Bitcoin Core 30.99.0
P2P Digital Currency
key.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-present The Bitcoin Core developers
2// Copyright (c) 2017 The Zcash developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <key.h>
7
8#include <crypto/common.h>
10#include <hash.h>
11#include <random.h>
12
13#include <secp256k1.h>
14#include <secp256k1_ellswift.h>
15#include <secp256k1_extrakeys.h>
16#include <secp256k1_musig.h>
17#include <secp256k1_recovery.h>
19
21
39int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
40 const unsigned char *end = seckey + seckeylen;
41 memset(out32, 0, 32);
42 /* sequence header */
43 if (end - seckey < 1 || *seckey != 0x30u) {
44 return 0;
45 }
46 seckey++;
47 /* sequence length constructor */
48 if (end - seckey < 1 || !(*seckey & 0x80u)) {
49 return 0;
50 }
51 ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
52 if (lenb < 1 || lenb > 2) {
53 return 0;
54 }
55 if (end - seckey < lenb) {
56 return 0;
57 }
58 /* sequence length */
59 ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
60 seckey += lenb;
61 if (end - seckey < len) {
62 return 0;
63 }
64 /* sequence element 0: version number (=1) */
65 if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
66 return 0;
67 }
68 seckey += 3;
69 /* sequence element 1: octet string, up to 32 bytes */
70 if (end - seckey < 2 || seckey[0] != 0x04u) {
71 return 0;
72 }
73 ptrdiff_t oslen = seckey[1];
74 seckey += 2;
75 if (oslen > 32 || end - seckey < oslen) {
76 return 0;
77 }
78 memcpy(out32 + (32 - oslen), seckey, oslen);
79 if (!secp256k1_ec_seckey_verify(ctx, out32)) {
80 memset(out32, 0, 32);
81 return 0;
82 }
83 return 1;
84}
85
96int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
97 assert(*seckeylen >= CKey::SIZE);
98 secp256k1_pubkey pubkey;
99 size_t pubkeylen = 0;
100 if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
101 *seckeylen = 0;
102 return 0;
103 }
104 if (compressed) {
105 static const unsigned char begin[] = {
106 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
107 };
108 static const unsigned char middle[] = {
109 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
110 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
111 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
112 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
113 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
114 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
115 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
116 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
117 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
118 };
119 unsigned char *ptr = seckey;
120 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
121 memcpy(ptr, key32, 32); ptr += 32;
122 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
123 pubkeylen = CPubKey::COMPRESSED_SIZE;
124 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
125 ptr += pubkeylen;
126 *seckeylen = ptr - seckey;
127 assert(*seckeylen == CKey::COMPRESSED_SIZE);
128 } else {
129 static const unsigned char begin[] = {
130 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
131 };
132 static const unsigned char middle[] = {
133 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
134 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
135 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
136 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
137 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
138 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
139 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
140 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
141 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
142 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
143 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
144 };
145 unsigned char *ptr = seckey;
146 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
147 memcpy(ptr, key32, 32); ptr += 32;
148 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
149 pubkeylen = CPubKey::SIZE;
150 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
151 ptr += pubkeylen;
152 *seckeylen = ptr - seckey;
153 assert(*seckeylen == CKey::SIZE);
154 }
155 return 1;
156}
157
158bool CKey::Check(const unsigned char *vch) {
160}
161
162void CKey::MakeNewKey(bool fCompressedIn) {
163 MakeKeyData();
164 do {
166 } while (!Check(keydata->data()));
167 fCompressed = fCompressedIn;
168}
169
172 CPrivKey seckey;
173 int ret;
174 size_t seckeylen;
175 seckey.resize(SIZE);
176 seckeylen = SIZE;
178 assert(ret);
179 seckey.resize(seckeylen);
180 return seckey;
181}
182
185 secp256k1_pubkey pubkey;
186 size_t clen = CPubKey::SIZE;
187 CPubKey result;
189 assert(ret);
191 assert(result.size() == clen);
192 assert(result.IsValid());
193 return result;
194}
195
196// Check that the sig has a low R value and will be less than 71 bytes
198{
199 unsigned char compact_sig[64];
201
202 // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
203 // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
204 // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
205 // our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
206 return compact_sig[0] < 0x80;
207}
208
209bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
210 if (!keydata)
211 return false;
212 vchSig.resize(CPubKey::SIGNATURE_SIZE);
213 size_t nSigLen = CPubKey::SIGNATURE_SIZE;
214 unsigned char extra_entropy[32] = {0};
215 WriteLE32(extra_entropy, test_case);
217 uint32_t counter = 0;
218 int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
219
220 // Grind for low R
221 while (ret && !SigHasLowR(&sig) && grind) {
222 WriteLE32(extra_entropy, ++counter);
224 }
225 assert(ret);
227 vchSig.resize(nSigLen);
228 // Additional verification step to prevent using a potentially corrupted signature
231 assert(ret);
233 assert(ret);
234 return true;
235}
236
237bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
238 if (pubkey.IsCompressed() != fCompressed) {
239 return false;
240 }
241 unsigned char rnd[8];
242 std::string str = "Bitcoin key verification\n";
243 GetRandBytes(rnd);
244 uint256 hash{Hash(str, rnd)};
245 std::vector<unsigned char> vchSig;
246 Sign(hash, vchSig);
247 return pubkey.Verify(hash, vchSig);
248}
249
250bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
251 if (!keydata)
252 return false;
253 vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
254 int rec = -1;
257 assert(ret);
259 assert(ret);
260 assert(rec != -1);
261 vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
262 // Additional verification step to prevent using a potentially corrupted signature
263 secp256k1_pubkey epk, rpk;
265 assert(ret);
267 assert(ret);
269 assert(ret == 0);
270 return true;
271}
272
273bool CKey::SignSchnorr(const uint256& hash, std::span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const
274{
275 KeyPair kp = ComputeKeyPair(merkle_root);
276 return kp.SignSchnorr(hash, sig, aux);
277}
278
279bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
280 MakeKeyData();
281 if (!ec_seckey_import_der(secp256k1_context_static, (unsigned char*)begin(), seckey.data(), seckey.size())) {
282 ClearKeyData();
283 return false;
284 }
285 fCompressed = vchPubKey.IsCompressed();
286
287 if (fSkipCheck)
288 return true;
289
290 return VerifyPubKey(vchPubKey);
291}
292
293bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
294 assert(IsValid());
296 std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
297 if ((nChild >> 31) == 0) {
298 CPubKey pubkey = GetPubKey();
300 BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
301 } else {
302 assert(size() == 32);
303 BIP32Hash(cc, nChild, 0, UCharCast(begin()), vout.data());
304 }
305 memcpy(ccChild.begin(), vout.data()+32, 32);
306 keyChild.Set(begin(), begin() + 32, true);
307 bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_static, (unsigned char*)keyChild.begin(), vout.data());
308 if (!ret) keyChild.ClearKeyData();
309 return ret;
310}
311
312EllSwiftPubKey CKey::EllSwiftCreate(std::span<const std::byte> ent32) const
313{
315 assert(ent32.size() == 32);
316 std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
317
319 UCharCast(encoded_pubkey.data()),
320 keydata->data(),
321 UCharCast(ent32.data()));
322
323 // Should always succeed for valid keys (asserted above).
324 assert(success);
325 return {encoded_pubkey};
326}
327
328ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
329{
331
332 ECDHSecret output;
333 // BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
334 // accordingly:
336 UCharCast(output.data()),
337 UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
338 UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
339 keydata->data(),
340 initiating ? 0 : 1,
342 nullptr);
343 // Should always succeed for valid keys (assert above).
344 assert(success);
345 return output;
346}
347
348KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const
349{
350 return KeyPair(*this, merkle_root);
351}
352
353std::vector<uint8_t> CKey::CreateMuSig2Nonce(MuSig2SecNonce& secnonce, const uint256& sighash, const CPubKey& aggregate_pubkey, const std::vector<CPubKey>& pubkeys)
354{
355 // Get the keyagg cache and aggregate pubkey
356 secp256k1_musig_keyagg_cache keyagg_cache;
357 if (!MuSig2AggregatePubkeys(pubkeys, keyagg_cache, aggregate_pubkey)) return {};
358
359 // Parse participant pubkey
360 CPubKey our_pubkey = GetPubKey();
361 secp256k1_pubkey pubkey;
362 if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &pubkey, our_pubkey.data(), our_pubkey.size())) {
363 return {};
364 }
365
366 // Generate randomness for nonce
367 uint256 rand;
368 GetStrongRandBytes(rand);
369
370 // Generate nonce
372 if (!secp256k1_musig_nonce_gen(secp256k1_context_sign, secnonce.Get(), &pubnonce, rand.data(), UCharCast(begin()), &pubkey, sighash.data(), &keyagg_cache, nullptr)) {
373 return {};
374 }
375
376 // Serialize pubnonce
377 std::vector<uint8_t> out;
380 return {};
381 }
382
383 return out;
384}
385
386std::optional<uint256> CKey::CreateMuSig2PartialSig(const uint256& sighash, const CPubKey& aggregate_pubkey, const std::vector<CPubKey>& pubkeys, const std::map<CPubKey, std::vector<uint8_t>>& pubnonces, MuSig2SecNonce& secnonce, const std::vector<std::pair<uint256, bool>>& tweaks)
387{
388 secp256k1_keypair keypair;
389 if (!secp256k1_keypair_create(secp256k1_context_sign, &keypair, UCharCast(begin()))) return std::nullopt;
390
391 // Get the keyagg cache and aggregate pubkey
392 secp256k1_musig_keyagg_cache keyagg_cache;
393 if (!MuSig2AggregatePubkeys(pubkeys, keyagg_cache, aggregate_pubkey)) return std::nullopt;
394
395 // Check that there are enough pubnonces
396 if (pubnonces.size() != pubkeys.size()) return std::nullopt;
397
398 // Parse the pubnonces
399 std::vector<std::pair<secp256k1_pubkey, secp256k1_musig_pubnonce>> signers_data;
400 std::vector<const secp256k1_musig_pubnonce*> pubnonce_ptrs;
401 std::optional<size_t> our_pubkey_idx;
402 CPubKey our_pubkey = GetPubKey();
403 for (const CPubKey& part_pk : pubkeys) {
404 const auto& pn_it = pubnonces.find(part_pk);
405 if (pn_it == pubnonces.end()) return std::nullopt;
406 const std::vector<uint8_t> pubnonce = pn_it->second;
407 if (pubnonce.size() != MUSIG2_PUBNONCE_SIZE) return std::nullopt;
408 if (part_pk == our_pubkey) {
409 our_pubkey_idx = signers_data.size();
410 }
411
412 auto& [secp_pk, secp_pn] = signers_data.emplace_back();
413
414 if (!secp256k1_ec_pubkey_parse(secp256k1_context_static, &secp_pk, part_pk.data(), part_pk.size())) {
415 return std::nullopt;
416 }
417
418 if (!secp256k1_musig_pubnonce_parse(secp256k1_context_static, &secp_pn, pubnonce.data())) {
419 return std::nullopt;
420 }
421 }
422 if (our_pubkey_idx == std::nullopt) {
423 return std::nullopt;
424 }
425 pubnonce_ptrs.reserve(signers_data.size());
426 for (auto& [_, pn] : signers_data) {
427 pubnonce_ptrs.push_back(&pn);
428 }
429
430 // Aggregate nonces
432 if (!secp256k1_musig_nonce_agg(secp256k1_context_static, &aggnonce, pubnonce_ptrs.data(), pubnonce_ptrs.size())) {
433 return std::nullopt;
434 }
435
436 // Apply tweaks
437 for (const auto& [tweak, xonly] : tweaks) {
438 if (xonly) {
439 if (!secp256k1_musig_pubkey_xonly_tweak_add(secp256k1_context_static, nullptr, &keyagg_cache, tweak.data())) {
440 return std::nullopt;
441 }
442 } else if (!secp256k1_musig_pubkey_ec_tweak_add(secp256k1_context_static, nullptr, &keyagg_cache, tweak.data())) {
443 return std::nullopt;
444 }
445 }
446
447 // Create musig_session
449 if (!secp256k1_musig_nonce_process(secp256k1_context_static, &session, &aggnonce, sighash.data(), &keyagg_cache)) {
450 return std::nullopt;
451 }
452
453 // Create partial signature
455 if (!secp256k1_musig_partial_sign(secp256k1_context_static, &psig, secnonce.Get(), &keypair, &keyagg_cache, &session)) {
456 return std::nullopt;
457 }
458 // The secnonce must be deleted after signing to prevent nonce reuse.
459 secnonce.Invalidate();
460
461 // Verify partial signature
462 if (!secp256k1_musig_partial_sig_verify(secp256k1_context_static, &psig, &(signers_data.at(*our_pubkey_idx).second), &(signers_data.at(*our_pubkey_idx).first), &keyagg_cache, &session)) {
463 return std::nullopt;
464 }
465
466 // Serialize
467 uint256 sig;
469 return std::nullopt;
470 }
471
472 return sig;
473}
474
475CKey GenerateRandomKey(bool compressed) noexcept
476{
477 CKey key;
478 key.MakeNewKey(/*fCompressed=*/compressed);
479 return key;
480}
481
482bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
483 if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
484 out.nDepth = nDepth + 1;
485 CKeyID id = key.GetPubKey().GetID();
486 memcpy(out.vchFingerprint, &id, 4);
487 out.nChild = _nChild;
488 return key.Derive(out.key, out.chaincode, _nChild, chaincode);
489}
490
491void CExtKey::SetSeed(std::span<const std::byte> seed)
492{
493 static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
494 std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
495 CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(UCharCast(seed.data()), seed.size()).Finalize(vout.data());
496 key.Set(vout.data(), vout.data() + 32, true);
497 memcpy(chaincode.begin(), vout.data() + 32, 32);
498 nDepth = 0;
499 nChild = 0;
500 memset(vchFingerprint, 0, sizeof(vchFingerprint));
501}
502
505 ret.nDepth = nDepth;
506 memcpy(ret.vchFingerprint, vchFingerprint, 4);
507 ret.nChild = nChild;
508 ret.pubkey = key.GetPubKey();
509 ret.chaincode = chaincode;
510 return ret;
511}
512
513void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
514 code[0] = nDepth;
515 memcpy(code+1, vchFingerprint, 4);
516 WriteBE32(code+5, nChild);
517 memcpy(code+9, chaincode.begin(), 32);
518 code[41] = 0;
519 assert(key.size() == 32);
520 memcpy(code+42, key.begin(), 32);
521}
522
523void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
524 nDepth = code[0];
525 memcpy(vchFingerprint, code+1, 4);
526 nChild = ReadBE32(code+5);
527 memcpy(chaincode.begin(), code+9, 32);
528 key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
529 if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
530}
531
532KeyPair::KeyPair(const CKey& key, const uint256* merkle_root)
533{
534 static_assert(std::tuple_size<KeyType>() == sizeof(secp256k1_keypair));
536 auto keypair = reinterpret_cast<secp256k1_keypair*>(m_keypair->data());
537 bool success = secp256k1_keypair_create(secp256k1_context_sign, keypair, UCharCast(key.data()));
538 if (success && merkle_root) {
540 unsigned char pubkey_bytes[32];
543 uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
545 }
546 if (!success) ClearKeyPairData();
547}
548
549bool KeyPair::SignSchnorr(const uint256& hash, std::span<unsigned char> sig, const uint256& aux) const
550{
551 assert(sig.size() == 64);
552 if (!IsValid()) return false;
553 auto keypair = reinterpret_cast<const secp256k1_keypair*>(m_keypair->data());
554 bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), keypair, aux.data());
555 if (ret) {
556 // Additional verification step to prevent using a potentially corrupted signature
557 secp256k1_xonly_pubkey pubkey_verify;
558 ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, keypair);
559 ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
560 }
561 if (!ret) memory_cleanse(sig.data(), sig.size());
562 return ret;
563}
564
566 CKey key = GenerateRandomKey();
567 CPubKey pubkey = key.GetPubKey();
568 return key.VerifyPubKey(pubkey);
569}
570
572static void ECC_Start() {
573 assert(secp256k1_context_sign == nullptr);
574
576 assert(ctx != nullptr);
577
578 {
579 // Pass in a random blinding seed to the secp256k1 context.
580 std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
581 GetRandBytes(vseed);
582 bool ret = secp256k1_context_randomize(ctx, vseed.data());
583 assert(ret);
584 }
585
587}
588
590static void ECC_Stop() {
592 secp256k1_context_sign = nullptr;
593
594 if (ctx) {
596 }
597}
598
600{
601 ECC_Start();
602}
603
605{
606 ECC_Stop();
607}
int ret
A hasher class for HMAC-SHA-512.
Definition: hmac_sha512.h:14
CHMAC_SHA512 & Write(const unsigned char *data, size_t len)
Definition: hmac_sha512.h:23
An encapsulated private key.
Definition: key.h:36
KeyPair ComputeKeyPair(const uint256 *merkle_root) const
Compute a KeyPair.
Definition: key.cpp:348
static const unsigned int SIZE
secp256k1:
Definition: key.h:41
void MakeKeyData()
Definition: key.h:64
bool SignSchnorr(const uint256 &hash, std::span< unsigned char > sig, const uint256 *merkle_root, const uint256 &aux) const
Create a BIP-340 Schnorr signature, for the xonly-pubkey corresponding to *this, optionally tweaked b...
Definition: key.cpp:273
void ClearKeyData()
Definition: key.h:69
unsigned int size() const
Simple read-only vector-like interface.
Definition: key.h:118
bool IsValid() const
Check whether this private key is valid.
Definition: key.h:124
bool Sign(const uint256 &hash, std::vector< unsigned char > &vchSig, bool grind=true, uint32_t test_case=0) const
Create a DER-serialized signature.
Definition: key.cpp:209
const std::byte * begin() const
Definition: key.h:120
ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey &their_ellswift, const EllSwiftPubKey &our_ellswift, bool initiating) const
Compute a BIP324-style ECDH shared secret.
Definition: key.cpp:328
CPrivKey GetPrivKey() const
Convert the private key to a CPrivKey (serialized OpenSSL private key data).
Definition: key.cpp:170
static const unsigned int COMPRESSED_SIZE
Definition: key.h:42
std::optional< uint256 > CreateMuSig2PartialSig(const uint256 &hash, const CPubKey &aggregate_pubkey, const std::vector< CPubKey > &pubkeys, const std::map< CPubKey, std::vector< uint8_t > > &pubnonces, MuSig2SecNonce &secnonce, const std::vector< std::pair< uint256, bool > > &tweaks)
Definition: key.cpp:386
bool IsCompressed() const
Check whether the public key corresponding to this private key is (to be) compressed.
Definition: key.h:127
void MakeNewKey(bool fCompressed)
Generate a new private key using a cryptographic PRNG.
Definition: key.cpp:162
bool fCompressed
Whether the public key corresponding to this private key is (to be) compressed.
Definition: key.h:56
EllSwiftPubKey EllSwiftCreate(std::span< const std::byte > entropy) const
Create an ellswift-encoded public key for this key, with specified entropy.
Definition: key.cpp:312
CPubKey GetPubKey() const
Compute the public key from a private key.
Definition: key.cpp:183
std::vector< uint8_t > CreateMuSig2Nonce(MuSig2SecNonce &secnonce, const uint256 &sighash, const CPubKey &aggregate_pubkey, const std::vector< CPubKey > &pubkeys)
Definition: key.cpp:353
void Set(const T pbegin, const T pend, bool fCompressedIn)
Initialize using begin and end iterators to byte data.
Definition: key.h:104
bool VerifyPubKey(const CPubKey &vchPubKey) const
Verify thoroughly whether a private key and a public key match.
Definition: key.cpp:237
bool Load(const CPrivKey &privkey, const CPubKey &vchPubKey, bool fSkipCheck)
Load private key and check that public key matches.
Definition: key.cpp:279
static bool Check(const unsigned char *vch)
Check whether the 32-byte array pointed to by vch is valid keydata.
Definition: key.cpp:158
bool Derive(CKey &keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode &cc) const
Derive BIP32 child key.
Definition: key.cpp:293
secure_unique_ptr< KeyType > keydata
The actual byte data. nullptr for invalid keys.
Definition: key.h:59
bool SignCompact(const uint256 &hash, std::vector< unsigned char > &vchSig) const
Create a compact signature (65 bytes), which allows reconstructing the used public key.
Definition: key.cpp:250
const std::byte * data() const
Definition: key.h:119
A reference to a CKey: the Hash160 of its serialized public key.
Definition: pubkey.h:24
An encapsulated public key.
Definition: pubkey.h:34
const unsigned char * data() const
Definition: pubkey.h:113
bool IsCompressed() const
Check whether this is a compressed public key.
Definition: pubkey.h:204
CKeyID GetID() const
Get the KeyID of this public key (hash of its serialization)
Definition: pubkey.h:164
static constexpr unsigned int COMPRESSED_SIZE
Definition: pubkey.h:40
bool IsValid() const
Definition: pubkey.h:189
bool Verify(const uint256 &hash, const std::vector< unsigned char > &vchSig) const
Verify a DER signature (~72 bytes).
Definition: pubkey.cpp:283
static constexpr unsigned int SIZE
secp256k1:
Definition: pubkey.h:39
unsigned int size() const
Simple read-only vector-like interface to the pubkey data.
Definition: pubkey.h:112
const unsigned char * begin() const
Definition: pubkey.h:114
static constexpr unsigned int SIGNATURE_SIZE
Definition: pubkey.h:41
static constexpr unsigned int COMPACT_SIGNATURE_SIZE
Definition: pubkey.h:42
ECC_Context()
Definition: key.cpp:599
~ECC_Context()
Definition: key.cpp:604
KeyPair.
Definition: key.h:272
KeyPair() noexcept=default
bool SignSchnorr(const uint256 &hash, std::span< unsigned char > sig, const uint256 &aux) const
Definition: key.cpp:549
void MakeKeyPairData()
Definition: key.h:304
bool IsValid() const
Check whether this keypair is valid.
Definition: key.h:296
secure_unique_ptr< KeyType > m_keypair
Definition: key.h:302
void ClearKeyPairData()
Definition: key.h:309
MuSig2SecNonce encapsulates a secret nonce in use in a MuSig2 signing session.
Definition: musig.h:49
void Invalidate()
Definition: musig.cpp:105
secp256k1_musig_secnonce * Get() const
Definition: musig.cpp:100
uint256 ComputeTapTweakHash(const uint256 *merkle_root) const
Compute the Taproot tweak as specified in BIP341, with *this as internal key:
Definition: pubkey.cpp:246
constexpr bool IsNull() const
Definition: uint256.h:48
constexpr unsigned char * begin()
Definition: uint256.h:101
constexpr const unsigned char * data() const
Definition: uint256.h:98
256-bit opaque blob.
Definition: uint256.h:196
void memory_cleanse(void *ptr, size_t len)
Secure overwrite a buffer (possibly containing secret data) with zero-bytes.
Definition: cleanse.cpp:14
void WriteLE32(B *ptr, uint32_t x)
Definition: common.h:50
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
void WriteBE32(B *ptr, uint32_t x)
Definition: common.h:95
uint32_t ReadBE32(const B *ptr)
Definition: common.h:72
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
Definition: hash.cpp:71
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
static void ECC_Start()
Initialize the elliptic curve support.
Definition: key.cpp:572
int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed)
This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1 https://www....
Definition: key.cpp:96
static void ECC_Stop()
Deinitialize the elliptic curve support.
Definition: key.cpp:590
static secp256k1_context * secp256k1_context_sign
Definition: key.cpp:20
bool SigHasLowR(const secp256k1_ecdsa_signature *sig)
Definition: key.cpp:197
int ec_seckey_import_der(const secp256k1_context *ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen)
These functions are taken from the libsecp256k1 distribution and are very ugly.
Definition: key.cpp:39
bool ECC_InitSanityCheck()
Check that required EC support is available at runtime.
Definition: key.cpp:565
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:475
std::vector< unsigned char, secure_allocator< unsigned char > > CPrivKey
CPrivKey is a serialized private key, with all parameters included (SIZE bytes)
Definition: key.h:24
std::array< std::byte, ECDH_SECRET_SIZE > ECDHSecret
Definition: key.h:30
static int tweak(const secp256k1_context *ctx, secp256k1_xonly_pubkey *agg_pk, secp256k1_musig_keyagg_cache *cache)
Definition: musig.c:64
std::optional< CPubKey > MuSig2AggregatePubkeys(const std::vector< CPubKey > &pubkeys, secp256k1_musig_keyagg_cache &keyagg_cache, const std::optional< CPubKey > &expected_aggregate)
Compute the full aggregate pubkey from the given participant pubkeys in their current order.
Definition: musig.cpp:47
constexpr size_t MUSIG2_PUBNONCE_SIZE
Definition: musig.h:26
const unsigned int BIP32_EXTKEY_SIZE
Definition: pubkey.h:19
void GetStrongRandBytes(std::span< unsigned char > bytes) noexcept
Gather entropy from various sources, feed it into the internal PRNG, and generate random data using i...
Definition: random.cpp:607
void GetRandBytes(std::span< unsigned char > bytes) noexcept
Generate random data via the internal PRNG.
Definition: random.cpp:601
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:187
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Randomizes the context to provide enhanced protection against side-channel leakage.
Definition: secp256k1.c:747
SECP256K1_API int secp256k1_ec_pubkey_serialize(const secp256k1_context *ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey *pubkey, unsigned int flags) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize a pubkey object into a serialized byte sequence.
Definition: secp256k1.c:268
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(const secp256k1_context *ctx, const secp256k1_pubkey *pubkey1, const secp256k1_pubkey *pubkey2) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compare two public keys using lexicographic (of compressed serialization) order.
Definition: secp256k1.c:291
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(const secp256k1_context *ctx, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2)
Verify an elliptic curve secret key.
Definition: secp256k1.c:580
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:141
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:566
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *input, size_t inputlen) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Parse a variable-length public key into the pubkey object.
Definition: secp256k1.c:250
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:214
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute the public key for a secret key.
Definition: secp256k1.c:604
#define SECP256K1_EC_COMPRESSED
Flag to pass to secp256k1_ec_pubkey_serialize.
Definition: secp256k1.h:224
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:450
SECP256K1_API const secp256k1_context *const secp256k1_context_static
A built-in constant secp256k1 context object with static storage duration, to be used in conjunction ...
Definition: secp256k1.h:245
#define SECP256K1_EC_UNCOMPRESSED
Definition: secp256k1.h:225
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_rfc6979
An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
Definition: secp256k1.h:638
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context *ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize an ECDSA signature in DER format.
Definition: secp256k1.c:406
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(const secp256k1_context *ctx, unsigned char *seckey, const unsigned char *tweak32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Tweak a secret key by adding tweak to it.
Definition: secp256k1.c:664
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context *ctx, unsigned char *output64, const secp256k1_ecdsa_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize an ECDSA signature in compact (64 byte) format.
Definition: secp256k1.c:418
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute an ElligatorSwift public key for a secret key.
Definition: main_impl.h:450
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7)
Given a private key, and ElligatorSwift public keys sent in both directions, compute a shared secret ...
Definition: main_impl.h:551
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324
An implementation of an secp256k1_ellswift_xdh_hash_function compatible with BIP324.
SECP256K1_API int secp256k1_xonly_pubkey_serialize(const secp256k1_context *ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize an xonly_pubkey object into a 32-byte sequence.
Definition: main_impl.h:44
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(const secp256k1_context *ctx, secp256k1_keypair *keypair, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute the keypair for a valid secret key.
Definition: main_impl.h:196
SECP256K1_API int secp256k1_keypair_xonly_pub(const secp256k1_context *ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4)
Get the x-only public key from a keypair.
Definition: main_impl.h:234
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(const secp256k1_context *ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Tweak a keypair by adding tweak32 to the secret key and updating the public key accordingly.
Definition: main_impl.h:255
struct secp256k1_keypair secp256k1_keypair
Opaque data structure that holds a keypair consisting of a secret and a public key.
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubkey_ec_tweak_add(const secp256k1_context *ctx, secp256k1_pubkey *output_pubkey, secp256k1_musig_keyagg_cache *keyagg_cache, const unsigned char *tweak32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Apply plain "EC" tweaking to a public key in a given keyagg_cache by adding the generator multiplied ...
Definition: keyagg_impl.h:283
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubkey_xonly_tweak_add(const secp256k1_context *ctx, secp256k1_pubkey *output_pubkey, secp256k1_musig_keyagg_cache *keyagg_cache, const unsigned char *tweak32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Apply x-only tweaking to a public key in a given keyagg_cache by adding the generator multiplied with...
Definition: keyagg_impl.h:287
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_pubnonce_parse(const secp256k1_context *ctx, secp256k1_musig_pubnonce *nonce, const unsigned char *in66) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Parse a signer's public nonce.
Definition: session_impl.h:194
SECP256K1_API int secp256k1_musig_nonce_agg(const secp256k1_context *ctx, secp256k1_musig_aggnonce *aggnonce, const secp256k1_musig_pubnonce *const *pubnonces, size_t n_pubnonces) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Aggregates the nonces of all signers into a single nonce.
Definition: session_impl.h:544
SECP256K1_API int secp256k1_musig_partial_sign(const secp256k1_context *ctx, secp256k1_musig_partial_sig *partial_sig, secp256k1_musig_secnonce *secnonce, const secp256k1_keypair *keypair, const secp256k1_musig_keyagg_cache *keyagg_cache, const secp256k1_musig_session *session) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6)
Produces a partial signature.
Definition: session_impl.h:666
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_nonce_gen(const secp256k1_context *ctx, secp256k1_musig_secnonce *secnonce, secp256k1_musig_pubnonce *pubnonce, unsigned char *session_secrand32, const unsigned char *seckey, const secp256k1_pubkey *pubkey, const unsigned char *msg32, const secp256k1_musig_keyagg_cache *keyagg_cache, const unsigned char *extra_input32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(6)
Starts a signing session by generating a nonce.
Definition: session_impl.h:469
SECP256K1_API int secp256k1_musig_partial_sig_serialize(const secp256k1_context *ctx, unsigned char *out32, const secp256k1_musig_partial_sig *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize a MuSig partial signature.
Definition: session_impl.h:294
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_partial_sig_verify(const secp256k1_context *ctx, const secp256k1_musig_partial_sig *partial_sig, const secp256k1_musig_pubnonce *pubnonce, const secp256k1_pubkey *pubkey, const secp256k1_musig_keyagg_cache *keyagg_cache, const secp256k1_musig_session *session) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6)
Verifies an individual signer's partial signature.
Definition: session_impl.h:736
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_musig_nonce_process(const secp256k1_context *ctx, secp256k1_musig_session *session, const secp256k1_musig_aggnonce *aggnonce, const unsigned char *msg32, const secp256k1_musig_keyagg_cache *keyagg_cache) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5)
Takes the aggregate nonce and creates a session that is required for signing and verification of part...
Definition: session_impl.h:620
SECP256K1_API int secp256k1_musig_pubnonce_serialize(const secp256k1_context *ctx, unsigned char *out66, const secp256k1_musig_pubnonce *nonce) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize a signer's public nonce.
Definition: session_impl.h:214
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context *ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize an ECDSA signature in compact format (64 bytes + recovery id).
Definition: main_impl.h:60
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(const secp256k1_context *ctx, secp256k1_ecdsa_recoverable_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create a recoverable ECDSA signature.
Definition: main_impl.h:123
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *sig, const unsigned char *msghash32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Recover an ECDSA public key from a signature.
Definition: main_impl.h:137
SECP256K1_API int secp256k1_schnorrsig_sign32(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create a Schnorr signature.
Definition: main_impl.h:200
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(const secp256k1_context *ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5)
Verify a Schnorr signature.
Definition: main_impl.h:224
unsigned char * UCharCast(char *c)
Definition: span.h:95
Definition: key.h:231
unsigned char vchFingerprint[4]
Definition: key.h:233
CExtPubKey Neuter() const
Definition: key.cpp:503
bool Derive(CExtKey &out, unsigned int nChild) const
Definition: key.cpp:482
void Decode(const unsigned char code[BIP32_EXTKEY_SIZE])
Definition: key.cpp:523
CKey key
Definition: key.h:236
void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const
Definition: key.cpp:513
unsigned char nDepth
Definition: key.h:232
ChainCode chaincode
Definition: key.h:235
unsigned int nChild
Definition: key.h:234
void SetSeed(std::span< const std::byte > seed)
Definition: key.cpp:491
An ElligatorSwift-encoded public key.
Definition: pubkey.h:314
static constexpr size_t size()
Definition: pubkey.h:331
const std::byte * data() const
Definition: pubkey.h:330
Opaque data structure that holds a parsed ECDSA signature, supporting pubkey recovery.
Opaque data structure that holds a parsed ECDSA signature.
Definition: secp256k1.h:74
Opaque data structure that holds a keypair consisting of a secret and a public key.
Opaque data structure that holds an aggregate public nonce.
unsigned char data[132]
This module implements BIP 327 "MuSig2 for BIP340-compatible Multi-Signatures" (https://github....
Opaque data structure that holds a partial MuSig signature.
Opaque data structure that holds a signer's public nonce.
Opaque data structure that holds a MuSig session.
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:61
Opaque data structure that holds a parsed and valid "x-only" public key.
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
assert(!tx.IsCoinBase())