Bitcoin Core 28.99.0
P2P Digital Currency
key.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2022 The Bitcoin Core developers
2// Copyright (c) 2017 The Zcash developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <key.h>
7
8#include <crypto/common.h>
10#include <hash.h>
11#include <random.h>
12
13#include <secp256k1.h>
14#include <secp256k1_ellswift.h>
15#include <secp256k1_extrakeys.h>
16#include <secp256k1_recovery.h>
18
20
38int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
39 const unsigned char *end = seckey + seckeylen;
40 memset(out32, 0, 32);
41 /* sequence header */
42 if (end - seckey < 1 || *seckey != 0x30u) {
43 return 0;
44 }
45 seckey++;
46 /* sequence length constructor */
47 if (end - seckey < 1 || !(*seckey & 0x80u)) {
48 return 0;
49 }
50 ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
51 if (lenb < 1 || lenb > 2) {
52 return 0;
53 }
54 if (end - seckey < lenb) {
55 return 0;
56 }
57 /* sequence length */
58 ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
59 seckey += lenb;
60 if (end - seckey < len) {
61 return 0;
62 }
63 /* sequence element 0: version number (=1) */
64 if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
65 return 0;
66 }
67 seckey += 3;
68 /* sequence element 1: octet string, up to 32 bytes */
69 if (end - seckey < 2 || seckey[0] != 0x04u) {
70 return 0;
71 }
72 ptrdiff_t oslen = seckey[1];
73 seckey += 2;
74 if (oslen > 32 || end - seckey < oslen) {
75 return 0;
76 }
77 memcpy(out32 + (32 - oslen), seckey, oslen);
78 if (!secp256k1_ec_seckey_verify(ctx, out32)) {
79 memset(out32, 0, 32);
80 return 0;
81 }
82 return 1;
83}
84
95int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
96 assert(*seckeylen >= CKey::SIZE);
97 secp256k1_pubkey pubkey;
98 size_t pubkeylen = 0;
99 if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
100 *seckeylen = 0;
101 return 0;
102 }
103 if (compressed) {
104 static const unsigned char begin[] = {
105 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
106 };
107 static const unsigned char middle[] = {
108 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
109 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
111 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
112 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
113 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
114 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
115 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
116 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
117 };
118 unsigned char *ptr = seckey;
119 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
120 memcpy(ptr, key32, 32); ptr += 32;
121 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
122 pubkeylen = CPubKey::COMPRESSED_SIZE;
123 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
124 ptr += pubkeylen;
125 *seckeylen = ptr - seckey;
126 assert(*seckeylen == CKey::COMPRESSED_SIZE);
127 } else {
128 static const unsigned char begin[] = {
129 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
130 };
131 static const unsigned char middle[] = {
132 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
133 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
134 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
135 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
136 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
137 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
138 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
139 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
140 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
141 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
142 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
143 };
144 unsigned char *ptr = seckey;
145 memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
146 memcpy(ptr, key32, 32); ptr += 32;
147 memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
148 pubkeylen = CPubKey::SIZE;
149 secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
150 ptr += pubkeylen;
151 *seckeylen = ptr - seckey;
152 assert(*seckeylen == CKey::SIZE);
153 }
154 return 1;
155}
156
157bool CKey::Check(const unsigned char *vch) {
159}
160
161void CKey::MakeNewKey(bool fCompressedIn) {
162 MakeKeyData();
163 do {
165 } while (!Check(keydata->data()));
166 fCompressed = fCompressedIn;
167}
168
171 CPrivKey seckey;
172 int ret;
173 size_t seckeylen;
174 seckey.resize(SIZE);
175 seckeylen = SIZE;
177 assert(ret);
178 seckey.resize(seckeylen);
179 return seckey;
180}
181
184 secp256k1_pubkey pubkey;
185 size_t clen = CPubKey::SIZE;
186 CPubKey result;
188 assert(ret);
190 assert(result.size() == clen);
191 assert(result.IsValid());
192 return result;
193}
194
195// Check that the sig has a low R value and will be less than 71 bytes
197{
198 unsigned char compact_sig[64];
200
201 // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
202 // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
203 // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
204 // our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
205 return compact_sig[0] < 0x80;
206}
207
208bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
209 if (!keydata)
210 return false;
211 vchSig.resize(CPubKey::SIGNATURE_SIZE);
212 size_t nSigLen = CPubKey::SIGNATURE_SIZE;
213 unsigned char extra_entropy[32] = {0};
214 WriteLE32(extra_entropy, test_case);
216 uint32_t counter = 0;
217 int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
218
219 // Grind for low R
220 while (ret && !SigHasLowR(&sig) && grind) {
221 WriteLE32(extra_entropy, ++counter);
223 }
224 assert(ret);
226 vchSig.resize(nSigLen);
227 // Additional verification step to prevent using a potentially corrupted signature
230 assert(ret);
232 assert(ret);
233 return true;
234}
235
236bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
237 if (pubkey.IsCompressed() != fCompressed) {
238 return false;
239 }
240 unsigned char rnd[8];
241 std::string str = "Bitcoin key verification\n";
242 GetRandBytes(rnd);
243 uint256 hash{Hash(str, rnd)};
244 std::vector<unsigned char> vchSig;
245 Sign(hash, vchSig);
246 return pubkey.Verify(hash, vchSig);
247}
248
249bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
250 if (!keydata)
251 return false;
252 vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
253 int rec = -1;
256 assert(ret);
258 assert(ret);
259 assert(rec != -1);
260 vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
261 // Additional verification step to prevent using a potentially corrupted signature
262 secp256k1_pubkey epk, rpk;
264 assert(ret);
266 assert(ret);
268 assert(ret == 0);
269 return true;
270}
271
272bool CKey::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const
273{
274 KeyPair kp = ComputeKeyPair(merkle_root);
275 return kp.SignSchnorr(hash, sig, aux);
276}
277
278bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
279 MakeKeyData();
280 if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size())) {
281 ClearKeyData();
282 return false;
283 }
284 fCompressed = vchPubKey.IsCompressed();
285
286 if (fSkipCheck)
287 return true;
288
289 return VerifyPubKey(vchPubKey);
290}
291
292bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
293 assert(IsValid());
295 std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
296 if ((nChild >> 31) == 0) {
297 CPubKey pubkey = GetPubKey();
299 BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
300 } else {
301 assert(size() == 32);
302 BIP32Hash(cc, nChild, 0, UCharCast(begin()), vout.data());
303 }
304 memcpy(ccChild.begin(), vout.data()+32, 32);
305 keyChild.Set(begin(), begin() + 32, true);
306 bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
307 if (!ret) keyChild.ClearKeyData();
308 return ret;
309}
310
312{
314 assert(ent32.size() == 32);
315 std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
316
318 UCharCast(encoded_pubkey.data()),
319 keydata->data(),
320 UCharCast(ent32.data()));
321
322 // Should always succeed for valid keys (asserted above).
323 assert(success);
324 return {encoded_pubkey};
325}
326
327ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
328{
330
331 ECDHSecret output;
332 // BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
333 // accordingly:
335 UCharCast(output.data()),
336 UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
337 UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
338 keydata->data(),
339 initiating ? 0 : 1,
341 nullptr);
342 // Should always succeed for valid keys (assert above).
343 assert(success);
344 return output;
345}
346
347KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const
348{
349 return KeyPair(*this, merkle_root);
350}
351
352CKey GenerateRandomKey(bool compressed) noexcept
353{
354 CKey key;
355 key.MakeNewKey(/*fCompressed=*/compressed);
356 return key;
357}
358
359bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
360 if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
361 out.nDepth = nDepth + 1;
362 CKeyID id = key.GetPubKey().GetID();
363 memcpy(out.vchFingerprint, &id, 4);
364 out.nChild = _nChild;
365 return key.Derive(out.key, out.chaincode, _nChild, chaincode);
366}
367
369{
370 static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
371 std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
372 CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(UCharCast(seed.data()), seed.size()).Finalize(vout.data());
373 key.Set(vout.data(), vout.data() + 32, true);
374 memcpy(chaincode.begin(), vout.data() + 32, 32);
375 nDepth = 0;
376 nChild = 0;
377 memset(vchFingerprint, 0, sizeof(vchFingerprint));
378}
379
382 ret.nDepth = nDepth;
383 memcpy(ret.vchFingerprint, vchFingerprint, 4);
384 ret.nChild = nChild;
385 ret.pubkey = key.GetPubKey();
386 ret.chaincode = chaincode;
387 return ret;
388}
389
390void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
391 code[0] = nDepth;
392 memcpy(code+1, vchFingerprint, 4);
393 WriteBE32(code+5, nChild);
394 memcpy(code+9, chaincode.begin(), 32);
395 code[41] = 0;
396 assert(key.size() == 32);
397 memcpy(code+42, key.begin(), 32);
398}
399
400void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
401 nDepth = code[0];
402 memcpy(vchFingerprint, code+1, 4);
403 nChild = ReadBE32(code+5);
404 memcpy(chaincode.begin(), code+9, 32);
405 key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
406 if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
407}
408
409KeyPair::KeyPair(const CKey& key, const uint256* merkle_root)
410{
411 static_assert(std::tuple_size<KeyType>() == sizeof(secp256k1_keypair));
413 auto keypair = reinterpret_cast<secp256k1_keypair*>(m_keypair->data());
414 bool success = secp256k1_keypair_create(secp256k1_context_sign, keypair, UCharCast(key.data()));
415 if (success && merkle_root) {
417 unsigned char pubkey_bytes[32];
418 assert(secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, keypair));
420 uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
422 }
423 if (!success) ClearKeyPairData();
424}
425
426bool KeyPair::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256& aux) const
427{
428 assert(sig.size() == 64);
429 if (!IsValid()) return false;
430 auto keypair = reinterpret_cast<const secp256k1_keypair*>(m_keypair->data());
431 bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), keypair, aux.data());
432 if (ret) {
433 // Additional verification step to prevent using a potentially corrupted signature
434 secp256k1_xonly_pubkey pubkey_verify;
435 ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, keypair);
436 ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
437 }
438 if (!ret) memory_cleanse(sig.data(), sig.size());
439 return ret;
440}
441
443 CKey key = GenerateRandomKey();
444 CPubKey pubkey = key.GetPubKey();
445 return key.VerifyPubKey(pubkey);
446}
447
449static void ECC_Start() {
450 assert(secp256k1_context_sign == nullptr);
451
453 assert(ctx != nullptr);
454
455 {
456 // Pass in a random blinding seed to the secp256k1 context.
457 std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
458 GetRandBytes(vseed);
459 bool ret = secp256k1_context_randomize(ctx, vseed.data());
460 assert(ret);
461 }
462
464}
465
467static void ECC_Stop() {
469 secp256k1_context_sign = nullptr;
470
471 if (ctx) {
473 }
474}
475
477{
478 ECC_Start();
479}
480
482{
483 ECC_Stop();
484}
int ret
A hasher class for HMAC-SHA-512.
Definition: hmac_sha512.h:15
CHMAC_SHA512 & Write(const unsigned char *data, size_t len)
Definition: hmac_sha512.h:24
An encapsulated private key.
Definition: key.h:35
bool SignSchnorr(const uint256 &hash, Span< unsigned char > sig, const uint256 *merkle_root, const uint256 &aux) const
Create a BIP-340 Schnorr signature, for the xonly-pubkey corresponding to *this, optionally tweaked b...
Definition: key.cpp:272
KeyPair ComputeKeyPair(const uint256 *merkle_root) const
Compute a KeyPair.
Definition: key.cpp:347
static const unsigned int SIZE
secp256k1:
Definition: key.h:40
void MakeKeyData()
Definition: key.h:63
void ClearKeyData()
Definition: key.h:68
unsigned int size() const
Simple read-only vector-like interface.
Definition: key.h:117
bool IsValid() const
Check whether this private key is valid.
Definition: key.h:123
bool Sign(const uint256 &hash, std::vector< unsigned char > &vchSig, bool grind=true, uint32_t test_case=0) const
Create a DER-serialized signature.
Definition: key.cpp:208
const std::byte * begin() const
Definition: key.h:119
ECDHSecret ComputeBIP324ECDHSecret(const EllSwiftPubKey &their_ellswift, const EllSwiftPubKey &our_ellswift, bool initiating) const
Compute a BIP324-style ECDH shared secret.
Definition: key.cpp:327
CPrivKey GetPrivKey() const
Convert the private key to a CPrivKey (serialized OpenSSL private key data).
Definition: key.cpp:169
static const unsigned int COMPRESSED_SIZE
Definition: key.h:41
bool IsCompressed() const
Check whether the public key corresponding to this private key is (to be) compressed.
Definition: key.h:126
void MakeNewKey(bool fCompressed)
Generate a new private key using a cryptographic PRNG.
Definition: key.cpp:161
bool fCompressed
Whether the public key corresponding to this private key is (to be) compressed.
Definition: key.h:55
CPubKey GetPubKey() const
Compute the public key from a private key.
Definition: key.cpp:182
void Set(const T pbegin, const T pend, bool fCompressedIn)
Initialize using begin and end iterators to byte data.
Definition: key.h:103
bool VerifyPubKey(const CPubKey &vchPubKey) const
Verify thoroughly whether a private key and a public key match.
Definition: key.cpp:236
EllSwiftPubKey EllSwiftCreate(Span< const std::byte > entropy) const
Create an ellswift-encoded public key for this key, with specified entropy.
Definition: key.cpp:311
bool Load(const CPrivKey &privkey, const CPubKey &vchPubKey, bool fSkipCheck)
Load private key and check that public key matches.
Definition: key.cpp:278
static bool Check(const unsigned char *vch)
Check whether the 32-byte array pointed to by vch is valid keydata.
Definition: key.cpp:157
bool Derive(CKey &keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode &cc) const
Derive BIP32 child key.
Definition: key.cpp:292
secure_unique_ptr< KeyType > keydata
The actual byte data. nullptr for invalid keys.
Definition: key.h:58
bool SignCompact(const uint256 &hash, std::vector< unsigned char > &vchSig) const
Create a compact signature (65 bytes), which allows reconstructing the used public key.
Definition: key.cpp:249
const std::byte * data() const
Definition: key.h:118
A reference to a CKey: the Hash160 of its serialized public key.
Definition: pubkey.h:24
An encapsulated public key.
Definition: pubkey.h:34
bool IsCompressed() const
Check whether this is a compressed public key.
Definition: pubkey.h:204
CKeyID GetID() const
Get the KeyID of this public key (hash of its serialization)
Definition: pubkey.h:164
static constexpr unsigned int COMPRESSED_SIZE
Definition: pubkey.h:40
bool IsValid() const
Definition: pubkey.h:189
bool Verify(const uint256 &hash, const std::vector< unsigned char > &vchSig) const
Verify a DER signature (~72 bytes).
Definition: pubkey.cpp:277
static constexpr unsigned int SIZE
secp256k1:
Definition: pubkey.h:39
unsigned int size() const
Simple read-only vector-like interface to the pubkey data.
Definition: pubkey.h:112
const unsigned char * begin() const
Definition: pubkey.h:114
static constexpr unsigned int SIGNATURE_SIZE
Definition: pubkey.h:41
static constexpr unsigned int COMPACT_SIGNATURE_SIZE
Definition: pubkey.h:42
ECC_Context()
Definition: key.cpp:476
~ECC_Context()
Definition: key.cpp:481
KeyPair.
Definition: key.h:268
KeyPair() noexcept=default
void MakeKeyPairData()
Definition: key.h:300
bool IsValid() const
Check whether this keypair is valid.
Definition: key.h:292
bool SignSchnorr(const uint256 &hash, Span< unsigned char > sig, const uint256 &aux) const
Definition: key.cpp:426
secure_unique_ptr< KeyType > m_keypair
Definition: key.h:298
void ClearKeyPairData()
Definition: key.h:305
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
constexpr std::size_t size() const noexcept
Definition: span.h:187
constexpr C * data() const noexcept
Definition: span.h:174
uint256 ComputeTapTweakHash(const uint256 *merkle_root) const
Compute the Taproot tweak as specified in BIP341, with *this as internal key:
Definition: pubkey.cpp:240
constexpr bool IsNull() const
Definition: uint256.h:48
constexpr unsigned char * begin()
Definition: uint256.h:115
constexpr const unsigned char * data() const
Definition: uint256.h:112
256-bit opaque blob.
Definition: uint256.h:201
void memory_cleanse(void *ptr, size_t len)
Secure overwrite a buffer (possibly containing secret data) with zero-bytes.
Definition: cleanse.cpp:14
void WriteLE32(B *ptr, uint32_t x)
Definition: common.h:50
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
void WriteBE32(B *ptr, uint32_t x)
Definition: common.h:95
uint32_t ReadBE32(const B *ptr)
Definition: common.h:72
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
Definition: hash.cpp:71
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
static void ECC_Start()
Initialize the elliptic curve support.
Definition: key.cpp:449
int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed)
This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1 https://www....
Definition: key.cpp:95
static void ECC_Stop()
Deinitialize the elliptic curve support.
Definition: key.cpp:467
static secp256k1_context * secp256k1_context_sign
Definition: key.cpp:19
bool SigHasLowR(const secp256k1_ecdsa_signature *sig)
Definition: key.cpp:196
int ec_seckey_import_der(const secp256k1_context *ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen)
These functions are taken from the libsecp256k1 distribution and are very ugly.
Definition: key.cpp:38
bool ECC_InitSanityCheck()
Check that required EC support is available at runtime.
Definition: key.cpp:442
CKey GenerateRandomKey(bool compressed) noexcept
Definition: key.cpp:352
std::vector< unsigned char, secure_allocator< unsigned char > > CPrivKey
CPrivKey is a serialized private key, with all parameters included (SIZE bytes)
Definition: key.h:23
std::array< std::byte, ECDH_SECRET_SIZE > ECDHSecret
Definition: key.h:29
static int tweak(const secp256k1_context *ctx, secp256k1_xonly_pubkey *agg_pk, secp256k1_musig_keyagg_cache *cache)
Definition: musig.c:63
const unsigned int BIP32_EXTKEY_SIZE
Definition: pubkey.h:19
void GetRandBytes(Span< unsigned char > bytes) noexcept
Generate random data via the internal PRNG.
Definition: random.cpp:676
void GetStrongRandBytes(Span< unsigned char > bytes) noexcept
Gather entropy from various sources, feed it into the internal PRNG, and generate random data using i...
Definition: random.cpp:682
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:187
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(secp256k1_context *ctx, const unsigned char *seed32) SECP256K1_ARG_NONNULL(1)
Randomizes the context to provide enhanced protection against side-channel leakage.
Definition: secp256k1.c:759
SECP256K1_API int secp256k1_ec_pubkey_serialize(const secp256k1_context *ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey *pubkey, unsigned int flags) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize a pubkey object into a serialized byte sequence.
Definition: secp256k1.c:268
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(const secp256k1_context *ctx, const secp256k1_pubkey *pubkey1, const secp256k1_pubkey *pubkey2) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compare two public keys using lexicographic (of compressed serialization) order.
Definition: secp256k1.c:291
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(const secp256k1_context *ctx, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2)
Verify an elliptic curve secret key.
Definition: secp256k1.c:580
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:141
SECP256K1_API int secp256k1_ecdsa_sign(const secp256k1_context *ctx, secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create an ECDSA signature.
Definition: secp256k1.c:566
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:202
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute the public key for a secret key.
Definition: secp256k1.c:604
#define SECP256K1_EC_COMPRESSED
Flag to pass to secp256k1_ec_pubkey_serialize.
Definition: secp256k1.h:212
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(const secp256k1_context *ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const secp256k1_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Verify an ECDSA signature.
Definition: secp256k1.c:450
#define SECP256K1_EC_UNCOMPRESSED
Definition: secp256k1.h:213
SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_rfc6979
An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
Definition: secp256k1.h:624
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context *ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize an ECDSA signature in DER format.
Definition: secp256k1.c:406
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(const secp256k1_context *ctx, unsigned char *seckey, const unsigned char *tweak32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Tweak a secret key by adding tweak to it.
Definition: secp256k1.c:668
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context *ctx, unsigned char *output64, const secp256k1_ecdsa_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize an ECDSA signature in compact (64 byte) format.
Definition: secp256k1.c:418
SECP256K1_API const secp256k1_context * secp256k1_context_static
A built-in constant secp256k1 context object with static storage duration, to be used in conjunction ...
Definition: secp256k1.h:233
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute an ElligatorSwift public key for a secret key.
Definition: main_impl.h:450
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7)
Given a private key, and ElligatorSwift public keys sent in both directions, compute a shared secret ...
Definition: main_impl.h:551
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324
An implementation of an secp256k1_ellswift_xdh_hash_function compatible with BIP324.
SECP256K1_API int secp256k1_xonly_pubkey_serialize(const secp256k1_context *ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Serialize an xonly_pubkey object into a 32-byte sequence.
Definition: main_impl.h:44
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(const secp256k1_context *ctx, secp256k1_keypair *keypair, const unsigned char *seckey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Compute the keypair for a valid secret key.
Definition: main_impl.h:196
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(const secp256k1_context *ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
Tweak a keypair by adding tweak32 to the secret key and updating the public key accordingly.
Definition: main_impl.h:255
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(const secp256k1_context *ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4)
Get the x-only public key from a keypair.
Definition: main_impl.h:234
struct secp256k1_keypair secp256k1_keypair
Opaque data structure that holds a keypair consisting of a secret and a public key.
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context *ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature *sig) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Serialize an ECDSA signature in compact format (64 bytes + recovery id).
Definition: main_impl.h:60
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(const secp256k1_context *ctx, secp256k1_ecdsa_recoverable_signature *sig, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create a recoverable ECDSA signature.
Definition: main_impl.h:123
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *sig, const unsigned char *msghash32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Recover an ECDSA public key from a signature.
Definition: main_impl.h:137
SECP256K1_API int secp256k1_schnorrsig_sign32(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4)
Create a Schnorr signature.
Definition: main_impl.h:197
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify(const secp256k1_context *ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5)
Verify a Schnorr signature.
Definition: main_impl.h:221
unsigned char * UCharCast(char *c)
Definition: span.h:280
Definition: key.h:227
unsigned char vchFingerprint[4]
Definition: key.h:229
CExtPubKey Neuter() const
Definition: key.cpp:380
bool Derive(CExtKey &out, unsigned int nChild) const
Definition: key.cpp:359
void Decode(const unsigned char code[BIP32_EXTKEY_SIZE])
Definition: key.cpp:400
CKey key
Definition: key.h:232
void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const
Definition: key.cpp:390
unsigned char nDepth
Definition: key.h:228
ChainCode chaincode
Definition: key.h:231
unsigned int nChild
Definition: key.h:230
void SetSeed(Span< const std::byte > seed)
Definition: key.cpp:368
An ElligatorSwift-encoded public key.
Definition: pubkey.h:310
static constexpr size_t size()
Definition: pubkey.h:327
const std::byte * data() const
Definition: pubkey.h:326
Opaque data structure that holds a parsed ECDSA signature, supporting pubkey recovery.
Opaque data structure that holds a parsed ECDSA signature.
Definition: secp256k1.h:74
Opaque data structure that holds a keypair consisting of a secret and a public key.
Opaque data structure that holds a parsed and valid public key.
Definition: secp256k1.h:61
Opaque data structure that holds a parsed and valid "x-only" public key.
assert(!tx.IsCoinBase())