Bitcoin Core 29.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8#include <net.h>
9
10#include <addrdb.h>
11#include <addrman.h>
12#include <banman.h>
13#include <clientversion.h>
14#include <common/args.h>
15#include <common/netif.h>
16#include <compat/compat.h>
17#include <consensus/consensus.h>
18#include <crypto/sha256.h>
19#include <i2p.h>
20#include <key.h>
21#include <logging.h>
22#include <memusage.h>
23#include <net_permissions.h>
24#include <netaddress.h>
25#include <netbase.h>
26#include <node/eviction.h>
27#include <node/interface_ui.h>
28#include <protocol.h>
29#include <random.h>
30#include <scheduler.h>
31#include <util/fs.h>
32#include <util/sock.h>
33#include <util/strencodings.h>
34#include <util/thread.h>
36#include <util/trace.h>
37#include <util/translation.h>
38#include <util/vector.h>
39
40#ifdef WIN32
41#include <string.h>
42#endif
43
44#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45#include <ifaddrs.h>
46#endif
47
48#include <algorithm>
49#include <array>
50#include <cmath>
51#include <cstdint>
52#include <functional>
53#include <optional>
54#include <unordered_map>
55
56TRACEPOINT_SEMAPHORE(net, closed_connection);
57TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
58TRACEPOINT_SEMAPHORE(net, inbound_connection);
59TRACEPOINT_SEMAPHORE(net, outbound_connection);
60TRACEPOINT_SEMAPHORE(net, outbound_message);
61
63static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
64static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
66const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
67
68// How often to dump addresses to peers.dat
69static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
70
72static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
73
75static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
76
86static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
87static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
88static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
89
91static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
92
93// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
94static constexpr auto FEELER_SLEEP_WINDOW{1s};
95
97static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
98
102 BF_REPORT_ERROR = (1U << 0),
107 BF_DONT_ADVERTISE = (1U << 1),
108};
109
110// The set of sockets cannot be modified while waiting
111// The sleep time needs to be small to avoid new sockets stalling
112static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
113
114const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
115
116static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
117static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
118static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
119//
120// Global state variables
121//
122bool fDiscover = true;
123bool fListen = true;
125std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
126std::string strSubVersion;
127
129{
130 return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
131}
132
133size_t CNetMessage::GetMemoryUsage() const noexcept
134{
135 return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
136}
137
138void CConnman::AddAddrFetch(const std::string& strDest)
139{
141 m_addr_fetches.push_back(strDest);
142}
143
145{
146 // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
147 for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
148 constexpr uint16_t dummy_port = 0;
149
150 const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
151 if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
152 }
153
154 // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
155 // (-whitebind= is required to have ":port").
156 for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
157 NetWhitebindPermissions whitebind;
158 bilingual_str error;
159 if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
161 return whitebind.m_service.GetPort();
162 }
163 }
164 }
165
166 // Otherwise, if -port= is provided, use that. Otherwise use the default port.
167 return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
168}
169
170// Determine the "best" local address for a particular peer.
171[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
172{
173 if (!fListen) return std::nullopt;
174
175 std::optional<CService> addr;
176 int nBestScore = -1;
177 int nBestReachability = -1;
178 {
180 for (const auto& [local_addr, local_service_info] : mapLocalHost) {
181 // For privacy reasons, don't advertise our privacy-network address
182 // to other networks and don't advertise our other-network address
183 // to privacy networks.
184 if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
185 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
186 continue;
187 }
188 const int nScore{local_service_info.nScore};
189 const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
190 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
191 addr.emplace(CService{local_addr, local_service_info.nPort});
192 nBestReachability = nReachability;
193 nBestScore = nScore;
194 }
195 }
196 }
197 return addr;
198}
199
201static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
202{
203 // It'll only connect to one or two seed nodes because once it connects,
204 // it'll get a pile of addresses with newer timestamps.
205 // Seed nodes are given a random 'last seen time' of between one and two
206 // weeks ago.
207 const auto one_week{7 * 24h};
208 std::vector<CAddress> vSeedsOut;
211 while (!s.eof()) {
212 CService endpoint;
213 s >> endpoint;
214 CAddress addr{endpoint, SeedsServiceFlags()};
215 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
216 LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
217 vSeedsOut.push_back(addr);
218 }
219 return vSeedsOut;
220}
221
222// Determine the "best" local address for a particular peer.
223// If none, return the unroutable 0.0.0.0 but filled in with
224// the normal parameters, since the IP may be changed to a useful
225// one by discovery.
227{
228 return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
229}
230
231static int GetnScore(const CService& addr)
232{
234 const auto it = mapLocalHost.find(addr);
235 return (it != mapLocalHost.end()) ? it->second.nScore : 0;
236}
237
238// Is our peer's addrLocal potentially useful as an external IP source?
239[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
240{
241 CService addrLocal = pnode->GetAddrLocal();
242 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
243 g_reachable_nets.Contains(addrLocal);
244}
245
246std::optional<CService> GetLocalAddrForPeer(CNode& node)
247{
248 CService addrLocal{GetLocalAddress(node)};
249 // If discovery is enabled, sometimes give our peer the address it
250 // tells us that it sees us as in case it has a better idea of our
251 // address than we do.
253 if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
254 rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
255 {
256 if (node.IsInboundConn()) {
257 // For inbound connections, assume both the address and the port
258 // as seen from the peer.
259 addrLocal = CService{node.GetAddrLocal()};
260 } else {
261 // For outbound connections, assume just the address as seen from
262 // the peer and leave the port in `addrLocal` as returned by
263 // `GetLocalAddress()` above. The peer has no way to observe our
264 // listening port when we have initiated the connection.
265 addrLocal.SetIP(node.GetAddrLocal());
266 }
267 }
268 if (addrLocal.IsRoutable()) {
269 LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
270 return addrLocal;
271 }
272 // Address is unroutable. Don't advertise.
273 return std::nullopt;
274}
275
276// learn a new local address
277bool AddLocal(const CService& addr_, int nScore)
278{
279 CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280
281 if (!addr.IsRoutable())
282 return false;
283
284 if (!fDiscover && nScore < LOCAL_MANUAL)
285 return false;
286
287 if (!g_reachable_nets.Contains(addr))
288 return false;
289
290 LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291
292 {
294 const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295 LocalServiceInfo &info = it->second;
296 if (is_newly_added || nScore >= info.nScore) {
297 info.nScore = nScore + (is_newly_added ? 0 : 1);
298 info.nPort = addr.GetPort();
299 }
300 }
301
302 return true;
303}
304
305bool AddLocal(const CNetAddr &addr, int nScore)
306{
307 return AddLocal(CService(addr, GetListenPort()), nScore);
308}
309
310void RemoveLocal(const CService& addr)
311{
313 LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314 mapLocalHost.erase(addr);
315}
316
318bool SeenLocal(const CService& addr)
319{
321 const auto it = mapLocalHost.find(addr);
322 if (it == mapLocalHost.end()) return false;
323 ++it->second.nScore;
324 return true;
325}
326
327
329bool IsLocal(const CService& addr)
330{
332 return mapLocalHost.count(addr) > 0;
333}
334
336{
338 for (CNode* pnode : m_nodes) {
339 if (static_cast<CNetAddr>(pnode->addr) == ip) {
340 return pnode;
341 }
342 }
343 return nullptr;
344}
345
346CNode* CConnman::FindNode(const std::string& addrName)
347{
349 for (CNode* pnode : m_nodes) {
350 if (pnode->m_addr_name == addrName) {
351 return pnode;
352 }
353 }
354 return nullptr;
355}
356
358{
360 for (CNode* pnode : m_nodes) {
361 if (static_cast<CService>(pnode->addr) == addr) {
362 return pnode;
363 }
364 }
365 return nullptr;
366}
367
369{
370 return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
371}
372
374{
376 for (const CNode* pnode : m_nodes) {
377 if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
378 return false;
379 }
380 return true;
381}
382
384static CService GetBindAddress(const Sock& sock)
385{
386 CService addr_bind;
387 struct sockaddr_storage sockaddr_bind;
388 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
389 if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
390 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
391 } else {
392 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
393 }
394 return addr_bind;
395}
396
397CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
398{
400 assert(conn_type != ConnectionType::INBOUND);
401
402 if (pszDest == nullptr) {
403 if (IsLocal(addrConnect))
404 return nullptr;
405
406 // Look for an existing connection
407 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
408 if (pnode)
409 {
410 LogPrintf("Failed to open new connection, already connected\n");
411 return nullptr;
412 }
413 }
414
415 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
416 use_v2transport ? "v2" : "v1",
417 pszDest ? pszDest : addrConnect.ToStringAddrPort(),
418 Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
419
420 // Resolve
421 const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
423
424 // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
425 std::vector<CAddress> connect_to{};
426 if (pszDest) {
427 std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
428 if (!resolved.empty()) {
429 std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
430 // If the connection is made by name, it can be the case that the name resolves to more than one address.
431 // We don't want to connect any more of them if we are already connected to one
432 for (const auto& r : resolved) {
433 addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
434 if (!addrConnect.IsValid()) {
435 LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
436 return nullptr;
437 }
438 // It is possible that we already have a connection to the IP/port pszDest resolved to.
439 // In that case, drop the connection that was just created.
441 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
442 if (pnode) {
443 LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
444 return nullptr;
445 }
446 // Add the address to the resolved addresses vector so we can try to connect to it later on
447 connect_to.push_back(addrConnect);
448 }
449 } else {
450 // For resolution via proxy
451 connect_to.push_back(addrConnect);
452 }
453 } else {
454 // Connect via addrConnect directly
455 connect_to.push_back(addrConnect);
456 }
457
458 // Connect
459 std::unique_ptr<Sock> sock;
460 Proxy proxy;
461 CService addr_bind;
462 assert(!addr_bind.IsValid());
463 std::unique_ptr<i2p::sam::Session> i2p_transient_session;
464
465 for (auto& target_addr: connect_to) {
466 if (target_addr.IsValid()) {
467 const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
468 bool proxyConnectionFailed = false;
469
470 if (target_addr.IsI2P() && use_proxy) {
471 i2p::Connection conn;
472 bool connected{false};
473
474 if (m_i2p_sam_session) {
475 connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
476 } else {
477 {
479 if (m_unused_i2p_sessions.empty()) {
480 i2p_transient_session =
481 std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
482 } else {
483 i2p_transient_session.swap(m_unused_i2p_sessions.front());
484 m_unused_i2p_sessions.pop();
485 }
486 }
487 connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
488 if (!connected) {
490 if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
491 m_unused_i2p_sessions.emplace(i2p_transient_session.release());
492 }
493 }
494 }
495
496 if (connected) {
497 sock = std::move(conn.sock);
498 addr_bind = conn.me;
499 }
500 } else if (use_proxy) {
501 LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
502 sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
503 } else {
504 // no proxy needed (none set for target network)
505 sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
506 }
507 if (!proxyConnectionFailed) {
508 // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
509 // the proxy, mark this as an attempt.
510 addrman.Attempt(target_addr, fCountFailure);
511 }
512 } else if (pszDest && GetNameProxy(proxy)) {
513 std::string host;
514 uint16_t port{default_port};
515 SplitHostPort(std::string(pszDest), port, host);
516 bool proxyConnectionFailed;
517 sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
518 }
519 // Check any other resolved address (if any) if we fail to connect
520 if (!sock) {
521 continue;
522 }
523
525 std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
526 AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
527
528 // Add node
529 NodeId id = GetNewNodeId();
531 if (!addr_bind.IsValid()) {
532 addr_bind = GetBindAddress(*sock);
533 }
534 CNode* pnode = new CNode(id,
535 std::move(sock),
536 target_addr,
537 CalculateKeyedNetGroup(target_addr),
538 nonce,
539 addr_bind,
540 pszDest ? pszDest : "",
541 conn_type,
542 /*inbound_onion=*/false,
544 .permission_flags = permission_flags,
545 .i2p_sam_session = std::move(i2p_transient_session),
546 .recv_flood_size = nReceiveFloodSize,
547 .use_v2transport = use_v2transport,
548 });
549 pnode->AddRef();
550
551 // We're making a new connection, harvest entropy from the time (and our peer count)
552 RandAddEvent((uint32_t)id);
553
554 return pnode;
555 }
556
557 return nullptr;
558}
559
561{
562 fDisconnect = true;
564 if (m_sock) {
565 LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
566 m_sock.reset();
567
568 TRACEPOINT(net, closed_connection,
569 GetId(),
570 m_addr_name.c_str(),
571 ConnectionTypeAsString().c_str(),
573 Ticks<std::chrono::seconds>(m_connected));
574 }
575 m_i2p_sam_session.reset();
576}
577
578void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
579 for (const auto& subnet : ranges) {
580 if (subnet.m_subnet.Match(addr)) {
581 NetPermissions::AddFlag(flags, subnet.m_flags);
582 }
583 }
590 }
591}
592
594{
597 return m_addr_local;
598}
599
600void CNode::SetAddrLocal(const CService& addrLocalIn) {
603 if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
604 m_addr_local = addrLocalIn;
605 }
606}
607
609{
611}
612
614{
616}
617
618#undef X
619#define X(name) stats.name = name
621{
622 stats.nodeid = this->GetId();
623 X(addr);
624 X(addrBind);
626 X(m_last_send);
627 X(m_last_recv);
630 X(m_connected);
631 X(m_addr_name);
632 X(nVersion);
633 {
635 X(cleanSubVer);
636 }
637 stats.fInbound = IsInboundConn();
640 {
641 LOCK(cs_vSend);
642 X(mapSendBytesPerMsgType);
643 X(nSendBytes);
644 }
645 {
646 LOCK(cs_vRecv);
647 X(mapRecvBytesPerMsgType);
648 X(nRecvBytes);
649 Transport::Info info = m_transport->GetInfo();
650 stats.m_transport_type = info.transport_type;
651 if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
652 }
654
657
658 // Leave string empty if addrLocal invalid (not filled in yet)
659 CService addrLocalUnlocked = GetAddrLocal();
660 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
661
662 X(m_conn_type);
663}
664#undef X
665
666bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
667{
668 complete = false;
669 const auto time = GetTime<std::chrono::microseconds>();
670 LOCK(cs_vRecv);
671 m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
672 nRecvBytes += msg_bytes.size();
673 while (msg_bytes.size() > 0) {
674 // absorb network data
675 if (!m_transport->ReceivedBytes(msg_bytes)) {
676 // Serious transport problem, disconnect from the peer.
677 return false;
678 }
679
680 if (m_transport->ReceivedMessageComplete()) {
681 // decompose a transport agnostic CNetMessage from the deserializer
682 bool reject_message{false};
683 CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
684 if (reject_message) {
685 // Message deserialization failed. Drop the message but don't disconnect the peer.
686 // store the size of the corrupt message
687 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
688 continue;
689 }
690
691 // Store received bytes per message type.
692 // To prevent a memory DOS, only allow known message types.
693 auto i = mapRecvBytesPerMsgType.find(msg.m_type);
694 if (i == mapRecvBytesPerMsgType.end()) {
695 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
696 }
697 assert(i != mapRecvBytesPerMsgType.end());
698 i->second += msg.m_raw_message_size;
699
700 // push the message to the process queue,
701 vRecvMsg.push_back(std::move(msg));
702
703 complete = true;
704 }
705 }
706
707 return true;
708}
709
710std::string CNode::LogIP(bool log_ip) const
711{
712 return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
713}
714
715std::string CNode::DisconnectMsg(bool log_ip) const
716{
717 return strprintf("disconnecting peer=%d%s",
718 GetId(),
719 LogIP(log_ip));
720}
721
722V1Transport::V1Transport(const NodeId node_id) noexcept
723 : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
724{
725 LOCK(m_recv_mutex);
726 Reset();
727}
728
730{
731 return {.transport_type = TransportProtocolType::V1, .session_id = {}};
732}
733
734int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
735{
737 // copy data to temporary parsing buffer
738 unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
739 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740
741 memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
742 nHdrPos += nCopy;
743
744 // if header incomplete, exit
745 if (nHdrPos < CMessageHeader::HEADER_SIZE)
746 return nCopy;
747
748 // deserialize to CMessageHeader
749 try {
750 hdrbuf >> hdr;
751 }
752 catch (const std::exception&) {
753 LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
754 return -1;
755 }
756
757 // Check start string, network magic
758 if (hdr.pchMessageStart != m_magic_bytes) {
759 LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
760 return -1;
761 }
762
763 // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
764 // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
765 // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
766 if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
767 LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
768 return -1;
769 }
770
771 // switch state to reading message data
772 in_data = true;
773
774 return nCopy;
775}
776
777int V1Transport::readData(std::span<const uint8_t> msg_bytes)
778{
780 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
781 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
782
783 if (vRecv.size() < nDataPos + nCopy) {
784 // Allocate up to 256 KiB ahead, but never more than the total message size.
785 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
786 }
787
788 hasher.Write(msg_bytes.first(nCopy));
789 memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
790 nDataPos += nCopy;
791
792 return nCopy;
793}
794
796{
799 if (data_hash.IsNull())
800 hasher.Finalize(data_hash);
801 return data_hash;
802}
803
804CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
805{
807 // Initialize out parameter
808 reject_message = false;
809 // decompose a single CNetMessage from the TransportDeserializer
811 CNetMessage msg(std::move(vRecv));
812
813 // store message type string, time, and sizes
814 msg.m_type = hdr.GetMessageType();
815 msg.m_time = time;
816 msg.m_message_size = hdr.nMessageSize;
817 msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
818
819 uint256 hash = GetMessageHash();
820
821 // We just received a message off the wire, harvest entropy from the time (and the message checksum)
822 RandAddEvent(ReadLE32(hash.begin()));
823
824 // Check checksum and header message type string
825 if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
826 LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
827 SanitizeString(msg.m_type), msg.m_message_size,
828 HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
829 HexStr(hdr.pchChecksum),
830 m_node_id);
831 reject_message = true;
832 } else if (!hdr.IsMessageTypeValid()) {
833 LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
834 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
835 reject_message = true;
836 }
837
838 // Always reset the network deserializer (prepare for the next message)
839 Reset();
840 return msg;
841}
842
844{
845 AssertLockNotHeld(m_send_mutex);
846 // Determine whether a new message can be set.
847 LOCK(m_send_mutex);
848 if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
849
850 // create dbl-sha256 checksum
851 uint256 hash = Hash(msg.data);
852
853 // create header
854 CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
856
857 // serialize header
858 m_header_to_send.clear();
859 VectorWriter{m_header_to_send, 0, hdr};
860
861 // update state
862 m_message_to_send = std::move(msg);
863 m_sending_header = true;
864 m_bytes_sent = 0;
865 return true;
866}
867
868Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
869{
870 AssertLockNotHeld(m_send_mutex);
871 LOCK(m_send_mutex);
872 if (m_sending_header) {
873 return {std::span{m_header_to_send}.subspan(m_bytes_sent),
874 // We have more to send after the header if the message has payload, or if there
875 // is a next message after that.
876 have_next_message || !m_message_to_send.data.empty(),
877 m_message_to_send.m_type
878 };
879 } else {
880 return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
881 // We only have more to send after this message's payload if there is another
882 // message.
883 have_next_message,
884 m_message_to_send.m_type
885 };
886 }
887}
888
889void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
890{
891 AssertLockNotHeld(m_send_mutex);
892 LOCK(m_send_mutex);
893 m_bytes_sent += bytes_sent;
894 if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
895 // We're done sending a message's header. Switch to sending its data bytes.
896 m_sending_header = false;
897 m_bytes_sent = 0;
898 } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
899 // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
900 ClearShrink(m_message_to_send.data);
901 m_bytes_sent = 0;
902 }
903}
904
905size_t V1Transport::GetSendMemoryUsage() const noexcept
906{
909 // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
910 return m_message_to_send.GetMemoryUsage();
911}
912
913namespace {
914
920const std::array<std::string, 33> V2_MESSAGE_IDS = {
921 "", // 12 bytes follow encoding the message type like in V1
950 // Unimplemented message types that are assigned in BIP324:
951 "",
952 "",
953 "",
954 ""
955};
956
957class V2MessageMap
958{
959 std::unordered_map<std::string, uint8_t> m_map;
960
961public:
962 V2MessageMap() noexcept
963 {
964 for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
965 m_map.emplace(V2_MESSAGE_IDS[i], i);
966 }
967 }
968
969 std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
970 {
971 auto it = m_map.find(message_name);
972 if (it == m_map.end()) return std::nullopt;
973 return it->second;
974 }
975};
976
977const V2MessageMap V2_MESSAGE_MAP;
978
979std::vector<uint8_t> GenerateRandomGarbage() noexcept
980{
981 std::vector<uint8_t> ret;
985 return ret;
986}
987
988} // namespace
989
991{
992 AssertLockHeld(m_send_mutex);
993 Assume(m_send_state == SendState::AWAITING_KEY);
994 Assume(m_send_buffer.empty());
995 // Initialize the send buffer with ellswift pubkey + provided garbage.
996 m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
997 std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
998 std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
999 // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
1000}
1001
1002V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1003 : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1004 m_v1_fallback{nodeid},
1005 m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1006 m_send_garbage{std::move(garbage)},
1007 m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1008{
1009 Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1010 // Start sending immediately if we're the initiator of the connection.
1011 if (initiating) {
1012 LOCK(m_send_mutex);
1013 StartSendingHandshake();
1014 }
1015}
1016
1017V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1018 : V2Transport{nodeid, initiating, GenerateRandomKey(),
1019 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1020
1022{
1023 AssertLockHeld(m_recv_mutex);
1024 // Enforce allowed state transitions.
1025 switch (m_recv_state) {
1026 case RecvState::KEY_MAYBE_V1:
1027 Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1028 break;
1029 case RecvState::KEY:
1030 Assume(recv_state == RecvState::GARB_GARBTERM);
1031 break;
1032 case RecvState::GARB_GARBTERM:
1033 Assume(recv_state == RecvState::VERSION);
1034 break;
1035 case RecvState::VERSION:
1036 Assume(recv_state == RecvState::APP);
1037 break;
1038 case RecvState::APP:
1039 Assume(recv_state == RecvState::APP_READY);
1040 break;
1041 case RecvState::APP_READY:
1042 Assume(recv_state == RecvState::APP);
1043 break;
1044 case RecvState::V1:
1045 Assume(false); // V1 state cannot be left
1046 break;
1047 }
1048 // Change state.
1049 m_recv_state = recv_state;
1050}
1051
1052void V2Transport::SetSendState(SendState send_state) noexcept
1053{
1054 AssertLockHeld(m_send_mutex);
1055 // Enforce allowed state transitions.
1056 switch (m_send_state) {
1057 case SendState::MAYBE_V1:
1058 Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1059 break;
1060 case SendState::AWAITING_KEY:
1061 Assume(send_state == SendState::READY);
1062 break;
1063 case SendState::READY:
1064 case SendState::V1:
1065 Assume(false); // Final states
1066 break;
1067 }
1068 // Change state.
1069 m_send_state = send_state;
1070}
1071
1073{
1074 AssertLockNotHeld(m_recv_mutex);
1075 LOCK(m_recv_mutex);
1076 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1077
1078 return m_recv_state == RecvState::APP_READY;
1079}
1080
1082{
1083 AssertLockHeld(m_recv_mutex);
1084 AssertLockNotHeld(m_send_mutex);
1085 Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1086 // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1087 // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1088 // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1089 // sending of the key.
1090 std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1091 std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1092 Assume(m_recv_buffer.size() <= v1_prefix.size());
1093 if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1094 // Mismatch with v1 prefix, so we can assume a v2 connection.
1095 SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1096 // Transition the sender to AWAITING_KEY state and start sending.
1097 LOCK(m_send_mutex);
1100 } else if (m_recv_buffer.size() == v1_prefix.size()) {
1101 // Full match with the v1 prefix, so fall back to v1 behavior.
1102 LOCK(m_send_mutex);
1103 std::span<const uint8_t> feedback{m_recv_buffer};
1104 // Feed already received bytes to v1 transport. It should always accept these, because it's
1105 // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1106 bool ret = m_v1_fallback.ReceivedBytes(feedback);
1107 Assume(feedback.empty());
1108 Assume(ret);
1111 // Reset v2 transport buffers to save memory.
1112 ClearShrink(m_recv_buffer);
1113 ClearShrink(m_send_buffer);
1114 } else {
1115 // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1116 }
1117}
1118
1121 AssertLockHeld(m_recv_mutex);
1122 AssertLockNotHeld(m_send_mutex);
1123 Assume(m_recv_state == RecvState::KEY);
1124 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1125
1126 // As a special exception, if bytes 4-16 of the key on a responder connection match the
1127 // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1128 // (if they did, we'd have switched to V1 state already), assume this is a peer from
1129 // another network, and disconnect them. They will almost certainly disconnect us too when
1130 // they receive our uniformly random key and garbage, but detecting this case specially
1131 // means we can log it.
1132 static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1133 static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1134 if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1135 if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1136 LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1137 HexStr(std::span(m_recv_buffer).first(OFFSET)));
1138 return false;
1139 }
1140 }
1141
1142 if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1143 // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1144 // our key to initialize the encryption ciphers.
1145
1146 // Initialize the ciphers.
1147 EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1148 LOCK(m_send_mutex);
1149 m_cipher.Initialize(ellswift, m_initiating);
1150
1151 // Switch receiver state to GARB_GARBTERM.
1153 m_recv_buffer.clear();
1154
1155 // Switch sender state to READY.
1157
1158 // Append the garbage terminator to the send buffer.
1159 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1160 std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1162 MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1163
1164 // Construct version packet in the send buffer, with the sent garbage data as AAD.
1165 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1167 /*contents=*/VERSION_CONTENTS,
1168 /*aad=*/MakeByteSpan(m_send_garbage),
1169 /*ignore=*/false,
1170 /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1171 // We no longer need the garbage.
1172 ClearShrink(m_send_garbage);
1173 } else {
1174 // We still have to receive more key bytes.
1175 }
1176 return true;
1177}
1178
1180{
1181 AssertLockHeld(m_recv_mutex);
1182 Assume(m_recv_state == RecvState::GARB_GARBTERM);
1184 if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1185 if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1186 // Garbage terminator received. Store garbage to authenticate it as AAD later.
1187 m_recv_aad = std::move(m_recv_buffer);
1188 m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1189 m_recv_buffer.clear();
1191 } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1192 // We've reached the maximum length for garbage + garbage terminator, and the
1193 // terminator still does not match. Abort.
1194 LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1195 return false;
1196 } else {
1197 // We still need to receive more garbage and/or garbage terminator bytes.
1198 }
1199 } else {
1200 // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1201 // more first.
1202 }
1203 return true;
1204}
1205
1207{
1208 AssertLockHeld(m_recv_mutex);
1209 Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1210
1211 // The maximum permitted contents length for a packet, consisting of:
1212 // - 0x00 byte: indicating long message type encoding
1213 // - 12 bytes of message type
1214 // - payload
1215 static constexpr size_t MAX_CONTENTS_LEN =
1217 std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1218
1219 if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1220 // Length descriptor received.
1221 m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1222 if (m_recv_len > MAX_CONTENTS_LEN) {
1223 LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1224 return false;
1225 }
1226 } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1227 // Ciphertext received, decrypt it into m_recv_decode_buffer.
1228 // Note that it is impossible to reach this branch without hitting the branch above first,
1229 // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1230 m_recv_decode_buffer.resize(m_recv_len);
1231 bool ignore{false};
1232 bool ret = m_cipher.Decrypt(
1233 /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1234 /*aad=*/MakeByteSpan(m_recv_aad),
1235 /*ignore=*/ignore,
1236 /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1237 if (!ret) {
1238 LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1239 return false;
1240 }
1241 // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1242 ClearShrink(m_recv_aad);
1243 // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1244 RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1245
1246 // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1247 // decoy, which we simply ignore, use the current state to decide what to do with it.
1248 if (!ignore) {
1249 switch (m_recv_state) {
1250 case RecvState::VERSION:
1251 // Version message received; transition to application phase. The contents is
1252 // ignored, but can be used for future extensions.
1254 break;
1255 case RecvState::APP:
1256 // Application message decrypted correctly. It can be extracted using GetMessage().
1258 break;
1259 default:
1260 // Any other state is invalid (this function should not have been called).
1261 Assume(false);
1262 }
1263 }
1264 // Wipe the receive buffer where the next packet will be received into.
1265 ClearShrink(m_recv_buffer);
1266 // In all but APP_READY state, we can wipe the decoded contents.
1267 if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1268 } else {
1269 // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1270 // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1271 }
1272 return true;
1273}
1274
1276{
1277 AssertLockHeld(m_recv_mutex);
1278 switch (m_recv_state) {
1280 // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1281 // receive buffer.
1282 Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1283 // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1284 // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1285 // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1286 // back into the m_v1_fallback V1 transport.
1287 return V1_PREFIX_LEN - m_recv_buffer.size();
1288 case RecvState::KEY:
1289 // During the KEY state, we only allow the 64-byte key into the receive buffer.
1290 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1291 // As long as we have not received the other side's public key, don't receive more than
1292 // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1293 // key exchange first.
1294 return EllSwiftPubKey::size() - m_recv_buffer.size();
1296 // Process garbage bytes one by one (because terminator may appear anywhere).
1297 return 1;
1298 case RecvState::VERSION:
1299 case RecvState::APP:
1300 // These three states all involve decoding a packet. Process the length descriptor first,
1301 // so that we know where the current packet ends (and we don't process bytes from the next
1302 // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1303 if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1304 return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1305 } else {
1306 // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1307 // and encoded packet size, which includes the 3 bytes due to the packet length.
1308 // When transitioning from receiving the packet length to receiving its ciphertext,
1309 // the encrypted packet length is left in the receive buffer.
1310 return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1311 }
1313 // No bytes can be processed until GetMessage() is called.
1314 return 0;
1315 case RecvState::V1:
1316 // Not allowed (must be dealt with by the caller).
1317 Assume(false);
1318 return 0;
1319 }
1320 Assume(false); // unreachable
1321 return 0;
1322}
1323
1324bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1325{
1326 AssertLockNotHeld(m_recv_mutex);
1328 static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1329
1330 LOCK(m_recv_mutex);
1331 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1332
1333 // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1334 // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1335 // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1336 // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1337 while (!msg_bytes.empty()) {
1338 // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1339 size_t max_read = GetMaxBytesToProcess();
1340
1341 // Reserve space in the buffer if there is not enough.
1342 if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1343 switch (m_recv_state) {
1344 case RecvState::KEY_MAYBE_V1:
1345 case RecvState::KEY:
1346 case RecvState::GARB_GARBTERM:
1347 // During the initial states (key/garbage), allocate once to fit the maximum (4111
1348 // bytes).
1349 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1350 break;
1351 case RecvState::VERSION:
1352 case RecvState::APP: {
1353 // During states where a packet is being received, as much as is expected but never
1354 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1355 // This means attackers that want to cause us to waste allocated memory are limited
1356 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1357 // MAX_RESERVE_AHEAD more than they've actually sent us.
1358 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1359 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1360 break;
1361 }
1362 case RecvState::APP_READY:
1363 // The buffer is empty in this state.
1364 Assume(m_recv_buffer.empty());
1365 break;
1366 case RecvState::V1:
1367 // Should have bailed out above.
1368 Assume(false);
1369 break;
1370 }
1371 }
1372
1373 // Can't read more than provided input.
1374 max_read = std::min(msg_bytes.size(), max_read);
1375 // Copy data to buffer.
1376 m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1377 msg_bytes = msg_bytes.subspan(max_read);
1378
1379 // Process data in the buffer.
1380 switch (m_recv_state) {
1381 case RecvState::KEY_MAYBE_V1:
1382 ProcessReceivedMaybeV1Bytes();
1383 if (m_recv_state == RecvState::V1) return true;
1384 break;
1385
1386 case RecvState::KEY:
1387 if (!ProcessReceivedKeyBytes()) return false;
1388 break;
1389
1390 case RecvState::GARB_GARBTERM:
1391 if (!ProcessReceivedGarbageBytes()) return false;
1392 break;
1393
1394 case RecvState::VERSION:
1395 case RecvState::APP:
1396 if (!ProcessReceivedPacketBytes()) return false;
1397 break;
1398
1399 case RecvState::APP_READY:
1400 return true;
1401
1402 case RecvState::V1:
1403 // We should have bailed out before.
1404 Assume(false);
1405 break;
1406 }
1407 // Make sure we have made progress before continuing.
1408 Assume(max_read > 0);
1409 }
1410
1411 return true;
1412}
1413
1414std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1415{
1416 if (contents.size() == 0) return std::nullopt; // Empty contents
1417 uint8_t first_byte = contents[0];
1418 contents = contents.subspan(1); // Strip first byte.
1419
1420 if (first_byte != 0) {
1421 // Short (1 byte) encoding.
1422 if (first_byte < std::size(V2_MESSAGE_IDS)) {
1423 // Valid short message id.
1424 return V2_MESSAGE_IDS[first_byte];
1425 } else {
1426 // Unknown short message id.
1427 return std::nullopt;
1428 }
1429 }
1430
1431 if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1432 return std::nullopt; // Long encoding needs 12 message type bytes.
1433 }
1434
1435 size_t msg_type_len{0};
1436 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1437 // Verify that message type bytes before the first 0x00 are in range.
1438 if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1439 return {};
1440 }
1441 ++msg_type_len;
1442 }
1443 std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1444 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1445 // Verify that message type bytes after the first 0x00 are also 0x00.
1446 if (contents[msg_type_len] != 0) return {};
1447 ++msg_type_len;
1448 }
1449 // Strip message type bytes of contents.
1450 contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1451 return ret;
1452}
1453
1454CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1455{
1456 AssertLockNotHeld(m_recv_mutex);
1457 LOCK(m_recv_mutex);
1458 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1459
1460 Assume(m_recv_state == RecvState::APP_READY);
1461 std::span<const uint8_t> contents{m_recv_decode_buffer};
1462 auto msg_type = GetMessageType(contents);
1464 // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1465 msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1466 if (msg_type) {
1467 reject_message = false;
1468 msg.m_type = std::move(*msg_type);
1469 msg.m_time = time;
1470 msg.m_message_size = contents.size();
1471 msg.m_recv.resize(contents.size());
1472 std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1473 } else {
1474 LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1475 reject_message = true;
1476 }
1477 ClearShrink(m_recv_decode_buffer);
1478 SetReceiveState(RecvState::APP);
1479
1480 return msg;
1481}
1482
1484{
1485 AssertLockNotHeld(m_send_mutex);
1486 LOCK(m_send_mutex);
1487 if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1488 // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1489 // is available) and the send buffer is empty. This limits the number of messages in the send
1490 // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1491 if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1492 // Construct contents (encoding message type + payload).
1493 std::vector<uint8_t> contents;
1494 auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1495 if (short_message_id) {
1496 contents.resize(1 + msg.data.size());
1497 contents[0] = *short_message_id;
1498 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1499 } else {
1500 // Initialize with zeroes, and then write the message type string starting at offset 1.
1501 // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1502 contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1503 std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1504 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1505 }
1506 // Construct ciphertext in send buffer.
1507 m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1508 m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1509 m_send_type = msg.m_type;
1510 // Release memory
1511 ClearShrink(msg.data);
1512 return true;
1513}
1514
1515Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1516{
1517 AssertLockNotHeld(m_send_mutex);
1518 LOCK(m_send_mutex);
1519 if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1520
1521 if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1522 Assume(m_send_pos <= m_send_buffer.size());
1523 return {
1524 std::span{m_send_buffer}.subspan(m_send_pos),
1525 // We only have more to send after the current m_send_buffer if there is a (next)
1526 // message to be sent, and we're capable of sending packets. */
1527 have_next_message && m_send_state == SendState::READY,
1528 m_send_type
1529 };
1530}
1531
1532void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1533{
1534 AssertLockNotHeld(m_send_mutex);
1535 LOCK(m_send_mutex);
1536 if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1537
1538 if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1539 LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1540 }
1541
1542 m_send_pos += bytes_sent;
1543 Assume(m_send_pos <= m_send_buffer.size());
1544 if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1545 m_sent_v1_header_worth = true;
1546 }
1547 // Wipe the buffer when everything is sent.
1548 if (m_send_pos == m_send_buffer.size()) {
1549 m_send_pos = 0;
1550 ClearShrink(m_send_buffer);
1551 }
1552}
1553
1555{
1556 AssertLockNotHeld(m_send_mutex);
1557 AssertLockNotHeld(m_recv_mutex);
1558 // Only outgoing connections need reconnection.
1559 if (!m_initiating) return false;
1560
1561 LOCK(m_recv_mutex);
1562 // We only reconnect in the very first state and when the receive buffer is empty. Together
1563 // these conditions imply nothing has been received so far.
1564 if (m_recv_state != RecvState::KEY) return false;
1565 if (!m_recv_buffer.empty()) return false;
1566 // Check if we've sent enough for the other side to disconnect us (if it was V1).
1567 LOCK(m_send_mutex);
1568 return m_sent_v1_header_worth;
1569}
1570
1571size_t V2Transport::GetSendMemoryUsage() const noexcept
1572{
1573 AssertLockNotHeld(m_send_mutex);
1574 LOCK(m_send_mutex);
1575 if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1576
1577 return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1578}
1579
1581{
1582 AssertLockNotHeld(m_recv_mutex);
1583 LOCK(m_recv_mutex);
1584 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1585
1586 Transport::Info info;
1587
1588 // Do not report v2 and session ID until the version packet has been received
1589 // and verified (confirming that the other side very likely has the same keys as us).
1590 if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1591 m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1594 } else {
1596 }
1597
1598 return info;
1599}
1600
1601std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1602{
1603 auto it = node.vSendMsg.begin();
1604 size_t nSentSize = 0;
1605 bool data_left{false};
1606 std::optional<bool> expected_more;
1607
1608 while (true) {
1609 if (it != node.vSendMsg.end()) {
1610 // If possible, move one message from the send queue to the transport. This fails when
1611 // there is an existing message still being sent, or (for v2 transports) when the
1612 // handshake has not yet completed.
1613 size_t memusage = it->GetMemoryUsage();
1614 if (node.m_transport->SetMessageToSend(*it)) {
1615 // Update memory usage of send buffer (as *it will be deleted).
1616 node.m_send_memusage -= memusage;
1617 ++it;
1618 }
1619 }
1620 const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1621 // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1622 // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1623 // verify that the previously returned 'more' was correct.
1624 if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1625 expected_more = more;
1626 data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1627 int nBytes = 0;
1628 if (!data.empty()) {
1629 LOCK(node.m_sock_mutex);
1630 // There is no socket in case we've already disconnected, or in test cases without
1631 // real connections. In these cases, we bail out immediately and just leave things
1632 // in the send queue and transport.
1633 if (!node.m_sock) {
1634 break;
1635 }
1637#ifdef MSG_MORE
1638 if (more) {
1639 flags |= MSG_MORE;
1640 }
1641#endif
1642 nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1643 }
1644 if (nBytes > 0) {
1645 node.m_last_send = GetTime<std::chrono::seconds>();
1646 node.nSendBytes += nBytes;
1647 // Notify transport that bytes have been processed.
1648 node.m_transport->MarkBytesSent(nBytes);
1649 // Update statistics per message type.
1650 if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1651 node.AccountForSentBytes(msg_type, nBytes);
1652 }
1653 nSentSize += nBytes;
1654 if ((size_t)nBytes != data.size()) {
1655 // could not send full message; stop sending more
1656 break;
1657 }
1658 } else {
1659 if (nBytes < 0) {
1660 // error
1661 int nErr = WSAGetLastError();
1662 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1663 LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1664 node.CloseSocketDisconnect();
1665 }
1666 }
1667 break;
1668 }
1669 }
1670
1671 node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1672
1673 if (it == node.vSendMsg.end()) {
1674 assert(node.m_send_memusage == 0);
1675 }
1676 node.vSendMsg.erase(node.vSendMsg.begin(), it);
1677 return {nSentSize, data_left};
1678}
1679
1689{
1690 std::vector<NodeEvictionCandidate> vEvictionCandidates;
1691 {
1692
1694 for (const CNode* node : m_nodes) {
1695 if (node->fDisconnect)
1696 continue;
1697 NodeEvictionCandidate candidate{
1698 .id = node->GetId(),
1699 .m_connected = node->m_connected,
1700 .m_min_ping_time = node->m_min_ping_time,
1701 .m_last_block_time = node->m_last_block_time,
1702 .m_last_tx_time = node->m_last_tx_time,
1703 .fRelevantServices = node->m_has_all_wanted_services,
1704 .m_relay_txs = node->m_relays_txs.load(),
1705 .fBloomFilter = node->m_bloom_filter_loaded.load(),
1706 .nKeyedNetGroup = node->nKeyedNetGroup,
1707 .prefer_evict = node->m_prefer_evict,
1708 .m_is_local = node->addr.IsLocal(),
1709 .m_network = node->ConnectedThroughNetwork(),
1710 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1711 .m_conn_type = node->m_conn_type,
1712 };
1713 vEvictionCandidates.push_back(candidate);
1714 }
1715 }
1716 const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1717 if (!node_id_to_evict) {
1718 return false;
1719 }
1721 for (CNode* pnode : m_nodes) {
1722 if (pnode->GetId() == *node_id_to_evict) {
1723 LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1724 TRACEPOINT(net, evicted_inbound_connection,
1725 pnode->GetId(),
1726 pnode->m_addr_name.c_str(),
1727 pnode->ConnectionTypeAsString().c_str(),
1728 pnode->ConnectedThroughNetwork(),
1729 Ticks<std::chrono::seconds>(pnode->m_connected));
1730 pnode->fDisconnect = true;
1731 return true;
1732 }
1733 }
1734 return false;
1735}
1736
1737void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1738 struct sockaddr_storage sockaddr;
1739 socklen_t len = sizeof(sockaddr);
1740 auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1741
1742 if (!sock) {
1743 const int nErr = WSAGetLastError();
1744 if (nErr != WSAEWOULDBLOCK) {
1745 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1746 }
1747 return;
1748 }
1749
1750 CService addr;
1751 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1752 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1753 } else {
1754 addr = MaybeFlipIPv6toCJDNS(addr);
1755 }
1756
1757 const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1758
1760 hListenSocket.AddSocketPermissionFlags(permission_flags);
1761
1762 CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1763}
1764
1765void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1766 NetPermissionFlags permission_flags,
1767 const CService& addr_bind,
1768 const CService& addr)
1769{
1770 int nInbound = 0;
1771
1773
1774 {
1776 for (const CNode* pnode : m_nodes) {
1777 if (pnode->IsInboundConn()) nInbound++;
1778 }
1779 }
1780
1781 if (!fNetworkActive) {
1782 LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1783 return;
1784 }
1785
1786 if (!sock->IsSelectable()) {
1787 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1788 return;
1789 }
1790
1791 // According to the internet TCP_NODELAY is not carried into accepted sockets
1792 // on all platforms. Set it again here just to be sure.
1793 const int on{1};
1794 if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1795 LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1796 addr.ToStringAddrPort());
1797 }
1798
1799 // Don't accept connections from banned peers.
1800 bool banned = m_banman && m_banman->IsBanned(addr);
1801 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1802 {
1803 LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1804 return;
1805 }
1806
1807 // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1808 bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1809 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1810 {
1811 LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1812 return;
1813 }
1814
1815 if (nInbound >= m_max_inbound)
1816 {
1817 if (!AttemptToEvictConnection()) {
1818 // No connection to evict, disconnect the new connection
1819 LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1820 return;
1821 }
1822 }
1823
1824 NodeId id = GetNewNodeId();
1826
1827 const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1828 // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1829 // detected, so use it whenever we signal NODE_P2P_V2.
1830 ServiceFlags local_services = GetLocalServices();
1831 const bool use_v2transport(local_services & NODE_P2P_V2);
1832
1833 CNode* pnode = new CNode(id,
1834 std::move(sock),
1835 CAddress{addr, NODE_NONE},
1837 nonce,
1838 addr_bind,
1839 /*addrNameIn=*/"",
1841 inbound_onion,
1843 .permission_flags = permission_flags,
1844 .prefer_evict = discouraged,
1845 .recv_flood_size = nReceiveFloodSize,
1846 .use_v2transport = use_v2transport,
1847 });
1848 pnode->AddRef();
1849 m_msgproc->InitializeNode(*pnode, local_services);
1850 {
1852 m_nodes.push_back(pnode);
1853 }
1854 LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1855 TRACEPOINT(net, inbound_connection,
1856 pnode->GetId(),
1857 pnode->m_addr_name.c_str(),
1858 pnode->ConnectionTypeAsString().c_str(),
1859 pnode->ConnectedThroughNetwork(),
1861
1862 // We received a new connection, harvest entropy from the time (and our peer count)
1863 RandAddEvent((uint32_t)id);
1864}
1865
1866bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1867{
1869 std::optional<int> max_connections;
1870 switch (conn_type) {
1873 return false;
1875 max_connections = m_max_outbound_full_relay;
1876 break;
1878 max_connections = m_max_outbound_block_relay;
1879 break;
1880 // no limit for ADDR_FETCH because -seednode has no limit either
1882 break;
1883 // no limit for FEELER connections since they're short-lived
1885 break;
1886 } // no default case, so the compiler can warn about missing cases
1887
1888 // Count existing connections
1889 int existing_connections = WITH_LOCK(m_nodes_mutex,
1890 return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1891
1892 // Max connections of specified type already exist
1893 if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1894
1895 // Max total outbound connections already exist
1896 CSemaphoreGrant grant(*semOutbound, true);
1897 if (!grant) return false;
1898
1899 OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1900 return true;
1901}
1902
1904{
1907
1908 // Use a temporary variable to accumulate desired reconnections, so we don't need
1909 // m_reconnections_mutex while holding m_nodes_mutex.
1910 decltype(m_reconnections) reconnections_to_add;
1911
1912 {
1914
1915 const bool network_active{fNetworkActive};
1916 if (!network_active) {
1917 // Disconnect any connected nodes
1918 for (CNode* pnode : m_nodes) {
1919 if (!pnode->fDisconnect) {
1920 LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1921 pnode->fDisconnect = true;
1922 }
1923 }
1924 }
1925
1926 // Disconnect unused nodes
1927 std::vector<CNode*> nodes_copy = m_nodes;
1928 for (CNode* pnode : nodes_copy)
1929 {
1930 if (pnode->fDisconnect)
1931 {
1932 // remove from m_nodes
1933 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1934
1935 // Add to reconnection list if appropriate. We don't reconnect right here, because
1936 // the creation of a connection is a blocking operation (up to several seconds),
1937 // and we don't want to hold up the socket handler thread for that long.
1938 if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1939 reconnections_to_add.push_back({
1940 .addr_connect = pnode->addr,
1941 .grant = std::move(pnode->grantOutbound),
1942 .destination = pnode->m_dest,
1943 .conn_type = pnode->m_conn_type,
1944 .use_v2transport = false});
1945 LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1946 }
1947
1948 // release outbound grant (if any)
1949 pnode->grantOutbound.Release();
1950
1951 // close socket and cleanup
1952 pnode->CloseSocketDisconnect();
1953
1954 // update connection count by network
1955 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1956
1957 // hold in disconnected pool until all refs are released
1958 pnode->Release();
1959 m_nodes_disconnected.push_back(pnode);
1960 }
1961 }
1962 }
1963 {
1964 // Delete disconnected nodes
1965 std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1966 for (CNode* pnode : nodes_disconnected_copy)
1967 {
1968 // Destroy the object only after other threads have stopped using it.
1969 if (pnode->GetRefCount() <= 0) {
1970 m_nodes_disconnected.remove(pnode);
1971 DeleteNode(pnode);
1972 }
1973 }
1974 }
1975 {
1976 // Move entries from reconnections_to_add to m_reconnections.
1978 m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1979 }
1980}
1981
1983{
1984 size_t nodes_size;
1985 {
1987 nodes_size = m_nodes.size();
1988 }
1989 if(nodes_size != nPrevNodeCount) {
1990 nPrevNodeCount = nodes_size;
1991 if (m_client_interface) {
1992 m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1993 }
1994 }
1995}
1996
1997bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1998{
1999 return node.m_connected + m_peer_connect_timeout < now;
2000}
2001
2003{
2004 // Tests that see disconnects after using mocktime can start nodes with a
2005 // large timeout. For example, -peertimeout=999999999.
2006 const auto now{GetTime<std::chrono::seconds>()};
2007 const auto last_send{node.m_last_send.load()};
2008 const auto last_recv{node.m_last_recv.load()};
2009
2010 if (!ShouldRunInactivityChecks(node, now)) return false;
2011
2012 bool has_received{last_recv.count() != 0};
2013 bool has_sent{last_send.count() != 0};
2014
2015 if (!has_received || !has_sent) {
2016 std::string has_never;
2017 if (!has_received) has_never += ", never received from peer";
2018 if (!has_sent) has_never += ", never sent to peer";
2020 "socket no message in first %i seconds%s, %s\n",
2022 has_never,
2023 node.DisconnectMsg(fLogIPs)
2024 );
2025 return true;
2026 }
2027
2028 if (now > last_send + TIMEOUT_INTERVAL) {
2030 "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2031 node.DisconnectMsg(fLogIPs)
2032 );
2033 return true;
2034 }
2035
2036 if (now > last_recv + TIMEOUT_INTERVAL) {
2038 "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2039 node.DisconnectMsg(fLogIPs)
2040 );
2041 return true;
2042 }
2043
2044 if (!node.fSuccessfullyConnected) {
2045 if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2046 LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2047 } else {
2048 LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2049 }
2050 return true;
2051 }
2052
2053 return false;
2054}
2055
2057{
2058 Sock::EventsPerSock events_per_sock;
2059
2060 for (const ListenSocket& hListenSocket : vhListenSocket) {
2061 events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2062 }
2063
2064 for (CNode* pnode : nodes) {
2065 bool select_recv = !pnode->fPauseRecv;
2066 bool select_send;
2067 {
2068 LOCK(pnode->cs_vSend);
2069 // Sending is possible if either there are bytes to send right now, or if there will be
2070 // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2071 // determines both of these in a single call.
2072 const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2073 select_send = !to_send.empty() || more;
2074 }
2075 if (!select_recv && !select_send) continue;
2076
2077 LOCK(pnode->m_sock_mutex);
2078 if (pnode->m_sock) {
2079 Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2080 events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2081 }
2082 }
2083
2084 return events_per_sock;
2085}
2086
2088{
2090
2091 Sock::EventsPerSock events_per_sock;
2092
2093 {
2094 const NodesSnapshot snap{*this, /*shuffle=*/false};
2095
2096 const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2097
2098 // Check for the readiness of the already connected sockets and the
2099 // listening sockets in one call ("readiness" as in poll(2) or
2100 // select(2)). If none are ready, wait for a short while and return
2101 // empty sets.
2102 events_per_sock = GenerateWaitSockets(snap.Nodes());
2103 if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2104 interruptNet.sleep_for(timeout);
2105 }
2106
2107 // Service (send/receive) each of the already connected nodes.
2108 SocketHandlerConnected(snap.Nodes(), events_per_sock);
2109 }
2110
2111 // Accept new connections from listening sockets.
2112 SocketHandlerListening(events_per_sock);
2113}
2114
2115void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2116 const Sock::EventsPerSock& events_per_sock)
2117{
2119
2120 for (CNode* pnode : nodes) {
2121 if (interruptNet)
2122 return;
2123
2124 //
2125 // Receive
2126 //
2127 bool recvSet = false;
2128 bool sendSet = false;
2129 bool errorSet = false;
2130 {
2131 LOCK(pnode->m_sock_mutex);
2132 if (!pnode->m_sock) {
2133 continue;
2134 }
2135 const auto it = events_per_sock.find(pnode->m_sock);
2136 if (it != events_per_sock.end()) {
2137 recvSet = it->second.occurred & Sock::RECV;
2138 sendSet = it->second.occurred & Sock::SEND;
2139 errorSet = it->second.occurred & Sock::ERR;
2140 }
2141 }
2142
2143 if (sendSet) {
2144 // Send data
2145 auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2146 if (bytes_sent) {
2147 RecordBytesSent(bytes_sent);
2148
2149 // If both receiving and (non-optimistic) sending were possible, we first attempt
2150 // sending. If that succeeds, but does not fully drain the send queue, do not
2151 // attempt to receive. This avoids needlessly queueing data if the remote peer
2152 // is slow at receiving data, by means of TCP flow control. We only do this when
2153 // sending actually succeeded to make sure progress is always made; otherwise a
2154 // deadlock would be possible when both sides have data to send, but neither is
2155 // receiving.
2156 if (data_left) recvSet = false;
2157 }
2158 }
2159
2160 if (recvSet || errorSet)
2161 {
2162 // typical socket buffer is 8K-64K
2163 uint8_t pchBuf[0x10000];
2164 int nBytes = 0;
2165 {
2166 LOCK(pnode->m_sock_mutex);
2167 if (!pnode->m_sock) {
2168 continue;
2169 }
2170 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2171 }
2172 if (nBytes > 0)
2173 {
2174 bool notify = false;
2175 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2177 "receiving message bytes failed, %s\n",
2178 pnode->DisconnectMsg(fLogIPs)
2179 );
2180 pnode->CloseSocketDisconnect();
2181 }
2182 RecordBytesRecv(nBytes);
2183 if (notify) {
2184 pnode->MarkReceivedMsgsForProcessing();
2186 }
2187 }
2188 else if (nBytes == 0)
2189 {
2190 // socket closed gracefully
2191 if (!pnode->fDisconnect) {
2192 LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2193 }
2194 pnode->CloseSocketDisconnect();
2195 }
2196 else if (nBytes < 0)
2197 {
2198 // error
2199 int nErr = WSAGetLastError();
2200 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2201 {
2202 if (!pnode->fDisconnect) {
2203 LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2204 }
2205 pnode->CloseSocketDisconnect();
2206 }
2207 }
2208 }
2209
2210 if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2211 }
2212}
2213
2215{
2216 for (const ListenSocket& listen_socket : vhListenSocket) {
2217 if (interruptNet) {
2218 return;
2219 }
2220 const auto it = events_per_sock.find(listen_socket.sock);
2221 if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2222 AcceptConnection(listen_socket);
2223 }
2224 }
2225}
2226
2228{
2230
2231 while (!interruptNet)
2232 {
2235 SocketHandler();
2236 }
2237}
2238
2240{
2241 {
2243 fMsgProcWake = true;
2244 }
2245 condMsgProc.notify_one();
2246}
2247
2249{
2250 int outbound_connection_count = 0;
2251
2252 if (!gArgs.GetArgs("-seednode").empty()) {
2253 auto start = NodeClock::now();
2254 constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2255 LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2256 while (!interruptNet) {
2257 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2258 return;
2259
2260 // Abort if we have spent enough time without reaching our target.
2261 // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2262 if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2263 LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2264 break;
2265 }
2266
2267 outbound_connection_count = GetFullOutboundConnCount();
2268 if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2269 LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2270 break;
2271 }
2272 }
2273 }
2274
2276 std::vector<std::string> seeds = m_params.DNSSeeds();
2277 std::shuffle(seeds.begin(), seeds.end(), rng);
2278 int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2279
2280 if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2281 // When -forcednsseed is provided, query all.
2282 seeds_right_now = seeds.size();
2283 } else if (addrman.Size() == 0) {
2284 // If we have no known peers, query all.
2285 // This will occur on the first run, or if peers.dat has been
2286 // deleted.
2287 seeds_right_now = seeds.size();
2288 }
2289
2290 // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2291 if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2292 // goal: only query DNS seed if address need is acute
2293 // * If we have a reasonable number of peers in addrman, spend
2294 // some time trying them first. This improves user privacy by
2295 // creating fewer identifying DNS requests, reduces trust by
2296 // giving seeds less influence on the network topology, and
2297 // reduces traffic to the seeds.
2298 // * When querying DNS seeds query a few at once, this ensures
2299 // that we don't give DNS seeds the ability to eclipse nodes
2300 // that query them.
2301 // * If we continue having problems, eventually query all the
2302 // DNS seeds, and if that fails too, also try the fixed seeds.
2303 // (done in ThreadOpenConnections)
2304 int found = 0;
2305 const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2306
2307 for (const std::string& seed : seeds) {
2308 if (seeds_right_now == 0) {
2309 seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2310
2311 if (addrman.Size() > 0) {
2312 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2313 std::chrono::seconds to_wait = seeds_wait_time;
2314 while (to_wait.count() > 0) {
2315 // if sleeping for the MANY_PEERS interval, wake up
2316 // early to see if we have enough peers and can stop
2317 // this thread entirely freeing up its resources
2318 std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2319 if (!interruptNet.sleep_for(w)) return;
2320 to_wait -= w;
2321
2323 if (found > 0) {
2324 LogPrintf("%d addresses found from DNS seeds\n", found);
2325 LogPrintf("P2P peers available. Finished DNS seeding.\n");
2326 } else {
2327 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2328 }
2329 return;
2330 }
2331 }
2332 }
2333 }
2334
2335 if (interruptNet) return;
2336
2337 // hold off on querying seeds if P2P network deactivated
2338 if (!fNetworkActive) {
2339 LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2340 do {
2341 if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2342 } while (!fNetworkActive);
2343 }
2344
2345 LogPrintf("Loading addresses from DNS seed %s\n", seed);
2346 // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2347 // for the base dns seed domain in chainparams
2348 if (HaveNameProxy()) {
2349 AddAddrFetch(seed);
2350 } else {
2351 std::vector<CAddress> vAdd;
2352 constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2353 std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2354 CNetAddr resolveSource;
2355 if (!resolveSource.SetInternal(host)) {
2356 continue;
2357 }
2358 // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2359 // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2360 // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2361 // returned.
2362 unsigned int nMaxIPs = 32;
2363 const auto addresses{LookupHost(host, nMaxIPs, true)};
2364 if (!addresses.empty()) {
2365 for (const CNetAddr& ip : addresses) {
2366 CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2367 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2368 vAdd.push_back(addr);
2369 found++;
2370 }
2371 addrman.Add(vAdd, resolveSource);
2372 } else {
2373 // If the seed does not support a subdomain with our desired service bits,
2374 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2375 // base dns seed domain in chainparams
2376 AddAddrFetch(seed);
2377 }
2378 }
2379 --seeds_right_now;
2380 }
2381 LogPrintf("%d addresses found from DNS seeds\n", found);
2382 } else {
2383 LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2384 }
2385}
2386
2388{
2389 const auto start{SteadyClock::now()};
2390
2392
2393 LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2394 addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2395}
2396
2398{
2400 std::string strDest;
2401 {
2403 if (m_addr_fetches.empty())
2404 return;
2405 strDest = m_addr_fetches.front();
2406 m_addr_fetches.pop_front();
2407 }
2408 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2409 // peer doesn't support it or immediately disconnects us for another reason.
2411 CAddress addr;
2412 CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2413 if (grant) {
2414 OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2415 }
2416}
2417
2419{
2421}
2422
2424{
2426 LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2427}
2428
2430{
2431 LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2433}
2434
2435// Return the number of outbound connections that are full relay (not blocks only)
2437{
2438 int nRelevant = 0;
2439 {
2441 for (const CNode* pnode : m_nodes) {
2442 if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2443 }
2444 }
2445 return nRelevant;
2446}
2447
2448// Return the number of peers we have over our outbound connection limit
2449// Exclude peers that are marked for disconnect, or are going to be
2450// disconnected soon (eg ADDR_FETCH and FEELER)
2451// Also exclude peers that haven't finished initial connection handshake yet
2452// (so that we don't decide we're over our desired connection limit, and then
2453// evict some peer that has finished the handshake)
2455{
2456 int full_outbound_peers = 0;
2457 {
2459 for (const CNode* pnode : m_nodes) {
2460 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2461 ++full_outbound_peers;
2462 }
2463 }
2464 }
2465 return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2466}
2467
2469{
2470 int block_relay_peers = 0;
2471 {
2473 for (const CNode* pnode : m_nodes) {
2474 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2475 ++block_relay_peers;
2476 }
2477 }
2478 }
2479 return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2480}
2481
2482std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2483{
2484 std::unordered_set<Network> networks{};
2485 for (int n = 0; n < NET_MAX; n++) {
2486 enum Network net = (enum Network)n;
2487 if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2488 if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2489 networks.insert(net);
2490 }
2491 }
2492 return networks;
2493}
2494
2496{
2498 return m_network_conn_counts[net] > 1;
2499}
2500
2501bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2502{
2503 std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2504 std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2505
2507 for (const auto net : nets) {
2508 if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2509 network = net;
2510 return true;
2511 }
2512 }
2513
2514 return false;
2515}
2516
2517void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2518{
2522 // Connect to specific addresses
2523 if (!connect.empty())
2524 {
2525 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2526 // peer doesn't support it or immediately disconnects us for another reason.
2528 for (int64_t nLoop = 0;; nLoop++)
2529 {
2530 for (const std::string& strAddr : connect)
2531 {
2532 CAddress addr(CService(), NODE_NONE);
2533 OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2534 for (int i = 0; i < 10 && i < nLoop; i++)
2535 {
2536 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2537 return;
2538 }
2539 }
2540 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2541 return;
2543 }
2544 }
2545
2546 // Initiate network connections
2547 auto start = GetTime<std::chrono::microseconds>();
2548
2549 // Minimum time before next feeler connection (in microseconds).
2550 auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2551 auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2552 auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2553 const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2554 bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2555 const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2556
2557 auto seed_node_timer = NodeClock::now();
2558 bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2559 constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2560
2561 if (!add_fixed_seeds) {
2562 LogPrintf("Fixed seeds are disabled\n");
2563 }
2564
2565 while (!interruptNet)
2566 {
2567 if (add_addr_fetch) {
2568 add_addr_fetch = false;
2569 const auto& seed{SpanPopBack(seed_nodes)};
2570 AddAddrFetch(seed);
2571
2572 if (addrman.Size() == 0) {
2573 LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2574 } else {
2575 LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2576 }
2577 }
2578
2580
2581 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2582 return;
2583
2585
2587 if (interruptNet)
2588 return;
2589
2590 const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2591 if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2592 // When the node starts with an empty peers.dat, there are a few other sources of peers before
2593 // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2594 // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2595 // 60 seconds for any of those sources to populate addrman.
2596 bool add_fixed_seeds_now = false;
2597 // It is cheapest to check if enough time has passed first.
2598 if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2599 add_fixed_seeds_now = true;
2600 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2601 }
2602
2603 // Perform cheap checks before locking a mutex.
2604 else if (!dnsseed && !use_seednodes) {
2606 if (m_added_node_params.empty()) {
2607 add_fixed_seeds_now = true;
2608 LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2609 }
2610 }
2611
2612 if (add_fixed_seeds_now) {
2613 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2614 // We will not make outgoing connections to peers that are unreachable
2615 // (e.g. because of -onlynet configuration).
2616 // Therefore, we do not add them to addrman in the first place.
2617 // In case previously unreachable networks become reachable
2618 // (e.g. in case of -onlynet changes by the user), fixed seeds will
2619 // be loaded only for networks for which we have no addresses.
2620 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2621 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2622 seed_addrs.end());
2623 CNetAddr local;
2624 local.SetInternal("fixedseeds");
2625 addrman.Add(seed_addrs, local);
2626 add_fixed_seeds = false;
2627 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2628 }
2629 }
2630
2631 //
2632 // Choose an address to connect to based on most recently seen
2633 //
2634 CAddress addrConnect;
2635
2636 // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2637 int nOutboundFullRelay = 0;
2638 int nOutboundBlockRelay = 0;
2639 int outbound_privacy_network_peers = 0;
2640 std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2641
2642 {
2644 for (const CNode* pnode : m_nodes) {
2645 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2646 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2647
2648 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2649 switch (pnode->m_conn_type) {
2650 // We currently don't take inbound connections into account. Since they are
2651 // free to make, an attacker could make them to prevent us from connecting to
2652 // certain peers.
2654 // Short-lived outbound connections should not affect how we select outbound
2655 // peers from addrman.
2658 break;
2662 const CAddress address{pnode->addr};
2663 if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2664 // Since our addrman-groups for these networks are
2665 // random, without relation to the route we
2666 // take to connect to these peers or to the
2667 // difficulty in obtaining addresses with diverse
2668 // groups, we don't worry about diversity with
2669 // respect to our addrman groups when connecting to
2670 // these networks.
2671 ++outbound_privacy_network_peers;
2672 } else {
2673 outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2674 }
2675 } // no default case, so the compiler can warn about missing cases
2676 }
2677 }
2678
2679 if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2680 if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2681 seed_node_timer = NodeClock::now();
2682 add_addr_fetch = true;
2683 }
2684 }
2685
2687 auto now = GetTime<std::chrono::microseconds>();
2688 bool anchor = false;
2689 bool fFeeler = false;
2690 std::optional<Network> preferred_net;
2691
2692 // Determine what type of connection to open. Opening
2693 // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2694 // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2695 // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2696 // until we hit our block-relay-only peer limit.
2697 // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2698 // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2699 // these conditions are met, check to see if it's time to try an extra
2700 // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2701 // timer to decide if we should open a FEELER.
2702
2703 if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2704 conn_type = ConnectionType::BLOCK_RELAY;
2705 anchor = true;
2706 } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2707 // OUTBOUND_FULL_RELAY
2708 } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2709 conn_type = ConnectionType::BLOCK_RELAY;
2710 } else if (GetTryNewOutboundPeer()) {
2711 // OUTBOUND_FULL_RELAY
2712 } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2713 // Periodically connect to a peer (using regular outbound selection
2714 // methodology from addrman) and stay connected long enough to sync
2715 // headers, but not much else.
2716 //
2717 // Then disconnect the peer, if we haven't learned anything new.
2718 //
2719 // The idea is to make eclipse attacks very difficult to pull off,
2720 // because every few minutes we're finding a new peer to learn headers
2721 // from.
2722 //
2723 // This is similar to the logic for trying extra outbound (full-relay)
2724 // peers, except:
2725 // - we do this all the time on an exponential timer, rather than just when
2726 // our tip is stale
2727 // - we potentially disconnect our next-youngest block-relay-only peer, if our
2728 // newest block-relay-only peer delivers a block more recently.
2729 // See the eviction logic in net_processing.cpp.
2730 //
2731 // Because we can promote these connections to block-relay-only
2732 // connections, they do not get their own ConnectionType enum
2733 // (similar to how we deal with extra outbound peers).
2734 next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2735 conn_type = ConnectionType::BLOCK_RELAY;
2736 } else if (now > next_feeler) {
2737 next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2738 conn_type = ConnectionType::FEELER;
2739 fFeeler = true;
2740 } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2742 now > next_extra_network_peer &&
2743 MaybePickPreferredNetwork(preferred_net)) {
2744 // Full outbound connection management: Attempt to get at least one
2745 // outbound peer from each reachable network by making extra connections
2746 // and then protecting "only" peers from a network during outbound eviction.
2747 // This is not attempted if the user changed -maxconnections to a value
2748 // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2749 // to prevent interactions with otherwise protected outbound peers.
2750 next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2751 } else {
2752 // skip to next iteration of while loop
2753 continue;
2754 }
2755
2757
2758 const auto current_time{NodeClock::now()};
2759 int nTries = 0;
2760 const auto reachable_nets{g_reachable_nets.All()};
2761
2762 while (!interruptNet)
2763 {
2764 if (anchor && !m_anchors.empty()) {
2765 const CAddress addr = m_anchors.back();
2766 m_anchors.pop_back();
2767 if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2768 !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2769 outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2770 addrConnect = addr;
2771 LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2772 break;
2773 }
2774
2775 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2776 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2777 // already-connected network ranges, ...) before trying new addrman addresses.
2778 nTries++;
2779 if (nTries > 100)
2780 break;
2781
2782 CAddress addr;
2783 NodeSeconds addr_last_try{0s};
2784
2785 if (fFeeler) {
2786 // First, try to get a tried table collision address. This returns
2787 // an empty (invalid) address if there are no collisions to try.
2788 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2789
2790 if (!addr.IsValid()) {
2791 // No tried table collisions. Select a new table address
2792 // for our feeler.
2793 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2794 } else if (AlreadyConnectedToAddress(addr)) {
2795 // If test-before-evict logic would have us connect to a
2796 // peer that we're already connected to, just mark that
2797 // address as Good(). We won't be able to initiate the
2798 // connection anyway, so this avoids inadvertently evicting
2799 // a currently-connected peer.
2800 addrman.Good(addr);
2801 // Select a new table address for our feeler instead.
2802 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2803 }
2804 } else {
2805 // Not a feeler
2806 // If preferred_net has a value set, pick an extra outbound
2807 // peer from that network. The eviction logic in net_processing
2808 // ensures that a peer from another network will be evicted.
2809 std::tie(addr, addr_last_try) = preferred_net.has_value()
2810 ? addrman.Select(false, {*preferred_net})
2811 : addrman.Select(false, reachable_nets);
2812 }
2813
2814 // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2815 if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2816 continue;
2817 }
2818
2819 // if we selected an invalid or local address, restart
2820 if (!addr.IsValid() || IsLocal(addr)) {
2821 break;
2822 }
2823
2824 if (!g_reachable_nets.Contains(addr)) {
2825 continue;
2826 }
2827
2828 // only consider very recently tried nodes after 30 failed attempts
2829 if (current_time - addr_last_try < 10min && nTries < 30) {
2830 continue;
2831 }
2832
2833 // for non-feelers, require all the services we'll want,
2834 // for feelers, only require they be a full node (only because most
2835 // SPV clients don't have a good address DB available)
2836 if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2837 continue;
2838 } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2839 continue;
2840 }
2841
2842 // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2843 if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2844 continue;
2845 }
2846
2847 // Do not make automatic outbound connections to addnode peers, to
2848 // not use our limited outbound slots for them and to ensure
2849 // addnode connections benefit from their intended protections.
2850 if (AddedNodesContain(addr)) {
2851 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2852 preferred_net.has_value() ? "network-specific " : "",
2854 fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2855 continue;
2856 }
2857
2858 addrConnect = addr;
2859 break;
2860 }
2861
2862 if (addrConnect.IsValid()) {
2863 if (fFeeler) {
2864 // Add small amount of random noise before connection to avoid synchronization.
2866 return;
2867 }
2868 LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2869 }
2870
2871 if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2872
2873 // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2874 // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2875 // Don't record addrman failure attempts when node is offline. This can be identified since all local
2876 // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2877 const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2878 // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2879 const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2880 OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2881 }
2882 }
2883}
2884
2885std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2886{
2887 std::vector<CAddress> ret;
2889 for (const CNode* pnode : m_nodes) {
2890 if (pnode->IsBlockOnlyConn()) {
2891 ret.push_back(pnode->addr);
2892 }
2893 }
2894
2895 return ret;
2896}
2897
2898std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2899{
2900 std::vector<AddedNodeInfo> ret;
2901
2902 std::list<AddedNodeParams> lAddresses(0);
2903 {
2905 ret.reserve(m_added_node_params.size());
2906 std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2907 }
2908
2909
2910 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2911 std::map<CService, bool> mapConnected;
2912 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2913 {
2915 for (const CNode* pnode : m_nodes) {
2916 if (pnode->addr.IsValid()) {
2917 mapConnected[pnode->addr] = pnode->IsInboundConn();
2918 }
2919 std::string addrName{pnode->m_addr_name};
2920 if (!addrName.empty()) {
2921 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2922 }
2923 }
2924 }
2925
2926 for (const auto& addr : lAddresses) {
2927 CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2928 AddedNodeInfo addedNode{addr, CService(), false, false};
2929 if (service.IsValid()) {
2930 // strAddNode is an IP:port
2931 auto it = mapConnected.find(service);
2932 if (it != mapConnected.end()) {
2933 if (!include_connected) {
2934 continue;
2935 }
2936 addedNode.resolvedAddress = service;
2937 addedNode.fConnected = true;
2938 addedNode.fInbound = it->second;
2939 }
2940 } else {
2941 // strAddNode is a name
2942 auto it = mapConnectedByName.find(addr.m_added_node);
2943 if (it != mapConnectedByName.end()) {
2944 if (!include_connected) {
2945 continue;
2946 }
2947 addedNode.resolvedAddress = it->second.second;
2948 addedNode.fConnected = true;
2949 addedNode.fInbound = it->second.first;
2950 }
2951 }
2952 ret.emplace_back(std::move(addedNode));
2953 }
2954
2955 return ret;
2956}
2957
2959{
2962 while (true)
2963 {
2965 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2966 bool tried = false;
2967 for (const AddedNodeInfo& info : vInfo) {
2968 if (!grant) {
2969 // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2970 // the addednodeinfo state might change.
2971 break;
2972 }
2973 tried = true;
2974 CAddress addr(CService(), NODE_NONE);
2975 OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2976 if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2977 grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2978 }
2979 // See if any reconnections are desired.
2981 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2982 if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2983 return;
2984 }
2985}
2986
2987// if successful, this moves the passed grant to the constructed node
2988void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2989{
2991 assert(conn_type != ConnectionType::INBOUND);
2992
2993 //
2994 // Initiate outbound network connection
2995 //
2996 if (interruptNet) {
2997 return;
2998 }
2999 if (!fNetworkActive) {
3000 return;
3001 }
3002 if (!pszDest) {
3003 bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
3004 if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
3005 return;
3006 }
3007 } else if (FindNode(std::string(pszDest)))
3008 return;
3009
3010 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3011
3012 if (!pnode)
3013 return;
3014 pnode->grantOutbound = std::move(grant_outbound);
3015
3016 m_msgproc->InitializeNode(*pnode, m_local_services);
3017 {
3019 m_nodes.push_back(pnode);
3020
3021 // update connection count by network
3022 if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3023 }
3024
3025 TRACEPOINT(net, outbound_connection,
3026 pnode->GetId(),
3027 pnode->m_addr_name.c_str(),
3028 pnode->ConnectionTypeAsString().c_str(),
3029 pnode->ConnectedThroughNetwork(),
3031}
3032
3034
3036{
3038
3039 while (!flagInterruptMsgProc)
3040 {
3041 bool fMoreWork = false;
3042
3043 {
3044 // Randomize the order in which we process messages from/to our peers.
3045 // This prevents attacks in which an attacker exploits having multiple
3046 // consecutive connections in the m_nodes list.
3047 const NodesSnapshot snap{*this, /*shuffle=*/true};
3048
3049 for (CNode* pnode : snap.Nodes()) {
3050 if (pnode->fDisconnect)
3051 continue;
3052
3053 // Receive messages
3054 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3055 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3057 return;
3058 // Send messages
3059 m_msgproc->SendMessages(pnode);
3060
3062 return;
3063 }
3064 }
3065
3066 WAIT_LOCK(mutexMsgProc, lock);
3067 if (!fMoreWork) {
3068 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3069 }
3070 fMsgProcWake = false;
3071 }
3072}
3073
3075{
3076 static constexpr auto err_wait_begin = 1s;
3077 static constexpr auto err_wait_cap = 5min;
3078 auto err_wait = err_wait_begin;
3079
3080 bool advertising_listen_addr = false;
3081 i2p::Connection conn;
3082
3083 auto SleepOnFailure = [&]() {
3084 interruptNet.sleep_for(err_wait);
3085 if (err_wait < err_wait_cap) {
3086 err_wait += 1s;
3087 }
3088 };
3089
3090 while (!interruptNet) {
3091
3092 if (!m_i2p_sam_session->Listen(conn)) {
3093 if (advertising_listen_addr && conn.me.IsValid()) {
3094 RemoveLocal(conn.me);
3095 advertising_listen_addr = false;
3096 }
3097 SleepOnFailure();
3098 continue;
3099 }
3100
3101 if (!advertising_listen_addr) {
3102 AddLocal(conn.me, LOCAL_MANUAL);
3103 advertising_listen_addr = true;
3104 }
3105
3106 if (!m_i2p_sam_session->Accept(conn)) {
3107 SleepOnFailure();
3108 continue;
3109 }
3110
3112
3113 err_wait = err_wait_begin;
3114 }
3115}
3116
3117bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3118{
3119 int nOne = 1;
3120
3121 // Create socket for listening for incoming connections
3122 struct sockaddr_storage sockaddr;
3123 socklen_t len = sizeof(sockaddr);
3124 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3125 {
3126 strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3128 return false;
3129 }
3130
3131 std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3132 if (!sock) {
3133 strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3135 return false;
3136 }
3137
3138 // Allow binding if the port is still in TIME_WAIT state after
3139 // the program was closed and restarted.
3140 if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3141 strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3142 LogPrintf("%s\n", strError.original);
3143 }
3144
3145 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3146 // and enable it by default or not. Try to enable it, if possible.
3147 if (addrBind.IsIPv6()) {
3148#ifdef IPV6_V6ONLY
3149 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3150 strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3151 LogPrintf("%s\n", strError.original);
3152 }
3153#endif
3154#ifdef WIN32
3155 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3156 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3157 strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3158 LogPrintf("%s\n", strError.original);
3159 }
3160#endif
3161 }
3162
3163 if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3164 int nErr = WSAGetLastError();
3165 if (nErr == WSAEADDRINUSE)
3166 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3167 else
3168 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3170 return false;
3171 }
3172 LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3173
3174 // Listen for incoming connections
3175 if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3176 {
3177 strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3179 return false;
3180 }
3181
3182 vhListenSocket.emplace_back(std::move(sock), permissions);
3183 return true;
3184}
3185
3187{
3188 if (!fDiscover)
3189 return;
3190
3191 for (const CNetAddr &addr: GetLocalAddresses()) {
3192 if (AddLocal(addr, LOCAL_IF))
3193 LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3194 }
3195}
3196
3198{
3199 LogPrintf("%s: %s\n", __func__, active);
3200
3201 if (fNetworkActive == active) {
3202 return;
3203 }
3204
3205 fNetworkActive = active;
3206
3207 if (m_client_interface) {
3208 m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3209 }
3210}
3211
3212CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3213 const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3214 : addrman(addrman_in)
3215 , m_netgroupman{netgroupman}
3216 , nSeed0(nSeed0In)
3217 , nSeed1(nSeed1In)
3218 , m_params(params)
3219{
3220 SetTryNewOutboundPeer(false);
3221
3222 Options connOptions;
3223 Init(connOptions);
3224 SetNetworkActive(network_active);
3225}
3226
3228{
3229 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3230}
3231
3233{
3234 return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3235}
3236
3237uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3238{
3239 CNetAddr a;
3241}
3242
3243bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3244{
3245 const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3246
3247 bilingual_str strError;
3248 if (!BindListenPort(addr, strError, permissions)) {
3250 m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3251 }
3252 return false;
3253 }
3254
3255 if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3256 AddLocal(addr, LOCAL_BIND);
3257 }
3258
3259 return true;
3260}
3261
3262bool CConnman::InitBinds(const Options& options)
3263{
3264 for (const auto& addrBind : options.vBinds) {
3266 return false;
3267 }
3268 }
3269 for (const auto& addrBind : options.vWhiteBinds) {
3270 if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3271 return false;
3272 }
3273 }
3274 for (const auto& addr_bind : options.onion_binds) {
3276 return false;
3277 }
3278 }
3279 if (options.bind_on_any) {
3280 // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3281 // may not have IPv6 support and the user did not explicitly ask us to
3282 // bind on that.
3283 const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3285
3286 struct in_addr inaddr_any;
3287 inaddr_any.s_addr = htonl(INADDR_ANY);
3288 const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3290 return false;
3291 }
3292 }
3293 return true;
3294}
3295
3296bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3297{
3299 Init(connOptions);
3300
3301 if (fListen && !InitBinds(connOptions)) {
3302 if (m_client_interface) {
3303 m_client_interface->ThreadSafeMessageBox(
3304 _("Failed to listen on any port. Use -listen=0 if you want this."),
3306 }
3307 return false;
3308 }
3309
3310 Proxy i2p_sam;
3311 if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3312 m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3313 i2p_sam, &interruptNet);
3314 }
3315
3316 // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3317 std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3318 if (!seed_nodes.empty()) {
3319 std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3320 }
3321
3323 // Load addresses from anchors.dat
3327 }
3328 LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3329 }
3330
3331 if (m_client_interface) {
3332 m_client_interface->InitMessage(_("Starting network threads…"));
3333 }
3334
3335 fAddressesInitialized = true;
3336
3337 if (semOutbound == nullptr) {
3338 // initialize semaphore
3339 semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3340 }
3341 if (semAddnode == nullptr) {
3342 // initialize semaphore
3343 semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3344 }
3345
3346 //
3347 // Start threads
3348 //
3351 flagInterruptMsgProc = false;
3352
3353 {
3355 fMsgProcWake = false;
3356 }
3357
3358 // Send and receive from sockets, accept connections
3359 threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3360
3361 if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3362 LogPrintf("DNS seeding disabled\n");
3363 else
3364 threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3365
3366 // Initiate manual connections
3367 threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3368
3369 if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3370 if (m_client_interface) {
3371 m_client_interface->ThreadSafeMessageBox(
3372 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3374 }
3375 return false;
3376 }
3377 if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3378 threadOpenConnections = std::thread(
3379 &util::TraceThread, "opencon",
3380 [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3381 }
3382
3383 // Process messages
3384 threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3385
3386 if (m_i2p_sam_session) {
3388 std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3389 }
3390
3391 // Dump network addresses
3392 scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3393
3394 // Run the ASMap Health check once and then schedule it to run every 24h.
3395 if (m_netgroupman.UsingASMap()) {
3398 }
3399
3400 return true;
3401}
3402
3404{
3405public:
3406 CNetCleanup() = default;
3407
3409 {
3410#ifdef WIN32
3411 // Shutdown Windows Sockets
3412 WSACleanup();
3413#endif
3414 }
3415};
3417
3419{
3420 {
3422 flagInterruptMsgProc = true;
3423 }
3424 condMsgProc.notify_all();
3425
3426 interruptNet();
3428
3429 if (semOutbound) {
3430 for (int i=0; i<m_max_automatic_outbound; i++) {
3431 semOutbound->post();
3432 }
3433 }
3434
3435 if (semAddnode) {
3436 for (int i=0; i<m_max_addnode; i++) {
3437 semAddnode->post();
3438 }
3439 }
3440}
3441
3443{
3444 if (threadI2PAcceptIncoming.joinable()) {
3446 }
3447 if (threadMessageHandler.joinable())
3448 threadMessageHandler.join();
3449 if (threadOpenConnections.joinable())
3450 threadOpenConnections.join();
3451 if (threadOpenAddedConnections.joinable())
3453 if (threadDNSAddressSeed.joinable())
3454 threadDNSAddressSeed.join();
3455 if (threadSocketHandler.joinable())
3456 threadSocketHandler.join();
3457}
3458
3460{
3462 DumpAddresses();
3463 fAddressesInitialized = false;
3464
3466 // Anchor connections are only dumped during clean shutdown.
3467 std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3468 if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3469 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3470 }
3472 }
3473 }
3474
3475 // Delete peer connections.
3476 std::vector<CNode*> nodes;
3477 WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3478 for (CNode* pnode : nodes) {
3479 LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3480 pnode->CloseSocketDisconnect();
3481 DeleteNode(pnode);
3482 }
3483
3484 for (CNode* pnode : m_nodes_disconnected) {
3485 DeleteNode(pnode);
3486 }
3487 m_nodes_disconnected.clear();
3488 vhListenSocket.clear();
3489 semOutbound.reset();
3490 semAddnode.reset();
3491}
3492
3494{
3495 assert(pnode);
3496 m_msgproc->FinalizeNode(*pnode);
3497 delete pnode;
3498}
3499
3501{
3502 Interrupt();
3503 Stop();
3504}
3505
3506std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3507{
3508 std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3509 if (m_banman) {
3510 addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3511 [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3512 addresses.end());
3513 }
3514 return addresses;
3515}
3516
3517std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3518{
3519 auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3521 .Write(requestor.ConnectedThroughNetwork())
3522 .Write(local_socket_bytes)
3523 // For outbound connections, the port of the bound address is randomly
3524 // assigned by the OS and would therefore not be useful for seeding.
3525 .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3526 .Finalize();
3527 const auto current_time = GetTime<std::chrono::microseconds>();
3528 auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3529 CachedAddrResponse& cache_entry = r.first->second;
3530 if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3531 cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3532 // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3533 // and the usefulness of ADDR responses to honest users.
3534 //
3535 // Longer cache lifetime makes it more difficult for an attacker to scrape
3536 // enough AddrMan data to maliciously infer something useful.
3537 // By the time an attacker scraped enough AddrMan records, most of
3538 // the records should be old enough to not leak topology info by
3539 // e.g. analyzing real-time changes in timestamps.
3540 //
3541 // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3542 // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3543 // most of it could be scraped (considering that timestamps are updated via
3544 // ADDR self-announcements and when nodes communicate).
3545 // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3546 // (because even several timestamps of the same handful of nodes may leak privacy).
3547 //
3548 // On the other hand, longer cache lifetime makes ADDR responses
3549 // outdated and less useful for an honest requestor, e.g. if most nodes
3550 // in the ADDR response are no longer active.
3551 //
3552 // However, the churn in the network is known to be rather low. Since we consider
3553 // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3554 // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3555 // in terms of the freshness of the response.
3556 cache_entry.m_cache_entry_expiration = current_time +
3557 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3558 }
3559 return cache_entry.m_addrs_response_cache;
3560}
3561
3563{
3565 const bool resolved_is_valid{resolved.IsValid()};
3566
3568 for (const auto& it : m_added_node_params) {
3569 if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3570 }
3571
3572 m_added_node_params.push_back(add);
3573 return true;
3574}
3575
3576bool CConnman::RemoveAddedNode(const std::string& strNode)
3577{
3579 for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3580 if (strNode == it->m_added_node) {
3581 m_added_node_params.erase(it);
3582 return true;
3583 }
3584 }
3585 return false;
3586}
3587
3589{
3591 const std::string addr_str{addr.ToStringAddr()};
3592 const std::string addr_port_str{addr.ToStringAddrPort()};
3594 return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3595 && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3596 [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3597}
3598
3600{
3602 if (flags == ConnectionDirection::Both) // Shortcut if we want total
3603 return m_nodes.size();
3604
3605 int nNum = 0;
3606 for (const auto& pnode : m_nodes) {
3607 if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3608 nNum++;
3609 }
3610 }
3611
3612 return nNum;
3613}
3614
3615
3616std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3617{
3619 return mapLocalHost;
3620}
3621
3622uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3623{
3624 return m_netgroupman.GetMappedAS(addr);
3625}
3626
3627void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3628{
3629 vstats.clear();
3631 vstats.reserve(m_nodes.size());
3632 for (CNode* pnode : m_nodes) {
3633 vstats.emplace_back();
3634 pnode->CopyStats(vstats.back());
3635 vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3636 }
3637}
3638
3639bool CConnman::DisconnectNode(const std::string& strNode)
3640{
3642 if (CNode* pnode = FindNode(strNode)) {
3643 LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
3644 pnode->fDisconnect = true;
3645 return true;
3646 }
3647 return false;
3648}
3649
3651{
3652 bool disconnected = false;
3654 for (CNode* pnode : m_nodes) {
3655 if (subnet.Match(pnode->addr)) {
3656 LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3657 pnode->fDisconnect = true;
3658 disconnected = true;
3659 }
3660 }
3661 return disconnected;
3662}
3663
3665{
3666 return DisconnectNode(CSubNet(addr));
3667}
3668
3670{
3672 for(CNode* pnode : m_nodes) {
3673 if (id == pnode->GetId()) {
3674 LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3675 pnode->fDisconnect = true;
3676 return true;
3677 }
3678 }
3679 return false;
3680}
3681
3682void CConnman::RecordBytesRecv(uint64_t bytes)
3683{
3684 nTotalBytesRecv += bytes;
3685}
3686
3687void CConnman::RecordBytesSent(uint64_t bytes)
3688{
3691
3692 nTotalBytesSent += bytes;
3693
3694 const auto now = GetTime<std::chrono::seconds>();
3695 if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3696 {
3697 // timeframe expired, reset cycle
3698 nMaxOutboundCycleStartTime = now;
3699 nMaxOutboundTotalBytesSentInCycle = 0;
3700 }
3701
3702 nMaxOutboundTotalBytesSentInCycle += bytes;
3703}
3704
3706{
3709 return nMaxOutboundLimit;
3710}
3711
3712std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3713{
3714 return MAX_UPLOAD_TIMEFRAME;
3715}
3716
3718{
3722}
3723
3725{
3727
3728 if (nMaxOutboundLimit == 0)
3729 return 0s;
3730
3731 if (nMaxOutboundCycleStartTime.count() == 0)
3732 return MAX_UPLOAD_TIMEFRAME;
3733
3734 const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3735 const auto now = GetTime<std::chrono::seconds>();
3736 return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3737}
3738
3739bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3740{
3743 if (nMaxOutboundLimit == 0)
3744 return false;
3745
3746 if (historicalBlockServingLimit)
3747 {
3748 // keep a large enough buffer to at least relay each block once
3749 const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3750 const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3751 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3752 return true;
3753 }
3754 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3755 return true;
3756
3757 return false;
3758}
3759
3761{
3764 if (nMaxOutboundLimit == 0)
3765 return 0;
3766
3767 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3768}
3769
3771{
3772 return nTotalBytesRecv;
3773}
3774
3776{
3779 return nTotalBytesSent;
3780}
3781
3783{
3784 return m_local_services;
3785}
3786
3787static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3788{
3789 if (use_v2transport) {
3790 return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3791 } else {
3792 return std::make_unique<V1Transport>(id);
3793 }
3794}
3795
3797 std::shared_ptr<Sock> sock,
3798 const CAddress& addrIn,
3799 uint64_t nKeyedNetGroupIn,
3800 uint64_t nLocalHostNonceIn,
3801 const CService& addrBindIn,
3802 const std::string& addrNameIn,
3803 ConnectionType conn_type_in,
3804 bool inbound_onion,
3805 CNodeOptions&& node_opts)
3806 : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3807 m_permission_flags{node_opts.permission_flags},
3808 m_sock{sock},
3809 m_connected{GetTime<std::chrono::seconds>()},
3810 addr{addrIn},
3811 addrBind{addrBindIn},
3812 m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3813 m_dest(addrNameIn),
3814 m_inbound_onion{inbound_onion},
3815 m_prefer_evict{node_opts.prefer_evict},
3816 nKeyedNetGroup{nKeyedNetGroupIn},
3817 m_conn_type{conn_type_in},
3818 id{idIn},
3819 nLocalHostNonce{nLocalHostNonceIn},
3820 m_recv_flood_size{node_opts.recv_flood_size},
3821 m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3822{
3823 if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3824
3825 for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3826 mapRecvBytesPerMsgType[msg] = 0;
3827 }
3828 mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3829
3830 if (fLogIPs) {
3831 LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3832 } else {
3833 LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3834 }
3835}
3836
3838{
3840
3841 size_t nSizeAdded = 0;
3842 for (const auto& msg : vRecvMsg) {
3843 // vRecvMsg contains only completed CNetMessage
3844 // the single possible partially deserialized message are held by TransportDeserializer
3845 nSizeAdded += msg.GetMemoryUsage();
3846 }
3847
3849 m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3850 m_msg_process_queue_size += nSizeAdded;
3851 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3852}
3853
3854std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3855{
3857 if (m_msg_process_queue.empty()) return std::nullopt;
3858
3859 std::list<CNetMessage> msgs;
3860 // Just take one message
3861 msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3862 m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3863 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3864
3865 return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3866}
3867
3869{
3870 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3871}
3872
3874{
3876 size_t nMessageSize = msg.data.size();
3877 LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3878 if (gArgs.GetBoolArg("-capturemessages", false)) {
3879 CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3880 }
3881
3882 TRACEPOINT(net, outbound_message,
3883 pnode->GetId(),
3884 pnode->m_addr_name.c_str(),
3885 pnode->ConnectionTypeAsString().c_str(),
3886 msg.m_type.c_str(),
3887 msg.data.size(),
3888 msg.data.data()
3889 );
3890
3891 size_t nBytesSent = 0;
3892 {
3893 LOCK(pnode->cs_vSend);
3894 // Check if the transport still has unsent bytes, and indicate to it that we're about to
3895 // give it a message to send.
3896 const auto& [to_send, more, _msg_type] =
3897 pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3898 const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3899
3900 // Update memory usage of send buffer.
3901 pnode->m_send_memusage += msg.GetMemoryUsage();
3902 if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3903 // Move message to vSendMsg queue.
3904 pnode->vSendMsg.push_back(std::move(msg));
3905
3906 // If there was nothing to send before, and there is now (predicted by the "more" value
3907 // returned by the GetBytesToSend call above), attempt "optimistic write":
3908 // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3909 // doing a send, try sending from the calling thread if the queue was empty before.
3910 // With a V1Transport, more will always be true here, because adding a message always
3911 // results in sendable bytes there, but with V2Transport this is not the case (it may
3912 // still be in the handshake).
3913 if (queue_was_empty && more) {
3914 std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3915 }
3916 }
3917 if (nBytesSent) RecordBytesSent(nBytesSent);
3918}
3919
3920bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3921{
3922 CNode* found = nullptr;
3924 for (auto&& pnode : m_nodes) {
3925 if(pnode->GetId() == id) {
3926 found = pnode;
3927 break;
3928 }
3929 }
3930 return found != nullptr && NodeFullyConnected(found) && func(found);
3931}
3932
3934{
3935 return CSipHasher(nSeed0, nSeed1).Write(id);
3936}
3937
3938uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3939{
3940 std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3941
3943}
3944
3946{
3949 while (true) {
3950 // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3951 decltype(m_reconnections) todo;
3952 {
3954 if (m_reconnections.empty()) break;
3955 todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3956 }
3957
3958 auto& item = *todo.begin();
3959 OpenNetworkConnection(item.addr_connect,
3960 // We only reconnect if the first attempt to connect succeeded at
3961 // connection time, but then failed after the CNode object was
3962 // created. Since we already know connecting is possible, do not
3963 // count failure to reconnect.
3964 /*fCountFailure=*/false,
3965 std::move(item.grant),
3966 item.destination.empty() ? nullptr : item.destination.c_str(),
3967 item.conn_type,
3968 item.use_v2transport);
3969 }
3970}
3971
3973{
3974 const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3975 const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3976 std::vector<CNetAddr> clearnet_addrs;
3977 clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3978 std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3979 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3980 std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3981 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3982 m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3983}
3984
3985// Dump binary message to file, with timestamp.
3986static void CaptureMessageToFile(const CAddress& addr,
3987 const std::string& msg_type,
3988 std::span<const unsigned char> data,
3989 bool is_incoming)
3990{
3991 // Note: This function captures the message at the time of processing,
3992 // not at socket receive/send time.
3993 // This ensures that the messages are always in order from an application
3994 // layer (processing) perspective.
3995 auto now = GetTime<std::chrono::microseconds>();
3996
3997 // Windows folder names cannot include a colon
3998 std::string clean_addr = addr.ToStringAddrPort();
3999 std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4000
4001 fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
4002 fs::create_directories(base_path);
4003
4004 fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4005 AutoFile f{fsbridge::fopen(path, "ab")};
4006
4007 ser_writedata64(f, now.count());
4008 f << std::span{msg_type};
4009 for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4010 f << uint8_t{'\0'};
4011 }
4012 uint32_t size = data.size();
4013 ser_writedata32(f, size);
4014 f << data;
4015}
4016
4017std::function<void(const CAddress& addr,
4018 const std::string& msg_type,
4019 std::span<const unsigned char> data,
4020 bool is_incoming)>
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:180
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:229
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:223
ArgsManager gArgs
Definition: args.cpp:42
int ret
int flags
Definition: bitcoin-tx.cpp:536
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
Stochastic address manager.
Definition: addrman.h:89
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, const std::unordered_set< Network > &networks={}) const
Choose an address to connect to.
Definition: addrman.cpp:1327
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1312
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1297
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1317
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1322
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1332
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:362
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:234
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:482
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:507
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:392
bool Decrypt(std::span< const std::byte > input, std::span< const std::byte > aad, bool &ignore, std::span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
std::span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(std::span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
std::span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
std::span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
void Encrypt(std::span< const std::byte > contents, std::span< const std::byte > aad, bool ignore, std::span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:69
const MessageStartChars & MessageStart() const
Definition: chainparams.h:82
uint16_t GetDefaultPort() const
Definition: chainparams.h:83
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:105
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:108
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1642
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2482
std::condition_variable condMsgProc
Definition: net.h:1539
std::thread threadMessageHandler
Definition: net.h:1562
nSendBufferMaxSize
Definition: net.h:1097
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3035
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3920
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1903
m_max_outbound_full_relay
Definition: net.h:1089
void DeleteNode(CNode *pnode)
Definition: net.cpp:3493
bool RemoveAddedNode(const std::string &node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3576
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1688
bool AlreadyConnectedToAddress(const CAddress &addr)
Determine whether we're already connected to a given address, in order to avoid initiating duplicate ...
Definition: net.cpp:368
whitelist_relay
Definition: net.h:1117
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1635
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true)
Definition: net.cpp:3212
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2418
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3232
void Stop()
Definition: net.h:1129
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3945
std::thread threadI2PAcceptIncoming
Definition: net.h:1563
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2423
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1541
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CService &addr_bind, const CService &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1765
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3418
std::map< CNetAddr, LocalServiceInfo > getNetLocalAddresses() const
Definition: net.cpp:3616
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2248
m_onion_binds
Definition: net.h:1115
int GetFullOutboundConnCount() const
Definition: net.cpp:2436
NodeId GetNewNodeId()
Definition: net.cpp:3227
CThreadInterrupt interruptNet
This is signaled when network activity should cease.
Definition: net.h:1549
std::unique_ptr< CSemaphore > semAddnode
Definition: net.h:1495
std::atomic< NodeId > nLastNodeId
Definition: net.h:1448
m_max_automatic_outbound
Definition: net.h:1091
int GetExtraBlockRelayCount() const
Definition: net.cpp:2468
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2239
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3739
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3705
std::thread threadDNSAddressSeed
Definition: net.h:1558
void ASMapHealthCheck()
Definition: net.cpp:3972
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2115
void ThreadI2PAcceptIncoming()
Definition: net.cpp:3074
const uint64_t nSeed1
Definition: net.h:1534
void StartExtraBlockRelayPeers()
Definition: net.cpp:2429
const NetGroupManager & m_netgroupman
Definition: net.h:1437
m_banman
Definition: net.h:1095
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1531
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3712
uint64_t CalculateKeyedNetGroup(const CNetAddr &ad) const
Definition: net.cpp:3938
unsigned int nPrevNodeCount
Definition: net.h:1449
void NotifyNumConnectionsChanged()
Definition: net.cpp:1982
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3782
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3562
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3639
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1568
bool InitBinds(const Options &options)
Definition: net.cpp:3262
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:397
vWhitelistedRangeOutgoing
Definition: net.h:1105
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:138
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1433
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2885
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3933
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1866
Mutex m_total_bytes_sent_mutex
Definition: net.h:1412
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2898
std::unique_ptr< CSemaphore > semOutbound
Definition: net.h:1494
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2958
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3243
std::thread threadOpenConnections
Definition: net.h:1561
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3599
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3622
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2397
Mutex m_addr_fetches_mutex
Definition: net.h:1439
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:2002
m_peer_connect_timeout
Definition: net.h:1099
CNode * FindNode(const CNetAddr &ip)
Definition: net.cpp:335
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1611
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3627
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3296
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1534
m_local_services
Definition: net.h:1087
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2087
int GetExtraFullOutboundCount() const
Definition: net.cpp:2454
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3724
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3770
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1601
RecursiveMutex m_nodes_mutex
Definition: net.h:1447
m_max_outbound_block_relay
Definition: net.h:1090
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3868
m_client_interface
Definition: net.h:1094
nReceiveFloodSize
Definition: net.h:1098
const CChainParams & m_params
Definition: net.h:1674
void SetNetworkActive(bool active)
Definition: net.cpp:3197
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2495
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3588
whitelist_forcerelay
Definition: net.h:1116
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3717
AddrMan & addrman
Definition: net.h:1436
m_max_automatic_connections
Definition: net.h:1088
void ThreadOpenConnections(std::vector< std::string > connect, std::span< const std::string > seed_nodes) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2517
m_msgproc
Definition: net.h:1096
Mutex mutexMsgProc
Definition: net.h:1540
m_max_inbound
Definition: net.h:1092
bool fAddressesInitialized
Definition: net.h:1435
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3506
~CConnman()
Definition: net.cpp:3500
void StopThreads()
Definition: net.cpp:3442
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant &&grant_outbound, const char *strDest, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:2988
std::thread threadOpenAddedConnections
Definition: net.h:1560
Mutex m_added_nodes_mutex
Definition: net.h:1444
vWhitelistedRangeIncoming
Definition: net.h:1104
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2227
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:578
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3687
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:373
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1597
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3775
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2501
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3682
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1997
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3760
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3873
void StopNodes()
Definition: net.cpp:3459
int m_max_addnode
Definition: net.h:1516
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1446
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1556
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1479
Sock::EventsPerSock GenerateWaitSockets(std::span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:2056
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1413
std::atomic< bool > fNetworkActive
Definition: net.h:1434
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1574
m_use_addrman_outgoing
Definition: net.h:1093
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2214
void DumpAddresses()
Definition: net.cpp:2387
std::thread threadSocketHandler
Definition: net.h:1559
nMaxOutboundLimit
Definition: net.h:1102
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1737
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:3117
An encapsulated private key.
Definition: key.h:35
Message header.
Definition: protocol.h:29
static constexpr size_t MESSAGE_TYPE_SIZE
Definition: protocol.h:31
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:678
std::string ToStringAddr() const
Definition: netaddress.cpp:584
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:211
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:696
bool IsRoutable() const
Definition: netaddress.cpp:466
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:188
bool IsValid() const
Definition: netaddress.cpp:428
bool IsIPv4() const
Definition: netaddress.h:157
bool IsIPv6() const
Definition: netaddress.h:158
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:172
enum Network GetNetwork() const
Definition: netaddress.cpp:500
~CNetCleanup()
Definition: net.cpp:3408
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:231
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:133
std::string m_type
Definition: net.h:237
DataStream m_recv
received message data
Definition: net.h:233
Information about a peer.
Definition: net.h:673
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
std::atomic< int > nVersion
Definition: net.h:716
bool IsInboundConn() const
Definition: net.h:811
std::atomic_bool fPauseRecv
Definition: net.h:736
NodeId GetId() const
Definition: net.h:894
const std::string m_addr_name
Definition: net.h:711
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:613
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:620
std::string ConnectionTypeAsString() const
Definition: net.h:948
const CService addrBind
Definition: net.h:710
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::list< CNetMessage > vRecvMsg
Definition: net.h:978
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
const CAddress addr
Definition: net.h:708
bool ReceiveMsgBytes(std::span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:666
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:600
CSemaphoreGrant grantOutbound
Definition: net.h:732
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3837
Mutex m_subver_mutex
Definition: net.h:717
Mutex cs_vSend
Definition: net.h:697
CNode * AddRef()
Definition: net.h:933
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3854
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CService &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, CNodeOptions &&node_opts={})
Definition: net.cpp:3796
Mutex m_msg_process_queue_mutex
Definition: net.h:980
const ConnectionType m_conn_type
Definition: net.h:739
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:608
const size_t m_recv_flood_size
Definition: net.h:977
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:875
bool IsManualOrFullOutboundConn() const
Definition: net.h:783
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:710
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const NetPermissionFlags m_permission_flags
Definition: net.h:679
Mutex m_addr_local_mutex
Definition: net.h:986
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:879
Mutex cs_vRecv
Definition: net.h:699
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:715
Mutex m_sock_mutex
Definition: net.h:698
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:704
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:593
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:560
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:703
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:222
std::string addrLocal
Definition: net.h:210
bool fInbound
Definition: net.h:196
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:220
Network m_network
Definition: net.h:216
NodeId nodeid
Definition: net.h:187
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
RAII-style semaphore lock.
Definition: sync.h:353
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
bool SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
Set CService from a network sockaddr.
Definition: netaddress.cpp:810
uint16_t GetPort() const
Definition: netaddress.cpp:839
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:826
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:866
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
bool sleep_for(Clock::duration rel_time) EXCLUSIVE_LOCKS_REQUIRED(!mut)
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: streams.cpp:115
Fast randomness source.
Definition: random.h:377
void fillrand(std::span< std::byte > output) noexcept
Fill a byte span with random bytes.
Definition: random.cpp:701
Different type to mark Mutex at global scope.
Definition: sync.h:140
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1011
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream.
Definition: serialize.h:1115
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range) noexcept
Return the time point advanced by a uniform random duration.
Definition: random.h:320
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:327
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
Return a duration sampled from an exponential distribution (https://en.wikipedia.org/wiki/Exponential...
Definition: random.h:356
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
std::unordered_set< Network > All() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:137
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
std::tuple< std::span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:311
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:843
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:729
int readData(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:777
const NodeId m_node_id
Definition: net.h:371
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:406
const MessageStartChars m_magic_bytes
Definition: net.h:370
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:905
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:795
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:889
int readHeader(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:734
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:722
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:398
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:427
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:868
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:386
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:372
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:419
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:804
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1532
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:634
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:580
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1275
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:576
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1571
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1081
SendState
State type that controls the sender side.
Definition: net.h:545
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:582
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:459
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:990
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1206
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1119
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:578
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1580
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1515
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:1021
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1179
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1072
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1454
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:455
static std::optional< std::string > GetMessageType(std::span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1414
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1324
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1554
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1483
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:1017
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:480
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1052
constexpr unsigned char * begin()
Definition: uint256.h:115
Path class wrapper to block calls to the fs::path(std::string) implicit constructor and the fs::path:...
Definition: fs.h:33
256-bit opaque blob.
Definition: uint256.h:201
#define WSAEWOULDBLOCK
Definition: compat.h:50
#define SOCKET_ERROR
Definition: compat.h:57
#define WSAGetLastError()
Definition: compat.h:48
#define WSAEMSGSIZE
Definition: compat.h:52
#define MSG_NOSIGNAL
Definition: compat.h:107
#define MSG_DONTWAIT
Definition: compat.h:112
void * sockopt_arg_type
Definition: compat.h:82
#define WSAEINPROGRESS
Definition: compat.h:54
#define WSAEADDRINUSE
Definition: compat.h:55
#define WSAEINTR
Definition: compat.h:53
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:352
bool fLogIPs
Definition: logging.cpp:45
#define LogPrintLevel(category, level,...)
Definition: logging.h:272
#define LogInfo(...)
Definition: logging.h:261
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ PROXY
Definition: logging.h:58
@ NET
Definition: logging.h:43
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
static path u8path(const std::string &utf8_str)
Definition: fs.h:75
static bool create_directories(const std::filesystem::path &p)
Create directory (and if necessary its parents), unless the leaf directory already exists or is a sym...
Definition: fs.h:190
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:26
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
Definition: messages.h:20
static const unsigned char VERSION[]
Definition: netaddress.cpp:187
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:46
uint16_t GetListenPort()
Definition: net.cpp:144
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:72
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:329
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:116
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:112
void RemoveLocal(const CService &addr)
Definition: net.cpp:310
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:100
@ BF_REPORT_ERROR
Definition: net.cpp:102
@ BF_NONE
Definition: net.cpp:101
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:107
bool fDiscover
Definition: net.cpp:122
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:117
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:69
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:97
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD
Minimum number of outbound connections under which we will keep fetching our address seeds.
Definition: net.cpp:75
static CService GetBindAddress(const Sock &sock)
Get the bind address for a socket as CService.
Definition: net.cpp:384
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:277
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:94
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:88
bool fListen
Definition: net.cpp:123
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:63
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:239
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:86
static const uint64_t RANDOMIZER_ID_ADDRCACHE
Definition: net.cpp:118
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:126
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:246
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:114
TRACEPOINT_SEMAPHORE(net, closed_connection)
#define X(name)
Definition: net.cpp:619
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3787
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:66
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:201
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:3986
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:226
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:124
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:171
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4021
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:87
static int GetnScore(const CService &addr)
Definition: net.cpp:231
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3416
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:91
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3186
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:91
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:63
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:61
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:89
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:90
int64_t NodeId
Definition: net.h:97
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:87
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:59
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:67
@ LOCAL_MANUAL
Definition: net.h:152
@ LOCAL_BIND
Definition: net.h:150
@ LOCAL_IF
Definition: net.h:149
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:71
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:104
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:625
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:177
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:118
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:714
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:195
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:882
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:689
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:728
std::function< std::unique_ptr< Sock >(int, int, int)> CreateSock
Socket factory.
Definition: netbase.cpp:557
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:706
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:220
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:792
ConnectionDirection
Definition: netbase.h:33
std::vector< CNetAddr > GetLocalAddresses()
Return all local non-loopback IPv4 and IPv6 network addresses.
Definition: netif.cpp:268
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:354
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_P2P_V2
Definition: protocol.h:330
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:692
uint256 GetRandHash() noexcept
Generate a random uint256.
Definition: random.h:454
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:68
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:78
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
auto MakeByteSpan(const V &v) noexcept
Definition: span.h:84
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
T & SpanPopBack(std::span< T > &span)
A span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:75
auto MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:89
unsigned char * UCharCast(char *c)
Definition: span.h:95
std::string m_added_node
Definition: net.h:100
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1460
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1462
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1461
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1279
std::shared_ptr< Sock > sock
Definition: net.h:1278
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1069
std::vector< CService > onion_binds
Definition: net.h:1071
std::vector< std::string > m_specified_outgoing
Definition: net.h:1076
std::vector< CService > vBinds
Definition: net.h:1070
bool m_i2p_accept_incoming
Definition: net.h:1078
std::vector< std::string > vSeedNodes
Definition: net.h:1066
bool m_use_addrman_outgoing
Definition: net.h:1075
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1074
NetPermissionFlags permission_flags
Definition: net.h:664
std::string m_type
Definition: net.h:131
std::vector< unsigned char > data
Definition: net.h:130
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:128
An ElligatorSwift-encoded public key.
Definition: pubkey.h:310
static constexpr size_t size()
Definition: pubkey.h:327
uint16_t nPort
Definition: net.h:175
int nScore
Definition: net.h:174
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:261
TransportProtocolType transport_type
Definition: net.h:260
Bilingual messages:
Definition: translation.h:24
std::string original
Definition: translation.h:25
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
CService peer
The peer's I2P address.
Definition: i2p.h:40
#define WAIT_LOCK(cs, name)
Definition: sync.h:262
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:76
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:81
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:82
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56