Bitcoin Core 28.99.0
P2P Digital Currency
main_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_MODULE_SCHNORRSIG_MAIN_H
8#define SECP256K1_MODULE_SCHNORRSIG_MAIN_H
9
10#include "../../../include/secp256k1.h"
11#include "../../../include/secp256k1_schnorrsig.h"
12#include "../../hash.h"
13
14/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
15 * SHA256 to SHA256("BIP0340/nonce")||SHA256("BIP0340/nonce"). */
18 sha->s[0] = 0x46615b35ul;
19 sha->s[1] = 0xf4bfbff7ul;
20 sha->s[2] = 0x9f8dc671ul;
21 sha->s[3] = 0x83627ab3ul;
22 sha->s[4] = 0x60217180ul;
23 sha->s[5] = 0x57358661ul;
24 sha->s[6] = 0x21a29e54ul;
25 sha->s[7] = 0x68b07b4cul;
26
27 sha->bytes = 64;
28}
29
30/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
31 * SHA256 to SHA256("BIP0340/aux")||SHA256("BIP0340/aux"). */
34 sha->s[0] = 0x24dd3219ul;
35 sha->s[1] = 0x4eba7e70ul;
36 sha->s[2] = 0xca0fabb9ul;
37 sha->s[3] = 0x0fa3166dul;
38 sha->s[4] = 0x3afbe4b1ul;
39 sha->s[5] = 0x4c44df97ul;
40 sha->s[6] = 0x4aac2739ul;
41 sha->s[7] = 0x249e850aul;
42
43 sha->bytes = 64;
44}
45
46/* algo argument for nonce_function_bip340 to derive the nonce exactly as stated in BIP-340
47 * by using the correct tagged hash function. */
48static const unsigned char bip340_algo[] = {'B', 'I', 'P', '0', '3', '4', '0', '/', 'n', 'o', 'n', 'c', 'e'};
49
51
52static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) {
54 unsigned char masked_key[32];
55 int i;
56
57 if (algo == NULL) {
58 return 0;
59 }
60
61 if (data != NULL) {
64 secp256k1_sha256_finalize(&sha, masked_key);
65 for (i = 0; i < 32; i++) {
66 masked_key[i] ^= key32[i];
67 }
68 } else {
69 /* Precomputed TaggedHash("BIP0340/aux", 0x0000...00); */
70 static const unsigned char ZERO_MASK[32] = {
71 84, 241, 105, 207, 201, 226, 229, 114,
72 116, 128, 68, 31, 144, 186, 37, 196,
73 136, 244, 97, 199, 11, 94, 165, 220,
74 170, 247, 175, 105, 39, 10, 165, 20
75 };
76 for (i = 0; i < 32; i++) {
77 masked_key[i] = key32[i] ^ ZERO_MASK[i];
78 }
79 }
80
81 /* Tag the hash with algo which is important to avoid nonce reuse across
82 * algorithms. If this nonce function is used in BIP-340 signing as defined
83 * in the spec, an optimized tagging implementation is used. */
84 if (algolen == sizeof(bip340_algo)
85 && secp256k1_memcmp_var(algo, bip340_algo, algolen) == 0) {
87 } else {
88 secp256k1_sha256_initialize_tagged(&sha, algo, algolen);
89 }
90
91 /* Hash masked-key||pk||msg using the tagged hash as per the spec */
92 secp256k1_sha256_write(&sha, masked_key, 32);
93 secp256k1_sha256_write(&sha, xonly_pk32, 32);
94 secp256k1_sha256_write(&sha, msg, msglen);
95 secp256k1_sha256_finalize(&sha, nonce32);
97 return 1;
98}
99
101
102/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
103 * SHA256 to SHA256("BIP0340/challenge")||SHA256("BIP0340/challenge"). */
106 sha->s[0] = 0x9cecba11ul;
107 sha->s[1] = 0x23925381ul;
108 sha->s[2] = 0x11679112ul;
109 sha->s[3] = 0xd1627e0ful;
110 sha->s[4] = 0x97c87550ul;
111 sha->s[5] = 0x003cc765ul;
112 sha->s[6] = 0x90f61164ul;
113 sha->s[7] = 0x33e9b66aul;
114 sha->bytes = 64;
115}
116
117static void secp256k1_schnorrsig_challenge(secp256k1_scalar* e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32)
118{
119 unsigned char buf[32];
121
122 /* tagged hash(r.x, pk.x, msg) */
124 secp256k1_sha256_write(&sha, r32, 32);
125 secp256k1_sha256_write(&sha, pubkey32, 32);
126 secp256k1_sha256_write(&sha, msg, msglen);
127 secp256k1_sha256_finalize(&sha, buf);
128 /* Set scalar e to the challenge hash modulo the curve order as per
129 * BIP340. */
130 secp256k1_scalar_set_b32(e, buf, NULL);
131}
132
133static int secp256k1_schnorrsig_sign_internal(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) {
137 secp256k1_gej rj;
139 secp256k1_ge r;
140 unsigned char buf[32] = { 0 };
141 unsigned char pk_buf[32];
142 unsigned char seckey[32];
143 int ret = 1;
144
145 VERIFY_CHECK(ctx != NULL);
147 ARG_CHECK(sig64 != NULL);
148 ARG_CHECK(msg != NULL || msglen == 0);
149 ARG_CHECK(keypair != NULL);
150
151 if (noncefp == NULL) {
153 }
154
155 ret &= secp256k1_keypair_load(ctx, &sk, &pk, keypair);
156 /* Because we are signing for a x-only pubkey, the secret key is negated
157 * before signing if the point corresponding to the secret key does not
158 * have an even Y. */
159 if (secp256k1_fe_is_odd(&pk.y)) {
160 secp256k1_scalar_negate(&sk, &sk);
161 }
162
163 secp256k1_scalar_get_b32(seckey, &sk);
164 secp256k1_fe_get_b32(pk_buf, &pk.x);
165 ret &= !!noncefp(buf, msg, msglen, seckey, pk_buf, bip340_algo, sizeof(bip340_algo), ndata);
166 secp256k1_scalar_set_b32(&k, buf, NULL);
169
171 secp256k1_ge_set_gej(&r, &rj);
172
173 /* We declassify r to allow using it as a branch point. This is fine
174 * because r is not a secret. */
175 secp256k1_declassify(ctx, &r, sizeof(r));
177 if (secp256k1_fe_is_odd(&r.y)) {
179 }
181 secp256k1_fe_get_b32(&sig64[0], &r.x);
182
183 secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, pk_buf);
184 secp256k1_scalar_mul(&e, &e, &sk);
185 secp256k1_scalar_add(&e, &e, &k);
186 secp256k1_scalar_get_b32(&sig64[32], &e);
187
188 secp256k1_memczero(sig64, 64, !ret);
191 secp256k1_memclear(seckey, sizeof(seckey));
193
194 return ret;
195}
196
197int secp256k1_schnorrsig_sign32(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) {
198 /* We cast away const from the passed aux_rand32 argument since we know the default nonce function does not modify it. */
199 return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg32, 32, keypair, secp256k1_nonce_function_bip340, (unsigned char*)aux_rand32);
200}
201
202int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32) {
203 return secp256k1_schnorrsig_sign32(ctx, sig64, msg32, keypair, aux_rand32);
204}
205
206int secp256k1_schnorrsig_sign_custom(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams) {
208 void *ndata = NULL;
209 VERIFY_CHECK(ctx != NULL);
210
211 if (extraparams != NULL) {
214 sizeof(extraparams->magic)) == 0);
215 noncefp = extraparams->noncefp;
216 ndata = extraparams->ndata;
217 }
218 return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg, msglen, keypair, noncefp, ndata);
219}
220
221int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) {
224 secp256k1_gej rj;
226 secp256k1_gej pkj;
227 secp256k1_fe rx;
228 secp256k1_ge r;
229 unsigned char buf[32];
230 int overflow;
231
232 VERIFY_CHECK(ctx != NULL);
233 ARG_CHECK(sig64 != NULL);
234 ARG_CHECK(msg != NULL || msglen == 0);
235 ARG_CHECK(pubkey != NULL);
236
237 if (!secp256k1_fe_set_b32_limit(&rx, &sig64[0])) {
238 return 0;
239 }
240
241 secp256k1_scalar_set_b32(&s, &sig64[32], &overflow);
242 if (overflow) {
243 return 0;
244 }
245
246 if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
247 return 0;
248 }
249
250 /* Compute e. */
251 secp256k1_fe_get_b32(buf, &pk.x);
252 secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, buf);
253
254 /* Compute rj = s*G + (-e)*pkj */
256 secp256k1_gej_set_ge(&pkj, &pk);
257 secp256k1_ecmult(&rj, &pkj, &e, &s);
258
260 if (secp256k1_ge_is_infinity(&r)) {
261 return 0;
262 }
263
265 return !secp256k1_fe_is_odd(&r.y) &&
266 secp256k1_fe_equal(&rx, &r.x);
267}
268
269#endif
int ret
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context *ctx)
static int secp256k1_keypair_load(const secp256k1_context *ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair)
Definition: main_impl.h:176
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context *ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey)
Definition: main_impl.h:14
#define secp256k1_fe_is_odd
Definition: field.h:85
#define secp256k1_fe_normalize_var
Definition: field.h:80
#define secp256k1_fe_set_b32_limit
Definition: field.h:88
#define secp256k1_fe_get_b32
Definition: field.h:89
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b)
Determine whether two field elements are equal.
static void secp256k1_gej_clear(secp256k1_gej *r)
Clear a secp256k1_gej to prevent leaking sensitive information.
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen)
Definition: hash_impl.h:163
static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
If flag is true, set *r equal to *a; otherwise leave it.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static void secp256k1_scalar_clear(secp256k1_scalar *r)
Clear a scalar to prevent the leak of sensitive data.
static const secp256k1_scalar secp256k1_scalar_one
Definition: scalar_impl.h:27
static void secp256k1_schnorrsig_challenge(secp256k1_scalar *e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32)
Definition: main_impl.h:117
static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data)
Definition: main_impl.h:52
static const unsigned char schnorrsig_extraparams_magic[4]
Definition: main_impl.h:50
static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha)
Definition: main_impl.h:32
int secp256k1_schnorrsig_sign(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32)
Same as secp256k1_schnorrsig_sign32, but DEPRECATED.
Definition: main_impl.h:202
static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha)
Definition: main_impl.h:16
static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha)
Definition: main_impl.h:104
int secp256k1_schnorrsig_sign_custom(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams)
Create a Schnorr signature with a more flexible API.
Definition: main_impl.h:206
int secp256k1_schnorrsig_sign32(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, const unsigned char *aux_rand32)
Create a Schnorr signature.
Definition: main_impl.h:197
static const unsigned char bip340_algo[]
Definition: main_impl.h:48
static int secp256k1_schnorrsig_sign_internal(const secp256k1_context *ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata)
Definition: main_impl.h:133
const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340
Definition: main_impl.h:100
int secp256k1_schnorrsig_verify(const secp256k1_context *ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey)
Verify a Schnorr signature.
Definition: main_impl.h:221
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
static void secp256k1_sha256_clear(secp256k1_sha256 *hash)
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
Definition: util.h:255
static SECP256K1_INLINE void secp256k1_memclear(void *ptr, size_t len)
Definition: util.h:223
#define VERIFY_CHECK(cond)
Definition: util.h:159
static SECP256K1_INLINE void secp256k1_memczero(void *s, size_t len, int flag)
Definition: util.h:208
#define ARG_CHECK(cond)
Definition: secp256k1.c:45
static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context *ctx, const void *p, size_t len)
Definition: secp256k1.c:236
#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC
int(* secp256k1_nonce_function_hardened)(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data)
This module implements a variant of Schnorr signatures compliant with Bitcoin Improvement Proposal 34...
secp256k1_ecmult_gen_context ecmult_gen_ctx
Definition: secp256k1.c:62
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe x
Definition: group.h:17
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
Opaque data structure that holds a keypair consisting of a secret and a public key.
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
Data structure that contains additional arguments for schnorrsig_sign_custom.
secp256k1_nonce_function_hardened noncefp
uint64_t bytes
Definition: hash.h:16
uint32_t s[8]
Definition: hash.h:14
Opaque data structure that holds a parsed and valid "x-only" public key.