20 static constexpr uint64_t RNDC[24] = {
21 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
22 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
23 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
24 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
25 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
26 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
28 static constexpr int ROUNDS = 24;
30 for (
int round = 0; round < ROUNDS; ++round) {
31 uint64_t bc0, bc1, bc2, bc3, bc4,
t;
34 bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
35 bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
36 bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
37 bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
38 bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
39 t = bc4 ^
std::rotl(bc1, 1); st[0] ^=
t; st[5] ^=
t; st[10] ^=
t; st[15] ^=
t; st[20] ^=
t;
40 t = bc0 ^
std::rotl(bc2, 1); st[1] ^=
t; st[6] ^=
t; st[11] ^=
t; st[16] ^=
t; st[21] ^=
t;
41 t = bc1 ^
std::rotl(bc3, 1); st[2] ^=
t; st[7] ^=
t; st[12] ^=
t; st[17] ^=
t; st[22] ^=
t;
42 t = bc2 ^
std::rotl(bc4, 1); st[3] ^=
t; st[8] ^=
t; st[13] ^=
t; st[18] ^=
t; st[23] ^=
t;
43 t = bc3 ^
std::rotl(bc0, 1); st[4] ^=
t; st[9] ^=
t; st[14] ^=
t; st[19] ^=
t; st[24] ^=
t;
73 bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4];
74 st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round];
75 st[1] = bc1 ^ (~bc2 & bc3);
76 st[2] = bc2 ^ (~bc3 & bc4);
77 st[3] = bc3 ^ (~bc4 & bc0);
78 st[4] = bc4 ^ (~bc0 & bc1);
79 bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9];
80 st[5] = bc0 ^ (~bc1 & bc2);
81 st[6] = bc1 ^ (~bc2 & bc3);
82 st[7] = bc2 ^ (~bc3 & bc4);
83 st[8] = bc3 ^ (~bc4 & bc0);
84 st[9] = bc4 ^ (~bc0 & bc1);
85 bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14];
86 st[10] = bc0 ^ (~bc1 & bc2);
87 st[11] = bc1 ^ (~bc2 & bc3);
88 st[12] = bc2 ^ (~bc3 & bc4);
89 st[13] = bc3 ^ (~bc4 & bc0);
90 st[14] = bc4 ^ (~bc0 & bc1);
91 bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19];
92 st[15] = bc0 ^ (~bc1 & bc2);
93 st[16] = bc1 ^ (~bc2 & bc3);
94 st[17] = bc2 ^ (~bc3 & bc4);
95 st[18] = bc3 ^ (~bc4 & bc0);
96 st[19] = bc4 ^ (~bc0 & bc1);
97 bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24];
98 st[20] = bc0 ^ (~bc1 & bc2);
99 st[21] = bc1 ^ (~bc2 & bc3);
100 st[22] = bc2 ^ (~bc3 & bc4);
101 st[23] = bc3 ^ (~bc4 & bc0);
102 st[24] = bc4 ^ (~bc0 & bc1);
144 for (
unsigned i = 0; i < 4; ++i) {
unsigned char m_buffer[8]
static constexpr unsigned RATE_BUFFERS
Sponge rate expressed as a multiple of the buffer size.
SHA3_256 & Write(Span< const unsigned char > data)
SHA3_256 & Finalize(Span< unsigned char > output)
static constexpr size_t OUTPUT_SIZE
constexpr std::size_t size() const noexcept
constexpr C * data() const noexcept
uint64_t ReadLE64(const B *ptr)
void WriteLE64(B *ptr, uint64_t x)
void KeccakF(uint64_t(&st)[25])
The Keccak-f[1600] transform.
static SECP256K1_INLINE uint64_t rotl(const uint64_t x, int k)