Bitcoin Core 28.99.0
P2P Digital Currency
net.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2022 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8#include <net.h>
9
10#include <addrdb.h>
11#include <addrman.h>
12#include <banman.h>
13#include <clientversion.h>
14#include <common/args.h>
15#include <common/netif.h>
16#include <compat/compat.h>
17#include <consensus/consensus.h>
18#include <crypto/sha256.h>
19#include <i2p.h>
20#include <key.h>
21#include <logging.h>
22#include <memusage.h>
23#include <net_permissions.h>
24#include <netaddress.h>
25#include <netbase.h>
26#include <node/eviction.h>
27#include <node/interface_ui.h>
28#include <protocol.h>
29#include <random.h>
30#include <scheduler.h>
31#include <util/fs.h>
32#include <util/sock.h>
33#include <util/strencodings.h>
34#include <util/thread.h>
36#include <util/trace.h>
37#include <util/translation.h>
38#include <util/vector.h>
39
40#ifdef WIN32
41#include <string.h>
42#endif
43
44#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45#include <ifaddrs.h>
46#endif
47
48#include <algorithm>
49#include <array>
50#include <cmath>
51#include <cstdint>
52#include <functional>
53#include <optional>
54#include <unordered_map>
55
56TRACEPOINT_SEMAPHORE(net, closed_connection);
57TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
58TRACEPOINT_SEMAPHORE(net, inbound_connection);
59TRACEPOINT_SEMAPHORE(net, outbound_connection);
60TRACEPOINT_SEMAPHORE(net, outbound_message);
61
63static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
64static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
66const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
67
68// How often to dump addresses to peers.dat
69static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
70
72static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
73
75static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
76
86static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
87static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
88static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
89
91static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
92
93// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
94static constexpr auto FEELER_SLEEP_WINDOW{1s};
95
97static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
98
102 BF_REPORT_ERROR = (1U << 0),
107 BF_DONT_ADVERTISE = (1U << 1),
108};
109
110// The set of sockets cannot be modified while waiting
111// The sleep time needs to be small to avoid new sockets stalling
112static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
113
114const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
115
116static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
117static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
118static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
119//
120// Global state variables
121//
122bool fDiscover = true;
123bool fListen = true;
125std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
126std::string strSubVersion;
127
129{
130 return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
131}
132
133size_t CNetMessage::GetMemoryUsage() const noexcept
134{
135 return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
136}
137
138void CConnman::AddAddrFetch(const std::string& strDest)
139{
141 m_addr_fetches.push_back(strDest);
142}
143
145{
146 // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
147 for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
148 constexpr uint16_t dummy_port = 0;
149
150 const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
151 if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
152 }
153
154 // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
155 // (-whitebind= is required to have ":port").
156 for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
157 NetWhitebindPermissions whitebind;
158 bilingual_str error;
159 if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
161 return whitebind.m_service.GetPort();
162 }
163 }
164 }
165
166 // Otherwise, if -port= is provided, use that. Otherwise use the default port.
167 return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
168}
169
170// Determine the "best" local address for a particular peer.
171[[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
172{
173 if (!fListen) return std::nullopt;
174
175 std::optional<CService> addr;
176 int nBestScore = -1;
177 int nBestReachability = -1;
178 {
180 for (const auto& [local_addr, local_service_info] : mapLocalHost) {
181 // For privacy reasons, don't advertise our privacy-network address
182 // to other networks and don't advertise our other-network address
183 // to privacy networks.
184 if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
185 && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
186 continue;
187 }
188 const int nScore{local_service_info.nScore};
189 const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
190 if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
191 addr.emplace(CService{local_addr, local_service_info.nPort});
192 nBestReachability = nReachability;
193 nBestScore = nScore;
194 }
195 }
196 }
197 return addr;
198}
199
201static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
202{
203 // It'll only connect to one or two seed nodes because once it connects,
204 // it'll get a pile of addresses with newer timestamps.
205 // Seed nodes are given a random 'last seen time' of between one and two
206 // weeks ago.
207 const auto one_week{7 * 24h};
208 std::vector<CAddress> vSeedsOut;
211 while (!s.eof()) {
212 CService endpoint;
213 s >> endpoint;
214 CAddress addr{endpoint, SeedsServiceFlags()};
215 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
216 LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
217 vSeedsOut.push_back(addr);
218 }
219 return vSeedsOut;
220}
221
222// Determine the "best" local address for a particular peer.
223// If none, return the unroutable 0.0.0.0 but filled in with
224// the normal parameters, since the IP may be changed to a useful
225// one by discovery.
227{
228 return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
229}
230
231static int GetnScore(const CService& addr)
232{
234 const auto it = mapLocalHost.find(addr);
235 return (it != mapLocalHost.end()) ? it->second.nScore : 0;
236}
237
238// Is our peer's addrLocal potentially useful as an external IP source?
239[[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
240{
241 CService addrLocal = pnode->GetAddrLocal();
242 return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
243 g_reachable_nets.Contains(addrLocal);
244}
245
246std::optional<CService> GetLocalAddrForPeer(CNode& node)
247{
248 CService addrLocal{GetLocalAddress(node)};
249 // If discovery is enabled, sometimes give our peer the address it
250 // tells us that it sees us as in case it has a better idea of our
251 // address than we do.
253 if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
254 rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
255 {
256 if (node.IsInboundConn()) {
257 // For inbound connections, assume both the address and the port
258 // as seen from the peer.
259 addrLocal = CService{node.GetAddrLocal()};
260 } else {
261 // For outbound connections, assume just the address as seen from
262 // the peer and leave the port in `addrLocal` as returned by
263 // `GetLocalAddress()` above. The peer has no way to observe our
264 // listening port when we have initiated the connection.
265 addrLocal.SetIP(node.GetAddrLocal());
266 }
267 }
268 if (addrLocal.IsRoutable()) {
269 LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
270 return addrLocal;
271 }
272 // Address is unroutable. Don't advertise.
273 return std::nullopt;
274}
275
276// learn a new local address
277bool AddLocal(const CService& addr_, int nScore)
278{
279 CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280
281 if (!addr.IsRoutable())
282 return false;
283
284 if (!fDiscover && nScore < LOCAL_MANUAL)
285 return false;
286
287 if (!g_reachable_nets.Contains(addr))
288 return false;
289
290 LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291
292 {
294 const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295 LocalServiceInfo &info = it->second;
296 if (is_newly_added || nScore >= info.nScore) {
297 info.nScore = nScore + (is_newly_added ? 0 : 1);
298 info.nPort = addr.GetPort();
299 }
300 }
301
302 return true;
303}
304
305bool AddLocal(const CNetAddr &addr, int nScore)
306{
307 return AddLocal(CService(addr, GetListenPort()), nScore);
308}
309
310void RemoveLocal(const CService& addr)
311{
313 LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314 mapLocalHost.erase(addr);
315}
316
318bool SeenLocal(const CService& addr)
319{
321 const auto it = mapLocalHost.find(addr);
322 if (it == mapLocalHost.end()) return false;
323 ++it->second.nScore;
324 return true;
325}
326
327
329bool IsLocal(const CService& addr)
330{
332 return mapLocalHost.count(addr) > 0;
333}
334
336{
338 for (CNode* pnode : m_nodes) {
339 if (static_cast<CNetAddr>(pnode->addr) == ip) {
340 return pnode;
341 }
342 }
343 return nullptr;
344}
345
346CNode* CConnman::FindNode(const std::string& addrName)
347{
349 for (CNode* pnode : m_nodes) {
350 if (pnode->m_addr_name == addrName) {
351 return pnode;
352 }
353 }
354 return nullptr;
355}
356
358{
360 for (CNode* pnode : m_nodes) {
361 if (static_cast<CService>(pnode->addr) == addr) {
362 return pnode;
363 }
364 }
365 return nullptr;
366}
367
369{
370 return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
371}
372
374{
376 for (const CNode* pnode : m_nodes) {
377 if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
378 return false;
379 }
380 return true;
381}
382
384static CService GetBindAddress(const Sock& sock)
385{
386 CService addr_bind;
387 struct sockaddr_storage sockaddr_bind;
388 socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
389 if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
390 addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
391 } else {
392 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
393 }
394 return addr_bind;
395}
396
397CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
398{
400 assert(conn_type != ConnectionType::INBOUND);
401
402 if (pszDest == nullptr) {
403 if (IsLocal(addrConnect))
404 return nullptr;
405
406 // Look for an existing connection
407 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
408 if (pnode)
409 {
410 LogPrintf("Failed to open new connection, already connected\n");
411 return nullptr;
412 }
413 }
414
415 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
416 use_v2transport ? "v2" : "v1",
417 pszDest ? pszDest : addrConnect.ToStringAddrPort(),
418 Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
419
420 // Resolve
421 const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
423
424 // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
425 std::vector<CAddress> connect_to{};
426 if (pszDest) {
427 std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
428 if (!resolved.empty()) {
429 std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
430 // If the connection is made by name, it can be the case that the name resolves to more than one address.
431 // We don't want to connect any more of them if we are already connected to one
432 for (const auto& r : resolved) {
433 addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
434 if (!addrConnect.IsValid()) {
435 LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
436 return nullptr;
437 }
438 // It is possible that we already have a connection to the IP/port pszDest resolved to.
439 // In that case, drop the connection that was just created.
441 CNode* pnode = FindNode(static_cast<CService>(addrConnect));
442 if (pnode) {
443 LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
444 return nullptr;
445 }
446 // Add the address to the resolved addresses vector so we can try to connect to it later on
447 connect_to.push_back(addrConnect);
448 }
449 } else {
450 // For resolution via proxy
451 connect_to.push_back(addrConnect);
452 }
453 } else {
454 // Connect via addrConnect directly
455 connect_to.push_back(addrConnect);
456 }
457
458 // Connect
459 std::unique_ptr<Sock> sock;
460 Proxy proxy;
461 CService addr_bind;
462 assert(!addr_bind.IsValid());
463 std::unique_ptr<i2p::sam::Session> i2p_transient_session;
464
465 for (auto& target_addr: connect_to) {
466 if (target_addr.IsValid()) {
467 const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
468 bool proxyConnectionFailed = false;
469
470 if (target_addr.IsI2P() && use_proxy) {
471 i2p::Connection conn;
472 bool connected{false};
473
474 if (m_i2p_sam_session) {
475 connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
476 } else {
477 {
479 if (m_unused_i2p_sessions.empty()) {
480 i2p_transient_session =
481 std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
482 } else {
483 i2p_transient_session.swap(m_unused_i2p_sessions.front());
484 m_unused_i2p_sessions.pop();
485 }
486 }
487 connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
488 if (!connected) {
490 if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
491 m_unused_i2p_sessions.emplace(i2p_transient_session.release());
492 }
493 }
494 }
495
496 if (connected) {
497 sock = std::move(conn.sock);
498 addr_bind = conn.me;
499 }
500 } else if (use_proxy) {
501 LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
502 sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
503 } else {
504 // no proxy needed (none set for target network)
505 sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
506 }
507 if (!proxyConnectionFailed) {
508 // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
509 // the proxy, mark this as an attempt.
510 addrman.Attempt(target_addr, fCountFailure);
511 }
512 } else if (pszDest && GetNameProxy(proxy)) {
513 std::string host;
514 uint16_t port{default_port};
515 SplitHostPort(std::string(pszDest), port, host);
516 bool proxyConnectionFailed;
517 sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
518 }
519 // Check any other resolved address (if any) if we fail to connect
520 if (!sock) {
521 continue;
522 }
523
525 std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
526 AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
527
528 // Add node
529 NodeId id = GetNewNodeId();
531 if (!addr_bind.IsValid()) {
532 addr_bind = GetBindAddress(*sock);
533 }
534 CNode* pnode = new CNode(id,
535 std::move(sock),
536 target_addr,
537 CalculateKeyedNetGroup(target_addr),
538 nonce,
539 addr_bind,
540 pszDest ? pszDest : "",
541 conn_type,
542 /*inbound_onion=*/false,
544 .permission_flags = permission_flags,
545 .i2p_sam_session = std::move(i2p_transient_session),
546 .recv_flood_size = nReceiveFloodSize,
547 .use_v2transport = use_v2transport,
548 });
549 pnode->AddRef();
550
551 // We're making a new connection, harvest entropy from the time (and our peer count)
552 RandAddEvent((uint32_t)id);
553
554 return pnode;
555 }
556
557 return nullptr;
558}
559
561{
562 fDisconnect = true;
564 if (m_sock) {
565 LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
566 m_sock.reset();
567
568 TRACEPOINT(net, closed_connection,
569 GetId(),
570 m_addr_name.c_str(),
571 ConnectionTypeAsString().c_str(),
573 Ticks<std::chrono::seconds>(m_connected));
574 }
575 m_i2p_sam_session.reset();
576}
577
578void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
579 for (const auto& subnet : ranges) {
580 if (subnet.m_subnet.Match(addr)) {
581 NetPermissions::AddFlag(flags, subnet.m_flags);
582 }
583 }
590 }
591}
592
594{
597 return m_addr_local;
598}
599
600void CNode::SetAddrLocal(const CService& addrLocalIn) {
603 if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
604 m_addr_local = addrLocalIn;
605 }
606}
607
609{
611}
612
614{
616}
617
618#undef X
619#define X(name) stats.name = name
621{
622 stats.nodeid = this->GetId();
623 X(addr);
624 X(addrBind);
626 X(m_last_send);
627 X(m_last_recv);
630 X(m_connected);
631 X(m_addr_name);
632 X(nVersion);
633 {
635 X(cleanSubVer);
636 }
637 stats.fInbound = IsInboundConn();
640 {
641 LOCK(cs_vSend);
642 X(mapSendBytesPerMsgType);
643 X(nSendBytes);
644 }
645 {
646 LOCK(cs_vRecv);
647 X(mapRecvBytesPerMsgType);
648 X(nRecvBytes);
649 Transport::Info info = m_transport->GetInfo();
650 stats.m_transport_type = info.transport_type;
651 if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
652 }
654
657
658 // Leave string empty if addrLocal invalid (not filled in yet)
659 CService addrLocalUnlocked = GetAddrLocal();
660 stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
661
662 X(m_conn_type);
663}
664#undef X
665
666bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
667{
668 complete = false;
669 const auto time = GetTime<std::chrono::microseconds>();
670 LOCK(cs_vRecv);
671 m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
672 nRecvBytes += msg_bytes.size();
673 while (msg_bytes.size() > 0) {
674 // absorb network data
675 if (!m_transport->ReceivedBytes(msg_bytes)) {
676 // Serious transport problem, disconnect from the peer.
677 return false;
678 }
679
680 if (m_transport->ReceivedMessageComplete()) {
681 // decompose a transport agnostic CNetMessage from the deserializer
682 bool reject_message{false};
683 CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
684 if (reject_message) {
685 // Message deserialization failed. Drop the message but don't disconnect the peer.
686 // store the size of the corrupt message
687 mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
688 continue;
689 }
690
691 // Store received bytes per message type.
692 // To prevent a memory DOS, only allow known message types.
693 auto i = mapRecvBytesPerMsgType.find(msg.m_type);
694 if (i == mapRecvBytesPerMsgType.end()) {
695 i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
696 }
697 assert(i != mapRecvBytesPerMsgType.end());
698 i->second += msg.m_raw_message_size;
699
700 // push the message to the process queue,
701 vRecvMsg.push_back(std::move(msg));
702
703 complete = true;
704 }
705 }
706
707 return true;
708}
709
710std::string CNode::LogIP(bool log_ip) const
711{
712 return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
713}
714
715std::string CNode::DisconnectMsg(bool log_ip) const
716{
717 return strprintf("disconnecting peer=%d%s",
718 GetId(),
719 LogIP(log_ip));
720}
721
722V1Transport::V1Transport(const NodeId node_id) noexcept
723 : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
724{
725 LOCK(m_recv_mutex);
726 Reset();
727}
728
730{
731 return {.transport_type = TransportProtocolType::V1, .session_id = {}};
732}
733
735{
737 // copy data to temporary parsing buffer
738 unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
739 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740
741 memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
742 nHdrPos += nCopy;
743
744 // if header incomplete, exit
745 if (nHdrPos < CMessageHeader::HEADER_SIZE)
746 return nCopy;
747
748 // deserialize to CMessageHeader
749 try {
750 hdrbuf >> hdr;
751 }
752 catch (const std::exception&) {
753 LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
754 return -1;
755 }
756
757 // Check start string, network magic
758 if (hdr.pchMessageStart != m_magic_bytes) {
759 LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
760 return -1;
761 }
762
763 // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
764 if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
765 LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
766 return -1;
767 }
768
769 // switch state to reading message data
770 in_data = true;
771
772 return nCopy;
773}
774
776{
778 unsigned int nRemaining = hdr.nMessageSize - nDataPos;
779 unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
780
781 if (vRecv.size() < nDataPos + nCopy) {
782 // Allocate up to 256 KiB ahead, but never more than the total message size.
783 vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
784 }
785
786 hasher.Write(msg_bytes.first(nCopy));
787 memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
788 nDataPos += nCopy;
789
790 return nCopy;
791}
792
794{
797 if (data_hash.IsNull())
798 hasher.Finalize(data_hash);
799 return data_hash;
800}
801
802CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
803{
805 // Initialize out parameter
806 reject_message = false;
807 // decompose a single CNetMessage from the TransportDeserializer
809 CNetMessage msg(std::move(vRecv));
810
811 // store message type string, time, and sizes
812 msg.m_type = hdr.GetMessageType();
813 msg.m_time = time;
814 msg.m_message_size = hdr.nMessageSize;
815 msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
816
817 uint256 hash = GetMessageHash();
818
819 // We just received a message off the wire, harvest entropy from the time (and the message checksum)
820 RandAddEvent(ReadLE32(hash.begin()));
821
822 // Check checksum and header message type string
823 if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
824 LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
825 SanitizeString(msg.m_type), msg.m_message_size,
827 HexStr(hdr.pchChecksum),
828 m_node_id);
829 reject_message = true;
830 } else if (!hdr.IsMessageTypeValid()) {
831 LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
832 SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
833 reject_message = true;
834 }
835
836 // Always reset the network deserializer (prepare for the next message)
837 Reset();
838 return msg;
839}
840
842{
843 AssertLockNotHeld(m_send_mutex);
844 // Determine whether a new message can be set.
845 LOCK(m_send_mutex);
846 if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
847
848 // create dbl-sha256 checksum
849 uint256 hash = Hash(msg.data);
850
851 // create header
852 CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
854
855 // serialize header
856 m_header_to_send.clear();
857 VectorWriter{m_header_to_send, 0, hdr};
858
859 // update state
860 m_message_to_send = std::move(msg);
861 m_sending_header = true;
862 m_bytes_sent = 0;
863 return true;
864}
865
866Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
867{
868 AssertLockNotHeld(m_send_mutex);
869 LOCK(m_send_mutex);
870 if (m_sending_header) {
871 return {Span{m_header_to_send}.subspan(m_bytes_sent),
872 // We have more to send after the header if the message has payload, or if there
873 // is a next message after that.
874 have_next_message || !m_message_to_send.data.empty(),
875 m_message_to_send.m_type
876 };
877 } else {
878 return {Span{m_message_to_send.data}.subspan(m_bytes_sent),
879 // We only have more to send after this message's payload if there is another
880 // message.
881 have_next_message,
882 m_message_to_send.m_type
883 };
884 }
885}
886
887void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
888{
889 AssertLockNotHeld(m_send_mutex);
890 LOCK(m_send_mutex);
891 m_bytes_sent += bytes_sent;
892 if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
893 // We're done sending a message's header. Switch to sending its data bytes.
894 m_sending_header = false;
895 m_bytes_sent = 0;
896 } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
897 // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
898 ClearShrink(m_message_to_send.data);
899 m_bytes_sent = 0;
900 }
901}
902
903size_t V1Transport::GetSendMemoryUsage() const noexcept
904{
907 // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
908 return m_message_to_send.GetMemoryUsage();
909}
910
911namespace {
912
918const std::array<std::string, 33> V2_MESSAGE_IDS = {
919 "", // 12 bytes follow encoding the message type like in V1
948 // Unimplemented message types that are assigned in BIP324:
949 "",
950 "",
951 "",
952 ""
953};
954
955class V2MessageMap
956{
957 std::unordered_map<std::string, uint8_t> m_map;
958
959public:
960 V2MessageMap() noexcept
961 {
962 for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
963 m_map.emplace(V2_MESSAGE_IDS[i], i);
964 }
965 }
966
967 std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
968 {
969 auto it = m_map.find(message_name);
970 if (it == m_map.end()) return std::nullopt;
971 return it->second;
972 }
973};
974
975const V2MessageMap V2_MESSAGE_MAP;
976
977std::vector<uint8_t> GenerateRandomGarbage() noexcept
978{
979 std::vector<uint8_t> ret;
983 return ret;
984}
985
986} // namespace
987
989{
990 AssertLockHeld(m_send_mutex);
991 Assume(m_send_state == SendState::AWAITING_KEY);
992 Assume(m_send_buffer.empty());
993 // Initialize the send buffer with ellswift pubkey + provided garbage.
994 m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
995 std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
996 std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
997 // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
998}
999
1000V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, Span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1001 : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1002 m_v1_fallback{nodeid},
1003 m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1004 m_send_garbage{std::move(garbage)},
1005 m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1006{
1007 Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1008 // Start sending immediately if we're the initiator of the connection.
1009 if (initiating) {
1010 LOCK(m_send_mutex);
1011 StartSendingHandshake();
1012 }
1013}
1014
1015V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1016 : V2Transport{nodeid, initiating, GenerateRandomKey(),
1017 MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1018
1020{
1021 AssertLockHeld(m_recv_mutex);
1022 // Enforce allowed state transitions.
1023 switch (m_recv_state) {
1024 case RecvState::KEY_MAYBE_V1:
1025 Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1026 break;
1027 case RecvState::KEY:
1028 Assume(recv_state == RecvState::GARB_GARBTERM);
1029 break;
1030 case RecvState::GARB_GARBTERM:
1031 Assume(recv_state == RecvState::VERSION);
1032 break;
1033 case RecvState::VERSION:
1034 Assume(recv_state == RecvState::APP);
1035 break;
1036 case RecvState::APP:
1037 Assume(recv_state == RecvState::APP_READY);
1038 break;
1039 case RecvState::APP_READY:
1040 Assume(recv_state == RecvState::APP);
1041 break;
1042 case RecvState::V1:
1043 Assume(false); // V1 state cannot be left
1044 break;
1045 }
1046 // Change state.
1047 m_recv_state = recv_state;
1048}
1049
1050void V2Transport::SetSendState(SendState send_state) noexcept
1051{
1052 AssertLockHeld(m_send_mutex);
1053 // Enforce allowed state transitions.
1054 switch (m_send_state) {
1055 case SendState::MAYBE_V1:
1056 Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1057 break;
1058 case SendState::AWAITING_KEY:
1059 Assume(send_state == SendState::READY);
1060 break;
1061 case SendState::READY:
1062 case SendState::V1:
1063 Assume(false); // Final states
1064 break;
1065 }
1066 // Change state.
1067 m_send_state = send_state;
1068}
1069
1071{
1072 AssertLockNotHeld(m_recv_mutex);
1073 LOCK(m_recv_mutex);
1074 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1075
1076 return m_recv_state == RecvState::APP_READY;
1077}
1078
1080{
1081 AssertLockHeld(m_recv_mutex);
1082 AssertLockNotHeld(m_send_mutex);
1083 Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1084 // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1085 // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1086 // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1087 // sending of the key.
1088 std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1089 std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1090 Assume(m_recv_buffer.size() <= v1_prefix.size());
1091 if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1092 // Mismatch with v1 prefix, so we can assume a v2 connection.
1093 SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1094 // Transition the sender to AWAITING_KEY state and start sending.
1095 LOCK(m_send_mutex);
1098 } else if (m_recv_buffer.size() == v1_prefix.size()) {
1099 // Full match with the v1 prefix, so fall back to v1 behavior.
1100 LOCK(m_send_mutex);
1101 Span<const uint8_t> feedback{m_recv_buffer};
1102 // Feed already received bytes to v1 transport. It should always accept these, because it's
1103 // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1104 bool ret = m_v1_fallback.ReceivedBytes(feedback);
1105 Assume(feedback.empty());
1106 Assume(ret);
1109 // Reset v2 transport buffers to save memory.
1110 ClearShrink(m_recv_buffer);
1111 ClearShrink(m_send_buffer);
1112 } else {
1113 // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1114 }
1115}
1116
1118{
1119 AssertLockHeld(m_recv_mutex);
1120 AssertLockNotHeld(m_send_mutex);
1121 Assume(m_recv_state == RecvState::KEY);
1122 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1123
1124 // As a special exception, if bytes 4-16 of the key on a responder connection match the
1125 // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1126 // (if they did, we'd have switched to V1 state already), assume this is a peer from
1127 // another network, and disconnect them. They will almost certainly disconnect us too when
1128 // they receive our uniformly random key and garbage, but detecting this case specially
1129 // means we can log it.
1130 static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1131 static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1132 if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1133 if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1134 LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1135 HexStr(Span(m_recv_buffer).first(OFFSET)));
1136 return false;
1137 }
1138 }
1139
1140 if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1141 // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1142 // our key to initialize the encryption ciphers.
1143
1144 // Initialize the ciphers.
1145 EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1146 LOCK(m_send_mutex);
1147 m_cipher.Initialize(ellswift, m_initiating);
1148
1149 // Switch receiver state to GARB_GARBTERM.
1151 m_recv_buffer.clear();
1152
1153 // Switch sender state to READY.
1155
1156 // Append the garbage terminator to the send buffer.
1157 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1160 MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1161
1162 // Construct version packet in the send buffer, with the sent garbage data as AAD.
1163 m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1165 /*contents=*/VERSION_CONTENTS,
1166 /*aad=*/MakeByteSpan(m_send_garbage),
1167 /*ignore=*/false,
1168 /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1169 // We no longer need the garbage.
1170 ClearShrink(m_send_garbage);
1171 } else {
1172 // We still have to receive more key bytes.
1173 }
1174 return true;
1175}
1176
1178{
1179 AssertLockHeld(m_recv_mutex);
1180 Assume(m_recv_state == RecvState::GARB_GARBTERM);
1182 if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1183 if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1184 // Garbage terminator received. Store garbage to authenticate it as AAD later.
1185 m_recv_aad = std::move(m_recv_buffer);
1186 m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1187 m_recv_buffer.clear();
1189 } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1190 // We've reached the maximum length for garbage + garbage terminator, and the
1191 // terminator still does not match. Abort.
1192 LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1193 return false;
1194 } else {
1195 // We still need to receive more garbage and/or garbage terminator bytes.
1196 }
1197 } else {
1198 // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1199 // more first.
1200 }
1201 return true;
1202}
1203
1205{
1206 AssertLockHeld(m_recv_mutex);
1207 Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1208
1209 // The maximum permitted contents length for a packet, consisting of:
1210 // - 0x00 byte: indicating long message type encoding
1211 // - 12 bytes of message type
1212 // - payload
1213 static constexpr size_t MAX_CONTENTS_LEN =
1215 std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1216
1217 if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1218 // Length descriptor received.
1219 m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1220 if (m_recv_len > MAX_CONTENTS_LEN) {
1221 LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1222 return false;
1223 }
1224 } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1225 // Ciphertext received, decrypt it into m_recv_decode_buffer.
1226 // Note that it is impossible to reach this branch without hitting the branch above first,
1227 // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1228 m_recv_decode_buffer.resize(m_recv_len);
1229 bool ignore{false};
1230 bool ret = m_cipher.Decrypt(
1231 /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1232 /*aad=*/MakeByteSpan(m_recv_aad),
1233 /*ignore=*/ignore,
1234 /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1235 if (!ret) {
1236 LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1237 return false;
1238 }
1239 // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1240 ClearShrink(m_recv_aad);
1241 // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1242 RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1243
1244 // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1245 // decoy, which we simply ignore, use the current state to decide what to do with it.
1246 if (!ignore) {
1247 switch (m_recv_state) {
1248 case RecvState::VERSION:
1249 // Version message received; transition to application phase. The contents is
1250 // ignored, but can be used for future extensions.
1252 break;
1253 case RecvState::APP:
1254 // Application message decrypted correctly. It can be extracted using GetMessage().
1256 break;
1257 default:
1258 // Any other state is invalid (this function should not have been called).
1259 Assume(false);
1260 }
1261 }
1262 // Wipe the receive buffer where the next packet will be received into.
1263 ClearShrink(m_recv_buffer);
1264 // In all but APP_READY state, we can wipe the decoded contents.
1265 if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1266 } else {
1267 // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1268 // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1269 }
1270 return true;
1271}
1272
1274{
1275 AssertLockHeld(m_recv_mutex);
1276 switch (m_recv_state) {
1278 // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1279 // receive buffer.
1280 Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1281 // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1282 // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1283 // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1284 // back into the m_v1_fallback V1 transport.
1285 return V1_PREFIX_LEN - m_recv_buffer.size();
1286 case RecvState::KEY:
1287 // During the KEY state, we only allow the 64-byte key into the receive buffer.
1288 Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1289 // As long as we have not received the other side's public key, don't receive more than
1290 // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1291 // key exchange first.
1292 return EllSwiftPubKey::size() - m_recv_buffer.size();
1294 // Process garbage bytes one by one (because terminator may appear anywhere).
1295 return 1;
1296 case RecvState::VERSION:
1297 case RecvState::APP:
1298 // These three states all involve decoding a packet. Process the length descriptor first,
1299 // so that we know where the current packet ends (and we don't process bytes from the next
1300 // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1301 if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1302 return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1303 } else {
1304 // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1305 // and encoded packet size, which includes the 3 bytes due to the packet length.
1306 // When transitioning from receiving the packet length to receiving its ciphertext,
1307 // the encrypted packet length is left in the receive buffer.
1308 return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1309 }
1311 // No bytes can be processed until GetMessage() is called.
1312 return 0;
1313 case RecvState::V1:
1314 // Not allowed (must be dealt with by the caller).
1315 Assume(false);
1316 return 0;
1317 }
1318 Assume(false); // unreachable
1319 return 0;
1320}
1321
1323{
1324 AssertLockNotHeld(m_recv_mutex);
1326 static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1327
1328 LOCK(m_recv_mutex);
1329 if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1330
1331 // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1332 // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1333 // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1334 // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1335 while (!msg_bytes.empty()) {
1336 // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1337 size_t max_read = GetMaxBytesToProcess();
1338
1339 // Reserve space in the buffer if there is not enough.
1340 if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1341 switch (m_recv_state) {
1342 case RecvState::KEY_MAYBE_V1:
1343 case RecvState::KEY:
1344 case RecvState::GARB_GARBTERM:
1345 // During the initial states (key/garbage), allocate once to fit the maximum (4111
1346 // bytes).
1347 m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1348 break;
1349 case RecvState::VERSION:
1350 case RecvState::APP: {
1351 // During states where a packet is being received, as much as is expected but never
1352 // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1353 // This means attackers that want to cause us to waste allocated memory are limited
1354 // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1355 // MAX_RESERVE_AHEAD more than they've actually sent us.
1356 size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1357 m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1358 break;
1359 }
1360 case RecvState::APP_READY:
1361 // The buffer is empty in this state.
1362 Assume(m_recv_buffer.empty());
1363 break;
1364 case RecvState::V1:
1365 // Should have bailed out above.
1366 Assume(false);
1367 break;
1368 }
1369 }
1370
1371 // Can't read more than provided input.
1372 max_read = std::min(msg_bytes.size(), max_read);
1373 // Copy data to buffer.
1374 m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1375 msg_bytes = msg_bytes.subspan(max_read);
1376
1377 // Process data in the buffer.
1378 switch (m_recv_state) {
1379 case RecvState::KEY_MAYBE_V1:
1380 ProcessReceivedMaybeV1Bytes();
1381 if (m_recv_state == RecvState::V1) return true;
1382 break;
1383
1384 case RecvState::KEY:
1385 if (!ProcessReceivedKeyBytes()) return false;
1386 break;
1387
1388 case RecvState::GARB_GARBTERM:
1389 if (!ProcessReceivedGarbageBytes()) return false;
1390 break;
1391
1392 case RecvState::VERSION:
1393 case RecvState::APP:
1394 if (!ProcessReceivedPacketBytes()) return false;
1395 break;
1396
1397 case RecvState::APP_READY:
1398 return true;
1399
1400 case RecvState::V1:
1401 // We should have bailed out before.
1402 Assume(false);
1403 break;
1404 }
1405 // Make sure we have made progress before continuing.
1406 Assume(max_read > 0);
1407 }
1408
1409 return true;
1410}
1411
1412std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
1413{
1414 if (contents.size() == 0) return std::nullopt; // Empty contents
1415 uint8_t first_byte = contents[0];
1416 contents = contents.subspan(1); // Strip first byte.
1417
1418 if (first_byte != 0) {
1419 // Short (1 byte) encoding.
1420 if (first_byte < std::size(V2_MESSAGE_IDS)) {
1421 // Valid short message id.
1422 return V2_MESSAGE_IDS[first_byte];
1423 } else {
1424 // Unknown short message id.
1425 return std::nullopt;
1426 }
1427 }
1428
1429 if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1430 return std::nullopt; // Long encoding needs 12 message type bytes.
1431 }
1432
1433 size_t msg_type_len{0};
1434 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1435 // Verify that message type bytes before the first 0x00 are in range.
1436 if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1437 return {};
1438 }
1439 ++msg_type_len;
1440 }
1441 std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1442 while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1443 // Verify that message type bytes after the first 0x00 are also 0x00.
1444 if (contents[msg_type_len] != 0) return {};
1445 ++msg_type_len;
1446 }
1447 // Strip message type bytes of contents.
1448 contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1449 return ret;
1450}
1451
1452CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1453{
1454 AssertLockNotHeld(m_recv_mutex);
1455 LOCK(m_recv_mutex);
1456 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1457
1458 Assume(m_recv_state == RecvState::APP_READY);
1459 Span<const uint8_t> contents{m_recv_decode_buffer};
1460 auto msg_type = GetMessageType(contents);
1462 // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1463 msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1464 if (msg_type) {
1465 reject_message = false;
1466 msg.m_type = std::move(*msg_type);
1467 msg.m_time = time;
1468 msg.m_message_size = contents.size();
1469 msg.m_recv.resize(contents.size());
1470 std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1471 } else {
1472 LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1473 reject_message = true;
1474 }
1475 ClearShrink(m_recv_decode_buffer);
1476 SetReceiveState(RecvState::APP);
1477
1478 return msg;
1479}
1480
1482{
1483 AssertLockNotHeld(m_send_mutex);
1484 LOCK(m_send_mutex);
1485 if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1486 // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1487 // is available) and the send buffer is empty. This limits the number of messages in the send
1488 // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1489 if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1490 // Construct contents (encoding message type + payload).
1491 std::vector<uint8_t> contents;
1492 auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1493 if (short_message_id) {
1494 contents.resize(1 + msg.data.size());
1495 contents[0] = *short_message_id;
1496 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1497 } else {
1498 // Initialize with zeroes, and then write the message type string starting at offset 1.
1499 // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1500 contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1501 std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1502 std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1503 }
1504 // Construct ciphertext in send buffer.
1505 m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1506 m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1507 m_send_type = msg.m_type;
1508 // Release memory
1509 ClearShrink(msg.data);
1510 return true;
1511}
1512
1513Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1514{
1515 AssertLockNotHeld(m_send_mutex);
1516 LOCK(m_send_mutex);
1517 if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1518
1519 if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1520 Assume(m_send_pos <= m_send_buffer.size());
1521 return {
1522 Span{m_send_buffer}.subspan(m_send_pos),
1523 // We only have more to send after the current m_send_buffer if there is a (next)
1524 // message to be sent, and we're capable of sending packets. */
1525 have_next_message && m_send_state == SendState::READY,
1526 m_send_type
1527 };
1528}
1529
1530void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1531{
1532 AssertLockNotHeld(m_send_mutex);
1533 LOCK(m_send_mutex);
1534 if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1535
1536 if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
1537 LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1538 }
1539
1540 m_send_pos += bytes_sent;
1541 Assume(m_send_pos <= m_send_buffer.size());
1542 if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1543 m_sent_v1_header_worth = true;
1544 }
1545 // Wipe the buffer when everything is sent.
1546 if (m_send_pos == m_send_buffer.size()) {
1547 m_send_pos = 0;
1548 ClearShrink(m_send_buffer);
1549 }
1550}
1551
1553{
1554 AssertLockNotHeld(m_send_mutex);
1555 AssertLockNotHeld(m_recv_mutex);
1556 // Only outgoing connections need reconnection.
1557 if (!m_initiating) return false;
1558
1559 LOCK(m_recv_mutex);
1560 // We only reconnect in the very first state and when the receive buffer is empty. Together
1561 // these conditions imply nothing has been received so far.
1562 if (m_recv_state != RecvState::KEY) return false;
1563 if (!m_recv_buffer.empty()) return false;
1564 // Check if we've sent enough for the other side to disconnect us (if it was V1).
1565 LOCK(m_send_mutex);
1566 return m_sent_v1_header_worth;
1567}
1568
1569size_t V2Transport::GetSendMemoryUsage() const noexcept
1570{
1571 AssertLockNotHeld(m_send_mutex);
1572 LOCK(m_send_mutex);
1573 if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1574
1575 return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1576}
1577
1579{
1580 AssertLockNotHeld(m_recv_mutex);
1581 LOCK(m_recv_mutex);
1582 if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1583
1584 Transport::Info info;
1585
1586 // Do not report v2 and session ID until the version packet has been received
1587 // and verified (confirming that the other side very likely has the same keys as us).
1588 if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1589 m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1592 } else {
1594 }
1595
1596 return info;
1597}
1598
1599std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1600{
1601 auto it = node.vSendMsg.begin();
1602 size_t nSentSize = 0;
1603 bool data_left{false};
1604 std::optional<bool> expected_more;
1605
1606 while (true) {
1607 if (it != node.vSendMsg.end()) {
1608 // If possible, move one message from the send queue to the transport. This fails when
1609 // there is an existing message still being sent, or (for v2 transports) when the
1610 // handshake has not yet completed.
1611 size_t memusage = it->GetMemoryUsage();
1612 if (node.m_transport->SetMessageToSend(*it)) {
1613 // Update memory usage of send buffer (as *it will be deleted).
1614 node.m_send_memusage -= memusage;
1615 ++it;
1616 }
1617 }
1618 const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1619 // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1620 // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1621 // verify that the previously returned 'more' was correct.
1622 if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1623 expected_more = more;
1624 data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1625 int nBytes = 0;
1626 if (!data.empty()) {
1627 LOCK(node.m_sock_mutex);
1628 // There is no socket in case we've already disconnected, or in test cases without
1629 // real connections. In these cases, we bail out immediately and just leave things
1630 // in the send queue and transport.
1631 if (!node.m_sock) {
1632 break;
1633 }
1635#ifdef MSG_MORE
1636 if (more) {
1637 flags |= MSG_MORE;
1638 }
1639#endif
1640 nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1641 }
1642 if (nBytes > 0) {
1643 node.m_last_send = GetTime<std::chrono::seconds>();
1644 node.nSendBytes += nBytes;
1645 // Notify transport that bytes have been processed.
1646 node.m_transport->MarkBytesSent(nBytes);
1647 // Update statistics per message type.
1648 if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1649 node.AccountForSentBytes(msg_type, nBytes);
1650 }
1651 nSentSize += nBytes;
1652 if ((size_t)nBytes != data.size()) {
1653 // could not send full message; stop sending more
1654 break;
1655 }
1656 } else {
1657 if (nBytes < 0) {
1658 // error
1659 int nErr = WSAGetLastError();
1660 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1661 LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
1662 node.CloseSocketDisconnect();
1663 }
1664 }
1665 break;
1666 }
1667 }
1668
1669 node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1670
1671 if (it == node.vSendMsg.end()) {
1672 assert(node.m_send_memusage == 0);
1673 }
1674 node.vSendMsg.erase(node.vSendMsg.begin(), it);
1675 return {nSentSize, data_left};
1676}
1677
1687{
1688 std::vector<NodeEvictionCandidate> vEvictionCandidates;
1689 {
1690
1692 for (const CNode* node : m_nodes) {
1693 if (node->fDisconnect)
1694 continue;
1695 NodeEvictionCandidate candidate{
1696 .id = node->GetId(),
1697 .m_connected = node->m_connected,
1698 .m_min_ping_time = node->m_min_ping_time,
1699 .m_last_block_time = node->m_last_block_time,
1700 .m_last_tx_time = node->m_last_tx_time,
1701 .fRelevantServices = node->m_has_all_wanted_services,
1702 .m_relay_txs = node->m_relays_txs.load(),
1703 .fBloomFilter = node->m_bloom_filter_loaded.load(),
1704 .nKeyedNetGroup = node->nKeyedNetGroup,
1705 .prefer_evict = node->m_prefer_evict,
1706 .m_is_local = node->addr.IsLocal(),
1707 .m_network = node->ConnectedThroughNetwork(),
1708 .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1709 .m_conn_type = node->m_conn_type,
1710 };
1711 vEvictionCandidates.push_back(candidate);
1712 }
1713 }
1714 const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1715 if (!node_id_to_evict) {
1716 return false;
1717 }
1719 for (CNode* pnode : m_nodes) {
1720 if (pnode->GetId() == *node_id_to_evict) {
1721 LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
1722 TRACEPOINT(net, evicted_inbound_connection,
1723 pnode->GetId(),
1724 pnode->m_addr_name.c_str(),
1725 pnode->ConnectionTypeAsString().c_str(),
1726 pnode->ConnectedThroughNetwork(),
1727 Ticks<std::chrono::seconds>(pnode->m_connected));
1728 pnode->fDisconnect = true;
1729 return true;
1730 }
1731 }
1732 return false;
1733}
1734
1735void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1736 struct sockaddr_storage sockaddr;
1737 socklen_t len = sizeof(sockaddr);
1738 auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1739
1740 if (!sock) {
1741 const int nErr = WSAGetLastError();
1742 if (nErr != WSAEWOULDBLOCK) {
1743 LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1744 }
1745 return;
1746 }
1747
1748 CService addr;
1749 if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1750 LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
1751 } else {
1752 addr = MaybeFlipIPv6toCJDNS(addr);
1753 }
1754
1755 const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1756
1758 hListenSocket.AddSocketPermissionFlags(permission_flags);
1759
1760 CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1761}
1762
1763void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1764 NetPermissionFlags permission_flags,
1765 const CService& addr_bind,
1766 const CService& addr)
1767{
1768 int nInbound = 0;
1769
1771
1772 {
1774 for (const CNode* pnode : m_nodes) {
1775 if (pnode->IsInboundConn()) nInbound++;
1776 }
1777 }
1778
1779 if (!fNetworkActive) {
1780 LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1781 return;
1782 }
1783
1784 if (!sock->IsSelectable()) {
1785 LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1786 return;
1787 }
1788
1789 // According to the internet TCP_NODELAY is not carried into accepted sockets
1790 // on all platforms. Set it again here just to be sure.
1791 const int on{1};
1792 if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1793 LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1794 addr.ToStringAddrPort());
1795 }
1796
1797 // Don't accept connections from banned peers.
1798 bool banned = m_banman && m_banman->IsBanned(addr);
1799 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1800 {
1801 LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1802 return;
1803 }
1804
1805 // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1806 bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1807 if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
1808 {
1809 LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1810 return;
1811 }
1812
1813 if (nInbound >= m_max_inbound)
1814 {
1815 if (!AttemptToEvictConnection()) {
1816 // No connection to evict, disconnect the new connection
1817 LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1818 return;
1819 }
1820 }
1821
1822 NodeId id = GetNewNodeId();
1824
1825 const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1826 // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1827 // detected, so use it whenever we signal NODE_P2P_V2.
1828 ServiceFlags local_services = GetLocalServices();
1829 const bool use_v2transport(local_services & NODE_P2P_V2);
1830
1831 CNode* pnode = new CNode(id,
1832 std::move(sock),
1833 CAddress{addr, NODE_NONE},
1835 nonce,
1836 addr_bind,
1837 /*addrNameIn=*/"",
1839 inbound_onion,
1841 .permission_flags = permission_flags,
1842 .prefer_evict = discouraged,
1843 .recv_flood_size = nReceiveFloodSize,
1844 .use_v2transport = use_v2transport,
1845 });
1846 pnode->AddRef();
1847 m_msgproc->InitializeNode(*pnode, local_services);
1848 {
1850 m_nodes.push_back(pnode);
1851 }
1852 LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1853 TRACEPOINT(net, inbound_connection,
1854 pnode->GetId(),
1855 pnode->m_addr_name.c_str(),
1856 pnode->ConnectionTypeAsString().c_str(),
1857 pnode->ConnectedThroughNetwork(),
1859
1860 // We received a new connection, harvest entropy from the time (and our peer count)
1861 RandAddEvent((uint32_t)id);
1862}
1863
1864bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1865{
1867 std::optional<int> max_connections;
1868 switch (conn_type) {
1871 return false;
1873 max_connections = m_max_outbound_full_relay;
1874 break;
1876 max_connections = m_max_outbound_block_relay;
1877 break;
1878 // no limit for ADDR_FETCH because -seednode has no limit either
1880 break;
1881 // no limit for FEELER connections since they're short-lived
1883 break;
1884 } // no default case, so the compiler can warn about missing cases
1885
1886 // Count existing connections
1887 int existing_connections = WITH_LOCK(m_nodes_mutex,
1888 return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1889
1890 // Max connections of specified type already exist
1891 if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1892
1893 // Max total outbound connections already exist
1894 CSemaphoreGrant grant(*semOutbound, true);
1895 if (!grant) return false;
1896
1897 OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1898 return true;
1899}
1900
1902{
1905
1906 // Use a temporary variable to accumulate desired reconnections, so we don't need
1907 // m_reconnections_mutex while holding m_nodes_mutex.
1908 decltype(m_reconnections) reconnections_to_add;
1909
1910 {
1912
1913 if (!fNetworkActive) {
1914 // Disconnect any connected nodes
1915 for (CNode* pnode : m_nodes) {
1916 if (!pnode->fDisconnect) {
1917 LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
1918 pnode->fDisconnect = true;
1919 }
1920 }
1921 }
1922
1923 // Disconnect unused nodes
1924 std::vector<CNode*> nodes_copy = m_nodes;
1925 for (CNode* pnode : nodes_copy)
1926 {
1927 if (pnode->fDisconnect)
1928 {
1929 // remove from m_nodes
1930 m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1931
1932 // Add to reconnection list if appropriate. We don't reconnect right here, because
1933 // the creation of a connection is a blocking operation (up to several seconds),
1934 // and we don't want to hold up the socket handler thread for that long.
1935 if (pnode->m_transport->ShouldReconnectV1()) {
1936 reconnections_to_add.push_back({
1937 .addr_connect = pnode->addr,
1938 .grant = std::move(pnode->grantOutbound),
1939 .destination = pnode->m_dest,
1940 .conn_type = pnode->m_conn_type,
1941 .use_v2transport = false});
1942 LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
1943 }
1944
1945 // release outbound grant (if any)
1946 pnode->grantOutbound.Release();
1947
1948 // close socket and cleanup
1949 pnode->CloseSocketDisconnect();
1950
1951 // update connection count by network
1952 if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1953
1954 // hold in disconnected pool until all refs are released
1955 pnode->Release();
1956 m_nodes_disconnected.push_back(pnode);
1957 }
1958 }
1959 }
1960 {
1961 // Delete disconnected nodes
1962 std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1963 for (CNode* pnode : nodes_disconnected_copy)
1964 {
1965 // Destroy the object only after other threads have stopped using it.
1966 if (pnode->GetRefCount() <= 0) {
1967 m_nodes_disconnected.remove(pnode);
1968 DeleteNode(pnode);
1969 }
1970 }
1971 }
1972 {
1973 // Move entries from reconnections_to_add to m_reconnections.
1975 m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1976 }
1977}
1978
1980{
1981 size_t nodes_size;
1982 {
1984 nodes_size = m_nodes.size();
1985 }
1986 if(nodes_size != nPrevNodeCount) {
1987 nPrevNodeCount = nodes_size;
1988 if (m_client_interface) {
1989 m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1990 }
1991 }
1992}
1993
1994bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1995{
1996 return node.m_connected + m_peer_connect_timeout < now;
1997}
1998
2000{
2001 // Tests that see disconnects after using mocktime can start nodes with a
2002 // large timeout. For example, -peertimeout=999999999.
2003 const auto now{GetTime<std::chrono::seconds>()};
2004 const auto last_send{node.m_last_send.load()};
2005 const auto last_recv{node.m_last_recv.load()};
2006
2007 if (!ShouldRunInactivityChecks(node, now)) return false;
2008
2009 bool has_received{last_recv.count() != 0};
2010 bool has_sent{last_send.count() != 0};
2011
2012 if (!has_received || !has_sent) {
2013 std::string has_never;
2014 if (!has_received) has_never += ", never received from peer";
2015 if (!has_sent) has_never += ", never sent to peer";
2017 "socket no message in first %i seconds%s, %s\n",
2019 has_never,
2020 node.DisconnectMsg(fLogIPs)
2021 );
2022 return true;
2023 }
2024
2025 if (now > last_send + TIMEOUT_INTERVAL) {
2027 "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2028 node.DisconnectMsg(fLogIPs)
2029 );
2030 return true;
2031 }
2032
2033 if (now > last_recv + TIMEOUT_INTERVAL) {
2035 "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2036 node.DisconnectMsg(fLogIPs)
2037 );
2038 return true;
2039 }
2040
2041 if (!node.fSuccessfullyConnected) {
2042 if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2043 LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2044 } else {
2045 LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2046 }
2047 return true;
2048 }
2049
2050 return false;
2051}
2052
2054{
2055 Sock::EventsPerSock events_per_sock;
2056
2057 for (const ListenSocket& hListenSocket : vhListenSocket) {
2058 events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2059 }
2060
2061 for (CNode* pnode : nodes) {
2062 bool select_recv = !pnode->fPauseRecv;
2063 bool select_send;
2064 {
2065 LOCK(pnode->cs_vSend);
2066 // Sending is possible if either there are bytes to send right now, or if there will be
2067 // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2068 // determines both of these in a single call.
2069 const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2070 select_send = !to_send.empty() || more;
2071 }
2072 if (!select_recv && !select_send) continue;
2073
2074 LOCK(pnode->m_sock_mutex);
2075 if (pnode->m_sock) {
2076 Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2077 events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2078 }
2079 }
2080
2081 return events_per_sock;
2082}
2083
2085{
2087
2088 Sock::EventsPerSock events_per_sock;
2089
2090 {
2091 const NodesSnapshot snap{*this, /*shuffle=*/false};
2092
2093 const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2094
2095 // Check for the readiness of the already connected sockets and the
2096 // listening sockets in one call ("readiness" as in poll(2) or
2097 // select(2)). If none are ready, wait for a short while and return
2098 // empty sets.
2099 events_per_sock = GenerateWaitSockets(snap.Nodes());
2100 if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
2101 interruptNet.sleep_for(timeout);
2102 }
2103
2104 // Service (send/receive) each of the already connected nodes.
2105 SocketHandlerConnected(snap.Nodes(), events_per_sock);
2106 }
2107
2108 // Accept new connections from listening sockets.
2109 SocketHandlerListening(events_per_sock);
2110}
2111
2112void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2113 const Sock::EventsPerSock& events_per_sock)
2114{
2116
2117 for (CNode* pnode : nodes) {
2118 if (interruptNet)
2119 return;
2120
2121 //
2122 // Receive
2123 //
2124 bool recvSet = false;
2125 bool sendSet = false;
2126 bool errorSet = false;
2127 {
2128 LOCK(pnode->m_sock_mutex);
2129 if (!pnode->m_sock) {
2130 continue;
2131 }
2132 const auto it = events_per_sock.find(pnode->m_sock);
2133 if (it != events_per_sock.end()) {
2134 recvSet = it->second.occurred & Sock::RECV;
2135 sendSet = it->second.occurred & Sock::SEND;
2136 errorSet = it->second.occurred & Sock::ERR;
2137 }
2138 }
2139
2140 if (sendSet) {
2141 // Send data
2142 auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2143 if (bytes_sent) {
2144 RecordBytesSent(bytes_sent);
2145
2146 // If both receiving and (non-optimistic) sending were possible, we first attempt
2147 // sending. If that succeeds, but does not fully drain the send queue, do not
2148 // attempt to receive. This avoids needlessly queueing data if the remote peer
2149 // is slow at receiving data, by means of TCP flow control. We only do this when
2150 // sending actually succeeded to make sure progress is always made; otherwise a
2151 // deadlock would be possible when both sides have data to send, but neither is
2152 // receiving.
2153 if (data_left) recvSet = false;
2154 }
2155 }
2156
2157 if (recvSet || errorSet)
2158 {
2159 // typical socket buffer is 8K-64K
2160 uint8_t pchBuf[0x10000];
2161 int nBytes = 0;
2162 {
2163 LOCK(pnode->m_sock_mutex);
2164 if (!pnode->m_sock) {
2165 continue;
2166 }
2167 nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2168 }
2169 if (nBytes > 0)
2170 {
2171 bool notify = false;
2172 if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2174 "receiving message bytes failed, %s\n",
2175 pnode->DisconnectMsg(fLogIPs)
2176 );
2177 pnode->CloseSocketDisconnect();
2178 }
2179 RecordBytesRecv(nBytes);
2180 if (notify) {
2181 pnode->MarkReceivedMsgsForProcessing();
2183 }
2184 }
2185 else if (nBytes == 0)
2186 {
2187 // socket closed gracefully
2188 if (!pnode->fDisconnect) {
2189 LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2190 }
2191 pnode->CloseSocketDisconnect();
2192 }
2193 else if (nBytes < 0)
2194 {
2195 // error
2196 int nErr = WSAGetLastError();
2197 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2198 {
2199 if (!pnode->fDisconnect) {
2200 LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
2201 }
2202 pnode->CloseSocketDisconnect();
2203 }
2204 }
2205 }
2206
2207 if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2208 }
2209}
2210
2212{
2213 for (const ListenSocket& listen_socket : vhListenSocket) {
2214 if (interruptNet) {
2215 return;
2216 }
2217 const auto it = events_per_sock.find(listen_socket.sock);
2218 if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2219 AcceptConnection(listen_socket);
2220 }
2221 }
2222}
2223
2225{
2227
2228 while (!interruptNet)
2229 {
2232 SocketHandler();
2233 }
2234}
2235
2237{
2238 {
2240 fMsgProcWake = true;
2241 }
2242 condMsgProc.notify_one();
2243}
2244
2246{
2247 int outbound_connection_count = 0;
2248
2249 if (!gArgs.GetArgs("-seednode").empty()) {
2250 auto start = NodeClock::now();
2251 constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2252 LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2253 while (!interruptNet) {
2254 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2255 return;
2256
2257 // Abort if we have spent enough time without reaching our target.
2258 // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2259 if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2260 LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2261 break;
2262 }
2263
2264 outbound_connection_count = GetFullOutboundConnCount();
2265 if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2266 LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2267 break;
2268 }
2269 }
2270 }
2271
2273 std::vector<std::string> seeds = m_params.DNSSeeds();
2274 std::shuffle(seeds.begin(), seeds.end(), rng);
2275 int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2276
2277 if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
2278 // When -forcednsseed is provided, query all.
2279 seeds_right_now = seeds.size();
2280 } else if (addrman.Size() == 0) {
2281 // If we have no known peers, query all.
2282 // This will occur on the first run, or if peers.dat has been
2283 // deleted.
2284 seeds_right_now = seeds.size();
2285 }
2286
2287 // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2288 if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2289 // goal: only query DNS seed if address need is acute
2290 // * If we have a reasonable number of peers in addrman, spend
2291 // some time trying them first. This improves user privacy by
2292 // creating fewer identifying DNS requests, reduces trust by
2293 // giving seeds less influence on the network topology, and
2294 // reduces traffic to the seeds.
2295 // * When querying DNS seeds query a few at once, this ensures
2296 // that we don't give DNS seeds the ability to eclipse nodes
2297 // that query them.
2298 // * If we continue having problems, eventually query all the
2299 // DNS seeds, and if that fails too, also try the fixed seeds.
2300 // (done in ThreadOpenConnections)
2301 int found = 0;
2302 const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2303
2304 for (const std::string& seed : seeds) {
2305 if (seeds_right_now == 0) {
2306 seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2307
2308 if (addrman.Size() > 0) {
2309 LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2310 std::chrono::seconds to_wait = seeds_wait_time;
2311 while (to_wait.count() > 0) {
2312 // if sleeping for the MANY_PEERS interval, wake up
2313 // early to see if we have enough peers and can stop
2314 // this thread entirely freeing up its resources
2315 std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2316 if (!interruptNet.sleep_for(w)) return;
2317 to_wait -= w;
2318
2320 if (found > 0) {
2321 LogPrintf("%d addresses found from DNS seeds\n", found);
2322 LogPrintf("P2P peers available. Finished DNS seeding.\n");
2323 } else {
2324 LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2325 }
2326 return;
2327 }
2328 }
2329 }
2330 }
2331
2332 if (interruptNet) return;
2333
2334 // hold off on querying seeds if P2P network deactivated
2335 if (!fNetworkActive) {
2336 LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2337 do {
2338 if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2339 } while (!fNetworkActive);
2340 }
2341
2342 LogPrintf("Loading addresses from DNS seed %s\n", seed);
2343 // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2344 // for the base dns seed domain in chainparams
2345 if (HaveNameProxy()) {
2346 AddAddrFetch(seed);
2347 } else {
2348 std::vector<CAddress> vAdd;
2349 constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2350 std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2351 CNetAddr resolveSource;
2352 if (!resolveSource.SetInternal(host)) {
2353 continue;
2354 }
2355 // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2356 // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2357 // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2358 // returned.
2359 unsigned int nMaxIPs = 32;
2360 const auto addresses{LookupHost(host, nMaxIPs, true)};
2361 if (!addresses.empty()) {
2362 for (const CNetAddr& ip : addresses) {
2363 CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2364 addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2365 vAdd.push_back(addr);
2366 found++;
2367 }
2368 addrman.Add(vAdd, resolveSource);
2369 } else {
2370 // If the seed does not support a subdomain with our desired service bits,
2371 // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2372 // base dns seed domain in chainparams
2373 AddAddrFetch(seed);
2374 }
2375 }
2376 --seeds_right_now;
2377 }
2378 LogPrintf("%d addresses found from DNS seeds\n", found);
2379 } else {
2380 LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2381 }
2382}
2383
2385{
2386 const auto start{SteadyClock::now()};
2387
2389
2390 LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2391 addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2392}
2393
2395{
2397 std::string strDest;
2398 {
2400 if (m_addr_fetches.empty())
2401 return;
2402 strDest = m_addr_fetches.front();
2403 m_addr_fetches.pop_front();
2404 }
2405 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2406 // peer doesn't support it or immediately disconnects us for another reason.
2408 CAddress addr;
2409 CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2410 if (grant) {
2411 OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2412 }
2413}
2414
2416{
2418}
2419
2421{
2423 LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2424}
2425
2427{
2428 LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2430}
2431
2432// Return the number of outbound connections that are full relay (not blocks only)
2434{
2435 int nRelevant = 0;
2436 {
2438 for (const CNode* pnode : m_nodes) {
2439 if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2440 }
2441 }
2442 return nRelevant;
2443}
2444
2445// Return the number of peers we have over our outbound connection limit
2446// Exclude peers that are marked for disconnect, or are going to be
2447// disconnected soon (eg ADDR_FETCH and FEELER)
2448// Also exclude peers that haven't finished initial connection handshake yet
2449// (so that we don't decide we're over our desired connection limit, and then
2450// evict some peer that has finished the handshake)
2452{
2453 int full_outbound_peers = 0;
2454 {
2456 for (const CNode* pnode : m_nodes) {
2457 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
2458 ++full_outbound_peers;
2459 }
2460 }
2461 }
2462 return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2463}
2464
2466{
2467 int block_relay_peers = 0;
2468 {
2470 for (const CNode* pnode : m_nodes) {
2471 if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
2472 ++block_relay_peers;
2473 }
2474 }
2475 }
2476 return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2477}
2478
2479std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2480{
2481 std::unordered_set<Network> networks{};
2482 for (int n = 0; n < NET_MAX; n++) {
2483 enum Network net = (enum Network)n;
2484 if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2485 if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
2486 networks.insert(net);
2487 }
2488 }
2489 return networks;
2490}
2491
2493{
2495 return m_network_conn_counts[net] > 1;
2496}
2497
2498bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2499{
2500 std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2501 std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2502
2504 for (const auto net : nets) {
2505 if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
2506 network = net;
2507 return true;
2508 }
2509 }
2510
2511 return false;
2512}
2513
2514void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, Span<const std::string> seed_nodes)
2515{
2519 // Connect to specific addresses
2520 if (!connect.empty())
2521 {
2522 // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2523 // peer doesn't support it or immediately disconnects us for another reason.
2525 for (int64_t nLoop = 0;; nLoop++)
2526 {
2527 for (const std::string& strAddr : connect)
2528 {
2529 CAddress addr(CService(), NODE_NONE);
2530 OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2531 for (int i = 0; i < 10 && i < nLoop; i++)
2532 {
2533 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2534 return;
2535 }
2536 }
2537 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2538 return;
2540 }
2541 }
2542
2543 // Initiate network connections
2544 auto start = GetTime<std::chrono::microseconds>();
2545
2546 // Minimum time before next feeler connection (in microseconds).
2547 auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2548 auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2549 auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2550 const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2551 bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2552 const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2553
2554 auto seed_node_timer = NodeClock::now();
2555 bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
2556 constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2557
2558 if (!add_fixed_seeds) {
2559 LogPrintf("Fixed seeds are disabled\n");
2560 }
2561
2562 while (!interruptNet)
2563 {
2564 if (add_addr_fetch) {
2565 add_addr_fetch = false;
2566 const auto& seed{SpanPopBack(seed_nodes)};
2567 AddAddrFetch(seed);
2568
2569 if (addrman.Size() == 0) {
2570 LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2571 } else {
2572 LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2573 }
2574 }
2575
2577
2578 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2579 return;
2580
2582
2584 if (interruptNet)
2585 return;
2586
2587 const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2588 if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2589 // When the node starts with an empty peers.dat, there are a few other sources of peers before
2590 // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2591 // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2592 // 60 seconds for any of those sources to populate addrman.
2593 bool add_fixed_seeds_now = false;
2594 // It is cheapest to check if enough time has passed first.
2595 if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2596 add_fixed_seeds_now = true;
2597 LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2598 }
2599
2600 // Perform cheap checks before locking a mutex.
2601 else if (!dnsseed && !use_seednodes) {
2603 if (m_added_node_params.empty()) {
2604 add_fixed_seeds_now = true;
2605 LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2606 }
2607 }
2608
2609 if (add_fixed_seeds_now) {
2610 std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2611 // We will not make outgoing connections to peers that are unreachable
2612 // (e.g. because of -onlynet configuration).
2613 // Therefore, we do not add them to addrman in the first place.
2614 // In case previously unreachable networks become reachable
2615 // (e.g. in case of -onlynet changes by the user), fixed seeds will
2616 // be loaded only for networks for which we have no addresses.
2617 seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2618 [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2619 seed_addrs.end());
2620 CNetAddr local;
2621 local.SetInternal("fixedseeds");
2622 addrman.Add(seed_addrs, local);
2623 add_fixed_seeds = false;
2624 LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2625 }
2626 }
2627
2628 //
2629 // Choose an address to connect to based on most recently seen
2630 //
2631 CAddress addrConnect;
2632
2633 // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2634 int nOutboundFullRelay = 0;
2635 int nOutboundBlockRelay = 0;
2636 int outbound_privacy_network_peers = 0;
2637 std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2638
2639 {
2641 for (const CNode* pnode : m_nodes) {
2642 if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2643 if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2644
2645 // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2646 switch (pnode->m_conn_type) {
2647 // We currently don't take inbound connections into account. Since they are
2648 // free to make, an attacker could make them to prevent us from connecting to
2649 // certain peers.
2651 // Short-lived outbound connections should not affect how we select outbound
2652 // peers from addrman.
2655 break;
2659 const CAddress address{pnode->addr};
2660 if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
2661 // Since our addrman-groups for these networks are
2662 // random, without relation to the route we
2663 // take to connect to these peers or to the
2664 // difficulty in obtaining addresses with diverse
2665 // groups, we don't worry about diversity with
2666 // respect to our addrman groups when connecting to
2667 // these networks.
2668 ++outbound_privacy_network_peers;
2669 } else {
2670 outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2671 }
2672 } // no default case, so the compiler can warn about missing cases
2673 }
2674 }
2675
2676 if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2677 if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2678 seed_node_timer = NodeClock::now();
2679 add_addr_fetch = true;
2680 }
2681 }
2682
2684 auto now = GetTime<std::chrono::microseconds>();
2685 bool anchor = false;
2686 bool fFeeler = false;
2687 std::optional<Network> preferred_net;
2688
2689 // Determine what type of connection to open. Opening
2690 // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2691 // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2692 // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2693 // until we hit our block-relay-only peer limit.
2694 // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2695 // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2696 // these conditions are met, check to see if it's time to try an extra
2697 // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2698 // timer to decide if we should open a FEELER.
2699
2700 if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2701 conn_type = ConnectionType::BLOCK_RELAY;
2702 anchor = true;
2703 } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2704 // OUTBOUND_FULL_RELAY
2705 } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2706 conn_type = ConnectionType::BLOCK_RELAY;
2707 } else if (GetTryNewOutboundPeer()) {
2708 // OUTBOUND_FULL_RELAY
2709 } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2710 // Periodically connect to a peer (using regular outbound selection
2711 // methodology from addrman) and stay connected long enough to sync
2712 // headers, but not much else.
2713 //
2714 // Then disconnect the peer, if we haven't learned anything new.
2715 //
2716 // The idea is to make eclipse attacks very difficult to pull off,
2717 // because every few minutes we're finding a new peer to learn headers
2718 // from.
2719 //
2720 // This is similar to the logic for trying extra outbound (full-relay)
2721 // peers, except:
2722 // - we do this all the time on an exponential timer, rather than just when
2723 // our tip is stale
2724 // - we potentially disconnect our next-youngest block-relay-only peer, if our
2725 // newest block-relay-only peer delivers a block more recently.
2726 // See the eviction logic in net_processing.cpp.
2727 //
2728 // Because we can promote these connections to block-relay-only
2729 // connections, they do not get their own ConnectionType enum
2730 // (similar to how we deal with extra outbound peers).
2731 next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2732 conn_type = ConnectionType::BLOCK_RELAY;
2733 } else if (now > next_feeler) {
2734 next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2735 conn_type = ConnectionType::FEELER;
2736 fFeeler = true;
2737 } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2739 now > next_extra_network_peer &&
2740 MaybePickPreferredNetwork(preferred_net)) {
2741 // Full outbound connection management: Attempt to get at least one
2742 // outbound peer from each reachable network by making extra connections
2743 // and then protecting "only" peers from a network during outbound eviction.
2744 // This is not attempted if the user changed -maxconnections to a value
2745 // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2746 // to prevent interactions with otherwise protected outbound peers.
2747 next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2748 } else {
2749 // skip to next iteration of while loop
2750 continue;
2751 }
2752
2754
2755 const auto current_time{NodeClock::now()};
2756 int nTries = 0;
2757 const auto reachable_nets{g_reachable_nets.All()};
2758
2759 while (!interruptNet)
2760 {
2761 if (anchor && !m_anchors.empty()) {
2762 const CAddress addr = m_anchors.back();
2763 m_anchors.pop_back();
2764 if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
2765 !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
2766 outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2767 addrConnect = addr;
2768 LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
2769 break;
2770 }
2771
2772 // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2773 // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2774 // already-connected network ranges, ...) before trying new addrman addresses.
2775 nTries++;
2776 if (nTries > 100)
2777 break;
2778
2779 CAddress addr;
2780 NodeSeconds addr_last_try{0s};
2781
2782 if (fFeeler) {
2783 // First, try to get a tried table collision address. This returns
2784 // an empty (invalid) address if there are no collisions to try.
2785 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2786
2787 if (!addr.IsValid()) {
2788 // No tried table collisions. Select a new table address
2789 // for our feeler.
2790 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2791 } else if (AlreadyConnectedToAddress(addr)) {
2792 // If test-before-evict logic would have us connect to a
2793 // peer that we're already connected to, just mark that
2794 // address as Good(). We won't be able to initiate the
2795 // connection anyway, so this avoids inadvertently evicting
2796 // a currently-connected peer.
2797 addrman.Good(addr);
2798 // Select a new table address for our feeler instead.
2799 std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2800 }
2801 } else {
2802 // Not a feeler
2803 // If preferred_net has a value set, pick an extra outbound
2804 // peer from that network. The eviction logic in net_processing
2805 // ensures that a peer from another network will be evicted.
2806 std::tie(addr, addr_last_try) = preferred_net.has_value()
2807 ? addrman.Select(false, {*preferred_net})
2808 : addrman.Select(false, reachable_nets);
2809 }
2810
2811 // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2812 if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
2813 continue;
2814 }
2815
2816 // if we selected an invalid or local address, restart
2817 if (!addr.IsValid() || IsLocal(addr)) {
2818 break;
2819 }
2820
2821 if (!g_reachable_nets.Contains(addr)) {
2822 continue;
2823 }
2824
2825 // only consider very recently tried nodes after 30 failed attempts
2826 if (current_time - addr_last_try < 10min && nTries < 30) {
2827 continue;
2828 }
2829
2830 // for non-feelers, require all the services we'll want,
2831 // for feelers, only require they be a full node (only because most
2832 // SPV clients don't have a good address DB available)
2833 if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
2834 continue;
2835 } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2836 continue;
2837 }
2838
2839 // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2840 if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
2841 continue;
2842 }
2843
2844 // Do not make automatic outbound connections to addnode peers, to
2845 // not use our limited outbound slots for them and to ensure
2846 // addnode connections benefit from their intended protections.
2847 if (AddedNodesContain(addr)) {
2848 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
2849 preferred_net.has_value() ? "network-specific " : "",
2851 fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2852 continue;
2853 }
2854
2855 addrConnect = addr;
2856 break;
2857 }
2858
2859 if (addrConnect.IsValid()) {
2860 if (fFeeler) {
2861 // Add small amount of random noise before connection to avoid synchronization.
2863 return;
2864 }
2865 LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
2866 }
2867
2868 if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
2869
2870 // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2871 // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2872 // Don't record addrman failure attempts when node is offline. This can be identified since all local
2873 // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2874 const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2875 // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2876 const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2877 OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2878 }
2879 }
2880}
2881
2882std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2883{
2884 std::vector<CAddress> ret;
2886 for (const CNode* pnode : m_nodes) {
2887 if (pnode->IsBlockOnlyConn()) {
2888 ret.push_back(pnode->addr);
2889 }
2890 }
2891
2892 return ret;
2893}
2894
2895std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2896{
2897 std::vector<AddedNodeInfo> ret;
2898
2899 std::list<AddedNodeParams> lAddresses(0);
2900 {
2902 ret.reserve(m_added_node_params.size());
2903 std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2904 }
2905
2906
2907 // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2908 std::map<CService, bool> mapConnected;
2909 std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2910 {
2912 for (const CNode* pnode : m_nodes) {
2913 if (pnode->addr.IsValid()) {
2914 mapConnected[pnode->addr] = pnode->IsInboundConn();
2915 }
2916 std::string addrName{pnode->m_addr_name};
2917 if (!addrName.empty()) {
2918 mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2919 }
2920 }
2921 }
2922
2923 for (const auto& addr : lAddresses) {
2924 CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
2925 AddedNodeInfo addedNode{addr, CService(), false, false};
2926 if (service.IsValid()) {
2927 // strAddNode is an IP:port
2928 auto it = mapConnected.find(service);
2929 if (it != mapConnected.end()) {
2930 if (!include_connected) {
2931 continue;
2932 }
2933 addedNode.resolvedAddress = service;
2934 addedNode.fConnected = true;
2935 addedNode.fInbound = it->second;
2936 }
2937 } else {
2938 // strAddNode is a name
2939 auto it = mapConnectedByName.find(addr.m_added_node);
2940 if (it != mapConnectedByName.end()) {
2941 if (!include_connected) {
2942 continue;
2943 }
2944 addedNode.resolvedAddress = it->second.second;
2945 addedNode.fConnected = true;
2946 addedNode.fInbound = it->second.first;
2947 }
2948 }
2949 ret.emplace_back(std::move(addedNode));
2950 }
2951
2952 return ret;
2953}
2954
2956{
2959 while (true)
2960 {
2962 std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2963 bool tried = false;
2964 for (const AddedNodeInfo& info : vInfo) {
2965 if (!grant) {
2966 // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2967 // the addednodeinfo state might change.
2968 break;
2969 }
2970 tried = true;
2971 CAddress addr(CService(), NODE_NONE);
2972 OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2973 if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2974 grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2975 }
2976 // See if any reconnections are desired.
2978 // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2979 if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
2980 return;
2981 }
2982}
2983
2984// if successful, this moves the passed grant to the constructed node
2985void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2986{
2988 assert(conn_type != ConnectionType::INBOUND);
2989
2990 //
2991 // Initiate outbound network connection
2992 //
2993 if (interruptNet) {
2994 return;
2995 }
2996 if (!fNetworkActive) {
2997 return;
2998 }
2999 if (!pszDest) {
3000 bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
3001 if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
3002 return;
3003 }
3004 } else if (FindNode(std::string(pszDest)))
3005 return;
3006
3007 CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3008
3009 if (!pnode)
3010 return;
3011 pnode->grantOutbound = std::move(grant_outbound);
3012
3013 m_msgproc->InitializeNode(*pnode, m_local_services);
3014 {
3016 m_nodes.push_back(pnode);
3017
3018 // update connection count by network
3019 if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3020 }
3021
3022 TRACEPOINT(net, outbound_connection,
3023 pnode->GetId(),
3024 pnode->m_addr_name.c_str(),
3025 pnode->ConnectionTypeAsString().c_str(),
3026 pnode->ConnectedThroughNetwork(),
3028}
3029
3031
3033{
3035
3036 while (!flagInterruptMsgProc)
3037 {
3038 bool fMoreWork = false;
3039
3040 {
3041 // Randomize the order in which we process messages from/to our peers.
3042 // This prevents attacks in which an attacker exploits having multiple
3043 // consecutive connections in the m_nodes list.
3044 const NodesSnapshot snap{*this, /*shuffle=*/true};
3045
3046 for (CNode* pnode : snap.Nodes()) {
3047 if (pnode->fDisconnect)
3048 continue;
3049
3050 // Receive messages
3051 bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3052 fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3054 return;
3055 // Send messages
3056 m_msgproc->SendMessages(pnode);
3057
3059 return;
3060 }
3061 }
3062
3063 WAIT_LOCK(mutexMsgProc, lock);
3064 if (!fMoreWork) {
3065 condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3066 }
3067 fMsgProcWake = false;
3068 }
3069}
3070
3072{
3073 static constexpr auto err_wait_begin = 1s;
3074 static constexpr auto err_wait_cap = 5min;
3075 auto err_wait = err_wait_begin;
3076
3077 bool advertising_listen_addr = false;
3078 i2p::Connection conn;
3079
3080 auto SleepOnFailure = [&]() {
3081 interruptNet.sleep_for(err_wait);
3082 if (err_wait < err_wait_cap) {
3083 err_wait += 1s;
3084 }
3085 };
3086
3087 while (!interruptNet) {
3088
3089 if (!m_i2p_sam_session->Listen(conn)) {
3090 if (advertising_listen_addr && conn.me.IsValid()) {
3091 RemoveLocal(conn.me);
3092 advertising_listen_addr = false;
3093 }
3094 SleepOnFailure();
3095 continue;
3096 }
3097
3098 if (!advertising_listen_addr) {
3099 AddLocal(conn.me, LOCAL_MANUAL);
3100 advertising_listen_addr = true;
3101 }
3102
3103 if (!m_i2p_sam_session->Accept(conn)) {
3104 SleepOnFailure();
3105 continue;
3106 }
3107
3109
3110 err_wait = err_wait_begin;
3111 }
3112}
3113
3114bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3115{
3116 int nOne = 1;
3117
3118 // Create socket for listening for incoming connections
3119 struct sockaddr_storage sockaddr;
3120 socklen_t len = sizeof(sockaddr);
3121 if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3122 {
3123 strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3125 return false;
3126 }
3127
3128 std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3129 if (!sock) {
3130 strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
3132 return false;
3133 }
3134
3135 // Allow binding if the port is still in TIME_WAIT state after
3136 // the program was closed and restarted.
3137 if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3138 strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3139 LogPrintf("%s\n", strError.original);
3140 }
3141
3142 // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3143 // and enable it by default or not. Try to enable it, if possible.
3144 if (addrBind.IsIPv6()) {
3145#ifdef IPV6_V6ONLY
3146 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3147 strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3148 LogPrintf("%s\n", strError.original);
3149 }
3150#endif
3151#ifdef WIN32
3152 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3153 if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3154 strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3155 LogPrintf("%s\n", strError.original);
3156 }
3157#endif
3158 }
3159
3160 if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3161 int nErr = WSAGetLastError();
3162 if (nErr == WSAEADDRINUSE)
3163 strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3164 else
3165 strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
3167 return false;
3168 }
3169 LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3170
3171 // Listen for incoming connections
3172 if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3173 {
3174 strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3176 return false;
3177 }
3178
3179 vhListenSocket.emplace_back(std::move(sock), permissions);
3180 return true;
3181}
3182
3184{
3185 if (!fDiscover)
3186 return;
3187
3188 for (const CNetAddr &addr: GetLocalAddresses()) {
3189 if (AddLocal(addr, LOCAL_IF))
3190 LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3191 }
3192}
3193
3195{
3196 LogPrintf("%s: %s\n", __func__, active);
3197
3198 if (fNetworkActive == active) {
3199 return;
3200 }
3201
3202 fNetworkActive = active;
3203
3204 if (m_client_interface) {
3205 m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3206 }
3207}
3208
3209CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3210 const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3211 : addrman(addrman_in)
3212 , m_netgroupman{netgroupman}
3213 , nSeed0(nSeed0In)
3214 , nSeed1(nSeed1In)
3215 , m_params(params)
3216{
3217 SetTryNewOutboundPeer(false);
3218
3219 Options connOptions;
3220 Init(connOptions);
3221 SetNetworkActive(network_active);
3222}
3223
3225{
3226 return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3227}
3228
3230{
3231 return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3232}
3233
3234uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3235{
3236 CNetAddr a;
3238}
3239
3240bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3241{
3242 const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3243
3244 bilingual_str strError;
3245 if (!BindListenPort(addr, strError, permissions)) {
3247 m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3248 }
3249 return false;
3250 }
3251
3252 if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
3253 AddLocal(addr, LOCAL_BIND);
3254 }
3255
3256 return true;
3257}
3258
3259bool CConnman::InitBinds(const Options& options)
3260{
3261 for (const auto& addrBind : options.vBinds) {
3263 return false;
3264 }
3265 }
3266 for (const auto& addrBind : options.vWhiteBinds) {
3267 if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3268 return false;
3269 }
3270 }
3271 for (const auto& addr_bind : options.onion_binds) {
3273 return false;
3274 }
3275 }
3276 if (options.bind_on_any) {
3277 // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3278 // may not have IPv6 support and the user did not explicitly ask us to
3279 // bind on that.
3280 const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3282
3283 struct in_addr inaddr_any;
3284 inaddr_any.s_addr = htonl(INADDR_ANY);
3285 const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3287 return false;
3288 }
3289 }
3290 return true;
3291}
3292
3293bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3294{
3296 Init(connOptions);
3297
3298 if (fListen && !InitBinds(connOptions)) {
3299 if (m_client_interface) {
3300 m_client_interface->ThreadSafeMessageBox(
3301 _("Failed to listen on any port. Use -listen=0 if you want this."),
3303 }
3304 return false;
3305 }
3306
3307 Proxy i2p_sam;
3308 if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
3309 m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3310 i2p_sam, &interruptNet);
3311 }
3312
3313 // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3314 std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3315 if (!seed_nodes.empty()) {
3316 std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3317 }
3318
3320 // Load addresses from anchors.dat
3324 }
3325 LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3326 }
3327
3328 if (m_client_interface) {
3329 m_client_interface->InitMessage(_("Starting network threads…"));
3330 }
3331
3332 fAddressesInitialized = true;
3333
3334 if (semOutbound == nullptr) {
3335 // initialize semaphore
3336 semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3337 }
3338 if (semAddnode == nullptr) {
3339 // initialize semaphore
3340 semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3341 }
3342
3343 //
3344 // Start threads
3345 //
3348 flagInterruptMsgProc = false;
3349
3350 {
3352 fMsgProcWake = false;
3353 }
3354
3355 // Send and receive from sockets, accept connections
3356 threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3357
3358 if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
3359 LogPrintf("DNS seeding disabled\n");
3360 else
3361 threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3362
3363 // Initiate manual connections
3364 threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3365
3366 if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3367 if (m_client_interface) {
3368 m_client_interface->ThreadSafeMessageBox(
3369 _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3371 }
3372 return false;
3373 }
3374 if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3375 threadOpenConnections = std::thread(
3376 &util::TraceThread, "opencon",
3377 [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
3378 }
3379
3380 // Process messages
3381 threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3382
3383 if (m_i2p_sam_session) {
3385 std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3386 }
3387
3388 // Dump network addresses
3389 scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3390
3391 // Run the ASMap Health check once and then schedule it to run every 24h.
3392 if (m_netgroupman.UsingASMap()) {
3395 }
3396
3397 return true;
3398}
3399
3401{
3402public:
3403 CNetCleanup() = default;
3404
3406 {
3407#ifdef WIN32
3408 // Shutdown Windows Sockets
3409 WSACleanup();
3410#endif
3411 }
3412};
3414
3416{
3417 {
3419 flagInterruptMsgProc = true;
3420 }
3421 condMsgProc.notify_all();
3422
3423 interruptNet();
3425
3426 if (semOutbound) {
3427 for (int i=0; i<m_max_automatic_outbound; i++) {
3428 semOutbound->post();
3429 }
3430 }
3431
3432 if (semAddnode) {
3433 for (int i=0; i<m_max_addnode; i++) {
3434 semAddnode->post();
3435 }
3436 }
3437}
3438
3440{
3441 if (threadI2PAcceptIncoming.joinable()) {
3443 }
3444 if (threadMessageHandler.joinable())
3445 threadMessageHandler.join();
3446 if (threadOpenConnections.joinable())
3447 threadOpenConnections.join();
3448 if (threadOpenAddedConnections.joinable())
3450 if (threadDNSAddressSeed.joinable())
3451 threadDNSAddressSeed.join();
3452 if (threadSocketHandler.joinable())
3453 threadSocketHandler.join();
3454}
3455
3457{
3459 DumpAddresses();
3460 fAddressesInitialized = false;
3461
3463 // Anchor connections are only dumped during clean shutdown.
3464 std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3465 if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3466 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3467 }
3469 }
3470 }
3471
3472 // Delete peer connections.
3473 std::vector<CNode*> nodes;
3474 WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3475 for (CNode* pnode : nodes) {
3476 LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
3477 pnode->CloseSocketDisconnect();
3478 DeleteNode(pnode);
3479 }
3480
3481 for (CNode* pnode : m_nodes_disconnected) {
3482 DeleteNode(pnode);
3483 }
3484 m_nodes_disconnected.clear();
3485 vhListenSocket.clear();
3486 semOutbound.reset();
3487 semAddnode.reset();
3488}
3489
3491{
3492 assert(pnode);
3493 m_msgproc->FinalizeNode(*pnode);
3494 delete pnode;
3495}
3496
3498{
3499 Interrupt();
3500 Stop();
3501}
3502
3503std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3504{
3505 std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3506 if (m_banman) {
3507 addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3508 [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3509 addresses.end());
3510 }
3511 return addresses;
3512}
3513
3514std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3515{
3516 auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3518 .Write(requestor.ConnectedThroughNetwork())
3519 .Write(local_socket_bytes)
3520 // For outbound connections, the port of the bound address is randomly
3521 // assigned by the OS and would therefore not be useful for seeding.
3522 .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
3523 .Finalize();
3524 const auto current_time = GetTime<std::chrono::microseconds>();
3525 auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3526 CachedAddrResponse& cache_entry = r.first->second;
3527 if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3528 cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3529 // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3530 // and the usefulness of ADDR responses to honest users.
3531 //
3532 // Longer cache lifetime makes it more difficult for an attacker to scrape
3533 // enough AddrMan data to maliciously infer something useful.
3534 // By the time an attacker scraped enough AddrMan records, most of
3535 // the records should be old enough to not leak topology info by
3536 // e.g. analyzing real-time changes in timestamps.
3537 //
3538 // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3539 // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3540 // most of it could be scraped (considering that timestamps are updated via
3541 // ADDR self-announcements and when nodes communicate).
3542 // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3543 // (because even several timestamps of the same handful of nodes may leak privacy).
3544 //
3545 // On the other hand, longer cache lifetime makes ADDR responses
3546 // outdated and less useful for an honest requestor, e.g. if most nodes
3547 // in the ADDR response are no longer active.
3548 //
3549 // However, the churn in the network is known to be rather low. Since we consider
3550 // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3551 // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3552 // in terms of the freshness of the response.
3553 cache_entry.m_cache_entry_expiration = current_time +
3554 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3555 }
3556 return cache_entry.m_addrs_response_cache;
3557}
3558
3560{
3562 const bool resolved_is_valid{resolved.IsValid()};
3563
3565 for (const auto& it : m_added_node_params) {
3566 if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
3567 }
3568
3569 m_added_node_params.push_back(add);
3570 return true;
3571}
3572
3573bool CConnman::RemoveAddedNode(const std::string& strNode)
3574{
3576 for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3577 if (strNode == it->m_added_node) {
3578 m_added_node_params.erase(it);
3579 return true;
3580 }
3581 }
3582 return false;
3583}
3584
3586{
3588 const std::string addr_str{addr.ToStringAddr()};
3589 const std::string addr_port_str{addr.ToStringAddrPort()};
3591 return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3592 && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3593 [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
3594}
3595
3597{
3599 if (flags == ConnectionDirection::Both) // Shortcut if we want total
3600 return m_nodes.size();
3601
3602 int nNum = 0;
3603 for (const auto& pnode : m_nodes) {
3604 if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3605 nNum++;
3606 }
3607 }
3608
3609 return nNum;
3610}
3611
3612
3613std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3614{
3616 return mapLocalHost;
3617}
3618
3619uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3620{
3621 return m_netgroupman.GetMappedAS(addr);
3622}
3623
3624void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3625{
3626 vstats.clear();
3628 vstats.reserve(m_nodes.size());
3629 for (CNode* pnode : m_nodes) {
3630 vstats.emplace_back();
3631 pnode->CopyStats(vstats.back());
3632 vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3633 }
3634}
3635
3636bool CConnman::DisconnectNode(const std::string& strNode)
3637{
3639 if (CNode* pnode = FindNode(strNode)) {
3640 LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
3641 pnode->fDisconnect = true;
3642 return true;
3643 }
3644 return false;
3645}
3646
3648{
3649 bool disconnected = false;
3651 for (CNode* pnode : m_nodes) {
3652 if (subnet.Match(pnode->addr)) {
3653 LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
3654 pnode->fDisconnect = true;
3655 disconnected = true;
3656 }
3657 }
3658 return disconnected;
3659}
3660
3662{
3663 return DisconnectNode(CSubNet(addr));
3664}
3665
3667{
3669 for(CNode* pnode : m_nodes) {
3670 if (id == pnode->GetId()) {
3671 LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
3672 pnode->fDisconnect = true;
3673 return true;
3674 }
3675 }
3676 return false;
3677}
3678
3679void CConnman::RecordBytesRecv(uint64_t bytes)
3680{
3681 nTotalBytesRecv += bytes;
3682}
3683
3684void CConnman::RecordBytesSent(uint64_t bytes)
3685{
3688
3689 nTotalBytesSent += bytes;
3690
3691 const auto now = GetTime<std::chrono::seconds>();
3692 if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3693 {
3694 // timeframe expired, reset cycle
3695 nMaxOutboundCycleStartTime = now;
3696 nMaxOutboundTotalBytesSentInCycle = 0;
3697 }
3698
3699 nMaxOutboundTotalBytesSentInCycle += bytes;
3700}
3701
3703{
3706 return nMaxOutboundLimit;
3707}
3708
3709std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3710{
3711 return MAX_UPLOAD_TIMEFRAME;
3712}
3713
3715{
3719}
3720
3722{
3724
3725 if (nMaxOutboundLimit == 0)
3726 return 0s;
3727
3728 if (nMaxOutboundCycleStartTime.count() == 0)
3729 return MAX_UPLOAD_TIMEFRAME;
3730
3731 const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3732 const auto now = GetTime<std::chrono::seconds>();
3733 return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3734}
3735
3736bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3737{
3740 if (nMaxOutboundLimit == 0)
3741 return false;
3742
3743 if (historicalBlockServingLimit)
3744 {
3745 // keep a large enough buffer to at least relay each block once
3746 const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3747 const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3748 if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3749 return true;
3750 }
3751 else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3752 return true;
3753
3754 return false;
3755}
3756
3758{
3761 if (nMaxOutboundLimit == 0)
3762 return 0;
3763
3764 return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3765}
3766
3768{
3769 return nTotalBytesRecv;
3770}
3771
3773{
3776 return nTotalBytesSent;
3777}
3778
3780{
3781 return m_local_services;
3782}
3783
3784static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3785{
3786 if (use_v2transport) {
3787 return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3788 } else {
3789 return std::make_unique<V1Transport>(id);
3790 }
3791}
3792
3794 std::shared_ptr<Sock> sock,
3795 const CAddress& addrIn,
3796 uint64_t nKeyedNetGroupIn,
3797 uint64_t nLocalHostNonceIn,
3798 const CService& addrBindIn,
3799 const std::string& addrNameIn,
3800 ConnectionType conn_type_in,
3801 bool inbound_onion,
3802 CNodeOptions&& node_opts)
3803 : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3804 m_permission_flags{node_opts.permission_flags},
3805 m_sock{sock},
3806 m_connected{GetTime<std::chrono::seconds>()},
3807 addr{addrIn},
3808 addrBind{addrBindIn},
3809 m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3810 m_dest(addrNameIn),
3811 m_inbound_onion{inbound_onion},
3812 m_prefer_evict{node_opts.prefer_evict},
3813 nKeyedNetGroup{nKeyedNetGroupIn},
3814 m_conn_type{conn_type_in},
3815 id{idIn},
3816 nLocalHostNonce{nLocalHostNonceIn},
3817 m_recv_flood_size{node_opts.recv_flood_size},
3818 m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
3819{
3820 if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3821
3822 for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3823 mapRecvBytesPerMsgType[msg] = 0;
3824 }
3825 mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3826
3827 if (fLogIPs) {
3828 LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
3829 } else {
3830 LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
3831 }
3832}
3833
3835{
3837
3838 size_t nSizeAdded = 0;
3839 for (const auto& msg : vRecvMsg) {
3840 // vRecvMsg contains only completed CNetMessage
3841 // the single possible partially deserialized message are held by TransportDeserializer
3842 nSizeAdded += msg.GetMemoryUsage();
3843 }
3844
3846 m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3847 m_msg_process_queue_size += nSizeAdded;
3848 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3849}
3850
3851std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3852{
3854 if (m_msg_process_queue.empty()) return std::nullopt;
3855
3856 std::list<CNetMessage> msgs;
3857 // Just take one message
3858 msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3859 m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3860 fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3861
3862 return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3863}
3864
3866{
3867 return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
3868}
3869
3871{
3873 size_t nMessageSize = msg.data.size();
3874 LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3875 if (gArgs.GetBoolArg("-capturemessages", false)) {
3876 CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3877 }
3878
3879 TRACEPOINT(net, outbound_message,
3880 pnode->GetId(),
3881 pnode->m_addr_name.c_str(),
3882 pnode->ConnectionTypeAsString().c_str(),
3883 msg.m_type.c_str(),
3884 msg.data.size(),
3885 msg.data.data()
3886 );
3887
3888 size_t nBytesSent = 0;
3889 {
3890 LOCK(pnode->cs_vSend);
3891 // Check if the transport still has unsent bytes, and indicate to it that we're about to
3892 // give it a message to send.
3893 const auto& [to_send, more, _msg_type] =
3894 pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3895 const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3896
3897 // Update memory usage of send buffer.
3898 pnode->m_send_memusage += msg.GetMemoryUsage();
3899 if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3900 // Move message to vSendMsg queue.
3901 pnode->vSendMsg.push_back(std::move(msg));
3902
3903 // If there was nothing to send before, and there is now (predicted by the "more" value
3904 // returned by the GetBytesToSend call above), attempt "optimistic write":
3905 // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3906 // doing a send, try sending from the calling thread if the queue was empty before.
3907 // With a V1Transport, more will always be true here, because adding a message always
3908 // results in sendable bytes there, but with V2Transport this is not the case (it may
3909 // still be in the handshake).
3910 if (queue_was_empty && more) {
3911 std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3912 }
3913 }
3914 if (nBytesSent) RecordBytesSent(nBytesSent);
3915}
3916
3917bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3918{
3919 CNode* found = nullptr;
3921 for (auto&& pnode : m_nodes) {
3922 if(pnode->GetId() == id) {
3923 found = pnode;
3924 break;
3925 }
3926 }
3927 return found != nullptr && NodeFullyConnected(found) && func(found);
3928}
3929
3931{
3932 return CSipHasher(nSeed0, nSeed1).Write(id);
3933}
3934
3935uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3936{
3937 std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3938
3940}
3941
3943{
3946 while (true) {
3947 // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3948 decltype(m_reconnections) todo;
3949 {
3951 if (m_reconnections.empty()) break;
3952 todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3953 }
3954
3955 auto& item = *todo.begin();
3956 OpenNetworkConnection(item.addr_connect,
3957 // We only reconnect if the first attempt to connect succeeded at
3958 // connection time, but then failed after the CNode object was
3959 // created. Since we already know connecting is possible, do not
3960 // count failure to reconnect.
3961 /*fCountFailure=*/false,
3962 std::move(item.grant),
3963 item.destination.empty() ? nullptr : item.destination.c_str(),
3964 item.conn_type,
3965 item.use_v2transport);
3966 }
3967}
3968
3970{
3971 const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3972 const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3973 std::vector<CNetAddr> clearnet_addrs;
3974 clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3975 std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3976 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3977 std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3978 [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3979 m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3980}
3981
3982// Dump binary message to file, with timestamp.
3983static void CaptureMessageToFile(const CAddress& addr,
3984 const std::string& msg_type,
3986 bool is_incoming)
3987{
3988 // Note: This function captures the message at the time of processing,
3989 // not at socket receive/send time.
3990 // This ensures that the messages are always in order from an application
3991 // layer (processing) perspective.
3992 auto now = GetTime<std::chrono::microseconds>();
3993
3994 // Windows folder names cannot include a colon
3995 std::string clean_addr = addr.ToStringAddrPort();
3996 std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3997
3998 fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
3999 fs::create_directories(base_path);
4000
4001 fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4002 AutoFile f{fsbridge::fopen(path, "ab")};
4003
4004 ser_writedata64(f, now.count());
4005 f << Span{msg_type};
4006 for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4007 f << uint8_t{'\0'};
4008 }
4009 uint32_t size = data.size();
4010 ser_writedata32(f, size);
4011 f << data;
4012}
4013
4014std::function<void(const CAddress& addr,
4015 const std::string& msg_type,
4017 bool is_incoming)>
bool DumpPeerAddresses(const ArgsManager &args, const AddrMan &addr)
Definition: addrdb.cpp:180
std::vector< CAddress > ReadAnchors(const fs::path &anchors_db_path)
Read the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:229
void DumpAnchors(const fs::path &anchors_db_path, const std::vector< CAddress > &anchors)
Dump the anchor IP address database (anchors.dat)
Definition: addrdb.cpp:223
ArgsManager gArgs
Definition: args.cpp:42
int ret
int flags
Definition: bitcoin-tx.cpp:536
const CChainParams & Params()
Return the currently selected parameters.
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
Stochastic address manager.
Definition: addrman.h:89
std::pair< CAddress, NodeSeconds > Select(bool new_only=false, const std::unordered_set< Network > &networks={}) const
Choose an address to connect to.
Definition: addrman.cpp:1327
void Attempt(const CService &addr, bool fCountFailure, NodeSeconds time=Now< NodeSeconds >())
Mark an entry as connection attempted to.
Definition: addrman.cpp:1312
size_t Size(std::optional< Network > net=std::nullopt, std::optional< bool > in_new=std::nullopt) const
Return size information about addrman.
Definition: addrman.cpp:1297
void ResolveCollisions()
See if any to-be-evicted tried table entries have been tested and if so resolve the collisions.
Definition: addrman.cpp:1317
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
std::pair< CAddress, NodeSeconds > SelectTriedCollision()
Randomly select an address in the tried table that another address is attempting to evict.
Definition: addrman.cpp:1322
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
std::vector< CAddress > GetAddr(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: addrman.cpp:1332
std::vector< std::string > GetArgs(const std::string &strArg) const
Return a vector of strings of the given argument.
Definition: args.cpp:362
fs::path GetDataDirNet() const
Get data directory path with appended network identifier.
Definition: args.h:234
int64_t GetIntArg(const std::string &strArg, int64_t nDefault) const
Return integer argument or default value.
Definition: args.cpp:482
bool GetBoolArg(const std::string &strArg, bool fDefault) const
Return boolean argument or default value.
Definition: args.cpp:507
Non-refcounted RAII wrapper for FILE*.
Definition: streams.h:392
Span< const std::byte > GetReceiveGarbageTerminator() const noexcept
Get the expected Garbage Terminator to receive.
Definition: bip324.h:93
Span< const std::byte > GetSendGarbageTerminator() const noexcept
Get the Garbage Terminator to send.
Definition: bip324.h:90
static constexpr unsigned GARBAGE_TERMINATOR_LEN
Definition: bip324.h:23
unsigned DecryptLength(Span< const std::byte > input) noexcept
Decrypt the length of a packet.
Definition: bip324.cpp:89
const EllSwiftPubKey & GetOurPubKey() const noexcept
Retrieve our public key.
Definition: bip324.h:54
bool Decrypt(Span< const std::byte > input, Span< const std::byte > aad, bool &ignore, Span< std::byte > contents) noexcept
Decrypt a packet.
Definition: bip324.cpp:100
Span< const std::byte > GetSessionID() const noexcept
Get the Session ID.
Definition: bip324.h:87
void Encrypt(Span< const std::byte > contents, Span< const std::byte > aad, bool ignore, Span< std::byte > output) noexcept
Encrypt a packet.
Definition: bip324.cpp:73
static constexpr unsigned LENGTH_LEN
Definition: bip324.h:25
static constexpr unsigned EXPANSION
Definition: bip324.h:27
void Initialize(const EllSwiftPubKey &their_pubkey, bool initiator, bool self_decrypt=false) noexcept
Initialize when the other side's public key is received.
Definition: bip324.cpp:34
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:81
const MessageStartChars & MessageStart() const
Definition: chainparams.h:94
uint16_t GetDefaultPort() const
Definition: chainparams.h:95
const std::vector< std::string > & DNSSeeds() const
Return the list of hostnames to look up for DNS seeds.
Definition: chainparams.h:117
const std::vector< uint8_t > & FixedSeeds() const
Definition: chainparams.h:120
RAII helper to atomically create a copy of m_nodes and add a reference to each of the nodes.
Definition: net.h:1642
std::unordered_set< Network > GetReachableEmptyNetworks() const
Return reachable networks for which we have no addresses in addrman and therefore may require loading...
Definition: net.cpp:2479
std::condition_variable condMsgProc
Definition: net.h:1539
std::thread threadMessageHandler
Definition: net.h:1562
nSendBufferMaxSize
Definition: net.h:1097
void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3032
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3917
void DisconnectNodes() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Definition: net.cpp:1901
m_max_outbound_full_relay
Definition: net.h:1089
void DeleteNode(CNode *pnode)
Definition: net.cpp:3490
bool RemoveAddedNode(const std::string &node) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3573
bool AttemptToEvictConnection()
Try to find a connection to evict when the node is full.
Definition: net.cpp:1686
bool AlreadyConnectedToAddress(const CAddress &addr)
Determine whether we're already connected to a given address, in order to avoid initiating duplicate ...
Definition: net.cpp:368
whitelist_relay
Definition: net.h:1117
static constexpr size_t MAX_UNUSED_I2P_SESSIONS_SIZE
Cap on the size of m_unused_i2p_sessions, to ensure it does not unexpectedly use too much memory.
Definition: net.h:1635
CConnman(uint64_t seed0, uint64_t seed1, AddrMan &addrman, const NetGroupManager &netgroupman, const CChainParams &params, bool network_active=true)
Definition: net.cpp:3209
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2415
const bool use_v2transport(GetLocalServices() &NODE_P2P_V2)
uint16_t GetDefaultPort(Network net) const
Definition: net.cpp:3229
void Stop()
Definition: net.h:1129
void PerformReconnections() EXCLUSIVE_LOCKS_REQUIRED(!m_reconnections_mutex
Attempt reconnections, if m_reconnections non-empty.
Definition: net.cpp:3942
std::thread threadI2PAcceptIncoming
Definition: net.h:1563
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2420
std::atomic< bool > flagInterruptMsgProc
Definition: net.h:1541
void CreateNodeFromAcceptedSocket(std::unique_ptr< Sock > &&sock, NetPermissionFlags permission_flags, const CService &addr_bind, const CService &addr)
Create a CNode object from a socket that has just been accepted and add the node to the m_nodes membe...
Definition: net.cpp:1763
void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:3415
std::map< CNetAddr, LocalServiceInfo > getNetLocalAddresses() const
Definition: net.cpp:3613
void ThreadDNSAddressSeed() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2245
m_onion_binds
Definition: net.h:1115
Sock::EventsPerSock GenerateWaitSockets(Span< CNode *const > nodes)
Generate a collection of sockets to check for IO readiness.
Definition: net.cpp:2053
int GetFullOutboundConnCount() const
Definition: net.cpp:2433
NodeId GetNewNodeId()
Definition: net.cpp:3224
CThreadInterrupt interruptNet
This is signaled when network activity should cease.
Definition: net.h:1549
std::unique_ptr< CSemaphore > semAddnode
Definition: net.h:1495
std::atomic< NodeId > nLastNodeId
Definition: net.h:1448
m_max_automatic_outbound
Definition: net.h:1091
int GetExtraBlockRelayCount() const
Definition: net.cpp:2465
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2236
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3736
uint64_t GetMaxOutboundTarget() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3702
std::thread threadDNSAddressSeed
Definition: net.h:1558
void ASMapHealthCheck()
Definition: net.cpp:3969
void SocketHandlerConnected(const std::vector< CNode * > &nodes, const Sock::EventsPerSock &events_per_sock) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Do the read/write for connected sockets that are ready for IO.
Definition: net.cpp:2112
void ThreadI2PAcceptIncoming()
Definition: net.cpp:3071
const uint64_t nSeed1
Definition: net.h:1534
void StartExtraBlockRelayPeers()
Definition: net.cpp:2426
const NetGroupManager & m_netgroupman
Definition: net.h:1437
m_banman
Definition: net.h:1095
std::vector< CAddress > m_anchors
Addresses that were saved during the previous clean shutdown.
Definition: net.h:1531
std::chrono::seconds GetMaxOutboundTimeframe() const
Definition: net.cpp:3709
uint64_t CalculateKeyedNetGroup(const CNetAddr &ad) const
Definition: net.cpp:3935
unsigned int nPrevNodeCount
Definition: net.h:1449
void NotifyNumConnectionsChanged()
Definition: net.cpp:1979
ServiceFlags GetLocalServices() const
Used to convey which local services we are offering peers during node connection.
Definition: net.cpp:3779
bool AddNode(const AddedNodeParams &add) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3559
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3636
std::atomic_bool m_try_another_outbound_peer
flag for deciding to connect to an extra outbound peer, in excess of m_max_outbound_full_relay This t...
Definition: net.h:1568
bool InitBinds(const Options &options)
Definition: net.cpp:3259
CNode * ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:397
vWhitelistedRangeOutgoing
Definition: net.h:1105
void AddAddrFetch(const std::string &strDest) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex)
Definition: net.cpp:138
std::vector< ListenSocket > vhListenSocket
Definition: net.h:1433
std::vector< CAddress > GetCurrentBlockRelayOnlyConns() const
Return vector of current BLOCK_RELAY peers.
Definition: net.cpp:2882
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3930
bool AddConnection(const std::string &address, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Attempts to open a connection.
Definition: net.cpp:1864
Mutex m_total_bytes_sent_mutex
Definition: net.h:1412
std::vector< AddedNodeInfo > GetAddedNodeInfo(bool include_connected) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:2895
std::unique_ptr< CSemaphore > semOutbound
Definition: net.h:1494
void ThreadOpenAddedConnections() EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Definition: net.cpp:2955
bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions)
Definition: net.cpp:3240
std::thread threadOpenConnections
Definition: net.h:1561
size_t GetNodeCount(ConnectionDirection) const
Definition: net.cpp:3596
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3619
void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2394
Mutex m_addr_fetches_mutex
Definition: net.h:1439
bool InactivityCheck(const CNode &node) const
Return true if the peer is inactive and should be disconnected.
Definition: net.cpp:1999
m_peer_connect_timeout
Definition: net.h:1099
CNode * FindNode(const CNetAddr &ip)
Definition: net.cpp:335
Mutex m_reconnections_mutex
Mutex protecting m_reconnections.
Definition: net.h:1611
void GetNodeStats(std::vector< CNodeStats > &vstats) const
Definition: net.cpp:3624
bool Start(CScheduler &scheduler, const Options &options) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:3293
const uint64_t nSeed0
SipHasher seeds for deterministic randomness.
Definition: net.h:1534
m_local_services
Definition: net.h:1087
void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Check connected and listening sockets for IO readiness and process them accordingly.
Definition: net.cpp:2084
int GetExtraFullOutboundCount() const
Definition: net.cpp:2451
std::chrono::seconds GetMaxOutboundTimeLeftInCycle_() const EXCLUSIVE_LOCKS_REQUIRED(m_total_bytes_sent_mutex)
returns the time left in the current max outbound cycle in case of no limit, it will always return 0
Definition: net.cpp:3721
uint64_t GetTotalBytesRecv() const
Definition: net.cpp:3767
std::pair< size_t, bool > SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend)
(Try to) send data from node's vSendMsg.
Definition: net.cpp:1599
RecursiveMutex m_nodes_mutex
Definition: net.h:1447
m_max_outbound_block_relay
Definition: net.h:1090
static bool NodeFullyConnected(const CNode *pnode)
Definition: net.cpp:3865
m_client_interface
Definition: net.h:1094
nReceiveFloodSize
Definition: net.h:1098
const CChainParams & m_params
Definition: net.h:1674
void SetNetworkActive(bool active)
Definition: net.cpp:3194
void ThreadOpenConnections(std::vector< std::string > connect, Span< const std::string > seed_nodes) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex
Definition: net.cpp:2514
bool MultipleManualOrFullOutboundConns(Network net) const EXCLUSIVE_LOCKS_REQUIRED(m_nodes_mutex)
Definition: net.cpp:2492
bool AddedNodesContain(const CAddress &addr) const EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex)
Definition: net.cpp:3585
whitelist_forcerelay
Definition: net.h:1116
std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3714
AddrMan & addrman
Definition: net.h:1436
m_max_automatic_connections
Definition: net.h:1088
m_msgproc
Definition: net.h:1096
Mutex mutexMsgProc
Definition: net.h:1540
m_max_inbound
Definition: net.h:1092
bool fAddressesInitialized
Definition: net.h:1435
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3503
~CConnman()
Definition: net.cpp:3497
void StopThreads()
Definition: net.cpp:3439
void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant &&grant_outbound, const char *strDest, ConnectionType conn_type, bool use_v2transport) EXCLUSIVE_LOCKS_REQUIRED(!m_unused_i2p_sessions_mutex)
Definition: net.cpp:2985
std::thread threadOpenAddedConnections
Definition: net.h:1560
Mutex m_added_nodes_mutex
Definition: net.h:1444
vWhitelistedRangeIncoming
Definition: net.h:1104
void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex
Definition: net.cpp:2224
void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr, const std::vector< NetWhitelistPermissions > &ranges) const
Definition: net.cpp:578
void RecordBytesSent(uint64_t bytes) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3684
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:373
void Init(const Options &connOptions) EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex
Mutex m_unused_i2p_sessions_mutex
Mutex protecting m_i2p_sam_sessions.
Definition: net.h:1597
uint64_t GetTotalBytesSent() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3772
bool MaybePickPreferredNetwork(std::optional< Network > &network)
Search for a "preferred" network, a reachable network to which we currently don't have any OUTBOUND_F...
Definition: net.cpp:2498
void RecordBytesRecv(uint64_t bytes)
Definition: net.cpp:3679
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1994
uint64_t GetOutboundTargetBytesLeft() const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
response the bytes left in the current max outbound cycle in case of no limit, it will always respons...
Definition: net.cpp:3757
void PushMessage(CNode *pnode, CSerializedNetMsg &&msg) EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
Definition: net.cpp:3870
void StopNodes()
Definition: net.cpp:3456
int m_max_addnode
Definition: net.h:1516
std::list< CNode * > m_nodes_disconnected
Definition: net.h:1446
std::unique_ptr< i2p::sam::Session > m_i2p_sam_session
I2P SAM session.
Definition: net.h:1556
std::map< uint64_t, CachedAddrResponse > m_addr_response_caches
Addr responses stored in different caches per (network, local socket) prevent cross-network node iden...
Definition: net.h:1479
std::atomic< uint64_t > nTotalBytesRecv
Definition: net.h:1413
std::atomic< bool > fNetworkActive
Definition: net.h:1434
std::atomic_bool m_start_extra_block_relay_peers
flag for initiating extra block-relay-only peer connections.
Definition: net.h:1574
m_use_addrman_outgoing
Definition: net.h:1093
void SocketHandlerListening(const Sock::EventsPerSock &events_per_sock)
Accept incoming connections, one from each read-ready listening socket.
Definition: net.cpp:2211
void DumpAddresses()
Definition: net.cpp:2384
std::thread threadSocketHandler
Definition: net.h:1559
nMaxOutboundLimit
Definition: net.h:1102
void AcceptConnection(const ListenSocket &hListenSocket)
Definition: net.cpp:1735
bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions)
Definition: net.cpp:3114
An encapsulated private key.
Definition: key.h:35
Message header.
Definition: protocol.h:29
static constexpr size_t MESSAGE_TYPE_SIZE
Definition: protocol.h:31
static constexpr size_t CHECKSUM_SIZE
Definition: protocol.h:33
static constexpr size_t HEADER_SIZE
Definition: protocol.h:36
uint8_t pchChecksum[CHECKSUM_SIZE]
Definition: protocol.h:53
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:678
std::string ToStringAddr() const
Definition: netaddress.cpp:584
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:211
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:696
bool IsRoutable() const
Definition: netaddress.cpp:466
bool IsPrivacyNet() const
Whether this object is a privacy network.
Definition: netaddress.h:188
bool IsValid() const
Definition: netaddress.cpp:428
bool IsIPv4() const
Definition: netaddress.h:157
bool IsIPv6() const
Definition: netaddress.h:158
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:172
enum Network GetNetwork() const
Definition: netaddress.cpp:500
~CNetCleanup()
Definition: net.cpp:3405
CNetCleanup()=default
Transport protocol agnostic message container.
Definition: net.h:231
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:133
std::string m_type
Definition: net.h:237
DataStream m_recv
received message data
Definition: net.h:233
Information about a peer.
Definition: net.h:673
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
std::atomic< int > nVersion
Definition: net.h:716
bool IsInboundConn() const
Definition: net.h:811
std::atomic_bool fPauseRecv
Definition: net.h:736
NodeId GetId() const
Definition: net.h:894
const std::string m_addr_name
Definition: net.h:711
bool IsConnectedThroughPrivacyNet() const
Whether this peer connected through a privacy network.
Definition: net.cpp:613
void CopyStats(CNodeStats &stats) EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex
Definition: net.cpp:620
std::string ConnectionTypeAsString() const
Definition: net.h:948
const CService addrBind
Definition: net.h:710
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::list< CNetMessage > vRecvMsg
Definition: net.h:978
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:600
CSemaphoreGrant grantOutbound
Definition: net.h:732
void MarkReceivedMsgsForProcessing() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Move all messages from the received queue to the processing queue.
Definition: net.cpp:3834
Mutex m_subver_mutex
Definition: net.h:717
Mutex cs_vSend
Definition: net.h:697
CNode * AddRef()
Definition: net.h:933
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3851
CNode(NodeId id, std::shared_ptr< Sock > sock, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CService &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion, CNodeOptions &&node_opts={})
Definition: net.cpp:3793
Mutex m_msg_process_queue_mutex
Definition: net.h:980
const ConnectionType m_conn_type
Definition: net.h:739
Network ConnectedThroughNetwork() const
Get network the peer connected through.
Definition: net.cpp:608
const size_t m_recv_flood_size
Definition: net.h:977
bool ReceiveMsgBytes(Span< const uint8_t > msg_bytes, bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv)
Receive bytes from the buffer and deserialize them into messages.
Definition: net.cpp:666
std::atomic< std::chrono::microseconds > m_last_ping_time
Last measured round-trip time.
Definition: net.h:875
bool IsManualOrFullOutboundConn() const
Definition: net.h:783
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:710
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const NetPermissionFlags m_permission_flags
Definition: net.h:679
Mutex m_addr_local_mutex
Definition: net.h:986
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::microseconds > m_min_ping_time
Lowest measured round-trip time.
Definition: net.h:879
Mutex cs_vRecv
Definition: net.h:699
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:715
Mutex m_sock_mutex
Definition: net.h:698
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_recv
Definition: net.h:704
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
Definition: net.cpp:593
void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!m_sock_mutex)
Definition: net.cpp:560
std::atomic< std::chrono::seconds > m_last_send
Definition: net.h:703
std::string m_session_id
BIP324 session id string in hex, if any.
Definition: net.h:222
std::string addrLocal
Definition: net.h:210
bool fInbound
Definition: net.h:196
TransportProtocolType m_transport_type
Transport protocol type.
Definition: net.h:220
Network m_network
Definition: net.h:216
NodeId nodeid
Definition: net.h:187
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
RAII-style semaphore lock.
Definition: sync.h:353
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
bool SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
Set CService from a network sockaddr.
Definition: netaddress.cpp:810
uint16_t GetPort() const
Definition: netaddress.cpp:839
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:826
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:866
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
std::string ToString() const
bool Match(const CNetAddr &addr) const
std::chrono::steady_clock Clock
bool sleep_for(Clock::duration rel_time) EXCLUSIVE_LOCKS_REQUIRED(!mut)
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: streams.cpp:115
Fast randomness source.
Definition: random.h:377
void fillrand(Span< std::byte > output) noexcept
Fill a byte Span with random bytes.
Definition: random.cpp:701
Different type to mark Mutex at global scope.
Definition: sync.h:140
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1011
Netgroup manager.
Definition: netgroup.h:16
bool UsingASMap() const
Indicates whether ASMap is being used for clearnet bucketing.
Definition: netgroup.cpp:130
void ASMapHealthCheck(const std::vector< CNetAddr > &clearnet_addrs) const
Analyze and log current health of ASMap based buckets.
Definition: netgroup.cpp:114
std::vector< unsigned char > GetGroup(const CNetAddr &address) const
Get the canonical identifier of the network group for address.
Definition: netgroup.cpp:18
uint32_t GetMappedAS(const CNetAddr &address) const
Get the autonomous system on the BGP path to address.
Definition: netgroup.cpp:81
NetPermissionFlags m_flags
static void AddFlag(NetPermissionFlags &flags, NetPermissionFlags f)
static void ClearFlag(NetPermissionFlags &flags, NetPermissionFlags f)
ClearFlag is only called with f == NetPermissionFlags::Implicit.
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
static bool TryParse(const std::string &str, NetWhitebindPermissions &output, bilingual_str &error)
Wrapper that overrides the GetParams() function of a stream.
Definition: serialize.h:1115
Definition: netbase.h:59
std::string ToString() const
Definition: netbase.h:82
Tp rand_uniform_delay(const Tp &time, typename Tp::duration range) noexcept
Return the time point advanced by a uniform random duration.
Definition: random.h:320
Chrono::duration rand_uniform_duration(typename Chrono::duration range) noexcept
Generate a uniform random duration in the range from 0 (inclusive) to range (exclusive).
Definition: random.h:327
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
std::chrono::microseconds rand_exp_duration(std::chrono::microseconds mean) noexcept
Return a duration sampled from an exponential distribution (https://en.wikipedia.org/wiki/Exponential...
Definition: random.h:356
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
std::unordered_set< Network > All() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:137
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
RAII helper class that manages a socket and closes it automatically when it goes out of scope.
Definition: sock.h:27
static constexpr Event SEND
If passed to Wait(), then it will wait for readiness to send to the socket.
Definition: sock.h:148
uint8_t Event
Definition: sock.h:138
virtual int GetSockName(sockaddr *name, socklen_t *name_len) const
getsockname(2) wrapper.
Definition: sock.cpp:106
static constexpr Event ERR
Ignored if passed to Wait(), but could be set in the occurred events if an exceptional condition has ...
Definition: sock.h:154
static constexpr Event RECV
If passed to Wait(), then it will wait for readiness to read from the socket.
Definition: sock.h:143
std::unordered_map< std::shared_ptr< const Sock >, Events, HashSharedPtrSock, EqualSharedPtrSock > EventsPerSock
On which socket to wait for what events in WaitMany().
Definition: sock.h:208
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
constexpr std::size_t size() const noexcept
Definition: span.h:187
CONSTEXPR_IF_NOT_DEBUG Span< C > subspan(std::size_t offset) const noexcept
Definition: span.h:195
CONSTEXPR_IF_NOT_DEBUG Span< C > first(std::size_t count) const noexcept
Definition: span.h:205
constexpr C * data() const noexcept
Definition: span.h:174
constexpr C * begin() const noexcept
Definition: span.h:175
constexpr bool empty() const noexcept
Definition: span.h:189
constexpr C * end() const noexcept
Definition: span.h:176
std::tuple< Span< const uint8_t >, bool, const std::string & > BytesToSend
Return type for GetBytesToSend, consisting of:
Definition: net.h:311
int readData(Span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:775
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:841
Info GetInfo() const noexcept override
Retrieve information about this transport.
Definition: net.cpp:729
const NodeId m_node_id
Definition: net.h:371
Mutex m_send_mutex
Lock for sending state.
Definition: net.h:406
const MessageStartChars m_magic_bytes
Definition: net.h:370
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:903
const uint256 & GetMessageHash() const EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:793
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:887
V1Transport(const NodeId node_id) noexcept
Definition: net.cpp:722
bool CompleteInternal() const noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:398
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:866
void Reset() EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.h:386
bool ReceivedBytes(Span< const uint8_t > &msg_bytes) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Feed wire bytes to the transport.
Definition: net.h:427
Mutex m_recv_mutex
Lock for receive state.
Definition: net.h:372
int readHeader(Span< const uint8_t > msg_bytes) EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Definition: net.cpp:734
bool ReceivedMessageComplete() const override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.h:419
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:802
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Report how many bytes returned by the last GetBytesToSend() have been sent.
Definition: net.cpp:1530
static constexpr uint32_t MAX_GARBAGE_LEN
Definition: net.h:634
const NodeId m_nodeid
NodeId (for debug logging).
Definition: net.h:580
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Determine how many received bytes can be processed in one go (not allowed in V1 state).
Definition: net.cpp:1273
BIP324Cipher m_cipher
Cipher state.
Definition: net.h:576
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Return the memory usage of this transport attributable to buffered data to send.
Definition: net.cpp:1569
void ProcessReceivedMaybeV1Bytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY_MAYBE_V1 state.
Definition: net.cpp:1079
SendState
State type that controls the sender side.
Definition: net.h:545
@ READY
Normal sending state.
@ AWAITING_KEY
Waiting for the other side's public key.
@ V1
This transport is using v1 fallback.
V1Transport m_v1_fallback
Encapsulate a V1Transport to fall back to.
Definition: net.h:582
static constexpr size_t V1_PREFIX_LEN
The length of the V1 prefix to match bytes initially received by responders with to determine if thei...
Definition: net.h:459
void StartSendingHandshake() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Put our public key + garbage in the send buffer.
Definition: net.cpp:988
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in VERSION/APP state.
Definition: net.cpp:1204
bool ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex
Process bytes in m_recv_buffer, while in KEY state.
Definition: net.cpp:1117
bool ReceivedBytes(Span< const uint8_t > &msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Feed wire bytes to the transport.
Definition: net.cpp:1322
const bool m_initiating
Whether we are the initiator side.
Definition: net.h:578
Info GetInfo() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve information about this transport.
Definition: net.cpp:1578
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Get bytes to send on the wire, if any, along with other information about it.
Definition: net.cpp:1513
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Change the receive state.
Definition: net.cpp:1019
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex)
Process bytes in m_recv_buffer, while in GARB_GARBTERM state.
Definition: net.cpp:1177
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Returns true if the current message is complete (so GetReceivedMessage can be called).
Definition: net.cpp:1070
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool &reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex)
Retrieve a completed message from transport.
Definition: net.cpp:1452
static constexpr std::array< std::byte, 0 > VERSION_CONTENTS
Contents of the version packet to send.
Definition: net.h:455
static std::optional< std::string > GetMessageType(Span< const uint8_t > &contents) noexcept
Given a packet's contents, find the message type (if valid), and strip it from contents.
Definition: net.cpp:1412
bool ShouldReconnectV1() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex
Whether upon disconnections, a reconnect with V1 is warranted.
Definition: net.cpp:1552
bool SetMessageToSend(CSerializedNetMsg &msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex)
Set the next message to send.
Definition: net.cpp:1481
V2Transport(NodeId nodeid, bool initiating) noexcept
Construct a V2 transport with securely generated random keys.
Definition: net.cpp:1015
RecvState
State type that defines the current contents of the receive buffer and/or how the next received bytes...
Definition: net.h:480
@ VERSION
Version packet.
@ APP
Application packet.
@ GARB_GARBTERM
Garbage and garbage terminator.
@ V1
Nothing (this transport is using v1 fallback).
@ KEY_MAYBE_V1
(Responder only) either v2 public key or v1 header.
@ APP_READY
Nothing (an application packet is available for GetMessage()).
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex)
Change the send state.
Definition: net.cpp:1050
constexpr unsigned char * begin()
Definition: uint256.h:115
Path class wrapper to block calls to the fs::path(std::string) implicit constructor and the fs::path:...
Definition: fs.h:33
256-bit opaque blob.
Definition: uint256.h:201
#define WSAEWOULDBLOCK
Definition: compat.h:50
#define SOCKET_ERROR
Definition: compat.h:57
#define WSAGetLastError()
Definition: compat.h:48
#define WSAEMSGSIZE
Definition: compat.h:52
#define MSG_NOSIGNAL
Definition: compat.h:107
#define MSG_DONTWAIT
Definition: compat.h:112
void * sockopt_arg_type
Definition: compat.h:82
#define WSAEINPROGRESS
Definition: compat.h:54
#define WSAEADDRINUSE
Definition: compat.h:55
#define WSAEINTR
Definition: compat.h:53
std::string ConnectionTypeAsString(ConnectionType conn_type)
Convert ConnectionType enum to a string value.
ConnectionType
Different types of connections to a peer.
@ BLOCK_RELAY
We use block-relay-only connections to help prevent against partition attacks.
@ MANUAL
We open manual connections to addresses that users explicitly requested via the addnode RPC or the -a...
@ OUTBOUND_FULL_RELAY
These are the default connections that we use to connect with the network.
@ FEELER
Feeler connections are short-lived connections made to check that a node is alive.
@ INBOUND
Inbound connections are those initiated by a peer.
@ ADDR_FETCH
AddrFetch connections are short lived connections used to solicit addresses from peers.
@ V1
Unencrypted, plaintext protocol.
@ V2
BIP324 protocol.
@ DETECTING
Peer could be v1 or v2.
static const unsigned int MAX_BLOCK_SERIALIZED_SIZE
The maximum allowed size for a serialized block, in bytes (only for buffer size limits)
Definition: consensus.h:13
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
static CService ip(uint32_t i)
std::optional< NodeId > SelectNodeToEvict(std::vector< NodeEvictionCandidate > &&vEvictionCandidates)
Select an inbound peer to evict after filtering out (protecting) peers having distinct,...
Definition: eviction.cpp:178
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const Span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:352
bool fLogIPs
Definition: logging.cpp:45
#define LogPrintLevel(category, level,...)
Definition: logging.h:272
#define LogInfo(...)
Definition: logging.h:261
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ PROXY
Definition: logging.h:58
@ NET
Definition: logging.h:43
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
static path u8path(const std::string &utf8_str)
Definition: fs.h:75
static bool create_directories(const std::filesystem::path &p)
Create directory (and if necessary its parents), unless the leaf directory already exists or is a sym...
Definition: fs.h:190
FILE * fopen(const fs::path &p, const char *mode)
Definition: fs.cpp:26
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
Definition: messages.h:20
static const unsigned char VERSION[]
Definition: netaddress.cpp:187
void TraceThread(std::string_view thread_name, std::function< void()> thread_func)
A wrapper for do-something-once thread functions.
Definition: thread.cpp:16
const std::string KEY
Definition: walletdb.cpp:48
uint16_t GetListenPort()
Definition: net.cpp:144
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE
Number of DNS seeds to query when the number of connections is low.
Definition: net.cpp:72
bool IsLocal(const CService &addr)
check whether a given address is potentially local
Definition: net.cpp:329
static const uint64_t RANDOMIZER_ID_NETGROUP
Definition: net.cpp:116
static const uint64_t SELECT_TIMEOUT_MILLISECONDS
Definition: net.cpp:112
void RemoveLocal(const CService &addr)
Definition: net.cpp:310
BindFlags
Used to pass flags to the Bind() function.
Definition: net.cpp:100
@ BF_REPORT_ERROR
Definition: net.cpp:102
@ BF_NONE
Definition: net.cpp:101
@ BF_DONT_ADVERTISE
Do not call AddLocal() for our special addresses, e.g., for incoming Tor connections,...
Definition: net.cpp:107
bool fDiscover
Definition: net.cpp:122
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE
Definition: net.cpp:117
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL
Definition: net.cpp:69
static constexpr auto EXTRA_NETWORK_PEER_INTERVAL
Frequency to attempt extra connections to reachable networks we're not connected to yet.
Definition: net.cpp:97
static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD
Minimum number of outbound connections under which we will keep fetching our address seeds.
Definition: net.cpp:75
static CService GetBindAddress(const Sock &sock)
Get the bind address for a socket as CService.
Definition: net.cpp:384
bool AddLocal(const CService &addr_, int nScore)
Definition: net.cpp:277
static constexpr auto FEELER_SLEEP_WINDOW
Definition: net.cpp:94
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD
Definition: net.cpp:88
bool fListen
Definition: net.cpp:123
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS
Maximum number of block-relay-only anchor connections.
Definition: net.cpp:63
static bool IsPeerAddrLocalGood(CNode *pnode)
Definition: net.cpp:239
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS
How long to delay before querying DNS seeds.
Definition: net.cpp:86
static const uint64_t RANDOMIZER_ID_ADDRCACHE
Definition: net.cpp:118
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:126
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:246
const std::string NET_MESSAGE_TYPE_OTHER
Definition: net.cpp:114
TRACEPOINT_SEMAPHORE(net, closed_connection)
#define X(name)
Definition: net.cpp:619
static std::unique_ptr< Transport > MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
Definition: net.cpp:3784
const char *const ANCHORS_DATABASE_FILENAME
Anchor IP address database file name.
Definition: net.cpp:66
static std::vector< CAddress > ConvertSeeds(const std::vector< uint8_t > &vSeedsIn)
Convert the serialized seeds into usable address objects.
Definition: net.cpp:201
CService GetLocalAddress(const CNode &peer)
Definition: net.cpp:226
GlobalMutex g_maplocalhost_mutex
Definition: net.cpp:124
std::map< CNetAddr, LocalServiceInfo > mapLocalHost GUARDED_BY(g_maplocalhost_mutex)
static std::optional< CService > GetLocal(const CNode &peer)
Definition: net.cpp:171
static void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)
Definition: net.cpp:3983
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS
Definition: net.cpp:87
static int GetnScore(const CService &addr)
Definition: net.cpp:231
std::function< void(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4018
static CNetCleanup instance_of_cnetcleanup
Definition: net.cpp:3413
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME
The default timeframe for -maxuploadtarget.
Definition: net.cpp:91
void Discover()
Look up IP addresses from all interfaces on the machine and add them to the list of local addresses t...
Definition: net.cpp:3183
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
static constexpr bool DEFAULT_FIXEDSEEDS
Definition: net.h:91
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH
Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable).
Definition: net.h:63
static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL
Run the extra block-relay-only connection loop once every 5 minutes.
Definition: net.h:61
static constexpr bool DEFAULT_FORCEDNSSEED
Definition: net.h:89
static constexpr bool DEFAULT_DNSSEED
Definition: net.h:90
int64_t NodeId
Definition: net.h:97
static constexpr std::chrono::hours ASMAP_HEALTH_CHECK_INTERVAL
Interval for ASMap Health Check.
Definition: net.h:87
static constexpr auto FEELER_INTERVAL
Run the feeler connection loop once every 2 minutes.
Definition: net.h:59
static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS
Maximum number of automatic outgoing nodes over which we'll relay everything (blocks,...
Definition: net.h:67
@ LOCAL_MANUAL
Definition: net.h:152
@ LOCAL_BIND
Definition: net.h:150
@ LOCAL_IF
Definition: net.h:149
static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS
Maximum number of block-relay-only outgoing connections.
Definition: net.h:71
NetPermissionFlags
static constexpr uint16_t I2P_SAM31_PORT
SAM 3.1 and earlier do not support specifying ports and force the port to 0.
Definition: netaddress.h:104
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
std::unique_ptr< Sock > ConnectDirectly(const CService &dest, bool manual_connection)
Create a socket and try to connect to the specified service.
Definition: netbase.cpp:625
std::vector< CNetAddr > LookupHost(const std::string &name, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
Resolve a host string to its corresponding network addresses.
Definition: netbase.cpp:177
std::string GetNetworkName(enum Network net)
Definition: netbase.cpp:118
CThreadInterrupt g_socks5_interrupt
Interrupt SOCKS5 reads or writes.
Definition: netbase.cpp:41
bool HaveNameProxy()
Definition: netbase.cpp:714
std::vector< CService > Lookup(const std::string &name, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
Resolve a service string to its corresponding service.
Definition: netbase.cpp:195
CService MaybeFlipIPv6toCJDNS(const CService &service)
If an IPv6 address belongs to the address range used by the CJDNS network and the CJDNS network is re...
Definition: netbase.cpp:882
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool fNameLookup
Definition: netbase.cpp:37
bool GetProxy(enum Network net, Proxy &proxyInfoOut)
Definition: netbase.cpp:689
std::unique_ptr< Sock > ConnectThroughProxy(const Proxy &proxy, const std::string &dest, uint16_t port, bool &proxy_connection_failed)
Connect to a specified destination service through a SOCKS5 proxy by first connecting to the SOCKS5 p...
Definition: netbase.cpp:728
std::function< std::unique_ptr< Sock >(int, int, int)> CreateSock
Socket factory.
Definition: netbase.cpp:557
bool GetNameProxy(Proxy &nameProxyOut)
Definition: netbase.cpp:706
CService LookupNumeric(const std::string &name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
Resolve a service string with a numeric IP to its first corresponding service.
Definition: netbase.cpp:220
bool IsBadPort(uint16_t port)
Determine if a port is "bad" from the perspective of attempting to connect to a node on that port.
Definition: netbase.cpp:792
ConnectionDirection
Definition: netbase.h:33
std::vector< CNetAddr > GetLocalAddresses()
Return all local non-loopback IPv4 and IPv6 network addresses.
Definition: netif.cpp:268
const std::array ALL_NET_MESSAGE_TYPES
All known message types (see above).
Definition: protocol.h:270
constexpr ServiceFlags SeedsServiceFlags()
State independent service flags.
Definition: protocol.h:354
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_P2P_V2
Definition: protocol.h:330
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
void RandAddEvent(const uint32_t event_info) noexcept
Gathers entropy from the low bits of the time at which events occur.
Definition: random.cpp:692
uint256 GetRandHash() noexcept
Generate a random uint256.
Definition: random.h:454
void ser_writedata32(Stream &s, uint32_t obj)
Definition: serialize.h:68
static constexpr uint64_t MAX_SIZE
The maximum size of a serialized object in bytes or number of elements (for eg vectors) when the size...
Definition: serialize.h:32
void ser_writedata64(Stream &s, uint64_t obj)
Definition: serialize.h:78
std::string NetworkErrorString(int err)
Return readable error string for a network error code.
Definition: sock.cpp:422
Span< const std::byte > MakeByteSpan(V &&v) noexcept
Definition: span.h:269
constexpr auto MakeUCharSpan(V &&v) -> decltype(UCharSpanCast(Span{std::forward< V >(v)}))
Like the Span constructor, but for (const) unsigned char member types only.
Definition: span.h:296
T & SpanPopBack(Span< T > &span)
Pop the last element off a span, and return a reference to that element.
Definition: span.h:248
Span(T *, EndOrSize) -> Span< T >
unsigned char * UCharCast(char *c)
Definition: span.h:280
Span< std::byte > MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:274
std::string m_added_node
Definition: net.h:100
Cache responses to addr requests to minimize privacy leak.
Definition: net.h:1460
std::chrono::microseconds m_cache_entry_expiration
Definition: net.h:1462
std::vector< CAddress > m_addrs_response_cache
Definition: net.h:1461
void AddSocketPermissionFlags(NetPermissionFlags &flags) const
Definition: net.h:1279
std::shared_ptr< Sock > sock
Definition: net.h:1278
std::vector< NetWhitebindPermissions > vWhiteBinds
Definition: net.h:1069
std::vector< CService > onion_binds
Definition: net.h:1071
std::vector< std::string > m_specified_outgoing
Definition: net.h:1076
std::vector< CService > vBinds
Definition: net.h:1070
bool m_i2p_accept_incoming
Definition: net.h:1078
std::vector< std::string > vSeedNodes
Definition: net.h:1066
bool m_use_addrman_outgoing
Definition: net.h:1075
bool bind_on_any
True if the user did not specify -bind= or -whitebind= and thus we should bind on 0....
Definition: net.h:1074
NetPermissionFlags permission_flags
Definition: net.h:664
std::string m_type
Definition: net.h:131
std::vector< unsigned char > data
Definition: net.h:130
size_t GetMemoryUsage() const noexcept
Compute total memory usage of this object (own memory + any dynamic memory).
Definition: net.cpp:128
An ElligatorSwift-encoded public key.
Definition: pubkey.h:310
static constexpr size_t size()
Definition: pubkey.h:327
uint16_t nPort
Definition: net.h:175
int nScore
Definition: net.h:174
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
Auxiliary requested/occurred events to wait for in WaitMany().
Definition: sock.h:173
std::optional< uint256 > session_id
Definition: net.h:261
TransportProtocolType transport_type
Definition: net.h:260
Bilingual messages:
Definition: translation.h:24
std::string original
Definition: translation.h:25
An established connection with another peer.
Definition: i2p.h:32
std::unique_ptr< Sock > sock
Connected socket.
Definition: i2p.h:34
CService me
Our I2P address.
Definition: i2p.h:37
CService peer
The peer's I2P address.
Definition: i2p.h:40
#define WAIT_LOCK(cs, name)
Definition: sync.h:262
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:76
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:81
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bilingual_str Untranslated(std::string original)
Mark a bilingual_str as untranslated.
Definition: translation.h:82
bool SplitHostPort(std::string_view in, uint16_t &portOut, std::string &hostOut)
Splits socket address string into host string and port value.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
void ClearShrink(V &v) noexcept
Clear a vector (or std::deque) and release its allocated memory.
Definition: vector.h:56