent((uint32_t)id);
549
550 return pnode;
551 }
552
553 return nullptr;
554}
555
557{
558 fDisconnect = true;
560 if (m_sock) {
561 m_sock.reset();
562 }
563 m_i2p_sam_session.reset();
564}
565
566void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
567 for (const auto& subnet : ranges) {
568 if (subnet.m_subnet.Match(addr)) {
569 NetPermissions::AddFlag(flags, subnet.m_flags);
570 }
571 }
578 }
579}
580
582{
585 return m_addr_local;
586}
587
588void CNode::SetAddrLocal(const CService& addrLocalIn) {
591 if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
592 m_addr_local = addrLocalIn;
593 }
594}
595
597{
599}
600
602{
604}
605
606#undef X
607#define X(name) stats.name = name
609{
610 stats.nodeid = this->GetId();
611 X(addr);
612 X(addrBind);
614 X(m_last_send);
615 X(m_last_recv);
618 X(m_connected);
619 X(m_addr_name);
620 X(nVersion);
621 {
623 X(cleanSubVer);
624 }
625 stats.fInbound = IsInboundConn();
628 {
629 LOCK(cs_vSend);
630 X(mapSendBytesPerMsgType);
631 X(nSendBytes);
632 }
633 {
634 LOCK(cs_vRecv);
635 X(mapRecvBytesPerMsgType);
636 X(nRecvBytes);
637 Transport::Info info = m_transport->GetInfo();
638 stats.m_transport_type = info.transport_type;
639 if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
640 }
642
645
646 // Leave string empty if addrLocal invalid (not filled in yet)
647 CService addrLocalUnlocked = GetAddrLocal();
648 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
649
650 X(m_conn_type);
651}
652#undef X
653
654bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
655{
656 complete = false;
657 const auto time = GetTime<std::chrono::microseconds>();
658 LOCK(cs_vRecv);
659 m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
660 nRecvBytes += msg_bytes.size();
661 while (msg_bytes.size() > 0) {
662 // absorb network data
663 if (!m_transport->ReceivedBytes(msg_bytes)) {
664 // Serious transport problem, disconnect from the peer.
665 return false;
666 }
667
668 if (m_transport->ReceivedMessageComplete()) {
669 // decompose a transport agnostic CNetMessage from the deserializer
670 bool reject_message{false};
671 CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
672 if (reject_message) {
673 // Message deserialization failed. Drop the message but don't disconnect the peer.
674 // store the size of the corrupt message
675 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
676 continue;
677 }
678
679 // Store received bytes per message type.
680 // To prevent a memory DOS, only allow known message types.
681 auto i = mapRecvBytesPerMsgType.find(msg.m_type);
682 if (i == mapRecvBytesPerMsgType.end()) {
683 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
684 }
685 assert(i != mapRecvBytesPerMsgType.end());
686 i->second += msg.m_raw_message_size;
687
688 // push the message to the process queue,
689 vRecvMsg.push_back(std::move(msg));
690
691 complete = true;
692 }
693 }
694
695 return true;
696}
697
698std::string CNode::LogIP(bool log_ip) const
699{
700 return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
701}
702
703std::string CNode::DisconnectMsg(bool log_ip) const
704{
705 return strprintf("disconnecting peer=%d%s",
706 GetId(),
707 LogIP(log_ip));
708}
709
710V1Transport::V1Transport(const NodeId node_id) noexcept
711 : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
712{
713 LOCK(m_recv_mutex);
714 Reset();
715}
716
718{
719 return {.transport_type = TransportProtocolType::V1, .session_id = {}};
720}
721
723{
725 // copy data to temporary parsing buffer
726 unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
727 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
728
729 memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
730 nHdrPos += nCopy;
731
732 // if header incomplete, exit
733 if (nHdrPos < CMessageHeader::HEADER_SIZE)
734 return nCopy;
735
736 // deserialize to CMessageHeader
737 try {
738 hdrbuf >> hdr;
739 }
740 catch (const std::exception&) {
741 LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
742 return -1;
743 }
744
745 // Check start string, network magic
746 if (hdr.pchMessageStart != m_magic_bytes) {
747 LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
748 return -1;
749 }
750
751 // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
752 if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
753 LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
754 return -1;
755 }
756
757 // switch state to reading message data
758 in_data = true;
759
760 return nCopy;
761}
762
764{
766 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
767 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
768
769 if (vRecv.size() < nDataPos + nCopy) {
770 // Allocate up to 256 KiB ahead, but never more than the total message size.
771 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
772 }
773
774 hasher.Write(msg_bytes.first(nCopy));
775 memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
776 nDataPos += nCopy;
777
778 return nCopy;
779}
780
782{
785 if (data_hash.IsNull())
786 hasher.Finalize(data_hash);
787 return data_hash;
788}
789
790CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
791{
793 // Initialize out parameter
794 reject_message = false;
795 // decompose a single CNetMessage from the TransportDeserializer
797 CNetMessage msg(std::move(vRecv));
798
799 // store message type string, time, and sizes
800 msg.m_type = hdr.GetMessageType();
801 msg.m_time = time;
802 msg.m_message_size = hdr.nMessageSize;
803 msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
804
805 uint256 hash = GetMessageHash();
806
807 // We just received a message off the wire, harvest entropy from the time (and the message checksum)
808 RandAddEvent(ReadLE32(hash.begin()));
809
810 // Check checksum and header message type string
811 if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
812 LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
813 SanitizeString(msg.m_type), msg.m_message_size,
815 HexStr(hdr.pchChecksum),
816 m_node_id);
817 reject_message = true;
818 } else if (!hdr.IsMessageTypeValid()) {
819 LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
820 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
821 reject_message = true;
822 }
823
824 // Always reset the network deserializer (prepare for the next message)
825 Reset();
826 return msg;
827}
828
830{
831 AssertLockNotHeld(m_send_mutex);
832 // Determine whether a new message can be set.
833 LOCK(m_send_mutex);
834 if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
835
836 // create dbl-sha256 checksum
837 uint256 hash = Hash(msg.data);
838
839 // create header
840 CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
842
843 // serialize header
844 m_header_to_send.clear();
845 VectorWriter{m_header_to_send, 0, hdr};
846
847 // update state
848 m_message_to_send = std::move(msg);
849 m_sending_header = true;
850 m_bytes_sent = 0;
851 return true;
852}
853
854Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
855{
856 AssertLockNotHeld(m_send_mutex);
857 LOCK(m_send_mutex);
858 if (m_sending_header) {
859 return {Span{m_header_to_send}.subspan(m_bytes_sent),
860 // We have more to send after the header if the message has payload, or if there
861 // is a next message after that.
862 have_next_message || !m_message_to_send.data.empty(),
863 m_message_to_send.m_type
864 };
865 } else {
866 return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
867 // We only have more to send after this message's payload if there is another
868 // message.
869 have_next_message,
870 m_message_to_send.m_type
871 };
872 }
873}
874
875void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
876{
877 AssertLockNotHeld(m_send_mutex);
878 LOCK(m_send_mutex);
879 m_bytes_sent += bytes_sent;
880 if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
881 // We're done sending a message's header. Switch to sending its data bytes.
882 m_sending_header = false;
883 m_bytes_sent = 0;
884 } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
885 // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
886 ClearShrink(m_message_to_send.data);
887 m_bytes_sent = 0;
888 }
889}
890
891size_t V1Transport::GetSendMemoryUsage() const noexcept
892{
895 // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
896 return m_message_to_send.GetMemoryUsage();
897}
898
899namespace {
900
906const std::array<std::string, 33> V2_MESSAGE_IDS = {
907 "", // 12 bytes follow encoding the message type like in V1
936 // Unimplemented message types that are assigned in BIP324:
937 "",
938 "",
939 "",
940 ""
941};
942
943class V2MessageMap
944{
945 std::unordered_map<std::string, uint8_t> m_map;
946
947public:
948 V2MessageMap() noexcept
949 {
950 for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
951 m_map.emplace(V2_MESSAGE_IDS[i], i);
952 }
953 }
954
955 std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
956 {
957 auto it = m_map.find(message_name);
958 if (it == m_map.end()) return std::nullopt;
959 return it->second;
960 }
961};
962
963const V2MessageMap V2_MESSAGE_MAP;
964
965std::vector<uint8_t> GenerateRandomGarbage() noexcept
966{
967 std::vector<uint8_t> ret;
971 return ret;
972}
973
974} // namespace
975
977{
978 AssertLockHeld(m_send_mutex);
979 Assume(m_send_state == SendState::AWAITING_KEY);
980 Assume(m_send_buffer.empty());
981 // Initialize the send buffer with ellswift pubkey + provided garbage.
982 m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
983 std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
984 std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
985 // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
986}
987
988V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
989 : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
990 m_v1_fallback{nodeid},
991 m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
992 m_send_garbage{std::move(garbage)},
993 m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
994{
995 Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
996 // Start sending immediately if we're the initiator of the connection.
997 if (initiating) {
998 LOCK(m_send_mutex);
999 StartSendingHandshake();
1000 }
1001}
1002
1003V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1004 : V2Transport{nodeid, initiating, GenerateRandomKey(),
1005 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1006
1008{
1009 AssertLockHeld(m_recv_mutex);
1010 // Enforce allowed state transitions.
1011 switch (m_recv_state) {
1012 case RecvState::KEY_MAYBE_V1:
1013 Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1014 break;
1015 case RecvState::KEY:
1016 Assume(recv_state == RecvState::GARB_GARBTERM);
1017 break;
1018 case RecvState::GARB_GARBTERM:
1019 Assume(recv_state == RecvState::VERSION);
1020 break;
1021 case RecvState::VERSION:
1022 Assume(recv_state == RecvState::APP);
1023 break;
1024 case RecvState::APP:
1025 Assume(recv_state == RecvState::APP_READY);
1026 break;
1027 case RecvState::APP_READY:
1028 Assume(recv_state == RecvState::APP);
1029 break;
1030 case RecvState::V1:
1031 Assume(false); // V1 state cannot be left
1032 break;
1033 }
1034 // Change state.
1035 m_recv_state = recv_state;
1036}
1037
1038void V2Transport::SetSendState(SendState send_state) noexcept
1039{
1040 AssertLockHeld(m_send_mutex);
1041 // Enforce allowed state transitions.
1042 switch (m_send_state) {
1043 case SendState::MAYBE_V1:
1044 Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1045 break;
1046 case SendState::AWAITING_KEY:
1047 Assume(send_state == SendState::READY);
1048 break;
1049 case SendState::READY:
1050 case SendState::V1:
1051 Assume(false); // Final states
1052 break;
1053 }
1054 // Change state.
1055 m_send_state = send_state;
1056}
1057
1059{
1060 AssertLockNotHeld(m_recv_mutex);
1061 LOCK(m_recv_mutex);
1062 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1063
1064 return m_recv_state == RecvState::APP_READY;
1065}
1066
1068{
1069 AssertLockHeld(m_recv_mutex);
1070 AssertLockNotHeld(m_send_mutex);
1071 Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1072 // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1073 // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1074 // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1075 // sending of the key.
1076 std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1077 std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1078 Assume(m_recv_buffer.size() <= v1_prefix.size());
1079 if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1080 // Mismatch with v1 prefix, so we can assume a v2 connection.
1081 SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1082 // Transition the sender to AWAITING_KEY state and start sending.
1083 LOCK(m_send_mutex);
1086 } else if (m_recv_buffer.size() == v1_prefix.size()) {
1087 // Full match with the v1 prefix, so fall back to v1 behavior.
1088 LOCK(m_send_mutex);
1089 Span<const uint8_t> feedback{m_recv_buffer};
1090 // Feed already received bytes to v1 transport. It should always accept these, because it's
1091 // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1092 bool ret = m_v1_fallback.ReceivedBytes(feedback);
1093 Assume(feedback.empty());
1094 Assume(ret);
1097 // Reset v2 transport buffers to save memory.
1098 ClearShrink(m_recv_buffer);
1099 ClearShrink(m_send_buffer);
1100 } else {
1101 // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1102 }
1103}
1104
1106{
1107 AssertLockHeld(m_recv_mutex);
1108 AssertLockNotHeld(m_send_mutex);
1109 Assume(m_recv_state == RecvState::KEY);
1110 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1111
1112 // As a special exception, if bytes 4-16 of the key on a responder connection match the
1113 // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1114 // (if they did, we'd have switched to V1 state already), assume this is a peer from
1115 // another network, and disconnect them. They will almost certainly disconnect us too when
1116 // they receive our uniformly random key and garbage, but detecting this case specially
1117 // means we can log it.
1118 static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1119 static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1120 if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1121 if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1122 LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1123 HexStr(Span(m_recv_buffer).first(OFFSET)));
1124 return false;
1125 }
1126 }
1127
1128 if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1129 // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1130 // our key to initialize the encryption ciphers.
1131
1132 // Initialize the ciphers.
1133 EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1134 LOCK(m_send_mutex);
1135 m_cipher.Initialize(ellswift, m_initiating);
1136
1137 // Switch receiver state to GARB_GARBTERM.
1139 m_recv_buffer.clear();
1140
1141 // Switch sender state to READY.
1143
1144 // Append the garbage terminator to the send buffer.
1145 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1148 MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1149
1150 // Construct version packet in the send buffer, with the sent garbage data as AAD.
1151 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1153 /*contents=*/VERSION_CONTENTS,
1154 /*aad=*/MakeByteSpan(m_send_garbage),
1155 /*ignore=*/false,
1156 /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1157 // We no longer need the garbage.
1158 ClearShrink(m_send_garbage);
1159 } else {
1160 // We still have to receive more key bytes.
1161 }
1162 return true;
1163}
1164
1166{
1167 AssertLockHeld(m_recv_mutex);
1168 Assume(m_recv_state == RecvState::GARB_GARBTERM);
1170 if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1171 if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1172 // Garbage terminator received. Store garbage to authenticate it as AAD later.
1173 m_recv_aad = std::move(m_recv_buffer);
1174 m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1175 m_recv_buffer.clear();
1177 } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1178 // We've reached the maximum length for garbage + garbage terminator, and the
1179 // terminator still does not match. Abort.
1180 LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1181 return false;
1182 } else {
1183 // We still need to receive more garbage and/or garbage terminator bytes.
1184 }
1185 } else {
1186 // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1187 // more first.
1188 }
1189 return true;
1190}
1191
1193{
1194 AssertLockHeld(m_recv_mutex);
1195 Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1196
1197 // The maximum permitted contents length for a packet, consisting of:
1198 // - 0x00 byte: indicating long message type encoding
1199 // - 12 bytes of message type
1200 // - payload
1201 static constexpr size_t MAX_CONTENTS_LEN =
1203 std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1204
1205 if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1206 // Length descriptor received.
1207 m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1208 if (m_recv_len > MAX_CONTENTS_LEN) {
1209 LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1210 return false;
1211 }
1212 } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1213 // Ciphertext received, decrypt it into m_recv_decode_buffer.
1214 // Note that it is impossible to reach this branch without hitting the branch above first,
1215 // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1216 m_recv_decode_buffer.resize(m_recv_len);
1217 bool ignore{false};
1218 bool ret = m_cipher.Decrypt(
1219 /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1220 /*aad=*/MakeByteSpan(m_recv_aad),
1221 /*ignore=*/ignore,
1222 /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1223 if (!ret) {
1224 LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1225 return false;
1226 }
1227 // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1228 ClearShrink(m_recv_aad);
1229 // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1230 RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1231
1232 // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1233 // decoy, which we simply ignore, use the current state to decide what to do with it.
1234 if (!ignore) {
1235 switch (m_recv_state) {
1236 case RecvState::VERSION:
1237 // Version message received; transition to application phase. The contents is
1238 // ignored, but can be used for future extensions.
1240 break;
1241 case RecvState::APP:
1242 // Application message decrypted correctly. It can be extracted using GetMessage().
1244 break;
1245 default:
1246 // Any other state is invalid (this function should not have been called).
1247 Assume(false);
1248 }
1249 }
1250 // Wipe the receive buffer where the next packet will be received into.
1251 ClearShrink(m_recv_buffer);
1252 // In all but APP_READY state, we can wipe the decoded contents.
1253 if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1254 } else {
1255 // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1256 // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1257 }
1258 return true;
1259}
1260
1262{
1263 AssertLockHeld(m_recv_mutex);
1264 switch (m_recv_state) {
1266 // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1267 // receive buffer.
1268 Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1269 // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1270 // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1271 // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1272 // back into the m_v1_fallback V1 transport.
1273 return V1_PREFIX_LEN - m_recv_buffer.size();
1274 case RecvState::KEY:
1275 // During the KEY state, we only allow the 64-byte key into the receive buffer.
1276 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1277 // As long as we have not received the other side's public key, don't receive more than
1278 // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1279 // key exchange first.
1280 return EllSwiftPubKey::size() - m_recv_buffer.size();
1282 // Process garbage bytes one by one (because terminator may appear anywhere).
1283 return 1;
1284 case RecvState::VERSION:
1285 case RecvState::APP:
1286 // These three states all involve decoding a packet. Process the length descriptor first,
1287 // so that we know where the current packet ends (and we don't process bytes from the next
1288 // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1289 if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1290 return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1291 } else {
1292 // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1293 // and encoded packet size, which includes the 3 bytes due to the packet length.
1294 // When transitioning from receiving the packet length to receiving its ciphertext,
1295 // the encrypted packet length is left in the receive buffer.
1296 return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1297 }
1299 // No bytes can be processed until GetMessage() is called.
1300 return 0;
1301 case RecvState::V1:
1302 // Not allowed (must be dealt with by the caller).
1303 Assume(false);
1304 return 0;
1305 }
1306 Assume(false); // unreachable
1307 return 0;
1308}
1309
1311{
1312 AssertLockNotHeld(m_recv_mutex);
1314 static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1315
1316 LOCK(m_recv_mutex);
1317 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1318
1319 // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1320 // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1321 // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1322 // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1323 while (!msg_bytes.empty()) {
1324 // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1325 size_t max_read = GetMaxBytesToProcess();
1326
1327 // Reserve space in the buffer if there is not enough.
1328 if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1329 switch (m_recv_state) {
1330 case RecvState::KEY_MAYBE_V1:
1331 case RecvState::KEY:
1332 case RecvState::GARB_GARBTERM:
1333 // During the initial states (key/garbage), allocate once to fit the maximum (4111
1334 // bytes).
1335 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1336 break;
1337 case RecvState::VERSION:
1338 case RecvState::APP: {
1339 // During states where a packet is being received, as much as is expected but never
1340 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1341 // This means attackers that want to cause us to waste allocated memory are limited
1342 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1343 // MAX_RESERVE_AHEAD more than they've actually sent us.
1344 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1345 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1346 break;
1347 }
1348 case RecvState::APP_READY:
1349 // The buffer is empty in this state.
1350 Assume(m_recv_buffer.empty());
1351 break;
1352 case RecvState::V1:
1353 // Should have bailed out above.
1354 Assume(false);
1355 break;
1356 }
1357 }
1358
1359 // Can't read more than provided input.
1360 max_read = std::min(msg_bytes.size(), max_read);
1361 // Copy data to buffer.
1362 m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1363 msg_bytes = msg_bytes.subspan(max_read);
1364
1365 // Process data in the buffer.
1366 switch (m_recv_state) {
1367 case RecvState::KEY_MAYBE_V1:
1368 ProcessReceivedMaybeV1Bytes();
1369 if (m_recv_state == RecvState::V1) return true;
1370 break;
1371
1372 case RecvState::KEY:
1373 if (!ProcessReceivedKeyBytes()) return false;
1374 break;
1375
1376 case RecvState::GARB_GARBTERM:
1377 if (!ProcessReceivedGarbageBytes()) return false;
1378 break;
1379
1380 case RecvState::VERSION:
1381 case RecvState::APP:
1382 if (!ProcessReceivedPacketBytes()) return false;
1383 break;
1384
1385 case RecvState::APP_READY:
1386 return true;
1387
1388 case RecvState::V1:
1389 // We should have bailed out before.
1390 Assume(false);
1391 break;
1392 }
1393 // Make sure we have made progress before continuing.
1394 Assume(max_read > 0);
1395 }
1396
1397 return true;
1398}
1399
1400std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1401{
1402 if (contents.size() == 0) return std::nullopt; // Empty contents
1403 uint8_t first_byte = contents[0];
1404 contents = contents.subspan(1); // Strip first byte.
1405
1406 if (first_byte != 0) {
1407 // Short (1 byte) encoding.
1408 if (first_byte < std::size(V2_MESSAGE_IDS)) {
1409 // Valid short message id.
1410 return V2_MESSAGE_IDS[first_byte];
1411 } else {
1412 // Unknown short message id.
1413 return std::nullopt;
1414 }
1415 }
1416
1417 if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1418 return std::nullopt; // Long encoding needs 12 message type bytes.
1419 }
1420
1421 size_t msg_type_len{0};
1422 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1423 // Verify that message type bytes before the first 0x00 are in range.
1424 if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1425 return {};
1426 }
1427 ++msg_type_len;
1428 }
1429 std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1430 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1431 // Verify that message type bytes after the first 0x00 are also 0x00.
1432 if (contents[msg_type_len] != 0) return {};
1433 ++msg_type_len;
1434 }
1435 // Strip message type bytes of contents.
1436 contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1437 return ret;
1438}
1439
1440CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1441{
1442 AssertLockNotHeld(m_recv_mutex);
1443 LOCK(m_recv_mutex);
1444 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1445
1446 Assume(m_recv_state == RecvState::APP_READY);
1447 Span<const uint8_t> contents{m_recv_decode_buffer};
1448 auto msg_type = GetMessageType(contents);
1450 // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1451 msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1452 if (msg_type) {
1453 reject_message = false;
1454 msg.m_type = std::move(*msg_type);
1455 msg.m_time = time;
1456 msg.m_message_size = contents.size();
1457 msg.m_recv.resize(contents.size());
1458 std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1459 } else {
1460 LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1461 reject_message = true;
1462 }
1463 ClearShrink(m_recv_decode_buffer);
1464 SetReceiveState(RecvState::APP);
1465
1466 return msg;
1467}
1468
1470{
1471 AssertLockNotHeld(m_send_mutex);
1472 LOCK(m_send_mutex);
1473 if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1474 // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1475 // is available) and the send buffer is empty. This limits the number of messages in the send
1476 // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1477 if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1478 // Construct contents (encoding message type + payload).
1479 std::vector<uint8_t> contents;
1480 auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1481 if (short_message_id) {
1482 contents.resize(1 + msg.data.size());
1483 contents[0] = *short_message_id;
1484 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1485 } else {
1486 // Initialize with zeroes, and then write the message type string starting at offset 1.
1487 // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1488 contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1489 std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1490 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1491 }
1492 // Construct ciphertext in send buffer.
1493 m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1494 m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1495 m_send_type = msg.m_type;
1496 // Release memory
1497 ClearShrink(msg.data);
1498 return true;
1499}
1500
1501Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1502{
1503 AssertLockNotHeld(m_send_mutex);
1504 LOCK(m_send_mutex);
1505 if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1506
1507 if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1508 Assume(m_send_pos <= m_send_buffer.size());
1509 return {
1510 Span{m_send_buffer}.subspan(m_send_pos),
1511 // We only have more to send after the current m_send_buffer if there is a (next)
1512 // message to be sent, and we're capable of sending packets. */
1513 have_next_message && m_send_state == SendState::READY,
1514 m_send_type
1515 };
1516}
1517
1518void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1519{
1520 AssertLockNotHeld(m_send_mutex);
1521 LOCK(m_send_mutex);
1522 if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1523
1524 if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1525 LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1526 }
1527
1528 m_send_pos += bytes_sent;
1529 Assume(m_send_pos <= m_send_buffer.size());
1530 if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1531 m_sent_v1_header_worth = true;
1532 }
1533 // Wipe the buffer when everything is sent.
1534 if (m_send_pos == m_send_buffer.size()) {
1535 m_send_pos = 0;
1536 ClearShrink(m_send_buffer);
1537 }
1538}
1539
1541{
1542 AssertLockNotHeld(m_send_mutex);
1543 AssertLockNotHeld(m_recv_mutex);
1544 // Only outgoing connections need reconnection.
1545 if (!m_initiating) return false;
1546
1547 LOCK(m_recv_mutex);
1548 // We only reconnect in the very first state and when the receive buffer is empty. Together
1549 // these conditions imply nothing has been received so far.
1550 if (m_recv_state != RecvState::KEY) return false;
1551 if (!m_recv_buffer.empty()) return false;
1552 // Check if we've sent enough for the other side to disconnect us (if it was V1).
1553 LOCK(m_send_mutex);
1554 return m_sent_v1_header_worth;
1555}
1556
1557size_t V2Transport::GetSendMemoryUsage() const noexcept
1558{
1559 AssertLockNotHeld(m_send_mutex);
1560 LOCK(m_send_mutex);
1561 if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1562
1563 return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1564}
1565
1567{
1568 AssertLockNotHeld(m_recv_mutex);
1569 LOCK(m_recv_mutex);
1570 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1571
1572 Transport::Info info;
1573
1574 // Do not report v2 and session ID until the version packet has been received
1575 // and verified (confirming that the other side very likely has the same keys as us).
1576 if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1577 m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1580 } else {
1582 }
1583
1584 return info;
1585}
1586
1587std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1588{
1589 auto it = node.vSendMsg.begin();
1590 size_t nSentSize = 0;
1591 bool data_left{false};
1592 std::optional<bool> expected_more;
1593
1594 while (true) {
1595 if (it != node.vSendMsg.end()) {
1596 // If possible, move one message from the send queue to the transport. This fails when
1597 // there is an existing message still being sent, or (for v2 transports) when the
1598 // handshake has not yet completed.
1599 size_t memusage = it->GetMemoryUsage();
1600 if (node.m_transport->SetMessageToSend(*it)) {
1601 // Update memory usage of send buffer (as *it will be deleted).
1602 node.m_send_memusage -= memusage;
1603 ++it;
1604 }
1605 }
1606 const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1607 // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1608 // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1609 // verify that the previously returned 'more' was correct.
1610 if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1611 expected_more = more;
1612 data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1613 int nBytes = 0;
1614 if (!data.empty()) {
1615 LOCK(node.m_sock_mutex);
1616 // There is no socket in case we've already disconnected, or in test cases without
1617 // real connections. In these cases, we bail out immediately and just leave things
1618 // in the send queue and transport.
1619 if (!node.m_sock) {
1620 break;
1621 }
1623#ifdef MSG_MORE
1624 if (more) {
1625 flags |= MSG_MORE;
1626 }
1627#endif
1628 nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1629 }
1630 if (nBytes > 0) {
1631 node.m_last_send = GetTime<std::chrono::seconds>();
1632 node.nSendBytes += nBytes;
1633 // Notify transport that bytes have been processed.
1634 node.m_transport->MarkBytesSent(nBytes);
1635 // Update statistics per message type.
1636 if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1637 node.AccountForSentBytes(msg_type, nBytes);
1638 }
1639 nSentSize += nBytes;
1640 if ((size_t)nBytes != data.size()) {
1641 // could not send full message; stop sending more
1642 break;
1643 }
1644 } else {
1645 if (nBytes < 0) {
1646 // error
1647 int nErr = WSAGetLastError();
1648 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1649 LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1650 node.CloseSocketDisconnect();
1651 }
1652 }
1653 break;
1654 }
1655 }
1656
1657 node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1658
1659 if (it == node.vSendMsg.end()) {
1660 assert(node.m_send_memusage == 0);
1661 }
1662 node.vSendMsg.erase(node.vSendMsg.begin(), it);
1663 return {nSentSize, data_left};
1664}
1665
1675{
1676 std::vector<NodeEvictionCandidate> vEvictionCandidates;
1677 {
1678
1680 for (const CNode* node : m_nodes) {
1681 if (node->fDisconnect)
1682 continue;
1683 NodeEvictionCandidate candidate{
1684 .id = node->GetId(),
1685 .m_connected = node->m_connected,
1686 .m_min_ping_time = node->m_min_ping_time,
1687 .m_last_block_time = node->m_last_block_time,
1688 .m_last_tx_time = node->m_last_tx_time,
1689 .fRelevantServices = node->m_has_all_wanted_services,
1690 .m_relay_txs = node->m_relays_txs.load(),
1691 .fBloomFilter = node->m_bloom_filter_loaded.load(),
1692 .nKeyedNetGroup = node->nKeyedNetGroup,
1693 .prefer_evict = node->m_prefer_evict,
1694 .m_is_local = node->addr.IsLocal(),
1695 .m_network = node->ConnectedThroughNetwork(),
1696 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1697 .m_conn_type = node->m_conn_type,
1698 };
1699 vEvictionCandidates.push_back(candidate);
1700 }
1701 }
1702 const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1703 if (!node_id_to_evict) {
1704 return false;
1705 }
1707 for (CNode* pnode : m_nodes) {
1708 if (pnode->GetId() == *node_id_to_evict) {
1709 LogDebug(BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
1710 pnode->fDisconnect = true;
1711 return true;
1712 }
1713 }
1714 return false;
1715}
1716
1717void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1718 struct sockaddr_storage sockaddr;
1719 socklen_t len = sizeof(sockaddr);
1720 auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1721 CAddress addr;
1722
1723 if (!sock) {
1724 const int nErr = WSAGetLastError();
1725 if (nErr != WSAEWOULDBLOCK) {
1726 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1727 }
1728 return;
1729 }
1730
1731 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
1732 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1733 } else {
1735 }
1736
1737 const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
1738
1740 hListenSocket.AddSocketPermissionFlags(permission_flags);
1741
1742 CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1743}
1744
1745void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1746 NetPermissionFlags permission_flags,
1747 const CAddress& addr_bind,
1748 const CAddress& addr)
1749{
1750 int nInbound = 0;
1751
1753
1754 {
1756 for (const CNode* pnode : m_nodes) {
1757 if (pnode->IsInboundConn()) nInbound++;
1758 }
1759 }
1760
1761 if (!fNetworkActive) {
1762 LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1763 return;
1764 }
1765
1766 if (!sock->IsSelectable()) {
1767 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1768 return;
1769 }
1770
1771 // According to the internet TCP_NODELAY is not carried into accepted sockets
1772 // on all platforms. Set it again here just to be sure.
1773 const int on{1};
1774 if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1775 LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1776 addr.ToStringAddrPort());
1777 }
1778
1779 // Don't accept connections from banned peers.
1780 bool banned = m_banman && m_banman->IsBanned(addr);
1781 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1782 {
1783 LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1784 return;
1785 }
1786
1787 // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1788 bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1789 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1790 {
1791 LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1792 return;
1793 }
1794
1795 if (nInbound >= m_max_inbound)
1796 {
1797 if (!AttemptToEvictConnection()) {
1798 // No connection to evict, disconnect the new connection
1799 LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1800 return;
1801 }
1802 }
1803
1804 NodeId id = GetNewNodeId();
1806
1807 const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1808 // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1809 // detected, so use it whenever we signal NODE_P2P_V2.
1810 ServiceFlags local_services = GetLocalServices();
1811 const bool use_v2transport(local_services & NODE_P2P_V2);
1812
1813 CNode* pnode = new CNode(id,
1814 std::move(sock),
1815 addr,
1817 nonce,
1818 addr_bind,
1819 /*addrNameIn=*/"",
1821 inbound_onion,
1823 .permission_flags = permission_flags,
1824 .prefer_evict = discouraged,
1825 .recv_flood_size = nReceiveFloodSize,
1826 .use_v2transport = use_v2transport,
1827 });
1828 pnode->AddRef();
1829 m_msgproc->InitializeNode(*pnode, local_services);
1830 {
1832 m_nodes.push_back(pnode);
1833 }
1834 LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1835
1836 // We received a new connection, harvest entropy from the time (and our peer count)
1837 RandAddEvent((uint32_t)id);
1838}
1839
1840bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1841{
1843 std::optional<int> max_connections;
1844 switch (conn_type) {
1847 return false;
1849 max_connections = m_max_outbound_full_relay;
1850 break;
1852 max_connections = m_max_outbound_block_relay;
1853 break;
1854 // no limit for ADDR_FETCH because -seednode has no limit either
1856 break;
1857 // no limit for FEELER connections since they're short-lived
1859 break;
1860 } // no default case, so the compiler can warn about missing cases
1861
1862 // Count existing connections
1863 int existing_connections = WITH_LOCK(m_nodes_mutex,
1864 return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1865
1866 // Max connections of specified type already exist
1867 if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1868
1869 // Max total outbound connections already exist
1870 CSemaphoreGrant grant(*semOutbound, true);
1871 if (!grant) return false;
1872
1873 OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1874 return true;
1875}
1876
1878{
1881
1882 // Use a temporary variable to accumulate desired reconnections, so we don't need
1883 // m_reconnections_mutex while holding m_nodes_mutex.
1884 decltype(m_reconnections) reconnections_to_add;
1885
1886 {
1888
1889 if (!fNetworkActive) {
1890 // Disconnect any connected nodes
1891 for (CNode* pnode : m_nodes) {
1892 if (!pnode->fDisconnect) {
1893 LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1894 pnode->fDisconnect = true;
1895 }
1896 }
1897 }
1898
1899 // Disconnect unused nodes
1900 std::vector<CNode*> nodes_copy = m_nodes;
1901 for (CNode* pnode : nodes_copy)
1902 {
1903 if (pnode->fDisconnect)
1904 {
1905 // remove from m_nodes
1906 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1907
1908 // Add to reconnection list if appropriate. We don't reconnect right here, because
1909 // the creation of a connection is a blocking operation (up to several seconds),
1910 // and we don't want to hold up the socket handler thread for that long.
1911 if (pnode->m_transport->ShouldReconnectV1()) {
1912 reconnections_to_add.push_back({
1913 .addr_connect = pnode->addr,
1914 .grant = std::move(pnode->grantOutbound),
1915 .destination = pnode->m_dest,
1916 .conn_type = pnode->m_conn_type,
1917 .use_v2transport = false});
1918 LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1919 }
1920
1921 // release outbound grant (if any)
1922 pnode->grantOutbound.Release();
1923
1924 // close socket and cleanup
1925 pnode->CloseSocketDisconnect();
1926
1927 // update connection count by network
1928 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1929
1930 // hold in disconnected pool until all refs are released
1931 pnode->Release();
1932 m_nodes_disconnected.push_back(pnode);
1933 }
1934 }
1935 }
1936 {
1937 // Delete disconnected nodes
1938 std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1939 for (CNode* pnode : nodes_disconnected_copy)
1940 {
1941 // Destroy the object only after other threads have stopped using it.
1942 if (pnode->GetRefCount() <= 0) {
1943 m_nodes_disconnected.remove(pnode);
1944 DeleteNode(pnode);
1945 }
1946 }
1947 }
1948 {
1949 // Move entries from reconnections_to_add to m_reconnections.
1951 m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1952 }
1953}
1954
1956{
1957 size_t nodes_size;
1958 {
1960 nodes_size = m_nodes.size();
1961 }
1962 if(nodes_size != nPrevNodeCount) {
1963 nPrevNodeCount = nodes_size;
1964 if (m_client_interface) {
1965 m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1966 }
1967 }
1968}
1969
1970bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1971{
1972 return node.m_connected + m_peer_connect_timeout < now;
1973}
1974
1976{
1977 // Tests that see disconnects after using mocktime can start nodes with a
1978 // large timeout. For example, -peertimeout=999999999.
1979 const auto now{GetTime<std::chrono::seconds>()};
1980 const auto last_send{node.m_last_send.load()};
1981 const auto last_recv{node.m_last_recv.load()};
1982
1983 if (!ShouldRunInactivityChecks(node, now)) return false;
1984
1985 bool has_received{last_recv.count() != 0};
1986 bool has_sent{last_send.count() != 0};
1987
1988 if (!has_received || !has_sent) {
1989 std::string has_never;
1990 if (!has_received) has_never += ", never received from peer";
1991 if (!has_sent) has_never += ", never sent to peer";
1993 "socket no message in first %i seconds%s, %s\n",
1995 has_never,
1996 node.DisconnectMsg(fLogIPs)
1997 );
1998 return true;
1999 }
2000
2001 if (now > last_send + TIMEOUT_INTERVAL) {
2003 "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2004 node.DisconnectMsg(fLogIPs)
2005 );
2006 return true;
2007 }
2008
2009 if (now > last_recv + TIMEOUT_INTERVAL) {
2011 "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2012 node.DisconnectMsg(fLogIPs)
2013 );
2014 return true;
2015 }
2016
2017 if (!node.fSuccessfullyConnected) {
2018 if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2019 LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2020 } else {
2021 LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2022 }
2023 return true;
2024 }
2025
2026 return false;
2027}
2028
2030{
2031 Sock::EventsPerSock events_per_sock;
2032
2033 for (const ListenSocket& hListenSocket : vhListenSocket) {
2034 events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2035 }
2036
2037 for (CNode* pnode : nodes) {
2038 bool select_recv = !pnode->fPauseRecv;
2039 bool select_send;
2040 {
2041 LOCK(pnode->cs_vSend);
2042 // Sending is possible if either there are bytes to send right now, or if there will be
2043 // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2044 // determines both of these in a single call.
2045 const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2046 select_send = !to_send.empty() || more;
2047 }
2048 if (!select_recv && !select_send) continue;
2049
2050 LOCK(pnode->m_sock_mutex);
2051 if (pnode->m_sock) {
2052 Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2053 events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2054 }
2055 }
2056
2057 return events_per_sock;
2058}
2059
2061{
2063
2064 Sock::EventsPerSock events_per_sock;
2065
2066 {
2067 const NodesSnapshot snap{*this, /*shuffle=*/false};
2068
2069 const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2070
2071 // Check for the readiness of the already connected sockets and the
2072 // listening sockets in one call ("readiness" as in poll(2) or
2073 // select(2)). If none are ready, wait for a short while and return
2074 // empty sets.
2075 events_per_sock = GenerateWaitSockets(snap.Nodes());
2076 if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2077 interruptNet.sleep_for(timeout);
2078 }
2079
2080 // Service (send/receive) each of the already connected nodes.
2081 SocketHandlerConnected(snap.Nodes(), events_per_sock);
2082 }
2083
2084 // Accept new connections from listening sockets.
2085 SocketHandlerListening(events_per_sock);
2086}
2087
2088void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2089 const Sock::EventsPerSock& events_per_sock)
2090{
2092
2093 for (CNode* pnode : nodes) {
2094 if (interruptNet)
2095 return;
2096
2097 //
2098 // Receive
2099 //
2100 bool recvSet = false;
2101 bool sendSet = false;
2102 bool errorSet = false;
2103 {
2104 LOCK(pnode->m_sock_mutex);
2105 if (!pnode->m_sock) {
2106 continue;
2107 }
2108 const auto it = events_per_sock.find(pnode->m_sock);
2109 if (it != events_per_sock.end()) {
2110 recvSet = it->second.occurred & Sock::RECV;
2111 sendSet = it->second.occurred & Sock::SEND;
2112 errorSet = it->second.occurred & Sock::ERR;
2113 }
2114 }
2115
2116 if (sendSet) {
2117 // Send data
2118 auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2119 if (bytes_sent) {
2120 RecordBytesSent(bytes_sent);
2121
2122 // If both receiving and (non-optimistic) sending were possible, we first attempt
2123 // sending. If that succeeds, but does not fully drain the send queue, do not
2124 // attempt to receive. This avoids needlessly queueing data if the remote peer
2125 // is slow at receiving data, by means of TCP flow control. We only do this when
2126 // sending actually succeeded to make sure progress is always made; otherwise a
2127 // deadlock would be possible when both sides have data to send, but neither is
2128 // receiving.
2129 if (data_left) recvSet = false;
2130 }
2131 }
2132
2133 if (recvSet || errorSet)
2134 {
2135 // typical socket buffer is 8K-64K
2136 uint8_t pchBuf[0x10000];
2137 int nBytes = 0;
2138 {
2139 LOCK(pnode->m_sock_mutex);
2140 if (!pnode->m_sock) {
2141 continue;
2142 }
2143 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2144 }
2145 if (nBytes > 0)
2146 {
2147 bool notify = false;
2148 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2150 "receiving message bytes failed, %s\n",
2151 pnode->DisconnectMsg(fLogIPs)
2152 );
2153 pnode->CloseSocketDisconnect();
2154 }
2155 RecordBytesRecv(nBytes);
2156 if (notify) {
2157 pnode->MarkReceivedMsgsForProcessing();
2159 }
2160 }
2161 else if (nBytes == 0)
2162 {
2163 // socket closed gracefully
2164 if (!pnode->fDisconnect) {
2165 LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2166 }
2167 pnode->CloseSocketDisconnect();
2168 }
2169 else if (nBytes < 0)
2170 {
2171 // error
2172 int nErr = WSAGetLastError();
2173 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2174 {
2175 if (!pnode->fDisconnect) {
2176 LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2177 }
2178 pnode->CloseSocketDisconnect();
2179 }
2180 }
2181 }
2182
2183 if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2184 }
2185}
2186
2188{
2189 for (const ListenSocket& listen_socket : vhListenSocket) {
2190 if (interruptNet) {
2191 return;
2192 }
2193 const auto it = events_per_sock.find(listen_socket.sock);
2194 if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2195 AcceptConnection(listen_socket);
2196 }
2197 }
2198}
2199
2201{
2203
2204 while (!interruptNet)
2205 {
2208 SocketHandler();
2209 }
2210}
2211
2213{
2214 {
2216 fMsgProcWake = true;
2217 }
2218 condMsgProc.notify_one();
2219}
2220
2222{
2223 int outbound_connection_count = 0;
2224
2225 if (gArgs.IsArgSet("-seednode")) {
2226 auto start = NodeClock::now();
2227 constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2228 LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2229 while (!interruptNet) {
2230 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2231 return;
2232
2233 // Abort if we have spent enough time without reaching our target.
2234 // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2235 if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2236 LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2237 break;
2238 }
2239
2240 outbound_connection_count = GetFullOutboundConnCount();
2241 if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2242 LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2243 break;
2244 }
2245 }
2246 }
2247
2249 std::vector<std::string> seeds = m_params.DNSSeeds();
2250 std::shuffle(seeds.begin(), seeds.end(), rng);
2251 int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2252
2253 if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2254 // When -forcednsseed is provided, query all.
2255 seeds_right_now = seeds.size();
2256 } else if (addrman.Size() == 0) {
2257 // If we have no known peers, query all.
2258 // This will occur on the first run, or if peers.dat has been
2259 // deleted.
2260 seeds_right_now = seeds.size();
2261 }
2262
2263 // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2264 if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2265 // goal: only query DNS seed if address need is acute
2266 // * If we have a reasonable number of peers in addrman, spend
2267 // some time trying them first. This improves user privacy by
2268 // creating fewer identifying DNS requests, reduces trust by
2269 // giving seeds less influence on the network topology, and
2270 // reduces traffic to the seeds.
2271 // * When querying DNS seeds query a few at once, this ensures
2272 // that we don't give DNS seeds the ability to eclipse nodes
2273 // that query them.
2274 // * If we continue having problems, eventually query all the
2275 // DNS seeds, and if that fails too, also try the fixed seeds.
2276 // (done in ThreadOpenConnections)
2277 int found = 0;
2278 const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2279
2280 for (const std::string& seed : seeds) {
2281 if (seeds_right_now == 0) {
2282 seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2283
2284 if (addrman.Size() > 0) {
2285 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2286 std::chrono::seconds to_wait = seeds_wait_time;
2287 while (to_wait.count() > 0) {
2288 // if sleeping for the MANY_PEERS interval, wake up
2289 // early to see if we have enough peers and can stop
2290 // this thread entirely freeing up its resources
2291 std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2292 if (!interruptNet.sleep_for(w)) return;
2293 to_wait -= w;
2294
2296 if (found > 0) {
2297 LogPrintf("%d addresses found from DNS seeds\n", found);
2298 LogPrintf("P2P peers available. Finished DNS seeding.\n");
2299 } else {
2300 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2301 }
2302 return;
2303 }
2304 }
2305 }
2306 }
2307
2308 if (interruptNet) return;
2309
2310 // hold off on querying seeds if P2P network deactivated
2311 if (!fNetworkActive) {
2312 LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2313 do {
2314 if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2315 } while (!fNetworkActive);
2316 }
2317
2318 LogPrintf("Loading addresses from DNS seed %s\n", seed);
2319 // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2320 // for the base dns seed domain in chainparams
2321 if (HaveNameProxy()) {
2322 AddAddrFetch(seed);
2323 } else {
2324 std::vector<CAddress> vAdd;
2325 constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2326 std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2327 CNetAddr resolveSource;
2328 if (!resolveSource.SetInternal(host)) {
2329 continue;
2330 }
2331 // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2332 // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2333 // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2334 // returned.
2335 unsigned int nMaxIPs = 32;
2336 const auto addresses{LookupHost(host, nMaxIPs, true)};
2337 if (!addresses.empty()) {
2338 for (const CNetAddr& ip : addresses) {
2339 CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2340 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2341 vAdd.push_back(addr);
2342 found++;
2343 }
2344 addrman.Add(vAdd, resolveSource);
2345 } else {
2346 // If the seed does not support a subdomain with our desired service bits,
2347 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2348 // base dns seed domain in chainparams
2349 AddAddrFetch(seed);
2350 }
2351 }
2352 --seeds_right_now;
2353 }
2354 LogPrintf("%d addresses found from DNS seeds\n", found);
2355 } else {
2356 LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2357 }
2358}
2359
2361{
2362 const auto start{SteadyClock::now()};
2363
2365
2366 LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2367 addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2368}
2369
2371{
2373 std::string strDest;
2374 {
2376 if (m_addr_fetches.empty())
2377 return;
2378 strDest = m_addr_fetches.front();
2379 m_addr_fetches.pop_front();
2380 }
2381 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2382 // peer doesn't support it or immediately disconnects us for another reason.
2384 CAddress addr;
2385 CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2386 if (grant) {
2387 OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2388 }
2389}
2390
2392{
2394}
2395
2397{
2399 LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2400}
2401
2403{
2404 LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2406}
2407
2408// Return the number of outbound connections that are full relay (not blocks only)
2410{
2411 int nRelevant = 0;
2412 {
2414 for (const CNode* pnode : m_nodes) {
2415 if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2416 }
2417 }
2418 return nRelevant;
2419}
2420
2421// Return the number of peers we have over our outbound connection limit
2422// Exclude peers that are marked for disconnect, or are going to be
2423// disconnected soon (eg ADDR_FETCH and FEELER)
2424// Also exclude peers that haven't finished initial connection handshake yet
2425// (so that we don't decide we're over our desired connection limit, and then
2426// evict some peer that has finished the handshake)
2428{
2429 int full_outbound_peers = 0;
2430 {
2432 for (const CNode* pnode : m_nodes) {
2433 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2434 ++full_outbound_peers;
2435 }
2436 }
2437 }
2438 return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2439}
2440
2442{
2443 int block_relay_peers = 0;
2444 {
2446 for (const CNode* pnode : m_nodes) {
2447 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2448 ++block_relay_peers;
2449 }
2450 }
2451 }
2452 return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2453}
2454
2455std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2456{
2457 std::unordered_set<Network> networks{};
2458 for (int n = 0; n < NET_MAX; n++) {
2459 enum Network net = (enum Network)n;
2460 if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2461 if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2462 networks.insert(net);
2463 }
2464 }
2465 return networks;
2466}
2467
2469{
2471 return m_network_conn_counts[net] > 1;
2472}
2473
2474bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2475{
2476 std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2477 std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2478
2480 for (const auto net : nets) {
2481 if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2482 network = net;
2483 return true;
2484 }
2485 }
2486
2487 return false;
2488}
2489
2490void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, Span<const std::string> seed_nodes)
2491{
2495 // Connect to specific addresses
2496 if (!connect.empty())
2497 {
2498 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2499 // peer doesn't support it or immediately disconnects us for another reason.
2501 for (int64_t nLoop = 0;; nLoop++)
2502 {
2503 for (const std::string& strAddr : connect)
2504 {
2505 CAddress addr(CService(), NODE_NONE);
2506 OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2507 for (int i = 0; i < 10 && i < nLoop; i++)
2508 {
2509 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2510 return;
2511 }
2512 }
2513 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2514 return;
2516 }
2517 }
2518
2519 // Initiate network connections
2520 auto start = GetTime<std::chrono::microseconds>();
2521
2522 // Minimum time before next feeler connection (in microseconds).
2523 auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2524 auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2525 auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2526 const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2527 bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2528 const bool use_seednodes{gArgs.IsArgSet("-seednode")};
2529
2530 auto seed_node_timer = NodeClock::now();
2531 bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2532 constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2533
2534 if (!add_fixed_seeds) {
2535 LogPrintf("Fixed seeds are disabled\n");
2536 }
2537
2538 while (!interruptNet)
2539 {
2540 if (add_addr_fetch) {
2541 add_addr_fetch = false;
2542 const auto& seed{SpanPopBack(seed_nodes)};
2543 AddAddrFetch(seed);
2544
2545 if (addrman.Size() == 0) {
2546 LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2547 } else {
2548 LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2549 }
2550 }
2551
2553
2554 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2555 return;
2556
2558
2560 if (interruptNet)
2561 return;
2562
2563 const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2564 if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2565 // When the node starts with an empty peers.dat, there are a few other sources of peers before
2566 // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2567 // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2568 // 60 seconds for any of those sources to populate addrman.
2569 bool add_fixed_seeds_now = false;
2570 // It is cheapest to check if enough time has passed first.
2571 if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2572 add_fixed_seeds_now = true;
2573 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2574 }
2575
2576 // Perform cheap checks before locking a mutex.
2577 else if (!dnsseed && !use_seednodes) {
2579 if (m_added_node_params.empty()) {
2580 add_fixed_seeds_now = true;
2581 LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2582 }
2583 }
2584
2585 if (add_fixed_seeds_now) {
2586 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2587 // We will not make outgoing connections to peers that are unreachable
2588 // (e.g. because of -onlynet configuration).
2589 // Therefore, we do not add them to addrman in the first place.
2590 // In case previously unreachable networks become reachable
2591 // (e.g. in case of -onlynet changes by the user), fixed seeds will
2592 // be loaded only for networks for which we have no addresses.
2593 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2594 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2595 seed_addrs.end());
2596 CNetAddr local;
2597 local.SetInternal("fixedseeds");
2598 addrman.Add(seed_addrs, local);
2599 add_fixed_seeds = false;
2600 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2601 }
2602 }
2603
2604 //
2605 // Choose an address to connect to based on most recently seen
2606 //
2607 CAddress addrConnect;
2608
2609 // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2610 int nOutboundFullRelay = 0;
2611 int nOutboundBlockRelay = 0;
2612 int outbound_privacy_network_peers = 0;
2613 std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2614
2615 {
2617 for (const CNode* pnode : m_nodes) {
2618 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2619 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2620
2621 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2622 switch (pnode->m_conn_type) {
2623 // We currently don't take inbound connections into account. Since they are
2624 // free to make, an attacker could make them to prevent us from connecting to
2625 // certain peers.
2627 // Short-lived outbound connections should not affect how we select outbound
2628 // peers from addrman.
2631 break;
2635 const CAddress address{pnode->addr};
2636 if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2637 // Since our addrman-groups for these networks are
2638 // random, without relation to the route we
2639 // take to connect to these peers or to the
2640 // difficulty in obtaining addresses with diverse
2641 // groups, we don't worry about diversity with
2642 // respect to our addrman groups when connecting to
2643 // these networks.
2644 ++outbound_privacy_network_peers;
2645 } else {
2646 outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2647 }
2648 } // no default case, so the compiler can warn about missing cases
2649 }
2650 }
2651
2652 if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2653 if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2654 seed_node_timer = NodeClock::now();
2655 add_addr_fetch = true;
2656 }
2657 }
2658
2660 auto now = GetTime<std::chrono::microseconds>();
2661 bool anchor = false;
2662 bool fFeeler = false;
2663 std::optional<Network> preferred_net;
2664
2665 // Determine what type of connection to open. Opening
2666 // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2667 // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2668 // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2669 // until we hit our block-relay-only peer limit.
2670 // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2671 // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2672 // these conditions are met, check to see if it's time to try an extra
2673 // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2674 // timer to decide if we should open a FEELER.
2675
2676 if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2677 conn_type = ConnectionType::BLOCK_RELAY;
2678 anchor = true;
2679 } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2680 // OUTBOUND_FULL_RELAY
2681 } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2682 conn_type = ConnectionType::BLOCK_RELAY;
2683 } else if (GetTryNewOutboundPeer()) {
2684 // OUTBOUND_FULL_RELAY
2685 } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2686 // Periodically connect to a peer (using regular outbound selection
2687 // methodology from addrman) and stay connected long enough to sync
2688 // headers, but not much else.
2689 //
2690 // Then disconnect the peer, if we haven't learned anything new.
2691 //
2692 // The idea is to make eclipse attacks very difficult to pull off,
2693 // because every few minutes we're finding a new peer to learn headers
2694 // from.
2695 //
2696 // This is similar to the logic for trying extra outbound (full-relay)
2697 // peers, except:
2698 // - we do this all the time on an exponential timer, rather than just when
2699 // our tip is stale
2700 // - we potentially disconnect our next-youngest block-relay-only peer, if our
2701 // newest block-relay-only peer delivers a block more recently.
2702 // See the eviction logic in net_processing.cpp.
2703 //
2704 // Because we can promote these connections to block-relay-only
2705 // connections, they do not get their own ConnectionType enum
2706 // (similar to how we deal with extra outbound peers).
2707 next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2708 conn_type = ConnectionType::BLOCK_RELAY;
2709 } else if (now > next_feeler) {
2710 next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2711 conn_type = ConnectionType::FEELER;
2712 fFeeler = true;
2713 } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2715 now > next_extra_network_peer &&
2716 MaybePickPreferredNetwork(preferred_net)) {
2717 // Full outbound connection management: Attempt to get at least one
2718 // outbound peer from each reachable network by making extra connections
2719 // and then protecting "only" peers from a network during outbound eviction.
2720 // This is not attempted if the user changed -maxconnections to a value
2721 // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2722 // to prevent interactions with otherwise protected outbound peers.
2723 next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2724 } else {
2725 // skip to next iteration of while loop
2726 continue;
2727 }
2728
2730
2731 const auto current_time{NodeClock::now()};
2732 int nTries = 0;
2733 const auto reachable_nets{g_reachable_nets.All()};
2734
2735 while (!interruptNet)
2736 {
2737 if (anchor && !m_anchors.empty()) {
2738 const CAddress addr = m_anchors.back();
2739 m_anchors.pop_back();
2740 if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2741 !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2742 outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2743 addrConnect = addr;
2744 LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2745 break;
2746 }
2747
2748 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2749 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2750 // already-connected network ranges, ...) before trying new addrman addresses.
2751 nTries++;
2752 if (nTries > 100)
2753 break;
2754
2755 CAddress addr;
2756 NodeSeconds addr_last_try{0s};
2757
2758 if (fFeeler) {
2759 // First, try to get a tried table collision address. This returns
2760 // an empty (invalid) address if there are no collisions to try.
2761 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2762
2763 if (!addr.IsValid()) {
2764 // No tried table collisions. Select a new table address
2765 // for our feeler.
2766 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2767 } else if (AlreadyConnectedToAddress(addr)) {
2768 // If test-before-evict logic would have us connect to a
2769 // peer that we're already connected to, just mark that
2770 // address as Good(). We won't be able to initiate the
2771 // connection anyway, so this avoids inadvertently evicting
2772 // a currently-connected peer.
2773 addrman.Good(addr);
2774 // Select a new table address for our feeler instead.
2775 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2776 }
2777 } else {
2778 // Not a feeler
2779 // If preferred_net has a value set, pick an extra outbound
2780 // peer from that network. The eviction logic in net_processing
2781 // ensures that a peer from another network will be evicted.
2782 std::tie(addr, addr_last_try) = preferred_net.has_value()
2783 ? addrman.Select(false, {*preferred_net})
2784 : addrman.Select(false, reachable_nets);
2785 }
2786
2787 // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2788 if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2789 continue;
2790 }
2791
2792 // if we selected an invalid or local address, restart
2793 if (!addr.IsValid() || IsLocal(addr)) {
2794 break;
2795 }
2796
2797 if (!g_reachable_nets.Contains(addr)) {
2798 continue;
2799 }
2800
2801 // only consider very recently tried nodes after 30 failed attempts
2802 if (current_time - addr_last_try < 10min && nTries < 30) {
2803 continue;
2804 }
2805
2806 // for non-feelers, require all the services we'll want,
2807 // for feelers, only require they be a full node (only because most
2808 // SPV clients don't have a good address DB available)
2809 if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2810 continue;
2811 } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2812 continue;
2813 }
2814
2815 // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2816 if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2817 continue;
2818 }
2819
2820 // Do not make automatic outbound connections to addnode peers, to
2821 // not use our limited outbound slots for them and to ensure
2822 // addnode connections benefit from their intended protections.
2823 if (AddedNodesContain(addr)) {
2824 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2825 preferred_net.has_value() ? "network-specific " : "",
2827 fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2828 continue;
2829 }
2830
2831 addrConnect = addr;
2832 break;
2833 }
2834
2835 if (addrConnect.IsValid()) {
2836 if (fFeeler) {
2837 // Add small amount of random noise before connection to avoid synchronization.
2839 return;
2840 }
2841 LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2842 }
2843
2844 if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2845
2846 // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2847 // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2848 // Don't record addrman failure attempts when node is offline. This can be identified since all local
2849 // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2850 const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2851 // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2852 const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2853 OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2854 }
2855 }
2856}
2857
2858std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2859{
2860 std::vector<CAddress> ret;
2862 for (const CNode* pnode : m_nodes) {
2863 if (pnode->IsBlockOnlyConn()) {
2864 ret.push_back(pnode->addr);
2865 }
2866 }
2867
2868 return ret;
2869}
2870
2871std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2872{
2873 std::vector<AddedNodeInfo> ret;
2874
2875 std::list<AddedNodeParams> lAddresses(0);
2876 {
2878 ret.reserve(m_added_node_params.size());
2879 std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2880 }
2881
2882
2883 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2884 std::map<CService, bool> mapConnected;
2885 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2886 {
2888 for (const CNode* pnode : m_nodes) {
2889 if (pnode->addr.IsValid()) {
2890 mapConnected[pnode->addr] = pnode->IsInboundConn();
2891 }
2892 std::string addrName{pnode->m_addr_name};
2893 if (!addrName.empty()) {
2894 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2895 }
2896 }
2897 }
2898
2899 for (const auto& addr : lAddresses) {
2900 CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2901 AddedNodeInfo addedNode{addr, CService(), false, false};
2902 if (service.IsValid()) {
2903 // strAddNode is an IP:port
2904 auto it = mapConnected.find(service);
2905 if (it != mapConnected.end()) {
2906 if (!include_connected) {
2907 continue;
2908 }
2909 addedNode.resolvedAddress = service;
2910 addedNode.fConnected = true;
2911 addedNode.fInbound = it->second;
2912 }
2913 } else {
2914 // strAddNode is a name
2915 auto it = mapConnectedByName.find(addr.m_added_node);
2916 if (it != mapConnectedByName.end()) {
2917 if (!include_connected) {
2918 continue;
2919 }
2920 addedNode.resolvedAddress = it->second.second;
2921 addedNode.fConnected = true;
2922 addedNode.fInbound = it->second.first;
2923 }
2924 }
2925 ret.emplace_back(std::move(addedNode));
2926 }
2927
2928 return ret;
2929}
2930
2932{
2935 while (true)
2936 {
2938 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2939 bool tried = false;
2940 for (const AddedNodeInfo& info : vInfo) {
2941 if (!grant) {
2942 // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2943 // the addednodeinfo state might change.
2944 break;
2945 }
2946 tried = true;
2947 CAddress addr(CService(), NODE_NONE);
2948 OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2949 if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2950 grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2951 }
2952 // See if any reconnections are desired.
2954 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2955 if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2956 return;
2957 }
2958}
2959
2960// if successful, this moves the passed grant to the constructed node
2961void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2962{
2964 assert(conn_type != ConnectionType::INBOUND);
2965
2966 //
2967 // Initiate outbound network connection
2968 //
2969 if (interruptNet) {
2970 return;
2971 }
2972 if (!fNetworkActive) {
2973 return;
2974 }
2975 if (!pszDest) {
2976 bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
2977 if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
2978 return;
2979 }
2980 } else if (FindNode(std::string(pszDest)))
2981 return;
2982
2983 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
2984
2985 if (!pnode)
2986 return;
2987 pnode->grantOutbound = std::move(grant_outbound);
2988
2989 m_msgproc->InitializeNode(*pnode, m_local_services);
2990 {
2992 m_nodes.push_back(pnode);
2993
2994 // update connection count by network
2995 if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
2996 }
2997}
2998
3000
3002{
3004
3005 while (!flagInterruptMsgProc)
3006 {
3007 bool fMoreWork = false;
3008
3009 {
3010 // Randomize the order in which we process messages from/to our peers.
3011 // This prevents attacks in which an attacker exploits having multiple
3012 // consecutive connections in the m_nodes list.
3013 const NodesSnapshot snap{*this, /*shuffle=*/true};
3014
3015 for (CNode* pnode : snap.Nodes()) {
3016 if (pnode->fDisconnect)
3017 continue;
3018
3019 // Receive messages
3020 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3021 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3023 return;
3024 // Send messages
3025 m_msgproc->SendMessages(pnode);
3026
3028 return;
3029 }
3030 }
3031
3032 WAIT_LOCK(mutexMsgProc, lock);
3033 if (!fMoreWork) {
3034 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3035 }
3036 fMsgProcWake = false;
3037 }
3038}
3039
3041{
3042 static constexpr auto err_wait_begin = 1s;
3043 static constexpr auto err_wait_cap = 5min;
3044 auto err_wait = err_wait_begin;
3045
3046 bool advertising_listen_addr = false;
3047 i2p::Connection conn;
3048
3049 auto SleepOnFailure = [&]() {
3050 interruptNet.sleep_for(err_wait);
3051 if (err_wait < err_wait_cap) {
3052 err_wait += 1s;
3053 }
3054 };
3055
3056 while (!interruptNet) {
3057
3058 if (!m_i2p_sam_session->Listen(conn)) {
3059 if (advertising_listen_addr && conn.me.IsValid()) {
3060 RemoveLocal(conn.me);
3061 advertising_listen_addr = false;
3062 }
3063 SleepOnFailure();
3064 continue;
3065 }
3066
3067 if (!advertising_listen_addr) {
3068 AddLocal(conn.me, LOCAL_MANUAL);
3069 advertising_listen_addr = true;
3070 }
3071
3072 if (!m_i2p_sam_session->Accept(conn)) {
3073 SleepOnFailure();
3074 continue;
3075 }
3076
3078 CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
3079
3080 err_wait = err_wait_begin;
3081 }
3082}
3083
3084bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3085{
3086 int nOne = 1;
3087
3088 // Create socket for listening for incoming connections
3089 struct sockaddr_storage sockaddr;
3090 socklen_t len = sizeof(sockaddr);
3091 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3092 {
3093 strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3095 return false;
3096 }
3097
3098 std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3099 if (!sock) {
3100 strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3102 return false;
3103 }
3104
3105 // Allow binding if the port is still in TIME_WAIT state after
3106 // the program was closed and restarted.
3107 if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3108 strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3109 LogPrintf("%s\n", strError.original);
3110 }
3111
3112 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3113 // and enable it by default or not. Try to enable it, if possible.
3114 if (addrBind.IsIPv6()) {
3115#ifdef IPV6_V6ONLY
3116 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3117 strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3118 LogPrintf("%s\n", strError.original);
3119 }
3120#endif
3121#ifdef WIN32
3122 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3123 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3124 strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3125 LogPrintf("%s\n", strError.original);
3126 }
3127#endif
3128 }
3129
3130 if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3131 int nErr = WSAGetLastError();
3132 if (nErr == WSAEADDRINUSE)
3133 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3134 else
3135 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3137 return false;
3138 }
3139 LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3140
3141 // Listen for incoming connections
3142 if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3143 {
3144 strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3146 return false;
3147 }
3148
3149 vhListenSocket.emplace_back(std::move(sock), permissions);
3150 return true;
3151}
3152
3154{
3155 if (!fDiscover)
3156 return;
3157
3158 for (const CNetAddr &addr: GetLocalAddresses()) {
3159 if (AddLocal(addr, LOCAL_IF))
3160 LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3161 }
3162}
3163
3165{
3166 LogPrintf("%s: %s\n", __func__, active);
3167
3168 if (fNetworkActive == active) {
3169 return;
3170 }
3171
3172 fNetworkActive = active;
3173
3174 if (m_client_interface) {
3175 m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3176 }
3177}
3178
3179CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3180 const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3181 : addrman(addrman_in)
3182 , m_netgroupman{netgroupman}
3183 , nSeed0(nSeed0In)
3184 , nSeed1(nSeed1In)
3185 , m_params(params)
3186{
3187 SetTryNewOutboundPeer(false);
3188
3189 Options connOptions;
3190 Init(connOptions);
3191 SetNetworkActive(network_active);
3192}
3193
3195{
3196 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3197}
3198
3200{
3201 return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3202}
3203
3204uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3205{
3206 CNetAddr a;
3208}
3209
3210bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3211{
3212 const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3213
3214 bilingual_str strError;
3215 if (!BindListenPort(addr, strError, permissions)) {
3217 m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3218 }
3219 return false;
3220 }
3221
3222 if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3223 AddLocal(addr, LOCAL_BIND);
3224 }
3225
3226 return true;
3227}
3228
3229bool CConnman::InitBinds(const Options& options)
3230{
3231 for (const auto& addrBind : options.vBinds) {
3233 return false;
3234 }
3235 }
3236 for (const auto& addrBind : options.vWhiteBinds) {
3237 if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3238 return false;
3239 }
3240 }
3241 for (const auto& addr_bind : options.onion_binds) {
3243 return false;
3244 }
3245 }
3246 if (options.bind_on_any) {
3247 // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3248 // may not have IPv6 support and the user did not explicitly ask us to
3249 // bind on that.
3250 const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3252
3253 struct in_addr inaddr_any;
3254 inaddr_any.s_addr = htonl(INADDR_ANY);
3255 const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3257 return false;
3258 }
3259 }
3260 return true;
3261}
3262
3263bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3264{
3266 Init(connOptions);
3267
3268 if (fListen && !InitBinds(connOptions)) {
3269 if (m_client_interface) {
3270 m_client_interface->ThreadSafeMessageBox(
3271 _("Failed to listen on any port. Use -listen=0 if you want this."),
3273 }
3274 return false;
3275 }
3276
3277 Proxy i2p_sam;
3278 if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3279 m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3280 i2p_sam, &interruptNet);
3281 }
3282
3283 // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3284 std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3285 if (!seed_nodes.empty()) {
3286 std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3287 }
3288
3290 // Load addresses from anchors.dat
3294 }
3295 LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3296 }
3297
3298 if (m_client_interface) {
3299 m_client_interface->InitMessage(_("Starting network threads…"));
3300 }
3301
3302 fAddressesInitialized = true;
3303
3304 if (semOutbound == nullptr) {
3305 // initialize semaphore
3306 semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3307 }
3308 if (semAddnode == nullptr) {
3309 // initialize semaphore
3310 semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3311 }
3312
3313 //
3314 // Start threads
3315 //
3318 flagInterruptMsgProc = false;
3319
3320 {
3322 fMsgProcWake = false;
3323 }
3324
3325 // Send and receive from sockets, accept connections
3326 threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3327
3328 if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3329 LogPrintf("DNS seeding disabled\n");
3330 else
3331 threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3332
3333 // Initiate manual connections
3334 threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3335
3336 if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3337 if (m_client_interface) {
3338 m_client_interface->ThreadSafeMessageBox(
3339 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3341 }
3342 return false;
3343 }
3344 if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3345 threadOpenConnections = std::thread(
3346 &util::TraceThread, "opencon",
3347 [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3348 }
3349
3350 // Process messages
3351 threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3352
3353 if (m_i2p_sam_session) {
3355 std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3356 }
3357
3358 // Dump network addresses
3359 scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3360
3361 // Run the ASMap Health check once and then schedule it to run every 24h.
3362 if (m_netgroupman.UsingASMap()) {
3365 }
3366
3367 return true;
3368}
3369
3371{
3372public:
3373 CNetCleanup() = default;
3374
3376 {
3377#ifdef WIN32
3378 // Shutdown Windows Sockets
3379 WSACleanup();
3380#endif
3381 }
3382};
3384
3386{
3387 {
3389 flagInterruptMsgProc = true;
3390 }
3391 condMsgProc.notify_all();
3392
3393 interruptNet();
3395
3396 if (semOutbound) {
3397 for (int i=0; i<m_max_automatic_outbound; i++) {
3398 semOutbound->post();
3399 }
3400 }
3401
3402 if (semAddnode) {
3403 for (int i=0; i<m_max_addnode; i++) {
3404 semAddnode->post();
3405 }
3406 }
3407}
3408
3410{
3411 if (threadI2PAcceptIncoming.joinable()) {
3413 }
3414 if (threadMessageHandler.joinable())
3415 threadMessageHandler.join();
3416 if (threadOpenConnections.joinable())
3417 threadOpenConnections.join();
3418 if (threadOpenAddedConnections.joinable())
3420 if (threadDNSAddressSeed.joinable())
3421 threadDNSAddressSeed.join();
3422 if (threadSocketHandler.joinable())
3423 threadSocketHandler.join();
3424}
3425
3427{
3429 DumpAddresses();
3430 fAddressesInitialized = false;
3431
3433 // Anchor connections are only dumped during clean shutdown.
3434 std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3435 if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3436 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3437 }
3439 }
3440 }
3441
3442 // Delete peer connections.
3443 std::vector<CNode*> nodes;
3444 WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3445 for (CNode* pnode : nodes) {
3446 LogDebug(BCLog::NET, "%s\n", pnode->DisconnectMsg(fLogIPs));
3447 pnode->CloseSocketDisconnect();
3448 DeleteNode(pnode);
3449 }
3450
3451 for (CNode* pnode : m_nodes_disconnected) {
3452 DeleteNode(pnode);
3453 }
3454 m_nodes_disconnected.clear();
3455 vhListenSocket.clear();
3456 semOutbound.reset();
3457 semAddnode.reset();
3458}
3459
3461{
3462 assert(pnode);
3463 m_msgproc->FinalizeNode(*pnode);
3464 delete pnode;
3465}
3466
3468{
3469 Interrupt();
3470 Stop();
3471}
3472
3473std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3474{
3475 std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3476 if (m_banman) {
3477 addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3478 [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3479 addresses.end());
3480 }
3481 return addresses;
3482}
3483
3484std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3485{
3486 auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3488 .Write(requestor.ConnectedThroughNetwork())
3489 .Write(local_socket_bytes)
3490 // For outbound connections, the port of the bound address is randomly
3491 // assigned by the OS and would therefore not be useful for seeding.
3492 .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3493 .Finalize();
3494 const auto current_time = GetTime<std::chrono::microseconds>();
3495 auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3496 CachedAddrResponse& cache_entry = r.first->second;
3497 if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3498 cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3499 // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3500 // and the usefulness of ADDR responses to honest users.
3501 //
3502 // Longer cache lifetime makes it more difficult for an attacker to scrape
3503 // enough AddrMan data to maliciously infer something useful.
3504 // By the time an attacker scraped enough AddrMan records, most of
3505 // the records should be old enough to not leak topology info by
3506 // e.g. analyzing real-time changes in timestamps.
3507 //
3508 // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3509 // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3510 // most of it could be scraped (considering that timestamps are updated via
3511 // ADDR self-announcements and when nodes communicate).
3512 // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3513 // (because even several timestamps of the same handful of nodes may leak privacy).
3514 //
3515 // On the other hand, longer cache lifetime makes ADDR responses
3516 // outdated and less useful for an honest requestor, e.g. if most nodes
3517 // in the ADDR response are no longer active.
3518 //
3519 // However, the churn in the network is known to be rather low. Since we consider
3520 // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3521 // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3522 // in terms of the freshness of the response.
3523 cache_entry.m_cache_entry_expiration = current_time +
3524 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3525 }
3526 return cache_entry.m_addrs_response_cache;
3527}
3528
3530{
3532 const bool resolved_is_valid{resolved.IsValid()};
3533
3535 for (const auto& it : m_added_node_params) {
3536 if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3537 }
3538
3539 m_added_node_params.push_back(add);
3540 return true;
3541}
3542
3543bool CConnman::RemoveAddedNode(const std::string& strNode)
3544{
3546 for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3547 if (strNode == it->m_added_node) {
3548 m_added_node_params.erase(it);
3549 return true;
3550 }
3551 }
3552 return false;
3553}
3554
3556{
3558 const std::string addr_str{addr.ToStringAddr()};
3559 const std::string addr_port_str{addr.ToStringAddrPort()};
3561 return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3562 && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3563 [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3564}
3565
3567{
3569 if (flags == ConnectionDirection::Both) // Shortcut if we want total
3570 return m_nodes.size();
3571
3572 int nNum = 0;
3573 for (const auto& pnode : m_nodes) {
3574 if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3575 nNum++;
3576 }
3577 }
3578
3579 return nNum;
3580}
3581
3582
3583std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3584{
3586 return mapLocalHost;
3587}
3588
3589uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3590{
3591 return m_netgroupman.GetMappedAS(addr);
3592}
3593
3594void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3595{
3596 vstats.clear();
3598 vstats.reserve(m_nodes.size());
3599 for (CNode* pnode : m_nodes) {
3600 vstats.emplace_back();
3601 pnode->CopyStats(vstats.back());
3602 vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3603 }
3604}
3605
3606bool CConnman::DisconnectNode(const std::string& strNode)
3607{
3609 if (CNode* pnode = FindNode(strNode)) {
3610 LogDebug(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
3611 pnode->fDisconnect = true;
3612 return true;
3613 }
3614 return false;
3615}
3616
3618{
3619 bool disconnected = false;
3621 for (CNode* pnode : m_nodes) {
3622 if (subnet.Match(pnode->addr)) {
3623 LogDebug(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
3624 pnode->fDisconnect = true;
3625 disconnected = true;
3626 }
3627 }
3628 return disconnected;
3629}
3630
3632{
3633 return DisconnectNode(CSubNet(addr));
3634}
3635
3637{
3639 for(CNode* pnode : m_nodes) {
3640 if (id == pnode->GetId()) {
3641 LogDebug(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
3642 pnode->fDisconnect = true;
3643 return true;
3644 }
3645 }
3646 return false;
3647}
3648
3649void CConnman::RecordBytesRecv(uint64_t bytes)
3650{
3651 nTotalBytesRecv += bytes;
3652}
3653
3654void CConnman::RecordBytesSent(uint64_t bytes)
3655{
3658
3659 nTotalBytesSent += bytes;
3660
3661 const auto now = GetTime<std::chrono::seconds>();
3662 if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3663 {
3664 // timeframe expired, reset cycle
3665 nMaxOutboundCycleStartTime = now;
3666 nMaxOutboundTotalBytesSentInCycle = 0;
3667 }
3668
3669 nMaxOutboundTotalBytesSentInCycle += bytes;
3670}
3671
3673{
3676 return nMaxOutboundLimit;
3677}
3678
3679std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3680{
3681 return MAX_UPLOAD_TIMEFRAME;
3682}
3683
3685{
3689}
3690
3692{
3694
3695 if (nMaxOutboundLimit == 0)
3696 return 0s;
3697
3698 if (nMaxOutboundCycleStartTime.count() == 0)
3699 return MAX_UPLOAD_TIMEFRAME;
3700
3701 const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3702 const auto now = GetTime<std::chrono::seconds>();
3703 return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3704}
3705
3706bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3707{
3710 if (nMaxOutboundLimit == 0)
3711 return false;
3712
3713 if (historicalBlockServingLimit)
3714 {
3715 // keep a large enough buffer to at least relay each block once
3716 const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3717 const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3718 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3719 return true;
3720 }
3721 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3722 return true;
3723
3724 return false;
3725}
3726
3728{
3731 if (nMaxOutboundLimit == 0)
3732 return 0;
3733
3734 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3735}
3736
3738{
3739 return nTotalBytesRecv;
3740}
3741
3743{
3746 return nTotalBytesSent;
3747}
3748
3750{
3751 return m_local_services;
3752}
3753
3754static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3755{
3756 if (use_v2transport) {
3757 return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3758 } else {
3759 return std::make_unique<V1Transport>(id);
3760 }
3761}
3762
3764 std::shared_ptr<Sock> sock,
3765 const CAddress& addrIn,
3766 uint64_t nKeyedNetGroupIn,
3767 uint64_t nLocalHostNonceIn,
3768 const CAddress& addrBindIn,
3769 const std::string& addrNameIn,
3770 ConnectionType conn_type_in,
3771 bool inbound_onion,
3772 CNodeOptions&& node_opts)
3773 : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3774 m_permission_flags{node_opts.permission_flags},
3775 m_sock{sock},
3776 m_connected{GetTime<std::chrono::seconds>()},
3777 addr{addrIn},
3778 addrBind{addrBindIn},
3779 m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3780 m_dest(addrNameIn),
3781 m_inbound_onion{inbound_onion},
3782 m_prefer_evict{node_opts.prefer_evict},
3783 nKeyedNetGroup{nKeyedNetGroupIn},
3784 m_conn_type{conn_type_in},
3785 id{idIn},
3786 nLocalHostNonce{nLocalHostNonceIn},
3787 m_recv_flood_size{node_opts.recv_flood_size},
3788 m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3789{
3790 if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3791
3792 for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3793 mapRecvBytesPerMsgType[msg] = 0;
3794 }
3795 mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3796
3797 if (fLogIPs) {
3798 LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3799 } else {
3800 LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3801 }
3802}
3803
3805{
3807
3808 size_t nSizeAdded = 0;
3809 for (const auto& msg : vRecvMsg) {
3810 // vRecvMsg contains only completed CNetMessage
3811 // the single possible partially deserialized message are held by TransportDeserializer
3812 nSizeAdded += msg.GetMemoryUsage();
3813 }
3814
3816 m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3817 m_msg_process_queue_size += nSizeAdded;
3818 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3819}
3820
3821std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3822{
3824 if (m_msg_process_queue.empty()) return std::nullopt;
3825
3826 std::list<CNetMessage> msgs;
3827 // Just take one message
3828 msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3829 m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3830 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3831
3832 return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3833}
3834
3836{
3837 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3838}
3839
3841{
3843 size_t nMessageSize = msg.data.size();
3844 LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3845 if (gArgs.GetBoolArg("-capturemessages", false)) {
3846 CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3847 }
3848
3849 TRACEPOINT(net, outbound_message,
3850 pnode->GetId(),
3851 pnode->m_addr_name.c_str(),
3852 pnode->ConnectionTypeAsString().c_str(),
3853 msg.m_type.c_str(),
3854 msg.data.size(),
3855 msg.data.data()
3856 );
3857
3858 size_t nBytesSent = 0;
3859 {
3860 LOCK(pnode->cs_vSend);
3861 // Check if the transport still has unsent bytes, and indicate to it that we're about to
3862 // give it a message to send.
3863 const auto& [to_send, more, _msg_type] =
3864 pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3865 const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3866
3867 // Update memory usage of send buffer.
3868 pnode->m_send_memusage += msg.GetMemoryUsage();
3869 if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3870 // Move message to vSendMsg queue.
3871 pnode->vSendMsg.push_back(std::move(msg));
3872
3873 // If there was nothing to send before, and there is now (predicted by the "more" value
3874 // returned by the GetBytesToSend call above), attempt "optimistic write":
3875 // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3876 // doing a send, try sending from the calling thread if the queue was empty before.
3877 // With a V1Transport, more will always be true here, because adding a message always
3878 // results in sendable bytes there, but with V2Transport this is not the case (it may
3879 // still be in the handshake).
3880 if (queue_was_empty && more) {
3881 std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3882 }
3883 }
3884 if (nBytesSent) RecordBytesSent(nBytesSent);
3885}
3886
3887bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3888{
3889 CNode* found = nullptr;
3891 for (auto&& pnode : m_nodes) {
3892 if(pnode->GetId() == id) {
3893 found = pnode;
3894 break;
3895 }
3896 }
3897 return found != nullptr && NodeFullyConnected(found) && func(found);
3898}
3899
3901{
3902 return CSipHasher(nSeed0, nSeed1).Write(id);
3903}
3904
3905uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& address) const
3906{
3907 std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3908
3910}
3911
3913{
3916 while (true) {
3917 // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3918 decltype(m_reconnections) todo;
3919 {
3921 if (m_reconnections.empty()) break;
3922 todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3923 }
3924
3925 auto& item = *todo.begin();
3926 OpenNetworkConnection(item.addr_connect,
3927 // We only reconnect if the first attempt to connect succeeded at
3928 // connection time, but then failed after the CNode object was
3929 // created. Since we already know connecting is possible, do not
3930 // count failure to reconnect.
3931 /*fCountFailure=*/false,
3932 std::move(item.grant),
3933 item.destination.empty() ? nullptr : item.destination.c_str(),
3934 item.conn_type,
3935 item.use_v2transport);
3936 }
3937}
3938
3940{
3941 const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3942 const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3943 std::vector<CNetAddr> clearnet_addrs;
3944 clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3945 std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3946 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3947 std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3948 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3949 m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3950}
3951
3952// Dump binary message to file, with timestamp.
3953static void CaptureMessageToFile(const CAddress& addr,
3954 const std::string& msg_type,
3956 bool is_incoming)
3957{
3958 // Note: This function captures the message at the time of processing,
3959 // not at socket receive/send time.
3960 // This ensures that the messages are always in order from an application
3961 // layer (processing) perspective.
3962 auto now = GetTime<std::chrono::microseconds>();
3963
3964 // Windows folder names cannot include a colon
3965 std::string clean_addr = addr.ToStringAddrPort();
3966 std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3967
3968 fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3969 fs::create_directories(base_path);
3970
3971 fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
3972 AutoFile f{fsbridge::fopen(path, "ab")};
3973
3974 ser_writedata64(f, now.count());
3975 f << Span{msg_type};
3976 for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
3977 f << uint8_t{'\0'};
3978 }
3979 uint32_t size = data.size();
3980 ser_writedata32(f, size);
3981 f << data;
3982}
3983
3984std::function<void(const CAddress& addr,
3985 const std::string& msg_type,
3987 bool is_incoming)>
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:180
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:229
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:223
ArgsManager gArgs
Definition: args.cpp:42
int ret
int flags
Definition: bitcoin-tx.cpp:536
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
Stochastic address manager.
Definition: addrman.h:89
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, const std::unordered_set< Network > &networks={}) const
Choose an address to connect to.
Definition: addrman.cpp:1327
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1312
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1297
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1317
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1322
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1332
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:362
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:234
bool IsArgSet(const std::string &strArg) const
Return true if the given argument has been manually set.
Definition: args.cpp:371
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:482
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:507
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:392
Span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
Span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(Span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
bool Decrypt(Span< const std::byte > input, Span< const std::byte > aad, bool &ignore, Span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
Span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
void Encrypt(Span< const std::byte > contents, Span< const std::byte > aad, bool ignore, Span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:81
const MessageStartChars & MessageStart() const
Definition: chainparams.h:94
uint16_t GetDefaultPort() const
Definition: chainparams.h:95
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:117
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:120
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1642
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2455
std::condition_variable condMsgProc
Definition: net.h:1539
std::thread threadMessageHandler
Definition: net.h:1562
nSendBufferMaxSize
Definition: net.h:1097
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3001
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3887
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1877
m_max_outbound_full_relay
Definition: net.h:1089
void DeleteNode(CNode *pnode)
Definition: net.cpp:3460
bool RemoveAddedNode(const std::string &node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3543
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1674
bool AlreadyConnectedToAddress(const CAddress &addr)
Determine whether we're already connected to a given address, in order to avoid initiating duplicate ...
Definition: net.cpp:364
whitelist_relay
Definition: net.h:1117
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1635
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true)
Definition: net.cpp:3179
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2391
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3199
void Stop()
Definition: net.h:1129
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3912
std::thread threadI2PAcceptIncoming
Definition: net.h:1563
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2396
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1541
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3385
std::map< CNetAddr, LocalServiceInfo > getNetLocalAddresses() const
Definition: net.cpp:3583
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2221
m_onion_binds
Definition: net.h:1115
Sock::EventsPerSock GenerateWaitSockets(Span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:2029
int GetFullOutboundConnCount() const
Definition: net.cpp:2409
NodeId GetNewNodeId()
Definition: net.cpp:3194
CThreadInterrupt interruptNet
This is signaled when network activity should cease.
Definition: net.h:1549
std::unique_ptr< CSemaphore > semAddnode
Definition: net.h:1495
std::atomic< NodeId > nLastNodeId
Definition: net.h:1448
m_max_automatic_outbound
Definition: net.h:1091
int GetExtraBlockRelayCount() const
Definition: net.cpp:2441
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2212
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3706
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3672
std::thread threadDNSAddressSeed
Definition: net.h:1558
void ASMapHealthCheck()
Definition: net.cpp:3939
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2088
void ThreadI2PAcceptIncoming()
Definition: net.cpp:3040
const uint64_t nSeed1
Definition: net.h:1534
void StartExtraBlockRelayPeers()
Definition: net.cpp:2402
const NetGroupManager & m_netgroupman
Definition: net.h:1437
m_banman
Definition: net.h:1095
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1531
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3679
unsigned int nPrevNodeCount
Definition: net.h:1449
void NotifyNumConnectionsChanged()
Definition: net.cpp:1955
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3749
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3529
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3606
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1568
bool InitBinds(const Options &options)
Definition: net.cpp:3229
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:393
vWhitelistedRangeOutgoing
Definition: net.h:1105
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:134
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1433
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2858
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3900
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1840
Mutex m_total_bytes_sent_mutex
Definition: net.h:1412
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2871
std::unique_ptr< CSemaphore > semOutbound
Definition: net.h:1494
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2931
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3210
std::thread threadOpenConnections
Definition: net.h:1561
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3566
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3589
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2370
Mutex m_addr_fetches_mutex
Definition: net.h:1439
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:1975
m_peer_connect_timeout
Definition: net.h:1099
CNode * FindNode(const CNetAddr &ip)
Definition: net.cpp:331
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1611
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3594
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3263
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1534
m_local_services
Definition: net.h:1087
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2060
int GetExtraFullOutboundCount() const
Definition: net.cpp:2427
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3691
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3737
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1587
RecursiveMutex m_nodes_mutex
Definition: net.h:1447
m_max_outbound_block_relay
Definition: net.h:1090
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3835
m_client_interface
Definition: net.h:1094
nReceiveFloodSize
Definition: net.h:1098
const CChainParams & m_params
Definition: net.h:1674
void SetNetworkActive(bool active)
Definition: net.cpp:3164
void ThreadOpenConnections(std::vector< std::string > connect, Span< const std::string > seed_nodes) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2490
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2468
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3555
whitelist_forcerelay
Definition: net.h:1116
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3684
AddrMan & addrman
Definition: net.h:1436
m_max_automatic_connections
Definition: net.h:1088
uint64_t CalculateKeyedNetGroup(const CAddress &ad) const
Definition: net.cpp:3905
m_msgproc
Definition: net.h:1096
Mutex mutexMsgProc
Definition: net.h:1540
m_max_inbound
Definition: net.h:1092
bool fAddressesInitialized
Definition: net.h:1435
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3473
~CConnman()
Definition: net.cpp:3467
void StopThreads()
Definition: net.cpp:3409
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant &&grant_outbound, const char *strDest, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:2961
std::thread threadOpenAddedConnections
Definition: net.h:1560
Mutex m_added_nodes_mutex
Definition: net.h:1444
vWhitelistedRangeIncoming
Definition: net.h:1104
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2200
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:566
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3654
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:369
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1597
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3742
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2474
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3649
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1970
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3727
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CAddress &addr_bind, const CAddress &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1745
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3840
void StopNodes()
Definition: net.cpp:3426
int m_max_addnode
Definition: net.h:1516
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1446
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1556
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1479
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1413
std::atomic< bool > fNetworkActive
Definition: net.h:1434
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1574
m_use_addrman_outgoing
Definition: net.h:1093
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2187
void DumpAddresses()
Definition: net.cpp:2360
std::thread threadSocketHandler
Definition: net.h:1559
nMaxOutboundLimit
Definition: net.h:1102
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1717
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:3084
An encapsulated private key.
Definition: key.h:35
Message header.
Definition: protocol.h:29
static constexpr size_t MESSAGE_TYPE_SIZE
Definition: protocol.h:31
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:678
std::string ToStringAddr() const
Definition: netaddress.cpp:584
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:211
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:696
bool IsRoutable() const
Definition: netaddress.cpp:466
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:188
bool IsValid() const
Definition: netaddress.cpp:428
bool IsIPv4() const
Definition: netaddress.h:157
bool IsIPv6() const
Definition: netaddress.h:158
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:172
enum Network GetNetwork() const
Definition: netaddress.cpp:500
~CNetCleanup()
Definition: net.cpp:3375
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:231
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:129
std::string m_type
Definition: net.h:237
DataStream m_recv
received message data
Definition: net.h:233
Information about a peer.
Definition: net.h:673
const CAddress addrBind
Definition: net.h:710
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
std::atomic< int > nVersion
Definition: net.h:716
bool IsInboundConn() const
Definition: net.h:811
std::atomic_bool fPauseRecv
Definition: net.h:736
NodeId GetId() const
Definition: net.h:894
const std::string m_addr_name
Definition: net.h:711
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:601
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:608
std::string ConnectionTypeAsString() const
Definition: net.h:948
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::list< CNetMessage > vRecvMsg
Definition: net.h:978
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:588
CSemaphoreGrant grantOutbound
Definition: net.h:732
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3804
Mutex m_subver_mutex
Definition: net.h:717
Mutex cs_vSend
Definition: net.h:697
CNode * AddRef()
Definition: net.h:933
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3821
Mutex m_msg_process_queue_mutex
Definition: net.h:980
const ConnectionType m_conn_type
Definition: net.h:739
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:596
const size_t m_recv_flood_size
Definition: net.h:977
bool ReceiveMsgBytes(Span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:654
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:875
bool IsManualOrFullOutboundConn() const
Definition: net.h:783
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:698
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const NetPermissionFlags m_permission_flags
Definition: net.h:679
Mutex m_addr_local_mutex
Definition: net.h:986
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:879
Mutex cs_vRecv
Definition: net.h:699
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:703
Mutex m_sock_mutex
Definition: net.h:698
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:704
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:581
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, CNodeOptions &&node_opts={})
Definition: net.cpp:3763
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:556
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:703
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:222
std::string addrLocal
Definition: net.h:210
bool fInbound
Definition: net.h:196
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:220
Network m_network
Definition: net.h:216
NodeId nodeid
Definition: net.h:187
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
RAII-style semaphore lock.
Definition: sync.h:353
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
uint16_t GetPort() const
Definition: netaddress.cpp:837
bool SetSockAddr(const struct sockaddr *paddr)
Definition: netaddress.cpp:810
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:824
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:864
std::string ToStringAddrPort() const
Definition: netaddress.cpp:905
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
bool sleep_for(Clock::duration rel_time) EXCLUSIVE_LOCKS_REQUIRED(!mut)
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: streams.cpp:115
Fast randomness source.
Definition: random.h:377
void fillrand(Span< std::byte > output) noexcept
Fill a byte Span with random bytes.
Definition: random.cpp:701
Different type to mark Mutex at global scope.
Definition: sync.h:140
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1011
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream.
Definition: serialize.h:1115
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range) noexcept
Return the time point advanced by a uniform random duration.
Definition: random.h:320
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:327
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
Return a duration sampled from an exponential distribution (https://en.wikipedia.org/wiki/Exponential...
Definition: random.h:356
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
std::unordered_set< Network > All() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:137
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
constexpr std::size_t size() const noexcept
Definition: span.h:187
CONSTEXPR_IF_NOT_DEBUG Span< C > subspan(std::size_t offset) const noexcept
Definition: span.h:195
CONSTEXPR_IF_NOT_DEBUG Span< C > first(std::size_t count) const noexcept
Definition: span.h:205
constexpr C * data() const noexcept
Definition: span.h:174
constexpr C * begin() const noexcept
Definition: span.h:175
constexpr bool empty() const noexcept
Definition: span.h:189
constexpr C * end() const noexcept
Definition: span.h:176
std::tuple< Span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:311
int readData(Span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:763
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:829
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:717
const NodeId m_node_id
Definition: net.h:371
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:406
const MessageStartChars m_magic_bytes
Definition: net.h:370
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:891
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:781
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:875
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:710
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:398
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:854
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:386
bool ReceivedBytes(Span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:427
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:372
int readHeader(Span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:722
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:419
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:790
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1518
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:634
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:580
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1261
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:576
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1557
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1067
SendState
State type that controls the sender side.
Definition: net.h:545
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:582
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:459
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:976
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1192
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1105
bool ReceivedBytes(Span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1310
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:578
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1566
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1501
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:1007
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1165
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1058
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1440
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:455
static std::optional< std::string > GetMessageType(Span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1400
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1540
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1469
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:1003
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:480
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1038
constexpr unsigned char * begin()
Definition: uint256.h:115
Path class wrapper to block calls to the fs::path(std::string) implicit constructor and the fs::path:...
Definition: fs.h:33
256-bit opaque blob.
Definition: uint256.h:201
#define WSAEWOULDBLOCK
Definition: compat.h:50
#define SOCKET_ERROR
Definition: compat.h:57
#define WSAGetLastError()
Definition: compat.h:48
#define WSAEMSGSIZE
Definition: compat.h:52
#define MSG_NOSIGNAL
Definition: compat.h:107
#define MSG_DONTWAIT
Definition: compat.h:112
void * sockopt_arg_type
Definition: compat.h:82
#define WSAEINPROGRESS
Definition: compat.h:54
#define WSAEADDRINUSE
Definition: compat.h:55
#define WSAEINTR
Definition: compat.h:53
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const Span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:352
bool fLogIPs
Definition: logging.cpp:45
#define LogPrintLevel(category, level,...)
Definition: logging.h:272
#define LogInfo(...)
Definition: logging.h:261
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ PROXY
Definition: logging.h:58
@ NET
Definition: logging.h:43
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
static path u8path(const std::string &utf8_str)
Definition: fs.h:75
static bool create_directories(const std::filesystem::path &p)
Create directory (and if necessary its parents), unless the leaf directory already exists or is a sym...
Definition: fs.h:190
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:26
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
Definition: messages.h:20
static const unsigned char VERSION[]
Definition: netaddress.cpp:187
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:48
uint16_t GetListenPort()
Definition: net.cpp:140
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:68
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:325
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:112
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:108
void RemoveLocal(const CService &addr)
Definition: net.cpp:306
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:96
@ BF_REPORT_ERROR
Definition: net.cpp:98
@ BF_NONE
Definition: net.cpp:97
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:103
bool fDiscover
Definition: net.cpp:118
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:113
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:65
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:93
TRACEPOINT_SEMAPHORE(net, outbound_message)
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD
Minimum number of outbound connections under which we will keep fetching our address seeds.
Definition: net.cpp:71
static CAddress GetBindAddress(const Sock &sock)
Get the bind address for a socket as CAddress.
Definition: net.cpp:380
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:273
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:90
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:84
bool fListen
Definition: net.cpp:119
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:59
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:235
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:82
static const uint64_t RANDOMIZER_ID_ADDRCACHE
Definition: net.cpp:114
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:122
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:242
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:110
#define X(name)
Definition: net.cpp:607
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3754
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:62
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:197
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:222
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:120
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:167
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:3953
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:83
static int GetnScore(const CService &addr)
Definition: net.cpp:227
std::function< void(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:3988
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3383
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:87
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3153
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:314
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:91
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:63
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:61
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:89
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:90
int64_t NodeId
Definition: net.h:97
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:87
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:59
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:67
@ LOCAL_MANUAL
Definition: net.h:152
@ LOCAL_BIND
Definition: net.h:150
@ LOCAL_IF
Definition: net.h:149
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:71
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:104
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:625
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:177
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:118
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:714
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:195
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:882
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:689
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:728
std::function< std::unique_ptr< Sock >(int, int, int)> CreateSock
Socket factory.
Definition: netbase.cpp:557
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:706
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:220
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:792
ConnectionDirection
Definition: netbase.h:33
std::vector< CNetAddr > GetLocalAddresses()
Return all local non-loopback IPv4 and IPv6 network addresses.
Definition: netif.cpp:275
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:354
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_P2P_V2
Definition: protocol.h:330
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:692
uint256 GetRandHash() noexcept
Generate a random uint256.
Definition: random.h:454
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:68
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:78
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
Span< const std::byte > MakeByteSpan(V &&v) noexcept
Definition: span.h:269
constexpr auto MakeUCharSpan(V &&v) -> decltype(UCharSpanCast(Span{std::forward< V >(v)}))
Like the Span constructor, but for (const) unsigned char member types only.
Definition: span.h:296
T & SpanPopBack(Span< T > &span)
Pop the last element off a span, and return a reference to that element.
Definition: span.h:248
Span(T *, EndOrSize) -> Span< T >
unsigned char * UCharCast(char *c)
Definition: span.h:280
Span< std::byte > MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:274
std::string m_added_node
Definition: net.h:100
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1460
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1462
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1461
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1279
std::shared_ptr< Sock > sock
Definition: net.h:1278
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1069
std::vector< CService > onion_binds
Definition: net.h:1071
std::vector< std::string > m_specified_outgoing
Definition: net.h:1076
std::vector< CService > vBinds
Definition: net.h:1070
bool m_i2p_accept_incoming
Definition: net.h:1078
std::vector< std::string > vSeedNodes
Definition: net.h:1066
bool m_use_addrman_outgoing
Definition: net.h:1075
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1074
NetPermissionFlags permission_flags
Definition: net.h:664
std::string m_type
Definition: net.h:131
std::vector< unsigned char > data
Definition: net.h:130
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:124
An ElligatorSwift-encoded public key.
Definition: pubkey.h:310
static constexpr size_t size()
Definition: pubkey.h:327
uint16_t nPort
Definition: net.h:175
int nScore
Definition: net.h:174
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:25
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:261
TransportProtocolType transport_type
Definition: net.h:260
Bilingual messages:
Definition: translation.h:24
std::string original
Definition: translation.h:25
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
#define WAIT_LOCK(cs, name)
Definition: sync.h:262
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:51
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:56
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:82
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56