Bitcoin Core  27.99.0
P2P Digital Currency
netaddress.cpp
Go to the documentation of this file.
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2022 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 
6 #include <netaddress.h>
7 
8 #include <crypto/common.h>
9 #include <crypto/sha3.h>
10 #include <hash.h>
11 #include <prevector.h>
12 #include <tinyformat.h>
13 #include <util/strencodings.h>
14 #include <util/string.h>
15 
16 #include <algorithm>
17 #include <array>
18 #include <cstdint>
19 #include <ios>
20 #include <iterator>
21 #include <tuple>
22 
24 {
25  switch (m_net) {
26  case NET_IPV4:
27  return BIP155Network::IPV4;
28  case NET_IPV6:
29  return BIP155Network::IPV6;
30  case NET_ONION:
31  return BIP155Network::TORV3;
32  case NET_I2P:
33  return BIP155Network::I2P;
34  case NET_CJDNS:
35  return BIP155Network::CJDNS;
36  case NET_INTERNAL: // should have been handled before calling this function
37  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
38  case NET_MAX: // m_net is never and should not be set to NET_MAX
39  assert(false);
40  } // no default case, so the compiler can warn about missing cases
41 
42  assert(false);
43 }
44 
45 bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
46 {
47  switch (possible_bip155_net) {
49  if (address_size == ADDR_IPV4_SIZE) {
50  m_net = NET_IPV4;
51  return true;
52  }
53  throw std::ios_base::failure(
54  strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
57  if (address_size == ADDR_IPV6_SIZE) {
58  m_net = NET_IPV6;
59  return true;
60  }
61  throw std::ios_base::failure(
62  strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
64  case BIP155Network::TORV3:
65  if (address_size == ADDR_TORV3_SIZE) {
66  m_net = NET_ONION;
67  return true;
68  }
69  throw std::ios_base::failure(
70  strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
72  case BIP155Network::I2P:
73  if (address_size == ADDR_I2P_SIZE) {
74  m_net = NET_I2P;
75  return true;
76  }
77  throw std::ios_base::failure(
78  strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
79  ADDR_I2P_SIZE));
80  case BIP155Network::CJDNS:
81  if (address_size == ADDR_CJDNS_SIZE) {
82  m_net = NET_CJDNS;
83  return true;
84  }
85  throw std::ios_base::failure(
86  strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
88  }
89 
90  // Don't throw on addresses with unknown network ids (maybe from the future).
91  // Instead silently drop them and have the unserialization code consume
92  // subsequent ones which may be known to us.
93  return false;
94 }
95 
101 CNetAddr::CNetAddr() = default;
102 
103 void CNetAddr::SetIP(const CNetAddr& ipIn)
104 {
105  // Size check.
106  switch (ipIn.m_net) {
107  case NET_IPV4:
108  assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
109  break;
110  case NET_IPV6:
111  assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
112  break;
113  case NET_ONION:
114  assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
115  break;
116  case NET_I2P:
117  assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
118  break;
119  case NET_CJDNS:
120  assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
121  break;
122  case NET_INTERNAL:
124  break;
125  case NET_UNROUTABLE:
126  case NET_MAX:
127  assert(false);
128  } // no default case, so the compiler can warn about missing cases
129 
130  m_net = ipIn.m_net;
131  m_addr = ipIn.m_addr;
132 }
133 
135 {
136  assert(ipv6.size() == ADDR_IPV6_SIZE);
137 
138  size_t skip{0};
139 
140  if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
141  // IPv4-in-IPv6
142  m_net = NET_IPV4;
143  skip = sizeof(IPV4_IN_IPV6_PREFIX);
144  } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
145  // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
146  // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
147  // will not be gossiped, but continue reading next addresses from the stream.
148  m_net = NET_IPV6;
150  return;
151  } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
152  // Internal-in-IPv6
154  skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
155  } else {
156  // IPv6
157  m_net = NET_IPV6;
158  }
159 
160  m_addr.assign(ipv6.begin() + skip, ipv6.end());
161 }
162 
169 bool CNetAddr::SetInternal(const std::string &name)
170 {
171  if (name.empty()) {
172  return false;
173  }
175  unsigned char hash[32] = {};
176  CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
177  m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
178  return true;
179 }
180 
181 namespace torv3 {
182 // https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt?id=7116c9cdaba248aae07a3f1d0e15d9dd102f62c5#n2175
183 static constexpr size_t CHECKSUM_LEN = 2;
184 static const unsigned char VERSION[] = {3};
185 static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
186 
187 static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
188 {
189  // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
190  static const unsigned char prefix[] = ".onion checksum";
191  static constexpr size_t prefix_len = 15;
192 
193  SHA3_256 hasher;
194 
195  hasher.Write(Span{prefix}.first(prefix_len));
196  hasher.Write(addr_pubkey);
197  hasher.Write(VERSION);
198 
199  uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
200 
201  hasher.Finalize(checksum_full);
202 
203  memcpy(checksum, checksum_full, sizeof(checksum));
204 }
205 
206 }; // namespace torv3
207 
208 bool CNetAddr::SetSpecial(const std::string& addr)
209 {
210  if (!ContainsNoNUL(addr)) {
211  return false;
212  }
213 
214  if (SetTor(addr)) {
215  return true;
216  }
217 
218  if (SetI2P(addr)) {
219  return true;
220  }
221 
222  return false;
223 }
224 
225 bool CNetAddr::SetTor(const std::string& addr)
226 {
227  static const char* suffix{".onion"};
228  static constexpr size_t suffix_len{6};
229 
230  if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
231  return false;
232  }
233 
234  auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len));
235 
236  if (!input) {
237  return false;
238  }
239 
240  if (input->size() == torv3::TOTAL_LEN) {
241  Span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
242  Span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
243  Span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
244 
245  if (input_version != torv3::VERSION) {
246  return false;
247  }
248 
249  uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
250  torv3::Checksum(input_pubkey, calculated_checksum);
251 
252  if (input_checksum != calculated_checksum) {
253  return false;
254  }
255 
256  m_net = NET_ONION;
257  m_addr.assign(input_pubkey.begin(), input_pubkey.end());
258  return true;
259  }
260 
261  return false;
262 }
263 
264 bool CNetAddr::SetI2P(const std::string& addr)
265 {
266  // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
267  static constexpr size_t b32_len{52};
268  static const char* suffix{".b32.i2p"};
269  static constexpr size_t suffix_len{8};
270 
271  if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
272  return false;
273  }
274 
275  // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
276  // can decode it.
277  const std::string b32_padded = addr.substr(0, b32_len) + "====";
278 
279  auto address_bytes = DecodeBase32(b32_padded);
280 
281  if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
282  return false;
283  }
284 
285  m_net = NET_I2P;
286  m_addr.assign(address_bytes->begin(), address_bytes->end());
287 
288  return true;
289 }
290 
291 CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
292 {
293  m_net = NET_IPV4;
294  const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
295  m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
296 }
297 
298 CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
299 {
300  SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
301  m_scope_id = scope;
302 }
303 
305 {
306  if (!IsIPv4() && !IsIPv6()) {
307  return false;
308  }
309  return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
310 }
311 
313 {
314  return IsIPv4() && (
315  m_addr[0] == 10 ||
316  (m_addr[0] == 192 && m_addr[1] == 168) ||
317  (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
318 }
319 
321 {
322  return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
323 }
324 
326 {
327  return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
328 }
329 
331 {
332  return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
333 }
334 
336 {
337  return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
338  HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
339  HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
340 }
341 
343 {
344  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
345 }
346 
348 {
349  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
350 }
351 
353 {
354  return IsIPv6() &&
355  HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
356  0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
357 }
358 
360 {
361  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
362 }
363 
365 {
366  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
367  0x00, 0x00, 0x00, 0x00});
368 }
369 
371 {
372  return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
373 }
374 
376 {
377  return IsIPv6() &&
378  HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
379  0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
380 }
381 
383 {
384  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
385  (m_addr[3] & 0xF0) == 0x10;
386 }
387 
389 {
390  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
391  (m_addr[3] & 0xF0) == 0x20;
392 }
393 
394 bool CNetAddr::IsHeNet() const
395 {
396  return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
397 }
398 
399 bool CNetAddr::IsLocal() const
400 {
401  // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
402  if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
403  return true;
404  }
405 
406  // IPv6 loopback (::1/128)
407  static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
408  if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
409  return true;
410  }
411 
412  return false;
413 }
414 
425 bool CNetAddr::IsValid() const
426 {
427  // unspecified IPv6 address (::/128)
428  unsigned char ipNone6[16] = {};
429  if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
430  return false;
431  }
432 
433  if (IsCJDNS() && !HasCJDNSPrefix()) {
434  return false;
435  }
436 
437  // documentation IPv6 address
438  if (IsRFC3849())
439  return false;
440 
441  if (IsInternal())
442  return false;
443 
444  if (IsIPv4()) {
445  const uint32_t addr = ReadBE32(m_addr.data());
446  if (addr == INADDR_ANY || addr == INADDR_NONE) {
447  return false;
448  }
449  }
450 
451  return true;
452 }
453 
464 {
465  return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || IsRFC4193() || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
466 }
467 
474 {
475  return m_net == NET_INTERNAL;
476 }
477 
479 {
480  switch (m_net) {
481  case NET_IPV4:
482  case NET_IPV6:
483  case NET_INTERNAL:
484  return true;
485  case NET_ONION:
486  case NET_I2P:
487  case NET_CJDNS:
488  return false;
489  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
490  case NET_MAX: // m_net is never and should not be set to NET_MAX
491  assert(false);
492  } // no default case, so the compiler can warn about missing cases
493 
494  assert(false);
495 }
496 
497 enum Network CNetAddr::GetNetwork() const
498 {
499  if (IsInternal())
500  return NET_INTERNAL;
501 
502  if (!IsRoutable())
503  return NET_UNROUTABLE;
504 
505  return m_net;
506 }
507 
508 static std::string IPv4ToString(Span<const uint8_t> a)
509 {
510  return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
511 }
512 
513 // Return an IPv6 address text representation with zero compression as described in RFC 5952
514 // ("A Recommendation for IPv6 Address Text Representation").
515 static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id)
516 {
517  assert(a.size() == ADDR_IPV6_SIZE);
518  const std::array groups{
519  ReadBE16(&a[0]),
520  ReadBE16(&a[2]),
521  ReadBE16(&a[4]),
522  ReadBE16(&a[6]),
523  ReadBE16(&a[8]),
524  ReadBE16(&a[10]),
525  ReadBE16(&a[12]),
526  ReadBE16(&a[14]),
527  };
528 
529  // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
530  // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
531  struct ZeroSpan {
532  size_t start_index{0};
533  size_t len{0};
534  };
535 
536  // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
537  // zero sequences of equal length are found.
538  ZeroSpan longest, current;
539  for (size_t i{0}; i < groups.size(); ++i) {
540  if (groups[i] != 0) {
541  current = {i + 1, 0};
542  continue;
543  }
544  current.len += 1;
545  if (current.len > longest.len) {
546  longest = current;
547  }
548  }
549 
550  std::string r;
551  r.reserve(39);
552  for (size_t i{0}; i < groups.size(); ++i) {
553  // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
554  if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
555  if (i == longest.start_index) {
556  r += "::";
557  }
558  continue;
559  }
560  r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
561  }
562 
563  if (scope_id != 0) {
564  r += strprintf("%%%u", scope_id);
565  }
566 
567  return r;
568 }
569 
571 {
572  uint8_t checksum[torv3::CHECKSUM_LEN];
573  torv3::Checksum(addr, checksum);
574  // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
575  prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
576  address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
577  address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
578  return EncodeBase32(address) + ".onion";
579 }
580 
581 std::string CNetAddr::ToStringAddr() const
582 {
583  switch (m_net) {
584  case NET_IPV4:
585  return IPv4ToString(m_addr);
586  case NET_IPV6:
587  return IPv6ToString(m_addr, m_scope_id);
588  case NET_ONION:
589  return OnionToString(m_addr);
590  case NET_I2P:
591  return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
592  case NET_CJDNS:
593  return IPv6ToString(m_addr, 0);
594  case NET_INTERNAL:
595  return EncodeBase32(m_addr) + ".internal";
596  case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
597  case NET_MAX: // m_net is never and should not be set to NET_MAX
598  assert(false);
599  } // no default case, so the compiler can warn about missing cases
600 
601  assert(false);
602 }
603 
604 bool operator==(const CNetAddr& a, const CNetAddr& b)
605 {
606  return a.m_net == b.m_net && a.m_addr == b.m_addr;
607 }
608 
609 bool operator<(const CNetAddr& a, const CNetAddr& b)
610 {
611  return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
612 }
613 
624 bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
625 {
626  if (!IsIPv4())
627  return false;
628  assert(sizeof(*pipv4Addr) == m_addr.size());
629  memcpy(pipv4Addr, m_addr.data(), m_addr.size());
630  return true;
631 }
632 
643 bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
644 {
645  if (!IsIPv6() && !IsCJDNS()) {
646  return false;
647  }
648  assert(sizeof(*pipv6Addr) == m_addr.size());
649  memcpy(pipv6Addr, m_addr.data(), m_addr.size());
650  return true;
651 }
652 
654 {
655  return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
656 }
657 
658 uint32_t CNetAddr::GetLinkedIPv4() const
659 {
660  if (IsIPv4()) {
661  return ReadBE32(m_addr.data());
662  } else if (IsRFC6052() || IsRFC6145()) {
663  // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
664  return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
665  } else if (IsRFC3964()) {
666  // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
667  return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
668  } else if (IsRFC4380()) {
669  // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
670  return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
671  }
672  assert(false);
673 }
674 
676 {
677  // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
678 
679  // Check for "internal" first because such addresses are also !IsRoutable()
680  // and we don't want to return NET_UNROUTABLE in that case.
681  if (IsInternal()) {
682  return NET_INTERNAL;
683  }
684  if (!IsRoutable()) {
685  return NET_UNROUTABLE;
686  }
687  if (HasLinkedIPv4()) {
688  return NET_IPV4;
689  }
690  return m_net;
691 }
692 
693 std::vector<unsigned char> CNetAddr::GetAddrBytes() const
694 {
695  if (IsAddrV1Compatible()) {
696  uint8_t serialized[V1_SERIALIZATION_SIZE];
697  SerializeV1Array(serialized);
698  return {std::begin(serialized), std::end(serialized)};
699  }
700  return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
701 }
702 
703 // private extensions to enum Network, only returned by GetExtNetwork,
704 // and only used in GetReachabilityFrom
705 static const int NET_TEREDO = NET_MAX;
706 int static GetExtNetwork(const CNetAddr& addr)
707 {
708  if (addr.IsRFC4380())
709  return NET_TEREDO;
710  return addr.GetNetwork();
711 }
712 
714 int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
715 {
716  enum Reachability {
717  REACH_UNREACHABLE,
718  REACH_DEFAULT,
719  REACH_TEREDO,
720  REACH_IPV6_WEAK,
721  REACH_IPV4,
722  REACH_IPV6_STRONG,
723  REACH_PRIVATE
724  };
725 
726  if (!IsRoutable() || IsInternal())
727  return REACH_UNREACHABLE;
728 
729  int ourNet = GetExtNetwork(*this);
730  int theirNet = GetExtNetwork(paddrPartner);
731  bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
732 
733  switch(theirNet) {
734  case NET_IPV4:
735  switch(ourNet) {
736  default: return REACH_DEFAULT;
737  case NET_IPV4: return REACH_IPV4;
738  }
739  case NET_IPV6:
740  switch(ourNet) {
741  default: return REACH_DEFAULT;
742  case NET_TEREDO: return REACH_TEREDO;
743  case NET_IPV4: return REACH_IPV4;
744  case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
745  }
746  case NET_ONION:
747  switch(ourNet) {
748  default: return REACH_DEFAULT;
749  case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
750  case NET_ONION: return REACH_PRIVATE;
751  }
752  case NET_I2P:
753  switch (ourNet) {
754  case NET_I2P: return REACH_PRIVATE;
755  default: return REACH_DEFAULT;
756  }
757  case NET_CJDNS:
758  switch (ourNet) {
759  case NET_CJDNS: return REACH_PRIVATE;
760  default: return REACH_DEFAULT;
761  }
762  case NET_TEREDO:
763  switch(ourNet) {
764  default: return REACH_DEFAULT;
765  case NET_TEREDO: return REACH_TEREDO;
766  case NET_IPV6: return REACH_IPV6_WEAK;
767  case NET_IPV4: return REACH_IPV4;
768  }
769  case NET_UNROUTABLE:
770  default:
771  switch(ourNet) {
772  default: return REACH_DEFAULT;
773  case NET_TEREDO: return REACH_TEREDO;
774  case NET_IPV6: return REACH_IPV6_WEAK;
775  case NET_IPV4: return REACH_IPV4;
776  case NET_ONION: return REACH_PRIVATE; // either from Tor, or don't care about our address
777  }
778  }
779 }
780 
782 {
783 }
784 
785 CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
786 {
787 }
788 
789 CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
790 {
791 }
792 
793 CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
794 {
795 }
796 
797 CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
798 {
799  assert(addr.sin_family == AF_INET);
800 }
801 
802 CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
803 {
804  assert(addr.sin6_family == AF_INET6);
805 }
806 
807 bool CService::SetSockAddr(const struct sockaddr *paddr)
808 {
809  switch (paddr->sa_family) {
810  case AF_INET:
811  *this = CService(*(const struct sockaddr_in*)paddr);
812  return true;
813  case AF_INET6:
814  *this = CService(*(const struct sockaddr_in6*)paddr);
815  return true;
816  default:
817  return false;
818  }
819 }
820 
821 sa_family_t CService::GetSAFamily() const
822 {
823  switch (m_net) {
824  case NET_IPV4:
825  return AF_INET;
826  case NET_IPV6:
827  case NET_CJDNS:
828  return AF_INET6;
829  default:
830  return AF_UNSPEC;
831  }
832 }
833 
834 uint16_t CService::GetPort() const
835 {
836  return port;
837 }
838 
839 bool operator==(const CService& a, const CService& b)
840 {
841  return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
842 }
843 
844 bool operator<(const CService& a, const CService& b)
845 {
846  return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
847 }
848 
861 bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
862 {
863  if (IsIPv4()) {
864  if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
865  return false;
866  *addrlen = sizeof(struct sockaddr_in);
867  struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
868  memset(paddrin, 0, *addrlen);
869  if (!GetInAddr(&paddrin->sin_addr))
870  return false;
871  paddrin->sin_family = AF_INET;
872  paddrin->sin_port = htons(port);
873  return true;
874  }
875  if (IsIPv6() || IsCJDNS()) {
876  if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
877  return false;
878  *addrlen = sizeof(struct sockaddr_in6);
879  struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
880  memset(paddrin6, 0, *addrlen);
881  if (!GetIn6Addr(&paddrin6->sin6_addr))
882  return false;
883  paddrin6->sin6_scope_id = m_scope_id;
884  paddrin6->sin6_family = AF_INET6;
885  paddrin6->sin6_port = htons(port);
886  return true;
887  }
888  return false;
889 }
890 
894 std::vector<unsigned char> CService::GetKey() const
895 {
896  auto key = GetAddrBytes();
897  key.push_back(port / 0x100); // most significant byte of our port
898  key.push_back(port & 0x0FF); // least significant byte of our port
899  return key;
900 }
901 
902 std::string CService::ToStringAddrPort() const
903 {
904  const auto port_str = strprintf("%u", port);
905 
906  if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
907  return ToStringAddr() + ":" + port_str;
908  } else {
909  return "[" + ToStringAddr() + "]:" + port_str;
910  }
911 }
912 
914  valid(false)
915 {
916  memset(netmask, 0, sizeof(netmask));
917 }
918 
919 CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
920 {
921  valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
922  (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
923  if (!valid) {
924  return;
925  }
926 
927  assert(mask <= sizeof(netmask) * 8);
928 
929  network = addr;
930 
931  uint8_t n = mask;
932  for (size_t i = 0; i < network.m_addr.size(); ++i) {
933  const uint8_t bits = n < 8 ? n : 8;
934  netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
935  network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
936  n -= bits;
937  }
938 }
939 
944 static inline int NetmaskBits(uint8_t x)
945 {
946  switch(x) {
947  case 0x00: return 0;
948  case 0x80: return 1;
949  case 0xc0: return 2;
950  case 0xe0: return 3;
951  case 0xf0: return 4;
952  case 0xf8: return 5;
953  case 0xfc: return 6;
954  case 0xfe: return 7;
955  case 0xff: return 8;
956  default: return -1;
957  }
958 }
959 
960 CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
961 {
962  valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
963  if (!valid) {
964  return;
965  }
966  // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
967  bool zeros_found = false;
968  for (auto b : mask.m_addr) {
969  const int num_bits = NetmaskBits(b);
970  if (num_bits == -1 || (zeros_found && num_bits != 0)) {
971  valid = false;
972  return;
973  }
974  if (num_bits < 8) {
975  zeros_found = true;
976  }
977  }
978 
979  assert(mask.m_addr.size() <= sizeof(netmask));
980 
981  memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
982 
983  network = addr;
984 
985  // Normalize network according to netmask
986  for (size_t x = 0; x < network.m_addr.size(); ++x) {
987  network.m_addr[x] &= netmask[x];
988  }
989 }
990 
992 {
993  switch (addr.m_net) {
994  case NET_IPV4:
995  case NET_IPV6:
996  valid = true;
997  assert(addr.m_addr.size() <= sizeof(netmask));
998  memset(netmask, 0xFF, addr.m_addr.size());
999  break;
1000  case NET_ONION:
1001  case NET_I2P:
1002  case NET_CJDNS:
1003  valid = true;
1004  break;
1005  case NET_INTERNAL:
1006  case NET_UNROUTABLE:
1007  case NET_MAX:
1008  return;
1009  }
1010 
1011  network = addr;
1012 }
1013 
1018 bool CSubNet::Match(const CNetAddr &addr) const
1019 {
1020  if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
1021  return false;
1022 
1023  switch (network.m_net) {
1024  case NET_IPV4:
1025  case NET_IPV6:
1026  break;
1027  case NET_ONION:
1028  case NET_I2P:
1029  case NET_CJDNS:
1030  case NET_INTERNAL:
1031  return addr == network;
1032  case NET_UNROUTABLE:
1033  case NET_MAX:
1034  return false;
1035  }
1036 
1037  assert(network.m_addr.size() == addr.m_addr.size());
1038  for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1039  if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1040  return false;
1041  }
1042  }
1043  return true;
1044 }
1045 
1046 std::string CSubNet::ToString() const
1047 {
1048  std::string suffix;
1049 
1050  switch (network.m_net) {
1051  case NET_IPV4:
1052  case NET_IPV6: {
1053  assert(network.m_addr.size() <= sizeof(netmask));
1054 
1055  uint8_t cidr = 0;
1056 
1057  for (size_t i = 0; i < network.m_addr.size(); ++i) {
1058  if (netmask[i] == 0x00) {
1059  break;
1060  }
1061  cidr += NetmaskBits(netmask[i]);
1062  }
1063 
1064  suffix = strprintf("/%u", cidr);
1065  break;
1066  }
1067  case NET_ONION:
1068  case NET_I2P:
1069  case NET_CJDNS:
1070  case NET_INTERNAL:
1071  case NET_UNROUTABLE:
1072  case NET_MAX:
1073  break;
1074  }
1075 
1076  return network.ToStringAddr() + suffix;
1077 }
1078 
1079 bool CSubNet::IsValid() const
1080 {
1081  return valid;
1082 }
1083 
1084 bool operator==(const CSubNet& a, const CSubNet& b)
1085 {
1086  return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1087 }
1088 
1089 bool operator<(const CSubNet& a, const CSubNet& b)
1090 {
1091  return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1092 }
if(!SetupNetworking())
Network address.
Definition: netaddress.h:112
Network GetNetClass() const
Definition: netaddress.cpp:675
void SerializeV1Array(uint8_t(&arr)[V1_SERIALIZATION_SIZE]) const
Serialize in pre-ADDRv2/BIP155 format to an array.
Definition: netaddress.h:324
std::string ToStringAddr() const
Definition: netaddress.cpp:581
prevector< ADDR_IPV6_SIZE, uint8_t > m_addr
Raw representation of the network address.
Definition: netaddress.h:118
bool IsBindAny() const
Definition: netaddress.cpp:304
bool IsRFC6052() const
Definition: netaddress.cpp:352
void SetIP(const CNetAddr &ip)
Definition: netaddress.cpp:103
bool SetSpecial(const std::string &addr)
Parse a Tor or I2P address and set this object to it.
Definition: netaddress.cpp:208
bool IsRFC7343() const
Definition: netaddress.cpp:388
bool GetIn6Addr(struct in6_addr *pipv6Addr) const
Try to get our IPv6 (or CJDNS) address.
Definition: netaddress.cpp:643
std::vector< unsigned char > GetAddrBytes() const
Definition: netaddress.cpp:693
bool IsCJDNS() const
Definition: netaddress.h:176
bool IsTor() const
Definition: netaddress.h:174
bool IsRoutable() const
Definition: netaddress.cpp:463
bool GetInAddr(struct in_addr *pipv4Addr) const
Try to get our IPv4 address.
Definition: netaddress.cpp:624
bool HasLinkedIPv4() const
Whether this address has a linked IPv4 address (see GetLinkedIPv4()).
Definition: netaddress.cpp:653
bool HasCJDNSPrefix() const
Definition: netaddress.h:177
Network m_net
Network to which this address belongs.
Definition: netaddress.h:123
bool IsRFC5737() const
Definition: netaddress.cpp:335
void SetLegacyIPv6(Span< const uint8_t > ipv6)
Set from a legacy IPv6 address.
Definition: netaddress.cpp:134
bool SetI2P(const std::string &addr)
Parse an I2P address and set this object to it.
Definition: netaddress.cpp:264
bool IsRFC6598() const
Definition: netaddress.cpp:330
bool IsRFC1918() const
Definition: netaddress.cpp:312
bool IsValid() const
Definition: netaddress.cpp:425
bool IsIPv4() const
Definition: netaddress.h:157
BIP155Network GetBIP155Network() const
Get the BIP155 network id of this address.
Definition: netaddress.cpp:23
uint32_t GetLinkedIPv4() const
For IPv4, mapped IPv4, SIIT translated IPv4, Teredo, 6to4 tunneled addresses, return the relevant IPv...
Definition: netaddress.cpp:658
bool SetTor(const std::string &addr)
Parse a Tor address and set this object to it.
Definition: netaddress.cpp:225
uint32_t m_scope_id
Scope id if scoped/link-local IPV6 address.
Definition: netaddress.h:129
bool IsRFC3849() const
Definition: netaddress.cpp:342
bool IsHeNet() const
Definition: netaddress.cpp:394
bool IsLocal() const
Definition: netaddress.cpp:399
static constexpr size_t V1_SERIALIZATION_SIZE
Size of CNetAddr when serialized as ADDRv1 (pre-BIP155) (in bytes).
Definition: netaddress.h:296
bool IsIPv6() const
Definition: netaddress.h:158
bool IsInternal() const
Definition: netaddress.cpp:473
bool SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
Set m_net from the provided BIP155 network id and size after validation.
Definition: netaddress.cpp:45
bool SetInternal(const std::string &name)
Create an "internal" address that represents a name or FQDN.
Definition: netaddress.cpp:169
bool IsRFC4193() const
Definition: netaddress.cpp:370
bool IsRFC2544() const
Definition: netaddress.cpp:320
enum Network GetNetwork() const
Definition: netaddress.cpp:497
bool IsRFC6145() const
Definition: netaddress.cpp:375
int GetReachabilityFrom(const CNetAddr &paddrPartner) const
Calculates a metric for how reachable (*this) is from a given partner.
Definition: netaddress.cpp:714
CNetAddr()
Construct an unspecified IPv6 network address (::/128).
bool IsRFC3964() const
Definition: netaddress.cpp:347
bool IsRFC4380() const
Definition: netaddress.cpp:359
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:478
BIP155Network
BIP155 network ids recognized by this software.
Definition: netaddress.h:263
bool IsRFC3927() const
Definition: netaddress.cpp:325
bool IsRFC4862() const
Definition: netaddress.cpp:364
bool IsRFC4843() const
Definition: netaddress.cpp:382
bool IsI2P() const
Definition: netaddress.h:175
A hasher class for SHA-256.
Definition: sha256.h:14
void Finalize(unsigned char hash[OUTPUT_SIZE])
Definition: sha256.cpp:728
CSHA256 & Write(const unsigned char *data, size_t len)
Definition: sha256.cpp:702
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
uint16_t GetPort() const
Definition: netaddress.cpp:834
bool SetSockAddr(const struct sockaddr *paddr)
Definition: netaddress.cpp:807
sa_family_t GetSAFamily() const
Get the address family.
Definition: netaddress.cpp:821
uint16_t port
Definition: netaddress.h:533
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const
Obtain the IPv4/6 socket address this represents.
Definition: netaddress.cpp:861
std::string ToStringAddrPort() const
Definition: netaddress.cpp:902
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:894
bool valid
Is this value valid? (only used to signal parse errors)
Definition: netaddress.h:487
CNetAddr network
Network (base) address.
Definition: netaddress.h:483
uint8_t netmask[16]
Netmask, in network byte order.
Definition: netaddress.h:485
std::string ToString() const
bool IsValid() const
CSubNet()
Construct an invalid subnet (empty, Match() always returns false).
Definition: netaddress.cpp:913
bool Match(const CNetAddr &addr) const
Definition: sha3.h:17
SHA3_256 & Write(Span< const unsigned char > data)
Definition: sha3.cpp:106
SHA3_256 & Finalize(Span< unsigned char > output)
Definition: sha3.cpp:136
static constexpr size_t OUTPUT_SIZE
Definition: sha3.h:33
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
constexpr std::size_t size() const noexcept
Definition: span.h:187
constexpr C * data() const noexcept
Definition: span.h:174
constexpr C * end() const noexcept
Definition: span.h:176
constexpr C * begin() const noexcept
Definition: span.h:175
Implements a drop-in replacement for std::vector<T> which stores up to N elements directly (without h...
Definition: prevector.h:37
size_type size() const
Definition: prevector.h:296
value_type * data()
Definition: prevector.h:532
iterator begin()
Definition: prevector.h:304
iterator end()
Definition: prevector.h:306
void assign(size_type n, const T &val)
Definition: prevector.h:225
static uint16_t ReadBE16(const unsigned char *ptr)
Definition: common.h:52
static uint32_t ReadBE32(const unsigned char *ptr)
Definition: common.h:59
@ I2P
Definition: logging.h:63
static const unsigned char VERSION[]
Definition: netaddress.cpp:184
static constexpr size_t CHECKSUM_LEN
Definition: netaddress.cpp:183
static void Checksum(Span< const uint8_t > addr_pubkey, uint8_t(&checksum)[CHECKSUM_LEN])
Definition: netaddress.cpp:187
static constexpr size_t TOTAL_LEN
Definition: netaddress.cpp:185
static const int NET_TEREDO
Definition: netaddress.cpp:705
static int NetmaskBits(uint8_t x)
Definition: netaddress.cpp:944
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:604
std::string OnionToString(Span< const uint8_t > addr)
Definition: netaddress.cpp:570
static std::string IPv6ToString(Span< const uint8_t > a, uint32_t scope_id)
Definition: netaddress.cpp:515
static std::string IPv4ToString(Span< const uint8_t > a)
Definition: netaddress.cpp:508
bool operator<(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:609
static int GetExtNetwork(const CNetAddr &addr)
Definition: netaddress.cpp:706
static constexpr size_t ADDR_CJDNS_SIZE
Size of CJDNS address (in bytes).
Definition: netaddress.h:98
static constexpr size_t ADDR_TORV3_SIZE
Size of TORv3 address (in bytes).
Definition: netaddress.h:92
static constexpr size_t ADDR_I2P_SIZE
Size of I2P address (in bytes).
Definition: netaddress.h:95
static constexpr size_t ADDR_INTERNAL_SIZE
Size of "internal" (NET_INTERNAL) address (in bytes).
Definition: netaddress.h:101
static const std::array< uint8_t, 6 > INTERNAL_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded "internal" address.
Definition: netaddress.h:76
static constexpr size_t ADDR_IPV4_SIZE
Size of IPv4 address (in bytes).
Definition: netaddress.h:85
static const std::array< uint8_t, 6 > TORV2_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded TORv2 address.
Definition: netaddress.h:68
Network
A network type.
Definition: netaddress.h:32
@ NET_I2P
I2P.
Definition: netaddress.h:46
@ NET_CJDNS
CJDNS.
Definition: netaddress.h:49
@ NET_MAX
Dummy value to indicate the number of NET_* constants.
Definition: netaddress.h:56
@ NET_ONION
TOR (v2 or v3)
Definition: netaddress.h:43
@ NET_IPV6
IPv6.
Definition: netaddress.h:40
@ NET_IPV4
IPv4.
Definition: netaddress.h:37
@ NET_UNROUTABLE
Addresses from these networks are not publicly routable on the global Internet.
Definition: netaddress.h:34
@ NET_INTERNAL
A set of addresses that represent the hash of a string or FQDN.
Definition: netaddress.h:53
static const std::array< uint8_t, 12 > IPV4_IN_IPV6_PREFIX
Prefix of an IPv6 address when it contains an embedded IPv4 address.
Definition: netaddress.h:61
static constexpr size_t ADDR_IPV6_SIZE
Size of IPv6 address (in bytes).
Definition: netaddress.h:88
@ IPV4
Definition: netbase.cpp:273
@ IPV6
Definition: netbase.cpp:275
const char * prefix
Definition: rest.cpp:1007
const char * name
Definition: rest.cpp:50
bool ContainsNoNUL(std::string_view str) noexcept
Check if a string does not contain any embedded NUL (\0) characters.
Definition: string.h:97
bool HasPrefix(const T1 &obj, const std::array< uint8_t, PREFIX_LEN > &prefix)
Check whether a container begins with the given prefix.
Definition: string.h:121
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1162
std::string EncodeBase32(Span< const unsigned char > input, bool pad)
Base32 encode.
std::string ToLower(std::string_view str)
Returns the lowercase equivalent of the given string.
std::optional< std::vector< unsigned char > > DecodeBase32(std::string_view str)
assert(!tx.IsCoinBase())