Bitcoin Core 29.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8#include <net.h>
9
10#include <addrdb.h>
11#include <addrman.h>
12#include <banman.h>
13#include <clientversion.h>
14#include <common/args.h>
15#include <common/netif.h>
16#include <compat/compat.h>
17#include <consensus/consensus.h>
18#include <crypto/sha256.h>
19#include <i2p.h>
20#include <key.h>
21#include <logging.h>
22#include <memusage.h>
23#include <net_permissions.h>
24#include <netaddress.h>
25#include <netbase.h>
26#include <node/eviction.h>
27#include <node/interface_ui.h>
28#include <protocol.h>
29#include <random.h>
30#include <scheduler.h>
31#include <util/fs.h>
32#include <util/sock.h>
33#include <util/strencodings.h>
34#include <util/thread.h>
36#include <util/trace.h>
37#include <util/translation.h>
38#include <util/vector.h>
39
40#include <algorithm>
41#include <array>
42#include <cstring>
43#include <cmath>
44#include <cstdint>
45#include <functional>
46#include <optional>
47#include <unordered_map>
48
49TRACEPOINT_SEMAPHORE(net, closed_connection);
50TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
51TRACEPOINT_SEMAPHORE(net, inbound_connection);
52TRACEPOINT_SEMAPHORE(net, outbound_connection);
53TRACEPOINT_SEMAPHORE(net, outbound_message);
54
56static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
57static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
59const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
60
61// How often to dump addresses to peers.dat
62static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
63
65static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
66
68static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
69
79static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82
84static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85
86// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87static constexpr auto FEELER_SLEEP_WINDOW{1s};
88
90static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91
95 BF_REPORT_ERROR = (1U << 0),
100 BF_DONT_ADVERTISE = (1U << 1),
101};
102
103// The set of sockets cannot be modified while waiting
104// The sleep time needs to be small to avoid new sockets stalling
105static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106
107const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108
109static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
112//
113// Global state variables
114//
115bool fDiscover = true;
116bool fListen = true;
118std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119std::string strSubVersion;
120
122{
123 return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
124}
125
126size_t CNetMessage::GetMemoryUsage() const noexcept
127{
128 return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
129}
130
131void CConnman::AddAddrFetch(const std::string& strDest)
132{
134 m_addr_fetches.push_back(strDest);
135}
136
138{
139 // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
140 for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
141 constexpr uint16_t dummy_port = 0;
142
143 const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
144 if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
145 }
146
147 // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
148 // (-whitebind= is required to have ":port").
149 for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
150 NetWhitebindPermissions whitebind;
151 bilingual_str error;
152 if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
154 return whitebind.m_service.GetPort();
155 }
156 }
157 }
158
159 // Otherwise, if -port= is provided, use that. Otherwise use the default port.
160 return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
161}
162
163// Determine the "best" local address for a particular peer.
164[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
165{
166 if (!fListen) return std::nullopt;
167
168 std::optional<CService> addr;
169 int nBestScore = -1;
170 int nBestReachability = -1;
171 {
173 for (const auto& [local_addr, local_service_info] : mapLocalHost) {
174 // For privacy reasons, don't advertise our privacy-network address
175 // to other networks and don't advertise our other-network address
176 // to privacy networks.
177 if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
178 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
179 continue;
180 }
181 const int nScore{local_service_info.nScore};
182 const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
183 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
184 addr.emplace(CService{local_addr, local_service_info.nPort});
185 nBestReachability = nReachability;
186 nBestScore = nScore;
187 }
188 }
189 }
190 return addr;
191}
192
194static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
195{
196 // It'll only connect to one or two seed nodes because once it connects,
197 // it'll get a pile of addresses with newer timestamps.
198 // Seed nodes are given a random 'last seen time' of between one and two
199 // weeks ago.
200 const auto one_week{7 * 24h};
201 std::vector<CAddress> vSeedsOut;
204 while (!s.eof()) {
205 CService endpoint;
206 s >> endpoint;
207 CAddress addr{endpoint, SeedsServiceFlags()};
208 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
209 LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
210 vSeedsOut.push_back(addr);
211 }
212 return vSeedsOut;
213}
214
215// Determine the "best" local address for a particular peer.
216// If none, return the unroutable 0.0.0.0 but filled in with
217// the normal parameters, since the IP may be changed to a useful
218// one by discovery.
220{
221 return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
222}
223
224static int GetnScore(const CService& addr)
225{
227 const auto it = mapLocalHost.find(addr);
228 return (it != mapLocalHost.end()) ? it->second.nScore : 0;
229}
230
231// Is our peer's addrLocal potentially useful as an external IP source?
232[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
233{
234 CService addrLocal = pnode->GetAddrLocal();
235 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
236 g_reachable_nets.Contains(addrLocal);
237}
238
239std::optional<CService> GetLocalAddrForPeer(CNode& node)
240{
241 CService addrLocal{GetLocalAddress(node)};
242 // If discovery is enabled, sometimes give our peer the address it
243 // tells us that it sees us as in case it has a better idea of our
244 // address than we do.
246 if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
247 rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
248 {
249 if (node.IsInboundConn()) {
250 // For inbound connections, assume both the address and the port
251 // as seen from the peer.
252 addrLocal = CService{node.GetAddrLocal()};
253 } else {
254 // For outbound connections, assume just the address as seen from
255 // the peer and leave the port in `addrLocal` as returned by
256 // `GetLocalAddress()` above. The peer has no way to observe our
257 // listening port when we have initiated the connection.
258 addrLocal.SetIP(node.GetAddrLocal());
259 }
260 }
261 if (addrLocal.IsRoutable()) {
262 LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
263 return addrLocal;
264 }
265 // Address is unroutable. Don't advertise.
266 return std::nullopt;
267}
268
269// learn a new local address
270bool AddLocal(const CService& addr_, int nScore)
271{
272 CService addr{MaybeFlipIPv6toCJDNS(addr_)};
273
274 if (!addr.IsRoutable())
275 return false;
276
277 if (!fDiscover && nScore < LOCAL_MANUAL)
278 return false;
279
280 if (!g_reachable_nets.Contains(addr))
281 return false;
282
283 LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
284
285 {
287 const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
288 LocalServiceInfo &info = it->second;
289 if (is_newly_added || nScore >= info.nScore) {
290 info.nScore = nScore + (is_newly_added ? 0 : 1);
291 info.nPort = addr.GetPort();
292 }
293 }
294
295 return true;
296}
297
298bool AddLocal(const CNetAddr &addr, int nScore)
299{
300 return AddLocal(CService(addr, GetListenPort()), nScore);
301}
302
303void RemoveLocal(const CService& addr)
304{
306 LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
307 mapLocalHost.erase(addr);
308}
309
311bool SeenLocal(const CService& addr)
312{
314 const auto it = mapLocalHost.find(addr);
315 if (it == mapLocalHost.end()) return false;
316 ++it->second.nScore;
317 return true;
318}
319
320
322bool IsLocal(const CService& addr)
323{
325 return mapLocalHost.count(addr) > 0;
326}
327
329{
331 for (CNode* pnode : m_nodes) {
332 if (static_cast<CNetAddr>(pnode->addr) == ip) {
333 return pnode;
334 }
335 }
336 return nullptr;
337}
338
339CNode* CConnman::FindNode(const std::string& addrName)
340{
342 for (CNode* pnode : m_nodes) {
343 if (pnode->m_addr_name == addrName) {
344 return pnode;
345 }
346 }
347 return nullptr;
348}
349
351{
353 for (CNode* pnode : m_nodes) {
354 if (static_cast<CService>(pnode->addr) == addr) {
355 return pnode;
356 }
357 }
358 return nullptr;
359}
360
362{
363 return FindNode(static_cast<CNetAddr>(addr));
364}
365
367{
369 for (const CNode* pnode : m_nodes) {
370 if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
371 return false;
372 }
373 return true;
374}
375
377static CService GetBindAddress(const Sock& sock)
378{
379 CService addr_bind;
380 struct sockaddr_storage sockaddr_bind;
381 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
382 if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
383 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
384 } else {
385 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
386 }
387 return addr_bind;
388}
389
390CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
391{
393 assert(conn_type != ConnectionType::INBOUND);
394
395 if (pszDest == nullptr) {
396 if (IsLocal(addrConnect))
397 return nullptr;
398
399 // Look for an existing connection
400 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
401 if (pnode)
402 {
403 LogPrintf("Failed to open new connection, already connected\n");
404 return nullptr;
405 }
406 }
407
408 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
409 use_v2transport ? "v2" : "v1",
410 pszDest ? pszDest : addrConnect.ToStringAddrPort(),
411 Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
412
413 // Resolve
414 const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
416
417 // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
418 std::vector<CAddress> connect_to{};
419 if (pszDest) {
420 std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
421 if (!resolved.empty()) {
422 std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
423 // If the connection is made by name, it can be the case that the name resolves to more than one address.
424 // We don't want to connect any more of them if we are already connected to one
425 for (const auto& r : resolved) {
426 addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
427 if (!addrConnect.IsValid()) {
428 LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
429 return nullptr;
430 }
431 // It is possible that we already have a connection to the IP/port pszDest resolved to.
432 // In that case, drop the connection that was just created.
434 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
435 if (pnode) {
436 LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
437 return nullptr;
438 }
439 // Add the address to the resolved addresses vector so we can try to connect to it later on
440 connect_to.push_back(addrConnect);
441 }
442 } else {
443 // For resolution via proxy
444 connect_to.push_back(addrConnect);
445 }
446 } else {
447 // Connect via addrConnect directly
448 connect_to.push_back(addrConnect);
449 }
450
451 // Connect
452 std::unique_ptr<Sock> sock;
453 Proxy proxy;
454 CService addr_bind;
455 assert(!addr_bind.IsValid());
456 std::unique_ptr<i2p::sam::Session> i2p_transient_session;
457
458 for (auto& target_addr: connect_to) {
459 if (target_addr.IsValid()) {
460 const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
461 bool proxyConnectionFailed = false;
462
463 if (target_addr.IsI2P() && use_proxy) {
464 i2p::Connection conn;
465 bool connected{false};
466
467 if (m_i2p_sam_session) {
468 connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
469 } else {
470 {
472 if (m_unused_i2p_sessions.empty()) {
473 i2p_transient_session =
474 std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
475 } else {
476 i2p_transient_session.swap(m_unused_i2p_sessions.front());
477 m_unused_i2p_sessions.pop();
478 }
479 }
480 connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
481 if (!connected) {
483 if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
484 m_unused_i2p_sessions.emplace(i2p_transient_session.release());
485 }
486 }
487 }
488
489 if (connected) {
490 sock = std::move(conn.sock);
491 addr_bind = conn.me;
492 }
493 } else if (use_proxy) {
494 LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
495 sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
496 } else {
497 // no proxy needed (none set for target network)
498 sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
499 }
500 if (!proxyConnectionFailed) {
501 // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
502 // the proxy, mark this as an attempt.
503 addrman.Attempt(target_addr, fCountFailure);
504 }
505 } else if (pszDest && GetNameProxy(proxy)) {
506 std::string host;
507 uint16_t port{default_port};
508 SplitHostPort(std::string(pszDest), port, host);
509 bool proxyConnectionFailed;
510 sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
511 }
512 // Check any other resolved address (if any) if we fail to connect
513 if (!sock) {
514 continue;
515 }
516
518 std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
519 AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
520
521 // Add node
522 NodeId id = GetNewNodeId();
524 if (!addr_bind.IsValid()) {
525 addr_bind = GetBindAddress(*sock);
526 }
527 CNode* pnode = new CNode(id,
528 std::move(sock),
529 target_addr,
530 CalculateKeyedNetGroup(target_addr),
531 nonce,
532 addr_bind,
533 pszDest ? pszDest : "",
534 conn_type,
535 /*inbound_onion=*/false,
537 .permission_flags = permission_flags,
538 .i2p_sam_session = std::move(i2p_transient_session),
539 .recv_flood_size = nReceiveFloodSize,
540 .use_v2transport = use_v2transport,
541 });
542 pnode->AddRef();
543
544 // We're making a new connection, harvest entropy from the time (and our peer count)
545 RandAddEvent((uint32_t)id);
546
547 return pnode;
548 }
549
550 return nullptr;
551}
552
554{
555 fDisconnect = true;
557 if (m_sock) {
558 LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
559 m_sock.reset();
560
561 TRACEPOINT(net, closed_connection,
562 GetId(),
563 m_addr_name.c_str(),
564 ConnectionTypeAsString().c_str(),
566 Ticks<std::chrono::seconds>(m_connected));
567 }
568 m_i2p_sam_session.reset();
569}
570
571void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
572 for (const auto& subnet : ranges) {
573 if (subnet.m_subnet.Match(addr)) {
574 NetPermissions::AddFlag(flags, subnet.m_flags);
575 }
576 }
583 }
584}
585
587{
590 return m_addr_local;
591}
592
593void CNode::SetAddrLocal(const CService& addrLocalIn) {
596 if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
597 m_addr_local = addrLocalIn;
598 }
599}
600
602{
604}
605
607{
609}
610
611#undef X
612#define X(name) stats.name = name
614{
615 stats.nodeid = this->GetId();
616 X(addr);
617 X(addrBind);
619 X(m_last_send);
620 X(m_last_recv);
623 X(m_connected);
624 X(m_addr_name);
625 X(nVersion);
626 {
628 X(cleanSubVer);
629 }
630 stats.fInbound = IsInboundConn();
633 {
634 LOCK(cs_vSend);
635 X(mapSendBytesPerMsgType);
636 X(nSendBytes);
637 }
638 {
639 LOCK(cs_vRecv);
640 X(mapRecvBytesPerMsgType);
641 X(nRecvBytes);
642 Transport::Info info = m_transport->GetInfo();
643 stats.m_transport_type = info.transport_type;
644 if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
645 }
647
650
651 // Leave string empty if addrLocal invalid (not filled in yet)
652 CService addrLocalUnlocked = GetAddrLocal();
653 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
654
655 X(m_conn_type);
656}
657#undef X
658
659bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
660{
661 complete = false;
662 const auto time = GetTime<std::chrono::microseconds>();
663 LOCK(cs_vRecv);
664 m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
665 nRecvBytes += msg_bytes.size();
666 while (msg_bytes.size() > 0) {
667 // absorb network data
668 if (!m_transport->ReceivedBytes(msg_bytes)) {
669 // Serious transport problem, disconnect from the peer.
670 return false;
671 }
672
673 if (m_transport->ReceivedMessageComplete()) {
674 // decompose a transport agnostic CNetMessage from the deserializer
675 bool reject_message{false};
676 CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
677 if (reject_message) {
678 // Message deserialization failed. Drop the message but don't disconnect the peer.
679 // store the size of the corrupt message
680 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
681 continue;
682 }
683
684 // Store received bytes per message type.
685 // To prevent a memory DOS, only allow known message types.
686 auto i = mapRecvBytesPerMsgType.find(msg.m_type);
687 if (i == mapRecvBytesPerMsgType.end()) {
688 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
689 }
690 assert(i != mapRecvBytesPerMsgType.end());
691 i->second += msg.m_raw_message_size;
692
693 // push the message to the process queue,
694 vRecvMsg.push_back(std::move(msg));
695
696 complete = true;
697 }
698 }
699
700 return true;
701}
702
703std::string CNode::LogIP(bool log_ip) const
704{
705 return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
706}
707
708std::string CNode::DisconnectMsg(bool log_ip) const
709{
710 return strprintf("disconnecting peer=%d%s",
711 GetId(),
712 LogIP(log_ip));
713}
714
715V1Transport::V1Transport(const NodeId node_id) noexcept
716 : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
717{
718 LOCK(m_recv_mutex);
719 Reset();
720}
721
723{
724 return {.transport_type = TransportProtocolType::V1, .session_id = {}};
725}
726
727int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
728{
730 // copy data to temporary parsing buffer
731 unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
732 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
733
734 memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
735 nHdrPos += nCopy;
736
737 // if header incomplete, exit
738 if (nHdrPos < CMessageHeader::HEADER_SIZE)
739 return nCopy;
740
741 // deserialize to CMessageHeader
742 try {
743 hdrbuf >> hdr;
744 }
745 catch (const std::exception&) {
746 LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
747 return -1;
748 }
749
750 // Check start string, network magic
751 if (hdr.pchMessageStart != m_magic_bytes) {
752 LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
753 return -1;
754 }
755
756 // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
757 // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
758 // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
759 if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
760 LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
761 return -1;
762 }
763
764 // switch state to reading message data
765 in_data = true;
766
767 return nCopy;
768}
769
770int V1Transport::readData(std::span<const uint8_t> msg_bytes)
771{
773 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
774 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
775
776 if (vRecv.size() < nDataPos + nCopy) {
777 // Allocate up to 256 KiB ahead, but never more than the total message size.
778 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
779 }
780
781 hasher.Write(msg_bytes.first(nCopy));
782 memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
783 nDataPos += nCopy;
784
785 return nCopy;
786}
787
789{
792 if (data_hash.IsNull())
793 hasher.Finalize(data_hash);
794 return data_hash;
795}
796
797CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
798{
800 // Initialize out parameter
801 reject_message = false;
802 // decompose a single CNetMessage from the TransportDeserializer
804 CNetMessage msg(std::move(vRecv));
805
806 // store message type string, time, and sizes
807 msg.m_type = hdr.GetMessageType();
808 msg.m_time = time;
809 msg.m_message_size = hdr.nMessageSize;
810 msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
811
812 uint256 hash = GetMessageHash();
813
814 // We just received a message off the wire, harvest entropy from the time (and the message checksum)
815 RandAddEvent(ReadLE32(hash.begin()));
816
817 // Check checksum and header message type string
818 if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
819 LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
820 SanitizeString(msg.m_type), msg.m_message_size,
821 HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
822 HexStr(hdr.pchChecksum),
823 m_node_id);
824 reject_message = true;
825 } else if (!hdr.IsMessageTypeValid()) {
826 LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
827 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
828 reject_message = true;
829 }
830
831 // Always reset the network deserializer (prepare for the next message)
832 Reset();
833 return msg;
834}
835
837{
838 AssertLockNotHeld(m_send_mutex);
839 // Determine whether a new message can be set.
840 LOCK(m_send_mutex);
841 if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
842
843 // create dbl-sha256 checksum
844 uint256 hash = Hash(msg.data);
845
846 // create header
847 CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
849
850 // serialize header
851 m_header_to_send.clear();
852 VectorWriter{m_header_to_send, 0, hdr};
853
854 // update state
855 m_message_to_send = std::move(msg);
856 m_sending_header = true;
857 m_bytes_sent = 0;
858 return true;
859}
860
861Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
862{
863 AssertLockNotHeld(m_send_mutex);
864 LOCK(m_send_mutex);
865 if (m_sending_header) {
866 return {std::span{m_header_to_send}.subspan(m_bytes_sent),
867 // We have more to send after the header if the message has payload, or if there
868 // is a next message after that.
869 have_next_message || !m_message_to_send.data.empty(),
870 m_message_to_send.m_type
871 };
872 } else {
873 return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
874 // We only have more to send after this message's payload if there is another
875 // message.
876 have_next_message,
877 m_message_to_send.m_type
878 };
879 }
880}
881
882void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
883{
884 AssertLockNotHeld(m_send_mutex);
885 LOCK(m_send_mutex);
886 m_bytes_sent += bytes_sent;
887 if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
888 // We're done sending a message's header. Switch to sending its data bytes.
889 m_sending_header = false;
890 m_bytes_sent = 0;
891 } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
892 // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
893 ClearShrink(m_message_to_send.data);
894 m_bytes_sent = 0;
895 }
896}
897
898size_t V1Transport::GetSendMemoryUsage() const noexcept
899{
902 // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
903 return m_message_to_send.GetMemoryUsage();
904}
905
906namespace {
907
913const std::array<std::string, 33> V2_MESSAGE_IDS = {
914 "", // 12 bytes follow encoding the message type like in V1
943 // Unimplemented message types that are assigned in BIP324:
944 "",
945 "",
946 "",
947 ""
948};
949
950class V2MessageMap
951{
952 std::unordered_map<std::string, uint8_t> m_map;
953
954public:
955 V2MessageMap() noexcept
956 {
957 for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
958 m_map.emplace(V2_MESSAGE_IDS[i], i);
959 }
960 }
961
962 std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
963 {
964 auto it = m_map.find(message_name);
965 if (it == m_map.end()) return std::nullopt;
966 return it->second;
967 }
968};
969
970const V2MessageMap V2_MESSAGE_MAP;
971
972std::vector<uint8_t> GenerateRandomGarbage() noexcept
973{
974 std::vector<uint8_t> ret;
978 return ret;
979}
980
981} // namespace
982
984{
985 AssertLockHeld(m_send_mutex);
986 Assume(m_send_state == SendState::AWAITING_KEY);
987 Assume(m_send_buffer.empty());
988 // Initialize the send buffer with ellswift pubkey + provided garbage.
989 m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
990 std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
991 std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
992 // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
993}
994
995V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
996 : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
997 m_v1_fallback{nodeid},
998 m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
999 m_send_garbage{std::move(garbage)},
1000 m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1001{
1002 Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1003 // Start sending immediately if we're the initiator of the connection.
1004 if (initiating) {
1005 LOCK(m_send_mutex);
1006 StartSendingHandshake();
1007 }
1008}
1009
1010V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1011 : V2Transport{nodeid, initiating, GenerateRandomKey(),
1012 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1013
1015{
1016 AssertLockHeld(m_recv_mutex);
1017 // Enforce allowed state transitions.
1018 switch (m_recv_state) {
1019 case RecvState::KEY_MAYBE_V1:
1020 Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1021 break;
1022 case RecvState::KEY:
1023 Assume(recv_state == RecvState::GARB_GARBTERM);
1024 break;
1025 case RecvState::GARB_GARBTERM:
1026 Assume(recv_state == RecvState::VERSION);
1027 break;
1028 case RecvState::VERSION:
1029 Assume(recv_state == RecvState::APP);
1030 break;
1031 case RecvState::APP:
1032 Assume(recv_state == RecvState::APP_READY);
1033 break;
1034 case RecvState::APP_READY:
1035 Assume(recv_state == RecvState::APP);
1036 break;
1037 case RecvState::V1:
1038 Assume(false); // V1 state cannot be left
1039 break;
1040 }
1041 // Change state.
1042 m_recv_state = recv_state;
1043}
1044
1045void V2Transport::SetSendState(SendState send_state) noexcept
1046{
1047 AssertLockHeld(m_send_mutex);
1048 // Enforce allowed state transitions.
1049 switch (m_send_state) {
1050 case SendState::MAYBE_V1:
1051 Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1052 break;
1053 case SendState::AWAITING_KEY:
1054 Assume(send_state == SendState::READY);
1055 break;
1056 case SendState::READY:
1057 case SendState::V1:
1058 Assume(false); // Final states
1059 break;
1060 }
1061 // Change state.
1062 m_send_state = send_state;
1063}
1064
1066{
1067 AssertLockNotHeld(m_recv_mutex);
1068 LOCK(m_recv_mutex);
1069 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1070
1071 return m_recv_state == RecvState::APP_READY;
1072}
1073
1075{
1076 AssertLockHeld(m_recv_mutex);
1077 AssertLockNotHeld(m_send_mutex);
1078 Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1079 // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1080 // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1081 // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1082 // sending of the key.
1083 std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1084 std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1085 Assume(m_recv_buffer.size() <= v1_prefix.size());
1086 if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1087 // Mismatch with v1 prefix, so we can assume a v2 connection.
1088 SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1089 // Transition the sender to AWAITING_KEY state and start sending.
1090 LOCK(m_send_mutex);
1093 } else if (m_recv_buffer.size() == v1_prefix.size()) {
1094 // Full match with the v1 prefix, so fall back to v1 behavior.
1095 LOCK(m_send_mutex);
1096 std::span<const uint8_t> feedback{m_recv_buffer};
1097 // Feed already received bytes to v1 transport. It should always accept these, because it's
1098 // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1099 bool ret = m_v1_fallback.ReceivedBytes(feedback);
1100 Assume(feedback.empty());
1101 Assume(ret);
1104 // Reset v2 transport buffers to save memory.
1105 ClearShrink(m_recv_buffer);
1106 ClearShrink(m_send_buffer);
1107 } else {
1108 // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1109 }
1110}
1111
1113{
1114 AssertLockHeld(m_recv_mutex);
1115 AssertLockNotHeld(m_send_mutex);
1116 Assume(m_recv_state == RecvState::KEY);
1117 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1118
1119 // As a special exception, if bytes 4-16 of the key on a responder connection match the
1120 // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1121 // (if they did, we'd have switched to V1 state already), assume this is a peer from
1122 // another network, and disconnect them. They will almost certainly disconnect us too when
1123 // they receive our uniformly random key and garbage, but detecting this case specially
1124 // means we can log it.
1125 static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1126 static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1127 if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1128 if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1129 LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1130 HexStr(std::span(m_recv_buffer).first(OFFSET)));
1131 return false;
1132 }
1133 }
1134
1135 if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1136 // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1137 // our key to initialize the encryption ciphers.
1138
1139 // Initialize the ciphers.
1140 EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1141 LOCK(m_send_mutex);
1142 m_cipher.Initialize(ellswift, m_initiating);
1143
1144 // Switch receiver state to GARB_GARBTERM.
1146 m_recv_buffer.clear();
1147
1148 // Switch sender state to READY.
1150
1151 // Append the garbage terminator to the send buffer.
1152 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1153 std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1155 MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1156
1157 // Construct version packet in the send buffer, with the sent garbage data as AAD.
1158 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1160 /*contents=*/VERSION_CONTENTS,
1161 /*aad=*/MakeByteSpan(m_send_garbage),
1162 /*ignore=*/false,
1163 /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1164 // We no longer need the garbage.
1165 ClearShrink(m_send_garbage);
1166 } else {
1167 // We still have to receive more key bytes.
1168 }
1169 return true;
1170}
1171
1173{
1174 AssertLockHeld(m_recv_mutex);
1175 Assume(m_recv_state == RecvState::GARB_GARBTERM);
1177 if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1178 if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1179 // Garbage terminator received. Store garbage to authenticate it as AAD later.
1180 m_recv_aad = std::move(m_recv_buffer);
1181 m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1182 m_recv_buffer.clear();
1184 } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1185 // We've reached the maximum length for garbage + garbage terminator, and the
1186 // terminator still does not match. Abort.
1187 LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1188 return false;
1189 } else {
1190 // We still need to receive more garbage and/or garbage terminator bytes.
1191 }
1192 } else {
1193 // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1194 // more first.
1195 }
1196 return true;
1197}
1198
1200{
1201 AssertLockHeld(m_recv_mutex);
1202 Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1203
1204 // The maximum permitted contents length for a packet, consisting of:
1205 // - 0x00 byte: indicating long message type encoding
1206 // - 12 bytes of message type
1207 // - payload
1208 static constexpr size_t MAX_CONTENTS_LEN =
1210 std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1211
1212 if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1213 // Length descriptor received.
1214 m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1215 if (m_recv_len > MAX_CONTENTS_LEN) {
1216 LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1217 return false;
1218 }
1219 } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1220 // Ciphertext received, decrypt it into m_recv_decode_buffer.
1221 // Note that it is impossible to reach this branch without hitting the branch above first,
1222 // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1223 m_recv_decode_buffer.resize(m_recv_len);
1224 bool ignore{false};
1225 bool ret = m_cipher.Decrypt(
1226 /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1227 /*aad=*/MakeByteSpan(m_recv_aad),
1228 /*ignore=*/ignore,
1229 /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1230 if (!ret) {
1231 LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1232 return false;
1233 }
1234 // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1235 ClearShrink(m_recv_aad);
1236 // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1237 RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1238
1239 // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1240 // decoy, which we simply ignore, use the current state to decide what to do with it.
1241 if (!ignore) {
1242 switch (m_recv_state) {
1243 case RecvState::VERSION:
1244 // Version message received; transition to application phase. The contents is
1245 // ignored, but can be used for future extensions.
1247 break;
1248 case RecvState::APP:
1249 // Application message decrypted correctly. It can be extracted using GetMessage().
1251 break;
1252 default:
1253 // Any other state is invalid (this function should not have been called).
1254 Assume(false);
1255 }
1256 }
1257 // Wipe the receive buffer where the next packet will be received into.
1258 ClearShrink(m_recv_buffer);
1259 // In all but APP_READY state, we can wipe the decoded contents.
1260 if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1261 } else {
1262 // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1263 // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1264 }
1265 return true;
1266}
1267
1269{
1270 AssertLockHeld(m_recv_mutex);
1271 switch (m_recv_state) {
1273 // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1274 // receive buffer.
1275 Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1276 // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1277 // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1278 // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1279 // back into the m_v1_fallback V1 transport.
1280 return V1_PREFIX_LEN - m_recv_buffer.size();
1281 case RecvState::KEY:
1282 // During the KEY state, we only allow the 64-byte key into the receive buffer.
1283 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1284 // As long as we have not received the other side's public key, don't receive more than
1285 // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1286 // key exchange first.
1287 return EllSwiftPubKey::size() - m_recv_buffer.size();
1289 // Process garbage bytes one by one (because terminator may appear anywhere).
1290 return 1;
1291 case RecvState::VERSION:
1292 case RecvState::APP:
1293 // These three states all involve decoding a packet. Process the length descriptor first,
1294 // so that we know where the current packet ends (and we don't process bytes from the next
1295 // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1296 if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1297 return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1298 } else {
1299 // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1300 // and encoded packet size, which includes the 3 bytes due to the packet length.
1301 // When transitioning from receiving the packet length to receiving its ciphertext,
1302 // the encrypted packet length is left in the receive buffer.
1303 return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1304 }
1306 // No bytes can be processed until GetMessage() is called.
1307 return 0;
1308 case RecvState::V1:
1309 // Not allowed (must be dealt with by the caller).
1310 Assume(false);
1311 return 0;
1312 }
1313 Assume(false); // unreachable
1314 return 0;
1315}
1316
1317bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1318{
1319 AssertLockNotHeld(m_recv_mutex);
1321 static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1322
1323 LOCK(m_recv_mutex);
1324 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1325
1326 // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1327 // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1328 // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1329 // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1330 while (!msg_bytes.empty()) {
1331 // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1332 size_t max_read = GetMaxBytesToProcess();
1333
1334 // Reserve space in the buffer if there is not enough.
1335 if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1336 switch (m_recv_state) {
1337 case RecvState::KEY_MAYBE_V1:
1338 case RecvState::KEY:
1339 case RecvState::GARB_GARBTERM:
1340 // During the initial states (key/garbage), allocate once to fit the maximum (4111
1341 // bytes).
1342 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1343 break;
1344 case RecvState::VERSION:
1345 case RecvState::APP: {
1346 // During states where a packet is being received, as much as is expected but never
1347 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1348 // This means attackers that want to cause us to waste allocated memory are limited
1349 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1350 // MAX_RESERVE_AHEAD more than they've actually sent us.
1351 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1352 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1353 break;
1354 }
1355 case RecvState::APP_READY:
1356 // The buffer is empty in this state.
1357 Assume(m_recv_buffer.empty());
1358 break;
1359 case RecvState::V1:
1360 // Should have bailed out above.
1361 Assume(false);
1362 break;
1363 }
1364 }
1365
1366 // Can't read more than provided input.
1367 max_read = std::min(msg_bytes.size(), max_read);
1368 // Copy data to buffer.
1369 m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1370 msg_bytes = msg_bytes.subspan(max_read);
1371
1372 // Process data in the buffer.
1373 switch (m_recv_state) {
1374 case RecvState::KEY_MAYBE_V1:
1375 ProcessReceivedMaybeV1Bytes();
1376 if (m_recv_state == RecvState::V1) return true;
1377 break;
1378
1379 case RecvState::KEY:
1380 if (!ProcessReceivedKeyBytes()) return false;
1381 break;
1382
1383 case RecvState::GARB_GARBTERM:
1384 if (!ProcessReceivedGarbageBytes()) return false;
1385 break;
1386
1387 case RecvState::VERSION:
1388 case RecvState::APP:
1389 if (!ProcessReceivedPacketBytes()) return false;
1390 break;
1391
1392 case RecvState::APP_READY:
1393 return true;
1394
1395 case RecvState::V1:
1396 // We should have bailed out before.
1397 Assume(false);
1398 break;
1399 }
1400 // Make sure we have made progress before continuing.
1401 Assume(max_read > 0);
1402 }
1403
1404 return true;
1405}
1406
1407std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1408{
1409 if (contents.size() == 0) return std::nullopt; // Empty contents
1410 uint8_t first_byte = contents[0];
1411 contents = contents.subspan(1); // Strip first byte.
1412
1413 if (first_byte != 0) {
1414 // Short (1 byte) encoding.
1415 if (first_byte < std::size(V2_MESSAGE_IDS)) {
1416 // Valid short message id.
1417 return V2_MESSAGE_IDS[first_byte];
1418 } else {
1419 // Unknown short message id.
1420 return std::nullopt;
1421 }
1422 }
1423
1424 if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1425 return std::nullopt; // Long encoding needs 12 message type bytes.
1426 }
1427
1428 size_t msg_type_len{0};
1429 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1430 // Verify that message type bytes before the first 0x00 are in range.
1431 if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1432 return {};
1433 }
1434 ++msg_type_len;
1435 }
1436 std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1437 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1438 // Verify that message type bytes after the first 0x00 are also 0x00.
1439 if (contents[msg_type_len] != 0) return {};
1440 ++msg_type_len;
1441 }
1442 // Strip message type bytes of contents.
1443 contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1444 return ret;
1445}
1446
1447CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1448{
1449 AssertLockNotHeld(m_recv_mutex);
1450 LOCK(m_recv_mutex);
1451 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1452
1453 Assume(m_recv_state == RecvState::APP_READY);
1454 std::span<const uint8_t> contents{m_recv_decode_buffer};
1455 auto msg_type = GetMessageType(contents);
1457 // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1458 msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1459 if (msg_type) {
1460 reject_message = false;
1461 msg.m_type = std::move(*msg_type);
1462 msg.m_time = time;
1463 msg.m_message_size = contents.size();
1464 msg.m_recv.resize(contents.size());
1465 std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1466 } else {
1467 LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1468 reject_message = true;
1469 }
1470 ClearShrink(m_recv_decode_buffer);
1471 SetReceiveState(RecvState::APP);
1472
1473 return msg;
1474}
1475
1477{
1478 AssertLockNotHeld(m_send_mutex);
1479 LOCK(m_send_mutex);
1480 if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1481 // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1482 // is available) and the send buffer is empty. This limits the number of messages in the send
1483 // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1484 if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1485 // Construct contents (encoding message type + payload).
1486 std::vector<uint8_t> contents;
1487 auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1488 if (short_message_id) {
1489 contents.resize(1 + msg.data.size());
1490 contents[0] = *short_message_id;
1491 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1492 } else {
1493 // Initialize with zeroes, and then write the message type string starting at offset 1.
1494 // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1495 contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1496 std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1497 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1498 }
1499 // Construct ciphertext in send buffer.
1500 m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1501 m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1502 m_send_type = msg.m_type;
1503 // Release memory
1504 ClearShrink(msg.data);
1505 return true;
1506}
1507
1508Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1509{
1510 AssertLockNotHeld(m_send_mutex);
1511 LOCK(m_send_mutex);
1512 if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1513
1514 if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1515 Assume(m_send_pos <= m_send_buffer.size());
1516 return {
1517 std::span{m_send_buffer}.subspan(m_send_pos),
1518 // We only have more to send after the current m_send_buffer if there is a (next)
1519 // message to be sent, and we're capable of sending packets. */
1520 have_next_message && m_send_state == SendState::READY,
1521 m_send_type
1522 };
1523}
1524
1525void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1526{
1527 AssertLockNotHeld(m_send_mutex);
1528 LOCK(m_send_mutex);
1529 if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1530
1531 if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1532 LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1533 }
1534
1535 m_send_pos += bytes_sent;
1536 Assume(m_send_pos <= m_send_buffer.size());
1537 if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1538 m_sent_v1_header_worth = true;
1539 }
1540 // Wipe the buffer when everything is sent.
1541 if (m_send_pos == m_send_buffer.size()) {
1542 m_send_pos = 0;
1543 ClearShrink(m_send_buffer);
1544 }
1545}
1546
1548{
1549 AssertLockNotHeld(m_send_mutex);
1550 AssertLockNotHeld(m_recv_mutex);
1551 // Only outgoing connections need reconnection.
1552 if (!m_initiating) return false;
1553
1554 LOCK(m_recv_mutex);
1555 // We only reconnect in the very first state and when the receive buffer is empty. Together
1556 // these conditions imply nothing has been received so far.
1557 if (m_recv_state != RecvState::KEY) return false;
1558 if (!m_recv_buffer.empty()) return false;
1559 // Check if we've sent enough for the other side to disconnect us (if it was V1).
1560 LOCK(m_send_mutex);
1561 return m_sent_v1_header_worth;
1562}
1563
1564size_t V2Transport::GetSendMemoryUsage() const noexcept
1565{
1566 AssertLockNotHeld(m_send_mutex);
1567 LOCK(m_send_mutex);
1568 if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1569
1570 return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1571}
1572
1574{
1575 AssertLockNotHeld(m_recv_mutex);
1576 LOCK(m_recv_mutex);
1577 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1578
1579 Transport::Info info;
1580
1581 // Do not report v2 and session ID until the version packet has been received
1582 // and verified (confirming that the other side very likely has the same keys as us).
1583 if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1584 m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1587 } else {
1589 }
1590
1591 return info;
1592}
1593
1594std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1595{
1596 auto it = node.vSendMsg.begin();
1597 size_t nSentSize = 0;
1598 bool data_left{false};
1599 std::optional<bool> expected_more;
1600
1601 while (true) {
1602 if (it != node.vSendMsg.end()) {
1603 // If possible, move one message from the send queue to the transport. This fails when
1604 // there is an existing message still being sent, or (for v2 transports) when the
1605 // handshake has not yet completed.
1606 size_t memusage = it->GetMemoryUsage();
1607 if (node.m_transport->SetMessageToSend(*it)) {
1608 // Update memory usage of send buffer (as *it will be deleted).
1609 node.m_send_memusage -= memusage;
1610 ++it;
1611 }
1612 }
1613 const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1614 // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1615 // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1616 // verify that the previously returned 'more' was correct.
1617 if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1618 expected_more = more;
1619 data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1620 int nBytes = 0;
1621 if (!data.empty()) {
1622 LOCK(node.m_sock_mutex);
1623 // There is no socket in case we've already disconnected, or in test cases without
1624 // real connections. In these cases, we bail out immediately and just leave things
1625 // in the send queue and transport.
1626 if (!node.m_sock) {
1627 break;
1628 }
1630#ifdef MSG_MORE
1631 if (more) {
1632 flags |= MSG_MORE;
1633 }
1634#endif
1635 nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1636 }
1637 if (nBytes > 0) {
1638 node.m_last_send = GetTime<std::chrono::seconds>();
1639 node.nSendBytes += nBytes;
1640 // Notify transport that bytes have been processed.
1641 node.m_transport->MarkBytesSent(nBytes);
1642 // Update statistics per message type.
1643 if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1644 node.AccountForSentBytes(msg_type, nBytes);
1645 }
1646 nSentSize += nBytes;
1647 if ((size_t)nBytes != data.size()) {
1648 // could not send full message; stop sending more
1649 break;
1650 }
1651 } else {
1652 if (nBytes < 0) {
1653 // error
1654 int nErr = WSAGetLastError();
1655 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1656 LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1657 node.CloseSocketDisconnect();
1658 }
1659 }
1660 break;
1661 }
1662 }
1663
1664 node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1665
1666 if (it == node.vSendMsg.end()) {
1667 assert(node.m_send_memusage == 0);
1668 }
1669 node.vSendMsg.erase(node.vSendMsg.begin(), it);
1670 return {nSentSize, data_left};
1671}
1672
1682{
1683 std::vector<NodeEvictionCandidate> vEvictionCandidates;
1684 {
1685
1687 for (const CNode* node : m_nodes) {
1688 if (node->fDisconnect)
1689 continue;
1690 NodeEvictionCandidate candidate{
1691 .id = node->GetId(),
1692 .m_connected = node->m_connected,
1693 .m_min_ping_time = node->m_min_ping_time,
1694 .m_last_block_time = node->m_last_block_time,
1695 .m_last_tx_time = node->m_last_tx_time,
1696 .fRelevantServices = node->m_has_all_wanted_services,
1697 .m_relay_txs = node->m_relays_txs.load(),
1698 .fBloomFilter = node->m_bloom_filter_loaded.load(),
1699 .nKeyedNetGroup = node->nKeyedNetGroup,
1700 .prefer_evict = node->m_prefer_evict,
1701 .m_is_local = node->addr.IsLocal(),
1702 .m_network = node->ConnectedThroughNetwork(),
1703 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1704 .m_conn_type = node->m_conn_type,
1705 };
1706 vEvictionCandidates.push_back(candidate);
1707 }
1708 }
1709 const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1710 if (!node_id_to_evict) {
1711 return false;
1712 }
1714 for (CNode* pnode : m_nodes) {
1715 if (pnode->GetId() == *node_id_to_evict) {
1716 LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1717 TRACEPOINT(net, evicted_inbound_connection,
1718 pnode->GetId(),
1719 pnode->m_addr_name.c_str(),
1720 pnode->ConnectionTypeAsString().c_str(),
1721 pnode->ConnectedThroughNetwork(),
1722 Ticks<std::chrono::seconds>(pnode->m_connected));
1723 pnode->fDisconnect = true;
1724 return true;
1725 }
1726 }
1727 return false;
1728}
1729
1730void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1731 struct sockaddr_storage sockaddr;
1732 socklen_t len = sizeof(sockaddr);
1733 auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1734
1735 if (!sock) {
1736 const int nErr = WSAGetLastError();
1737 if (nErr != WSAEWOULDBLOCK) {
1738 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1739 }
1740 return;
1741 }
1742
1743 CService addr;
1744 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1745 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1746 } else {
1747 addr = MaybeFlipIPv6toCJDNS(addr);
1748 }
1749
1750 const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1751
1753 hListenSocket.AddSocketPermissionFlags(permission_flags);
1754
1755 CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1756}
1757
1758void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1759 NetPermissionFlags permission_flags,
1760 const CService& addr_bind,
1761 const CService& addr)
1762{
1763 int nInbound = 0;
1764
1766
1767 {
1769 for (const CNode* pnode : m_nodes) {
1770 if (pnode->IsInboundConn()) nInbound++;
1771 }
1772 }
1773
1774 if (!fNetworkActive) {
1775 LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1776 return;
1777 }
1778
1779 if (!sock->IsSelectable()) {
1780 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1781 return;
1782 }
1783
1784 // According to the internet TCP_NODELAY is not carried into accepted sockets
1785 // on all platforms. Set it again here just to be sure.
1786 const int on{1};
1787 if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1788 LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1789 addr.ToStringAddrPort());
1790 }
1791
1792 // Don't accept connections from banned peers.
1793 bool banned = m_banman && m_banman->IsBanned(addr);
1794 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1795 {
1796 LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1797 return;
1798 }
1799
1800 // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1801 bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1802 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1803 {
1804 LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1805 return;
1806 }
1807
1808 if (nInbound >= m_max_inbound)
1809 {
1810 if (!AttemptToEvictConnection()) {
1811 // No connection to evict, disconnect the new connection
1812 LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1813 return;
1814 }
1815 }
1816
1817 NodeId id = GetNewNodeId();
1819
1820 const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1821 // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1822 // detected, so use it whenever we signal NODE_P2P_V2.
1823 ServiceFlags local_services = GetLocalServices();
1824 const bool use_v2transport(local_services & NODE_P2P_V2);
1825
1826 CNode* pnode = new CNode(id,
1827 std::move(sock),
1828 CAddress{addr, NODE_NONE},
1830 nonce,
1831 addr_bind,
1832 /*addrNameIn=*/"",
1834 inbound_onion,
1836 .permission_flags = permission_flags,
1837 .prefer_evict = discouraged,
1838 .recv_flood_size = nReceiveFloodSize,
1839 .use_v2transport = use_v2transport,
1840 });
1841 pnode->AddRef();
1842 m_msgproc->InitializeNode(*pnode, local_services);
1843 {
1845 m_nodes.push_back(pnode);
1846 }
1847 LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1848 TRACEPOINT(net, inbound_connection,
1849 pnode->GetId(),
1850 pnode->m_addr_name.c_str(),
1851 pnode->ConnectionTypeAsString().c_str(),
1852 pnode->ConnectedThroughNetwork(),
1854
1855 // We received a new connection, harvest entropy from the time (and our peer count)
1856 RandAddEvent((uint32_t)id);
1857}
1858
1859bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1860{
1862 std::optional<int> max_connections;
1863 switch (conn_type) {
1866 return false;
1868 max_connections = m_max_outbound_full_relay;
1869 break;
1871 max_connections = m_max_outbound_block_relay;
1872 break;
1873 // no limit for ADDR_FETCH because -seednode has no limit either
1875 break;
1876 // no limit for FEELER connections since they're short-lived
1878 break;
1879 } // no default case, so the compiler can warn about missing cases
1880
1881 // Count existing connections
1882 int existing_connections = WITH_LOCK(m_nodes_mutex,
1883 return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1884
1885 // Max connections of specified type already exist
1886 if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1887
1888 // Max total outbound connections already exist
1890 if (!grant) return false;
1891
1892 OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1893 return true;
1894}
1895
1897{
1900
1901 // Use a temporary variable to accumulate desired reconnections, so we don't need
1902 // m_reconnections_mutex while holding m_nodes_mutex.
1903 decltype(m_reconnections) reconnections_to_add;
1904
1905 {
1907
1908 const bool network_active{fNetworkActive};
1909 if (!network_active) {
1910 // Disconnect any connected nodes
1911 for (CNode* pnode : m_nodes) {
1912 if (!pnode->fDisconnect) {
1913 LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1914 pnode->fDisconnect = true;
1915 }
1916 }
1917 }
1918
1919 // Disconnect unused nodes
1920 std::vector<CNode*> nodes_copy = m_nodes;
1921 for (CNode* pnode : nodes_copy)
1922 {
1923 if (pnode->fDisconnect)
1924 {
1925 // remove from m_nodes
1926 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1927
1928 // Add to reconnection list if appropriate. We don't reconnect right here, because
1929 // the creation of a connection is a blocking operation (up to several seconds),
1930 // and we don't want to hold up the socket handler thread for that long.
1931 if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1932 reconnections_to_add.push_back({
1933 .addr_connect = pnode->addr,
1934 .grant = std::move(pnode->grantOutbound),
1935 .destination = pnode->m_dest,
1936 .conn_type = pnode->m_conn_type,
1937 .use_v2transport = false});
1938 LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1939 }
1940
1941 // release outbound grant (if any)
1942 pnode->grantOutbound.Release();
1943
1944 // close socket and cleanup
1945 pnode->CloseSocketDisconnect();
1946
1947 // update connection count by network
1948 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1949
1950 // hold in disconnected pool until all refs are released
1951 pnode->Release();
1952 m_nodes_disconnected.push_back(pnode);
1953 }
1954 }
1955 }
1956 {
1957 // Delete disconnected nodes
1958 std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1959 for (CNode* pnode : nodes_disconnected_copy)
1960 {
1961 // Destroy the object only after other threads have stopped using it.
1962 if (pnode->GetRefCount() <= 0) {
1963 m_nodes_disconnected.remove(pnode);
1964 DeleteNode(pnode);
1965 }
1966 }
1967 }
1968 {
1969 // Move entries from reconnections_to_add to m_reconnections.
1971 m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1972 }
1973}
1974
1976{
1977 size_t nodes_size;
1978 {
1980 nodes_size = m_nodes.size();
1981 }
1982 if(nodes_size != nPrevNodeCount) {
1983 nPrevNodeCount = nodes_size;
1984 if (m_client_interface) {
1985 m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1986 }
1987 }
1988}
1989
1990bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1991{
1992 return node.m_connected + m_peer_connect_timeout < now;
1993}
1994
1996{
1997 // Tests that see disconnects after using mocktime can start nodes with a
1998 // large timeout. For example, -peertimeout=999999999.
1999 const auto now{GetTime<std::chrono::seconds>()};
2000 const auto last_send{node.m_last_send.load()};
2001 const auto last_recv{node.m_last_recv.load()};
2002
2003 if (!ShouldRunInactivityChecks(node, now)) return false;
2004
2005 bool has_received{last_recv.count() != 0};
2006 bool has_sent{last_send.count() != 0};
2007
2008 if (!has_received || !has_sent) {
2009 std::string has_never;
2010 if (!has_received) has_never += ", never received from peer";
2011 if (!has_sent) has_never += ", never sent to peer";
2013 "socket no message in first %i seconds%s, %s\n",
2015 has_never,
2016 node.DisconnectMsg(fLogIPs)
2017 );
2018 return true;
2019 }
2020
2021 if (now > last_send + TIMEOUT_INTERVAL) {
2023 "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2024 node.DisconnectMsg(fLogIPs)
2025 );
2026 return true;
2027 }
2028
2029 if (now > last_recv + TIMEOUT_INTERVAL) {
2031 "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2032 node.DisconnectMsg(fLogIPs)
2033 );
2034 return true;
2035 }
2036
2037 if (!node.fSuccessfullyConnected) {
2038 if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2039 LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2040 } else {
2041 LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2042 }
2043 return true;
2044 }
2045
2046 return false;
2047}
2048
2050{
2051 Sock::EventsPerSock events_per_sock;
2052
2053 for (const ListenSocket& hListenSocket : vhListenSocket) {
2054 events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2055 }
2056
2057 for (CNode* pnode : nodes) {
2058 bool select_recv = !pnode->fPauseRecv;
2059 bool select_send;
2060 {
2061 LOCK(pnode->cs_vSend);
2062 // Sending is possible if either there are bytes to send right now, or if there will be
2063 // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2064 // determines both of these in a single call.
2065 const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2066 select_send = !to_send.empty() || more;
2067 }
2068 if (!select_recv && !select_send) continue;
2069
2070 LOCK(pnode->m_sock_mutex);
2071 if (pnode->m_sock) {
2072 Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2073 events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2074 }
2075 }
2076
2077 return events_per_sock;
2078}
2079
2081{
2083
2084 Sock::EventsPerSock events_per_sock;
2085
2086 {
2087 const NodesSnapshot snap{*this, /*shuffle=*/false};
2088
2089 const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2090
2091 // Check for the readiness of the already connected sockets and the
2092 // listening sockets in one call ("readiness" as in poll(2) or
2093 // select(2)). If none are ready, wait for a short while and return
2094 // empty sets.
2095 events_per_sock = GenerateWaitSockets(snap.Nodes());
2096 if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2097 interruptNet.sleep_for(timeout);
2098 }
2099
2100 // Service (send/receive) each of the already connected nodes.
2101 SocketHandlerConnected(snap.Nodes(), events_per_sock);
2102 }
2103
2104 // Accept new connections from listening sockets.
2105 SocketHandlerListening(events_per_sock);
2106}
2107
2108void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2109 const Sock::EventsPerSock& events_per_sock)
2110{
2112
2113 for (CNode* pnode : nodes) {
2114 if (interruptNet)
2115 return;
2116
2117 //
2118 // Receive
2119 //
2120 bool recvSet = false;
2121 bool sendSet = false;
2122 bool errorSet = false;
2123 {
2124 LOCK(pnode->m_sock_mutex);
2125 if (!pnode->m_sock) {
2126 continue;
2127 }
2128 const auto it = events_per_sock.find(pnode->m_sock);
2129 if (it != events_per_sock.end()) {
2130 recvSet = it->second.occurred & Sock::RECV;
2131 sendSet = it->second.occurred & Sock::SEND;
2132 errorSet = it->second.occurred & Sock::ERR;
2133 }
2134 }
2135
2136 if (sendSet) {
2137 // Send data
2138 auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2139 if (bytes_sent) {
2140 RecordBytesSent(bytes_sent);
2141
2142 // If both receiving and (non-optimistic) sending were possible, we first attempt
2143 // sending. If that succeeds, but does not fully drain the send queue, do not
2144 // attempt to receive. This avoids needlessly queueing data if the remote peer
2145 // is slow at receiving data, by means of TCP flow control. We only do this when
2146 // sending actually succeeded to make sure progress is always made; otherwise a
2147 // deadlock would be possible when both sides have data to send, but neither is
2148 // receiving.
2149 if (data_left) recvSet = false;
2150 }
2151 }
2152
2153 if (recvSet || errorSet)
2154 {
2155 // typical socket buffer is 8K-64K
2156 uint8_t pchBuf[0x10000];
2157 int nBytes = 0;
2158 {
2159 LOCK(pnode->m_sock_mutex);
2160 if (!pnode->m_sock) {
2161 continue;
2162 }
2163 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2164 }
2165 if (nBytes > 0)
2166 {
2167 bool notify = false;
2168 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2170 "receiving message bytes failed, %s\n",
2171 pnode->DisconnectMsg(fLogIPs)
2172 );
2173 pnode->CloseSocketDisconnect();
2174 }
2175 RecordBytesRecv(nBytes);
2176 if (notify) {
2177 pnode->MarkReceivedMsgsForProcessing();
2179 }
2180 }
2181 else if (nBytes == 0)
2182 {
2183 // socket closed gracefully
2184 if (!pnode->fDisconnect) {
2185 LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2186 }
2187 pnode->CloseSocketDisconnect();
2188 }
2189 else if (nBytes < 0)
2190 {
2191 // error
2192 int nErr = WSAGetLastError();
2193 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2194 {
2195 if (!pnode->fDisconnect) {
2196 LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2197 }
2198 pnode->CloseSocketDisconnect();
2199 }
2200 }
2201 }
2202
2203 if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2204 }
2205}
2206
2208{
2209 for (const ListenSocket& listen_socket : vhListenSocket) {
2210 if (interruptNet) {
2211 return;
2212 }
2213 const auto it = events_per_sock.find(listen_socket.sock);
2214 if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2215 AcceptConnection(listen_socket);
2216 }
2217 }
2218}
2219
2221{
2223
2224 while (!interruptNet)
2225 {
2228 SocketHandler();
2229 }
2230}
2231
2233{
2234 {
2236 fMsgProcWake = true;
2237 }
2238 condMsgProc.notify_one();
2239}
2240
2242{
2243 int outbound_connection_count = 0;
2244
2245 if (!gArgs.GetArgs("-seednode").empty()) {
2246 auto start = NodeClock::now();
2247 constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2248 LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2249 while (!interruptNet) {
2250 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2251 return;
2252
2253 // Abort if we have spent enough time without reaching our target.
2254 // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2255 if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2256 LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2257 break;
2258 }
2259
2260 outbound_connection_count = GetFullOutboundConnCount();
2261 if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2262 LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2263 break;
2264 }
2265 }
2266 }
2267
2269 std::vector<std::string> seeds = m_params.DNSSeeds();
2270 std::shuffle(seeds.begin(), seeds.end(), rng);
2271 int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2272
2273 if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2274 // When -forcednsseed is provided, query all.
2275 seeds_right_now = seeds.size();
2276 } else if (addrman.Size() == 0) {
2277 // If we have no known peers, query all.
2278 // This will occur on the first run, or if peers.dat has been
2279 // deleted.
2280 seeds_right_now = seeds.size();
2281 }
2282
2283 // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2284 if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2285 // goal: only query DNS seed if address need is acute
2286 // * If we have a reasonable number of peers in addrman, spend
2287 // some time trying them first. This improves user privacy by
2288 // creating fewer identifying DNS requests, reduces trust by
2289 // giving seeds less influence on the network topology, and
2290 // reduces traffic to the seeds.
2291 // * When querying DNS seeds query a few at once, this ensures
2292 // that we don't give DNS seeds the ability to eclipse nodes
2293 // that query them.
2294 // * If we continue having problems, eventually query all the
2295 // DNS seeds, and if that fails too, also try the fixed seeds.
2296 // (done in ThreadOpenConnections)
2297 int found = 0;
2298 const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2299
2300 for (const std::string& seed : seeds) {
2301 if (seeds_right_now == 0) {
2302 seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2303
2304 if (addrman.Size() > 0) {
2305 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2306 std::chrono::seconds to_wait = seeds_wait_time;
2307 while (to_wait.count() > 0) {
2308 // if sleeping for the MANY_PEERS interval, wake up
2309 // early to see if we have enough peers and can stop
2310 // this thread entirely freeing up its resources
2311 std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2312 if (!interruptNet.sleep_for(w)) return;
2313 to_wait -= w;
2314
2316 if (found > 0) {
2317 LogPrintf("%d addresses found from DNS seeds\n", found);
2318 LogPrintf("P2P peers available. Finished DNS seeding.\n");
2319 } else {
2320 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2321 }
2322 return;
2323 }
2324 }
2325 }
2326 }
2327
2328 if (interruptNet) return;
2329
2330 // hold off on querying seeds if P2P network deactivated
2331 if (!fNetworkActive) {
2332 LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2333 do {
2334 if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2335 } while (!fNetworkActive);
2336 }
2337
2338 LogPrintf("Loading addresses from DNS seed %s\n", seed);
2339 // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2340 // for the base dns seed domain in chainparams
2341 if (HaveNameProxy()) {
2342 AddAddrFetch(seed);
2343 } else {
2344 std::vector<CAddress> vAdd;
2345 constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2346 std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2347 CNetAddr resolveSource;
2348 if (!resolveSource.SetInternal(host)) {
2349 continue;
2350 }
2351 // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2352 // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2353 // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2354 // returned.
2355 unsigned int nMaxIPs = 32;
2356 const auto addresses{LookupHost(host, nMaxIPs, true)};
2357 if (!addresses.empty()) {
2358 for (const CNetAddr& ip : addresses) {
2359 CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2360 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2361 vAdd.push_back(addr);
2362 found++;
2363 }
2364 addrman.Add(vAdd, resolveSource);
2365 } else {
2366 // If the seed does not support a subdomain with our desired service bits,
2367 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2368 // base dns seed domain in chainparams
2369 AddAddrFetch(seed);
2370 }
2371 }
2372 --seeds_right_now;
2373 }
2374 LogPrintf("%d addresses found from DNS seeds\n", found);
2375 } else {
2376 LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2377 }
2378}
2379
2381{
2382 const auto start{SteadyClock::now()};
2383
2385
2386 LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2387 addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2388}
2389
2391{
2393 std::string strDest;
2394 {
2396 if (m_addr_fetches.empty())
2397 return;
2398 strDest = m_addr_fetches.front();
2399 m_addr_fetches.pop_front();
2400 }
2401 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2402 // peer doesn't support it or immediately disconnects us for another reason.
2404 CAddress addr;
2405 CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2406 if (grant) {
2407 OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2408 }
2409}
2410
2412{
2414}
2415
2417{
2419 LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2420}
2421
2423{
2424 LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2426}
2427
2428// Return the number of outbound connections that are full relay (not blocks only)
2430{
2431 int nRelevant = 0;
2432 {
2434 for (const CNode* pnode : m_nodes) {
2435 if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2436 }
2437 }
2438 return nRelevant;
2439}
2440
2441// Return the number of peers we have over our outbound connection limit
2442// Exclude peers that are marked for disconnect, or are going to be
2443// disconnected soon (eg ADDR_FETCH and FEELER)
2444// Also exclude peers that haven't finished initial connection handshake yet
2445// (so that we don't decide we're over our desired connection limit, and then
2446// evict some peer that has finished the handshake)
2448{
2449 int full_outbound_peers = 0;
2450 {
2452 for (const CNode* pnode : m_nodes) {
2453 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2454 ++full_outbound_peers;
2455 }
2456 }
2457 }
2458 return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2459}
2460
2462{
2463 int block_relay_peers = 0;
2464 {
2466 for (const CNode* pnode : m_nodes) {
2467 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2468 ++block_relay_peers;
2469 }
2470 }
2471 }
2472 return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2473}
2474
2475std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2476{
2477 std::unordered_set<Network> networks{};
2478 for (int n = 0; n < NET_MAX; n++) {
2479 enum Network net = (enum Network)n;
2480 if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2481 if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2482 networks.insert(net);
2483 }
2484 }
2485 return networks;
2486}
2487
2489{
2491 return m_network_conn_counts[net] > 1;
2492}
2493
2494bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2495{
2496 std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2497 std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2498
2500 for (const auto net : nets) {
2501 if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2502 network = net;
2503 return true;
2504 }
2505 }
2506
2507 return false;
2508}
2509
2510void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2511{
2515 // Connect to specific addresses
2516 if (!connect.empty())
2517 {
2518 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2519 // peer doesn't support it or immediately disconnects us for another reason.
2521 for (int64_t nLoop = 0;; nLoop++)
2522 {
2523 for (const std::string& strAddr : connect)
2524 {
2525 CAddress addr(CService(), NODE_NONE);
2526 OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2527 for (int i = 0; i < 10 && i < nLoop; i++)
2528 {
2529 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2530 return;
2531 }
2532 }
2533 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2534 return;
2536 }
2537 }
2538
2539 // Initiate network connections
2540 auto start = GetTime<std::chrono::microseconds>();
2541
2542 // Minimum time before next feeler connection (in microseconds).
2543 auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2544 auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2545 auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2546 const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2547 bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2548 const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2549
2550 auto seed_node_timer = NodeClock::now();
2551 bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2552 constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2553
2554 if (!add_fixed_seeds) {
2555 LogPrintf("Fixed seeds are disabled\n");
2556 }
2557
2558 while (!interruptNet)
2559 {
2560 if (add_addr_fetch) {
2561 add_addr_fetch = false;
2562 const auto& seed{SpanPopBack(seed_nodes)};
2563 AddAddrFetch(seed);
2564
2565 if (addrman.Size() == 0) {
2566 LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2567 } else {
2568 LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2569 }
2570 }
2571
2573
2574 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2575 return;
2576
2578
2580 if (interruptNet)
2581 return;
2582
2583 const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2584 if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2585 // When the node starts with an empty peers.dat, there are a few other sources of peers before
2586 // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2587 // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2588 // 60 seconds for any of those sources to populate addrman.
2589 bool add_fixed_seeds_now = false;
2590 // It is cheapest to check if enough time has passed first.
2591 if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2592 add_fixed_seeds_now = true;
2593 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2594 }
2595
2596 // Perform cheap checks before locking a mutex.
2597 else if (!dnsseed && !use_seednodes) {
2599 if (m_added_node_params.empty()) {
2600 add_fixed_seeds_now = true;
2601 LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2602 }
2603 }
2604
2605 if (add_fixed_seeds_now) {
2606 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2607 // We will not make outgoing connections to peers that are unreachable
2608 // (e.g. because of -onlynet configuration).
2609 // Therefore, we do not add them to addrman in the first place.
2610 // In case previously unreachable networks become reachable
2611 // (e.g. in case of -onlynet changes by the user), fixed seeds will
2612 // be loaded only for networks for which we have no addresses.
2613 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2614 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2615 seed_addrs.end());
2616 CNetAddr local;
2617 local.SetInternal("fixedseeds");
2618 addrman.Add(seed_addrs, local);
2619 add_fixed_seeds = false;
2620 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2621 }
2622 }
2623
2624 //
2625 // Choose an address to connect to based on most recently seen
2626 //
2627 CAddress addrConnect;
2628
2629 // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2630 int nOutboundFullRelay = 0;
2631 int nOutboundBlockRelay = 0;
2632 int outbound_privacy_network_peers = 0;
2633 std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2634
2635 {
2637 for (const CNode* pnode : m_nodes) {
2638 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2639 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2640
2641 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2642 switch (pnode->m_conn_type) {
2643 // We currently don't take inbound connections into account. Since they are
2644 // free to make, an attacker could make them to prevent us from connecting to
2645 // certain peers.
2647 // Short-lived outbound connections should not affect how we select outbound
2648 // peers from addrman.
2651 break;
2655 const CAddress address{pnode->addr};
2656 if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2657 // Since our addrman-groups for these networks are
2658 // random, without relation to the route we
2659 // take to connect to these peers or to the
2660 // difficulty in obtaining addresses with diverse
2661 // groups, we don't worry about diversity with
2662 // respect to our addrman groups when connecting to
2663 // these networks.
2664 ++outbound_privacy_network_peers;
2665 } else {
2666 outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2667 }
2668 } // no default case, so the compiler can warn about missing cases
2669 }
2670 }
2671
2672 if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2673 if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2674 seed_node_timer = NodeClock::now();
2675 add_addr_fetch = true;
2676 }
2677 }
2678
2680 auto now = GetTime<std::chrono::microseconds>();
2681 bool anchor = false;
2682 bool fFeeler = false;
2683 std::optional<Network> preferred_net;
2684
2685 // Determine what type of connection to open. Opening
2686 // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2687 // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2688 // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2689 // until we hit our block-relay-only peer limit.
2690 // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2691 // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2692 // these conditions are met, check to see if it's time to try an extra
2693 // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2694 // timer to decide if we should open a FEELER.
2695
2696 if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2697 conn_type = ConnectionType::BLOCK_RELAY;
2698 anchor = true;
2699 } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2700 // OUTBOUND_FULL_RELAY
2701 } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2702 conn_type = ConnectionType::BLOCK_RELAY;
2703 } else if (GetTryNewOutboundPeer()) {
2704 // OUTBOUND_FULL_RELAY
2705 } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2706 // Periodically connect to a peer (using regular outbound selection
2707 // methodology from addrman) and stay connected long enough to sync
2708 // headers, but not much else.
2709 //
2710 // Then disconnect the peer, if we haven't learned anything new.
2711 //
2712 // The idea is to make eclipse attacks very difficult to pull off,
2713 // because every few minutes we're finding a new peer to learn headers
2714 // from.
2715 //
2716 // This is similar to the logic for trying extra outbound (full-relay)
2717 // peers, except:
2718 // - we do this all the time on an exponential timer, rather than just when
2719 // our tip is stale
2720 // - we potentially disconnect our next-youngest block-relay-only peer, if our
2721 // newest block-relay-only peer delivers a block more recently.
2722 // See the eviction logic in net_processing.cpp.
2723 //
2724 // Because we can promote these connections to block-relay-only
2725 // connections, they do not get their own ConnectionType enum
2726 // (similar to how we deal with extra outbound peers).
2727 next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2728 conn_type = ConnectionType::BLOCK_RELAY;
2729 } else if (now > next_feeler) {
2730 next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2731 conn_type = ConnectionType::FEELER;
2732 fFeeler = true;
2733 } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2735 now > next_extra_network_peer &&
2736 MaybePickPreferredNetwork(preferred_net)) {
2737 // Full outbound connection management: Attempt to get at least one
2738 // outbound peer from each reachable network by making extra connections
2739 // and then protecting "only" peers from a network during outbound eviction.
2740 // This is not attempted if the user changed -maxconnections to a value
2741 // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2742 // to prevent interactions with otherwise protected outbound peers.
2743 next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2744 } else {
2745 // skip to next iteration of while loop
2746 continue;
2747 }
2748
2750
2751 const auto current_time{NodeClock::now()};
2752 int nTries = 0;
2753 const auto reachable_nets{g_reachable_nets.All()};
2754
2755 while (!interruptNet)
2756 {
2757 if (anchor && !m_anchors.empty()) {
2758 const CAddress addr = m_anchors.back();
2759 m_anchors.pop_back();
2760 if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2761 !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2762 outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2763 addrConnect = addr;
2764 LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2765 break;
2766 }
2767
2768 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2769 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2770 // already-connected network ranges, ...) before trying new addrman addresses.
2771 nTries++;
2772 if (nTries > 100)
2773 break;
2774
2775 CAddress addr;
2776 NodeSeconds addr_last_try{0s};
2777
2778 if (fFeeler) {
2779 // First, try to get a tried table collision address. This returns
2780 // an empty (invalid) address if there are no collisions to try.
2781 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2782
2783 if (!addr.IsValid()) {
2784 // No tried table collisions. Select a new table address
2785 // for our feeler.
2786 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2787 } else if (AlreadyConnectedToAddress(addr)) {
2788 // If test-before-evict logic would have us connect to a
2789 // peer that we're already connected to, just mark that
2790 // address as Good(). We won't be able to initiate the
2791 // connection anyway, so this avoids inadvertently evicting
2792 // a currently-connected peer.
2793 addrman.Good(addr);
2794 // Select a new table address for our feeler instead.
2795 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2796 }
2797 } else {
2798 // Not a feeler
2799 // If preferred_net has a value set, pick an extra outbound
2800 // peer from that network. The eviction logic in net_processing
2801 // ensures that a peer from another network will be evicted.
2802 std::tie(addr, addr_last_try) = preferred_net.has_value()
2803 ? addrman.Select(false, {*preferred_net})
2804 : addrman.Select(false, reachable_nets);
2805 }
2806
2807 // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2808 if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2809 continue;
2810 }
2811
2812 // if we selected an invalid or local address, restart
2813 if (!addr.IsValid() || IsLocal(addr)) {
2814 break;
2815 }
2816
2817 if (!g_reachable_nets.Contains(addr)) {
2818 continue;
2819 }
2820
2821 // only consider very recently tried nodes after 30 failed attempts
2822 if (current_time - addr_last_try < 10min && nTries < 30) {
2823 continue;
2824 }
2825
2826 // for non-feelers, require all the services we'll want,
2827 // for feelers, only require they be a full node (only because most
2828 // SPV clients don't have a good address DB available)
2829 if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2830 continue;
2831 } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2832 continue;
2833 }
2834
2835 // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2836 if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2837 continue;
2838 }
2839
2840 // Do not make automatic outbound connections to addnode peers, to
2841 // not use our limited outbound slots for them and to ensure
2842 // addnode connections benefit from their intended protections.
2843 if (AddedNodesContain(addr)) {
2844 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2845 preferred_net.has_value() ? "network-specific " : "",
2847 fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2848 continue;
2849 }
2850
2851 addrConnect = addr;
2852 break;
2853 }
2854
2855 if (addrConnect.IsValid()) {
2856 if (fFeeler) {
2857 // Add small amount of random noise before connection to avoid synchronization.
2859 return;
2860 }
2861 LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2862 }
2863
2864 if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2865
2866 // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2867 // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2868 // Don't record addrman failure attempts when node is offline. This can be identified since all local
2869 // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2870 const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2871 // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2872 const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2873 OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2874 }
2875 }
2876}
2877
2878std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2879{
2880 std::vector<CAddress> ret;
2882 for (const CNode* pnode : m_nodes) {
2883 if (pnode->IsBlockOnlyConn()) {
2884 ret.push_back(pnode->addr);
2885 }
2886 }
2887
2888 return ret;
2889}
2890
2891std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2892{
2893 std::vector<AddedNodeInfo> ret;
2894
2895 std::list<AddedNodeParams> lAddresses(0);
2896 {
2898 ret.reserve(m_added_node_params.size());
2899 std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2900 }
2901
2902
2903 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2904 std::map<CService, bool> mapConnected;
2905 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2906 {
2908 for (const CNode* pnode : m_nodes) {
2909 if (pnode->addr.IsValid()) {
2910 mapConnected[pnode->addr] = pnode->IsInboundConn();
2911 }
2912 std::string addrName{pnode->m_addr_name};
2913 if (!addrName.empty()) {
2914 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2915 }
2916 }
2917 }
2918
2919 for (const auto& addr : lAddresses) {
2920 CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2921 AddedNodeInfo addedNode{addr, CService(), false, false};
2922 if (service.IsValid()) {
2923 // strAddNode is an IP:port
2924 auto it = mapConnected.find(service);
2925 if (it != mapConnected.end()) {
2926 if (!include_connected) {
2927 continue;
2928 }
2929 addedNode.resolvedAddress = service;
2930 addedNode.fConnected = true;
2931 addedNode.fInbound = it->second;
2932 }
2933 } else {
2934 // strAddNode is a name
2935 auto it = mapConnectedByName.find(addr.m_added_node);
2936 if (it != mapConnectedByName.end()) {
2937 if (!include_connected) {
2938 continue;
2939 }
2940 addedNode.resolvedAddress = it->second.second;
2941 addedNode.fConnected = true;
2942 addedNode.fInbound = it->second.first;
2943 }
2944 }
2945 ret.emplace_back(std::move(addedNode));
2946 }
2947
2948 return ret;
2949}
2950
2952{
2955 while (true)
2956 {
2958 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2959 bool tried = false;
2960 for (const AddedNodeInfo& info : vInfo) {
2961 if (!grant) {
2962 // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2963 // the addednodeinfo state might change.
2964 break;
2965 }
2966 tried = true;
2967 CAddress addr(CService(), NODE_NONE);
2968 OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2969 if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2970 grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2971 }
2972 // See if any reconnections are desired.
2974 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2975 if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2976 return;
2977 }
2978}
2979
2980// if successful, this moves the passed grant to the constructed node
2981void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CountingSemaphoreGrant<>&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2982{
2984 assert(conn_type != ConnectionType::INBOUND);
2985
2986 //
2987 // Initiate outbound network connection
2988 //
2989 if (interruptNet) {
2990 return;
2991 }
2992 if (!fNetworkActive) {
2993 return;
2994 }
2995 if (!pszDest) {
2996 bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
2997 if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
2998 return;
2999 }
3000 } else if (FindNode(std::string(pszDest)))
3001 return;
3002
3003 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3004
3005 if (!pnode)
3006 return;
3007 pnode->grantOutbound = std::move(grant_outbound);
3008
3009 m_msgproc->InitializeNode(*pnode, m_local_services);
3010 {
3012 m_nodes.push_back(pnode);
3013
3014 // update connection count by network
3015 if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3016 }
3017
3018 TRACEPOINT(net, outbound_connection,
3019 pnode->GetId(),
3020 pnode->m_addr_name.c_str(),
3021 pnode->ConnectionTypeAsString().c_str(),
3022 pnode->ConnectedThroughNetwork(),
3024}
3025
3027
3029{
3031
3032 while (!flagInterruptMsgProc)
3033 {
3034 bool fMoreWork = false;
3035
3036 {
3037 // Randomize the order in which we process messages from/to our peers.
3038 // This prevents attacks in which an attacker exploits having multiple
3039 // consecutive connections in the m_nodes list.
3040 const NodesSnapshot snap{*this, /*shuffle=*/true};
3041
3042 for (CNode* pnode : snap.Nodes()) {
3043 if (pnode->fDisconnect)
3044 continue;
3045
3046 // Receive messages
3047 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3048 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3050 return;
3051 // Send messages
3052 m_msgproc->SendMessages(pnode);
3053
3055 return;
3056 }
3057 }
3058
3059 WAIT_LOCK(mutexMsgProc, lock);
3060 if (!fMoreWork) {
3061 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3062 }
3063 fMsgProcWake = false;
3064 }
3065}
3066
3068{
3069 static constexpr auto err_wait_begin = 1s;
3070 static constexpr auto err_wait_cap = 5min;
3071 auto err_wait = err_wait_begin;
3072
3073 bool advertising_listen_addr = false;
3074 i2p::Connection conn;
3075
3076 auto SleepOnFailure = [&]() {
3077 interruptNet.sleep_for(err_wait);
3078 if (err_wait < err_wait_cap) {
3079 err_wait += 1s;
3080 }
3081 };
3082
3083 while (!interruptNet) {
3084
3085 if (!m_i2p_sam_session->Listen(conn)) {
3086 if (advertising_listen_addr && conn.me.IsValid()) {
3087 RemoveLocal(conn.me);
3088 advertising_listen_addr = false;
3089 }
3090 SleepOnFailure();
3091 continue;
3092 }
3093
3094 if (!advertising_listen_addr) {
3095 AddLocal(conn.me, LOCAL_MANUAL);
3096 advertising_listen_addr = true;
3097 }
3098
3099 if (!m_i2p_sam_session->Accept(conn)) {
3100 SleepOnFailure();
3101 continue;
3102 }
3103
3105
3106 err_wait = err_wait_begin;
3107 }
3108}
3109
3110bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3111{
3112 int nOne = 1;
3113
3114 // Create socket for listening for incoming connections
3115 struct sockaddr_storage sockaddr;
3116 socklen_t len = sizeof(sockaddr);
3117 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3118 {
3119 strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3121 return false;
3122 }
3123
3124 std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3125 if (!sock) {
3126 strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3128 return false;
3129 }
3130
3131 // Allow binding if the port is still in TIME_WAIT state after
3132 // the program was closed and restarted.
3133 if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3134 strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3135 LogPrintf("%s\n", strError.original);
3136 }
3137
3138 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3139 // and enable it by default or not. Try to enable it, if possible.
3140 if (addrBind.IsIPv6()) {
3141#ifdef IPV6_V6ONLY
3142 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3143 strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3144 LogPrintf("%s\n", strError.original);
3145 }
3146#endif
3147#ifdef WIN32
3148 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3149 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3150 strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3151 LogPrintf("%s\n", strError.original);
3152 }
3153#endif
3154 }
3155
3156 if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3157 int nErr = WSAGetLastError();
3158 if (nErr == WSAEADDRINUSE)
3159 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3160 else
3161 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3163 return false;
3164 }
3165 LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3166
3167 // Listen for incoming connections
3168 if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3169 {
3170 strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3172 return false;
3173 }
3174
3175 vhListenSocket.emplace_back(std::move(sock), permissions);
3176 return true;
3177}
3178
3180{
3181 if (!fDiscover)
3182 return;
3183
3184 for (const CNetAddr &addr: GetLocalAddresses()) {
3185 if (AddLocal(addr, LOCAL_IF))
3186 LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3187 }
3188}
3189
3191{
3192 LogPrintf("%s: %s\n", __func__, active);
3193
3194 if (fNetworkActive == active) {
3195 return;
3196 }
3197
3198 fNetworkActive = active;
3199
3200 if (m_client_interface) {
3201 m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3202 }
3203}
3204
3205CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3206 const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3207 : addrman(addrman_in)
3208 , m_netgroupman{netgroupman}
3209 , nSeed0(nSeed0In)
3210 , nSeed1(nSeed1In)
3211 , m_params(params)
3212{
3213 SetTryNewOutboundPeer(false);
3214
3215 Options connOptions;
3216 Init(connOptions);
3217 SetNetworkActive(network_active);
3218}
3219
3221{
3222 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3223}
3224
3226{
3227 return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3228}
3229
3230uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3231{
3232 CNetAddr a;
3234}
3235
3236bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3237{
3238 const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3239
3240 bilingual_str strError;
3241 if (!BindListenPort(addr, strError, permissions)) {
3243 m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3244 }
3245 return false;
3246 }
3247
3248 if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3249 AddLocal(addr, LOCAL_BIND);
3250 }
3251
3252 return true;
3253}
3254
3255bool CConnman::InitBinds(const Options& options)
3256{
3257 for (const auto& addrBind : options.vBinds) {
3259 return false;
3260 }
3261 }
3262 for (const auto& addrBind : options.vWhiteBinds) {
3263 if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3264 return false;
3265 }
3266 }
3267 for (const auto& addr_bind : options.onion_binds) {
3269 return false;
3270 }
3271 }
3272 if (options.bind_on_any) {
3273 // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3274 // may not have IPv6 support and the user did not explicitly ask us to
3275 // bind on that.
3276 const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3278
3279 struct in_addr inaddr_any;
3280 inaddr_any.s_addr = htonl(INADDR_ANY);
3281 const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3283 return false;
3284 }
3285 }
3286 return true;
3287}
3288
3289bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3290{
3292 Init(connOptions);
3293
3294 if (fListen && !InitBinds(connOptions)) {
3295 if (m_client_interface) {
3296 m_client_interface->ThreadSafeMessageBox(
3297 _("Failed to listen on any port. Use -listen=0 if you want this."),
3299 }
3300 return false;
3301 }
3302
3303 Proxy i2p_sam;
3304 if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3305 m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3306 i2p_sam, &interruptNet);
3307 }
3308
3309 // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3310 std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3311 if (!seed_nodes.empty()) {
3312 std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3313 }
3314
3316 // Load addresses from anchors.dat
3320 }
3321 LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3322 }
3323
3324 if (m_client_interface) {
3325 m_client_interface->InitMessage(_("Starting network threads…"));
3326 }
3327
3328 fAddressesInitialized = true;
3329
3330 if (semOutbound == nullptr) {
3331 // initialize semaphore
3332 semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3333 }
3334 if (semAddnode == nullptr) {
3335 // initialize semaphore
3336 semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3337 }
3338
3339 //
3340 // Start threads
3341 //
3344 flagInterruptMsgProc = false;
3345
3346 {
3348 fMsgProcWake = false;
3349 }
3350
3351 // Send and receive from sockets, accept connections
3352 threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3353
3354 if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3355 LogPrintf("DNS seeding disabled\n");
3356 else
3357 threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3358
3359 // Initiate manual connections
3360 threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3361
3362 if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3363 if (m_client_interface) {
3364 m_client_interface->ThreadSafeMessageBox(
3365 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3367 }
3368 return false;
3369 }
3370 if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3371 threadOpenConnections = std::thread(
3372 &util::TraceThread, "opencon",
3373 [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3374 }
3375
3376 // Process messages
3377 threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3378
3379 if (m_i2p_sam_session) {
3381 std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3382 }
3383
3384 // Dump network addresses
3385 scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3386
3387 // Run the ASMap Health check once and then schedule it to run every 24h.
3388 if (m_netgroupman.UsingASMap()) {
3391 }
3392
3393 return true;
3394}
3395
3397{
3398public:
3399 CNetCleanup() = default;
3400
3402 {
3403#ifdef WIN32
3404 // Shutdown Windows Sockets
3405 WSACleanup();
3406#endif
3407 }
3408};
3410
3412{
3413 {
3415 flagInterruptMsgProc = true;
3416 }
3417 condMsgProc.notify_all();
3418
3419 interruptNet();
3421
3422 if (semOutbound) {
3423 for (int i=0; i<m_max_automatic_outbound; i++) {
3424 semOutbound->release();
3425 }
3426 }
3427
3428 if (semAddnode) {
3429 for (int i=0; i<m_max_addnode; i++) {
3430 semAddnode->release();
3431 }
3432 }
3433}
3434
3436{
3437 if (threadI2PAcceptIncoming.joinable()) {
3439 }
3440 if (threadMessageHandler.joinable())
3441 threadMessageHandler.join();
3442 if (threadOpenConnections.joinable())
3443 threadOpenConnections.join();
3444 if (threadOpenAddedConnections.joinable())
3446 if (threadDNSAddressSeed.joinable())
3447 threadDNSAddressSeed.join();
3448 if (threadSocketHandler.joinable())
3449 threadSocketHandler.join();
3450}
3451
3453{
3455 DumpAddresses();
3456 fAddressesInitialized = false;
3457
3459 // Anchor connections are only dumped during clean shutdown.
3460 std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3461 if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3462 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3463 }
3465 }
3466 }
3467
3468 // Delete peer connections.
3469 std::vector<CNode*> nodes;
3470 WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3471 for (CNode* pnode : nodes) {
3472 LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3473 pnode->CloseSocketDisconnect();
3474 DeleteNode(pnode);
3475 }
3476
3477 for (CNode* pnode : m_nodes_disconnected) {
3478 DeleteNode(pnode);
3479 }
3480 m_nodes_disconnected.clear();
3481 vhListenSocket.clear();
3482 semOutbound.reset();
3483 semAddnode.reset();
3484}
3485
3487{
3488 assert(pnode);
3489 m_msgproc->FinalizeNode(*pnode);
3490 delete pnode;
3491}
3492
3494{
3495 Interrupt();
3496 Stop();
3497}
3498
3499std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3500{
3501 std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3502 if (m_banman) {
3503 addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3504 [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3505 addresses.end());
3506 }
3507 return addresses;
3508}
3509
3510std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3511{
3512 auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3514 .Write(requestor.ConnectedThroughNetwork())
3515 .Write(local_socket_bytes)
3516 // For outbound connections, the port of the bound address is randomly
3517 // assigned by the OS and would therefore not be useful for seeding.
3518 .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3519 .Finalize();
3520 const auto current_time = GetTime<std::chrono::microseconds>();
3521 auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3522 CachedAddrResponse& cache_entry = r.first->second;
3523 if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3524 cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3525 // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3526 // and the usefulness of ADDR responses to honest users.
3527 //
3528 // Longer cache lifetime makes it more difficult for an attacker to scrape
3529 // enough AddrMan data to maliciously infer something useful.
3530 // By the time an attacker scraped enough AddrMan records, most of
3531 // the records should be old enough to not leak topology info by
3532 // e.g. analyzing real-time changes in timestamps.
3533 //
3534 // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3535 // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3536 // most of it could be scraped (considering that timestamps are updated via
3537 // ADDR self-announcements and when nodes communicate).
3538 // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3539 // (because even several timestamps of the same handful of nodes may leak privacy).
3540 //
3541 // On the other hand, longer cache lifetime makes ADDR responses
3542 // outdated and less useful for an honest requestor, e.g. if most nodes
3543 // in the ADDR response are no longer active.
3544 //
3545 // However, the churn in the network is known to be rather low. Since we consider
3546 // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3547 // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3548 // in terms of the freshness of the response.
3549 cache_entry.m_cache_entry_expiration = current_time +
3550 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3551 }
3552 return cache_entry.m_addrs_response_cache;
3553}
3554
3556{
3558 const bool resolved_is_valid{resolved.IsValid()};
3559
3561 for (const auto& it : m_added_node_params) {
3562 if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3563 }
3564
3565 m_added_node_params.push_back(add);
3566 return true;
3567}
3568
3569bool CConnman::RemoveAddedNode(const std::string& strNode)
3570{
3572 for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3573 if (strNode == it->m_added_node) {
3574 m_added_node_params.erase(it);
3575 return true;
3576 }
3577 }
3578 return false;
3579}
3580
3582{
3584 const std::string addr_str{addr.ToStringAddr()};
3585 const std::string addr_port_str{addr.ToStringAddrPort()};
3587 return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3588 && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3589 [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3590}
3591
3593{
3595 if (flags == ConnectionDirection::Both) // Shortcut if we want total
3596 return m_nodes.size();
3597
3598 int nNum = 0;
3599 for (const auto& pnode : m_nodes) {
3600 if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3601 nNum++;
3602 }
3603 }
3604
3605 return nNum;
3606}
3607
3608
3609std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3610{
3612 return mapLocalHost;
3613}
3614
3615uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3616{
3617 return m_netgroupman.GetMappedAS(addr);
3618}
3619
3620void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3621{
3622 vstats.clear();
3624 vstats.reserve(m_nodes.size());
3625 for (CNode* pnode : m_nodes) {
3626 vstats.emplace_back();
3627 pnode->CopyStats(vstats.back());
3628 vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3629 }
3630}
3631
3632bool CConnman::DisconnectNode(const std::string& strNode)
3633{
3635 if (CNode* pnode = FindNode(strNode)) {
3636 LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
3637 pnode->fDisconnect = true;
3638 return true;
3639 }
3640 return false;
3641}
3642
3644{
3645 bool disconnected = false;
3647 for (CNode* pnode : m_nodes) {
3648 if (subnet.Match(pnode->addr)) {
3649 LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3650 pnode->fDisconnect = true;
3651 disconnected = true;
3652 }
3653 }
3654 return disconnected;
3655}
3656
3658{
3659 return DisconnectNode(CSubNet(addr));
3660}
3661
3663{
3665 for(CNode* pnode : m_nodes) {
3666 if (id == pnode->GetId()) {
3667 LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3668 pnode->fDisconnect = true;
3669 return true;
3670 }
3671 }
3672 return false;
3673}
3674
3675void CConnman::RecordBytesRecv(uint64_t bytes)
3676{
3677 nTotalBytesRecv += bytes;
3678}
3679
3680void CConnman::RecordBytesSent(uint64_t bytes)
3681{
3684
3685 nTotalBytesSent += bytes;
3686
3687 const auto now = GetTime<std::chrono::seconds>();
3688 if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3689 {
3690 // timeframe expired, reset cycle
3691 nMaxOutboundCycleStartTime = now;
3692 nMaxOutboundTotalBytesSentInCycle = 0;
3693 }
3694
3695 nMaxOutboundTotalBytesSentInCycle += bytes;
3696}
3697
3699{
3702 return nMaxOutboundLimit;
3703}
3704
3705std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3706{
3707 return MAX_UPLOAD_TIMEFRAME;
3708}
3709
3711{
3715}
3716
3718{
3720
3721 if (nMaxOutboundLimit == 0)
3722 return 0s;
3723
3724 if (nMaxOutboundCycleStartTime.count() == 0)
3725 return MAX_UPLOAD_TIMEFRAME;
3726
3727 const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3728 const auto now = GetTime<std::chrono::seconds>();
3729 return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3730}
3731
3732bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3733{
3736 if (nMaxOutboundLimit == 0)
3737 return false;
3738
3739 if (historicalBlockServingLimit)
3740 {
3741 // keep a large enough buffer to at least relay each block once
3742 const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3743 const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3744 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3745 return true;
3746 }
3747 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3748 return true;
3749
3750 return false;
3751}
3752
3754{
3757 if (nMaxOutboundLimit == 0)
3758 return 0;
3759
3760 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3761}
3762
3764{
3765 return nTotalBytesRecv;
3766}
3767
3769{
3772 return nTotalBytesSent;
3773}
3774
3776{
3777 return m_local_services;
3778}
3779
3780static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3781{
3782 if (use_v2transport) {
3783 return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3784 } else {
3785 return std::make_unique<V1Transport>(id);
3786 }
3787}
3788
3790 std::shared_ptr<Sock> sock,
3791 const CAddress& addrIn,
3792 uint64_t nKeyedNetGroupIn,
3793 uint64_t nLocalHostNonceIn,
3794 const CService& addrBindIn,
3795 const std::string& addrNameIn,
3796 ConnectionType conn_type_in,
3797 bool inbound_onion,
3798 CNodeOptions&& node_opts)
3799 : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3800 m_permission_flags{node_opts.permission_flags},
3801 m_sock{sock},
3802 m_connected{GetTime<std::chrono::seconds>()},
3803 addr{addrIn},
3804 addrBind{addrBindIn},
3805 m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3806 m_dest(addrNameIn),
3807 m_inbound_onion{inbound_onion},
3808 m_prefer_evict{node_opts.prefer_evict},
3809 nKeyedNetGroup{nKeyedNetGroupIn},
3810 m_conn_type{conn_type_in},
3811 id{idIn},
3812 nLocalHostNonce{nLocalHostNonceIn},
3813 m_recv_flood_size{node_opts.recv_flood_size},
3814 m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3815{
3816 if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3817
3818 for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3819 mapRecvBytesPerMsgType[msg] = 0;
3820 }
3821 mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3822
3823 if (fLogIPs) {
3824 LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3825 } else {
3826 LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3827 }
3828}
3829
3831{
3833
3834 size_t nSizeAdded = 0;
3835 for (const auto& msg : vRecvMsg) {
3836 // vRecvMsg contains only completed CNetMessage
3837 // the single possible partially deserialized message are held by TransportDeserializer
3838 nSizeAdded += msg.GetMemoryUsage();
3839 }
3840
3842 m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3843 m_msg_process_queue_size += nSizeAdded;
3844 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3845}
3846
3847std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3848{
3850 if (m_msg_process_queue.empty()) return std::nullopt;
3851
3852 std::list<CNetMessage> msgs;
3853 // Just take one message
3854 msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3855 m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3856 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3857
3858 return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3859}
3860
3862{
3863 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3864}
3865
3867{
3869 size_t nMessageSize = msg.data.size();
3870 LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3871 if (gArgs.GetBoolArg("-capturemessages", false)) {
3872 CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3873 }
3874
3875 TRACEPOINT(net, outbound_message,
3876 pnode->GetId(),
3877 pnode->m_addr_name.c_str(),
3878 pnode->ConnectionTypeAsString().c_str(),
3879 msg.m_type.c_str(),
3880 msg.data.size(),
3881 msg.data.data()
3882 );
3883
3884 size_t nBytesSent = 0;
3885 {
3886 LOCK(pnode->cs_vSend);
3887 // Check if the transport still has unsent bytes, and indicate to it that we're about to
3888 // give it a message to send.
3889 const auto& [to_send, more, _msg_type] =
3890 pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3891 const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3892
3893 // Update memory usage of send buffer.
3894 pnode->m_send_memusage += msg.GetMemoryUsage();
3895 if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3896 // Move message to vSendMsg queue.
3897 pnode->vSendMsg.push_back(std::move(msg));
3898
3899 // If there was nothing to send before, and there is now (predicted by the "more" value
3900 // returned by the GetBytesToSend call above), attempt "optimistic write":
3901 // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3902 // doing a send, try sending from the calling thread if the queue was empty before.
3903 // With a V1Transport, more will always be true here, because adding a message always
3904 // results in sendable bytes there, but with V2Transport this is not the case (it may
3905 // still be in the handshake).
3906 if (queue_was_empty && more) {
3907 std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3908 }
3909 }
3910 if (nBytesSent) RecordBytesSent(nBytesSent);
3911}
3912
3913bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3914{
3915 CNode* found = nullptr;
3917 for (auto&& pnode : m_nodes) {
3918 if(pnode->GetId() == id) {
3919 found = pnode;
3920 break;
3921 }
3922 }
3923 return found != nullptr && NodeFullyConnected(found) && func(found);
3924}
3925
3927{
3928 return CSipHasher(nSeed0, nSeed1).Write(id);
3929}
3930
3931uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3932{
3933 std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3934
3936}
3937
3939{
3942 while (true) {
3943 // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3944 decltype(m_reconnections) todo;
3945 {
3947 if (m_reconnections.empty()) break;
3948 todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3949 }
3950
3951 auto& item = *todo.begin();
3952 OpenNetworkConnection(item.addr_connect,
3953 // We only reconnect if the first attempt to connect succeeded at
3954 // connection time, but then failed after the CNode object was
3955 // created. Since we already know connecting is possible, do not
3956 // count failure to reconnect.
3957 /*fCountFailure=*/false,
3958 std::move(item.grant),
3959 item.destination.empty() ? nullptr : item.destination.c_str(),
3960 item.conn_type,
3961 item.use_v2transport);
3962 }
3963}
3964
3966{
3967 const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3968 const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3969 std::vector<CNetAddr> clearnet_addrs;
3970 clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3971 std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3972 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3973 std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3974 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3975 m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3976}
3977
3978// Dump binary message to file, with timestamp.
3979static void CaptureMessageToFile(const CAddress& addr,
3980 const std::string& msg_type,
3981 std::span<const unsigned char> data,
3982 bool is_incoming)
3983{
3984 // Note: This function captures the message at the time of processing,
3985 // not at socket receive/send time.
3986 // This ensures that the messages are always in order from an application
3987 // layer (processing) perspective.
3988 auto now = GetTime<std::chrono::microseconds>();
3989
3990 // Windows folder names cannot include a colon
3991 std::string clean_addr = addr.ToStringAddrPort();
3992 std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3993
3994 fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3995 fs::create_directories(base_path);
3996
3997 fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
3998 AutoFile f{fsbridge::fopen(path, "ab")};
3999
4000 ser_writedata64(f, now.count());
4001 f << std::span{msg_type};
4002 for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4003 f << uint8_t{'\0'};
4004 }
4005 uint32_t size = data.size();
4006 ser_writedata32(f, size);
4007 f << data;
4008}
4009
4010std::function<void(const CAddress& addr,
4011 const std::string& msg_type,
4012 std::span<const unsigned char> data,
4013 bool is_incoming)>
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:180
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:229
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:223
ArgsManager gArgs
Definition: args.cpp:42
int ret
int flags
Definition: bitcoin-tx.cpp:529
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:118
Stochastic address manager.
Definition: addrman.h:89
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, const std::unordered_set< Network > &networks={}) const
Choose an address to connect to.
Definition: addrman.cpp:1327
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1312
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1297
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1317
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1322
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1332
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:362
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:234
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:482
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:507
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:393
bool Decrypt(std::span< const std::byte > input, std::span< const std::byte > aad, bool &ignore, std::span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
std::span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(std::span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
std::span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
std::span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
void Encrypt(std::span< const std::byte > contents, std::span< const std::byte > aad, bool ignore, std::span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:69
const MessageStartChars & MessageStart() const
Definition: chainparams.h:82
uint16_t GetDefaultPort() const
Definition: chainparams.h:83
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:105
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:108
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1643
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2475
std::condition_variable condMsgProc
Definition: net.h:1540
std::thread threadMessageHandler
Definition: net.h:1563
nSendBufferMaxSize
Definition: net.h:1098
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3028
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3913
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1896
m_max_outbound_full_relay
Definition: net.h:1090
void DeleteNode(CNode *pnode)
Definition: net.cpp:3486
bool RemoveAddedNode(const std::string &node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3569
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1681
bool AlreadyConnectedToAddress(const CAddress &addr)
Determine whether we're already connected to a given address, in order to avoid initiating duplicate ...
Definition: net.cpp:361
whitelist_relay
Definition: net.h:1118
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1636
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true)
Definition: net.cpp:3205
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2411
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3225
void Stop()
Definition: net.h:1130
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3938
std::thread threadI2PAcceptIncoming
Definition: net.h:1564
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2416
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1542
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CService &addr_bind, const CService &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1758
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3411
std::map< CNetAddr, LocalServiceInfo > getNetLocalAddresses() const
Definition: net.cpp:3609
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2241
m_onion_binds
Definition: net.h:1116
int GetFullOutboundConnCount() const
Definition: net.cpp:2429
NodeId GetNewNodeId()
Definition: net.cpp:3220
CThreadInterrupt interruptNet
This is signaled when network activity should cease.
Definition: net.h:1550
std::atomic< NodeId > nLastNodeId
Definition: net.h:1449
m_max_automatic_outbound
Definition: net.h:1092
int GetExtraBlockRelayCount() const
Definition: net.cpp:2461
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2232
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3732
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3698
std::thread threadDNSAddressSeed
Definition: net.h:1559
void ASMapHealthCheck()
Definition: net.cpp:3965
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2108
void ThreadI2PAcceptIncoming()
Definition: net.cpp:3067
const uint64_t nSeed1
Definition: net.h:1535
void StartExtraBlockRelayPeers()
Definition: net.cpp:2422
const NetGroupManager & m_netgroupman
Definition: net.h:1438
m_banman
Definition: net.h:1096
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1532
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3705
uint64_t CalculateKeyedNetGroup(const CNetAddr &ad) const
Definition: net.cpp:3931
unsigned int nPrevNodeCount
Definition: net.h:1450
void NotifyNumConnectionsChanged()
Definition: net.cpp:1975
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3775
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3555
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3632
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1569
bool InitBinds(const Options &options)
Definition: net.cpp:3255
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:390
vWhitelistedRangeOutgoing
Definition: net.h:1106
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:131
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1434
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2878
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3926
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1859
Mutex m_total_bytes_sent_mutex
Definition: net.h:1413
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2891
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2951
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3236
std::thread threadOpenConnections
Definition: net.h:1562
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3592
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3615
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2390
Mutex m_addr_fetches_mutex
Definition: net.h:1440
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:1995
m_peer_connect_timeout
Definition: net.h:1100
CNode * FindNode(const CNetAddr &ip)
Definition: net.cpp:328
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1612
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3620
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3289
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1535
m_local_services
Definition: net.h:1088
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2080
int GetExtraFullOutboundCount() const
Definition: net.cpp:2447
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3717
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3763
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1594
RecursiveMutex m_nodes_mutex
Definition: net.h:1448
m_max_outbound_block_relay
Definition: net.h:1091
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3861
std::unique_ptr< std::counting_semaphore<> > semOutbound
Definition: net.h:1495
m_client_interface
Definition: net.h:1095
nReceiveFloodSize
Definition: net.h:1099
const CChainParams & m_params
Definition: net.h:1675
void SetNetworkActive(bool active)
Definition: net.cpp:3190
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2488
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3581
whitelist_forcerelay
Definition: net.h:1117
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3710
AddrMan & addrman
Definition: net.h:1437
m_max_automatic_connections
Definition: net.h:1089
void ThreadOpenConnections(std::vector< std::string > connect, std::span< const std::string > seed_nodes) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2510
m_msgproc
Definition: net.h:1097
Mutex mutexMsgProc
Definition: net.h:1541
m_max_inbound
Definition: net.h:1093
bool fAddressesInitialized
Definition: net.h:1436
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3499
~CConnman()
Definition: net.cpp:3493
void StopThreads()
Definition: net.cpp:3435
std::thread threadOpenAddedConnections
Definition: net.h:1561
Mutex m_added_nodes_mutex
Definition: net.h:1445
vWhitelistedRangeIncoming
Definition: net.h:1105
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2220
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:571
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3680
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:366
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1598
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3768
std::unique_ptr< std::counting_semaphore<> > semAddnode
Definition: net.h:1496
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2494
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3675
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1990
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3753
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3866
void StopNodes()
Definition: net.cpp:3452
int m_max_addnode
Definition: net.h:1517
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1447
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1557
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1480
Sock::EventsPerSock GenerateWaitSockets(std::span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:2049
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1414
std::atomic< bool > fNetworkActive
Definition: net.h:1435
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1575
m_use_addrman_outgoing
Definition: net.h:1094
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2207
void DumpAddresses()
Definition: net.cpp:2380
std::thread threadSocketHandler
Definition: net.h:1560
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CountingSemaphoreGrant<> &&grant_outbound, const char *strDest, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:2981
nMaxOutboundLimit
Definition: net.h:1103
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1730
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:3110
An encapsulated private key.
Definition: key.h:35
Message header.
Definition: protocol.h:29
static constexpr size_t MESSAGE_TYPE_SIZE
Definition: protocol.h:31
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:678
std::string ToStringAddr() const
Definition: netaddress.cpp:584
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:211
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:696
bool IsRoutable() const
Definition: netaddress.cpp:466
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:188
bool IsValid() const
Definition: netaddress.cpp:428
bool IsIPv4() const
Definition: netaddress.h:157
bool IsIPv6() const
Definition: netaddress.h:158
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:172
enum Network GetNetwork() const
Definition: netaddress.cpp:500
~CNetCleanup()
Definition: net.cpp:3401
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:232
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:126
std::string m_type
Definition: net.h:238
DataStream m_recv
received message data
Definition: net.h:234
Information about a peer.
Definition: net.h:674
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:707
std::atomic< int > nVersion
Definition: net.h:717
bool IsInboundConn() const
Definition: net.h:812
CountingSemaphoreGrant grantOutbound
Definition: net.h:733
std::atomic_bool fPauseRecv
Definition: net.h:737
NodeId GetId() const
Definition: net.h:895
const std::string m_addr_name
Definition: net.h:712
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:606
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:613
std::string ConnectionTypeAsString() const
Definition: net.h:949
const CService addrBind
Definition: net.h:711
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:847
std::list< CNetMessage > vRecvMsg
Definition: net.h:979
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:849
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:729
const CAddress addr
Definition: net.h:709
bool ReceiveMsgBytes(std::span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:659
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:593
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3830
Mutex m_subver_mutex
Definition: net.h:718
Mutex cs_vSend
Definition: net.h:698
CNode * AddRef()
Definition: net.h:934
std::atomic_bool fPauseSend
Definition: net.h:738
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3847
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CService &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, CNodeOptions &&node_opts={})
Definition: net.cpp:3789
Mutex m_msg_process_queue_mutex
Definition: net.h:981
const ConnectionType m_conn_type
Definition: net.h:740
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:601
const size_t m_recv_flood_size
Definition: net.h:978
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:876
bool IsManualOrFullOutboundConn() const
Definition: net.h:784
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:703
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:678
const NetPermissionFlags m_permission_flags
Definition: net.h:680
Mutex m_addr_local_mutex
Definition: net.h:987
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:716
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:880
Mutex cs_vRecv
Definition: net.h:700
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:867
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:708
Mutex m_sock_mutex
Definition: net.h:699
std::atomic_bool fDisconnect
Definition: net.h:732
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:705
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:873
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:586
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:553
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:704
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:223
std::string addrLocal
Definition: net.h:211
bool fInbound
Definition: net.h:197
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:221
Network m_network
Definition: net.h:217
NodeId nodeid
Definition: net.h:188
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
bool SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
Set CService from a network sockaddr.
Definition: netaddress.cpp:810
uint16_t GetPort() const
Definition: netaddress.cpp:839
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:826
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:866
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
bool sleep_for(Clock::duration rel_time) EXCLUSIVE_LOCKS_REQUIRED(!mut)
RAII-style semaphore lock.
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:148
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: streams.cpp:123
Fast randomness source.
Definition: random.h:377
void fillrand(std::span< std::byte > output) noexcept
Fill a byte span with random bytes.
Definition: random.cpp:626
Different type to mark Mutex at global scope.
Definition: sync.h:140
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1012
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream.
Definition: serialize.h:1117
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range) noexcept
Return the time point advanced by a uniform random duration.
Definition: random.h:320
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:327
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
Return a duration sampled from an exponential distribution (https://en.wikipedia.org/wiki/Exponential...
Definition: random.h:356
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
std::unordered_set< Network > All() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:137
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
std::tuple< std::span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:312
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:836
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:722
int readData(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:770
const NodeId m_node_id
Definition: net.h:372
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:407
const MessageStartChars m_magic_bytes
Definition: net.h:371
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:898
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:788
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:882
int readHeader(std::span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:727
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:715
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:399
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:428
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:861
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:387
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:373
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:420
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:797
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1525
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:635
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:581
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1268
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:577
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1564
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1074
SendState
State type that controls the sender side.
Definition: net.h:546
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:583
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:460
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:983
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1199
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1112
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:579
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1573
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1508
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:1014
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1172
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1065
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1447
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:456
static std::optional< std::string > GetMessageType(std::span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1407
bool ReceivedBytes(std::span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1317
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1547
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1476
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:1010
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:481
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1045
constexpr unsigned char * begin()
Definition: uint256.h:101
256-bit opaque blob.
Definition: uint256.h:196
#define WSAEWOULDBLOCK
Definition: compat.h:49
#define SOCKET_ERROR
Definition: compat.h:56
#define WSAGetLastError()
Definition: compat.h:47
#define WSAEMSGSIZE
Definition: compat.h:51
#define MSG_NOSIGNAL
Definition: compat.h:106
#define MSG_DONTWAIT
Definition: compat.h:111
void * sockopt_arg_type
Definition: compat.h:81
#define WSAEINPROGRESS
Definition: compat.h:53
#define WSAEADDRINUSE
Definition: compat.h:54
#define WSAEINTR
Definition: compat.h:52
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
static path u8path(const std::string &utf8_str)
Definition: fs.h:75
static bool create_directories(const std::filesystem::path &p)
Create directory (and if necessary its parents), unless the leaf directory already exists or is a sym...
Definition: fs.h:190
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:352
bool fLogIPs
Definition: logging.cpp:45
#define LogPrintLevel(category, level,...)
Definition: logging.h:272
#define LogInfo(...)
Definition: logging.h:261
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ PROXY
Definition: logging.h:58
@ NET
Definition: logging.h:43
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:26
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
Definition: messages.h:20
static const unsigned char VERSION[]
Definition: netaddress.cpp:187
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:44
uint16_t GetListenPort()
Definition: net.cpp:137
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:65
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:322
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:109
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:105
void RemoveLocal(const CService &addr)
Definition: net.cpp:303
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:93
@ BF_REPORT_ERROR
Definition: net.cpp:95
@ BF_NONE
Definition: net.cpp:94
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:100
bool fDiscover
Definition: net.cpp:115
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:110
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:62
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:90
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD
Minimum number of outbound connections under which we will keep fetching our address seeds.
Definition: net.cpp:68
static CService GetBindAddress(const Sock &sock)
Get the bind address for a socket as CService.
Definition: net.cpp:377
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:270
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:87
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:81
bool fListen
Definition: net.cpp:116
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:56
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:232
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:79
static const uint64_t RANDOMIZER_ID_ADDRCACHE
Definition: net.cpp:111
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:119
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:239
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:107
TRACEPOINT_SEMAPHORE(net, closed_connection)
#define X(name)
Definition: net.cpp:612
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3780
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:59
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:194
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:3979
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:219
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:117
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:164
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4014
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:80
static int GetnScore(const CService &addr)
Definition: net.cpp:224
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3409
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:84
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3179
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:311
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:58
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:92
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:64
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:62
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:90
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:91
int64_t NodeId
Definition: net.h:98
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:88
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:60
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:68
@ LOCAL_MANUAL
Definition: net.h:153
@ LOCAL_BIND
Definition: net.h:151
@ LOCAL_IF
Definition: net.h:150
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:72
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:104
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:649
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:177
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:118
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:738
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:195
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:941
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:713
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:789
std::function< std::unique_ptr< Sock >(int, int, int)> CreateSock
Socket factory.
Definition: netbase.cpp:581
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:730
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:220
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:851
ConnectionDirection
Definition: netbase.h:33
std::vector< CNetAddr > GetLocalAddresses()
Return all local non-loopback IPv4 and IPv6 network addresses.
Definition: netif.cpp:287
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:354
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_P2P_V2
Definition: protocol.h:330
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:617
uint256 GetRandHash() noexcept
Generate a random uint256.
Definition: random.h:454
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:68
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:78
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
auto MakeByteSpan(const V &v) noexcept
Definition: span.h:84
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
T & SpanPopBack(std::span< T > &span)
A span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:75
auto MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:89
unsigned char * UCharCast(char *c)
Definition: span.h:95
std::string m_added_node
Definition: net.h:101
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1461
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1463
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1462
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1280
std::shared_ptr< Sock > sock
Definition: net.h:1279
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1070
std::vector< CService > onion_binds
Definition: net.h:1072
std::vector< std::string > m_specified_outgoing
Definition: net.h:1077
std::vector< CService > vBinds
Definition: net.h:1071
bool m_i2p_accept_incoming
Definition: net.h:1079
std::vector< std::string > vSeedNodes
Definition: net.h:1067
bool m_use_addrman_outgoing
Definition: net.h:1076
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1075
NetPermissionFlags permission_flags
Definition: net.h:665
std::string m_type
Definition: net.h:132
std::vector< unsigned char > data
Definition: net.h:131
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:121
An ElligatorSwift-encoded public key.
Definition: pubkey.h:310
static constexpr size_t size()
Definition: pubkey.h:327
uint16_t nPort
Definition: net.h:176
int nScore
Definition: net.h:175
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:262
TransportProtocolType transport_type
Definition: net.h:261
Bilingual messages:
Definition: translation.h:24
std::string original
Definition: translation.h:25
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
CService peer
The peer's I2P address.
Definition: i2p.h:40
#define WAIT_LOCK(cs, name)
Definition: sync.h:263
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:302
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:82
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:76
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56