Bitcoin Core 28.99.0
P2P Digital Currency
scalar_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_SCALAR_IMPL_H
8#define SECP256K1_SCALAR_IMPL_H
9
10#ifdef VERIFY
11#include <string.h>
12#endif
13
14#include "scalar.h"
15#include "util.h"
16
17#if defined(EXHAUSTIVE_TEST_ORDER)
18#include "scalar_low_impl.h"
19#elif defined(SECP256K1_WIDEMUL_INT128)
20#include "scalar_4x64_impl.h"
21#elif defined(SECP256K1_WIDEMUL_INT64)
22#include "scalar_8x32_impl.h"
23#else
24#error "Please select wide multiplication implementation"
25#endif
26
27static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
28static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
29
32}
33
34static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
35 int overflow;
36 secp256k1_scalar_set_b32(r, bin, &overflow);
37
39 return (!overflow) & (!secp256k1_scalar_is_zero(r));
40}
41
44
45 (void)r;
46}
47
48#if defined(EXHAUSTIVE_TEST_ORDER)
49/* Begin of section generated by sage/gen_exhaustive_groups.sage. */
50# if EXHAUSTIVE_TEST_ORDER == 7
51# define EXHAUSTIVE_TEST_LAMBDA 2
52# elif EXHAUSTIVE_TEST_ORDER == 13
53# define EXHAUSTIVE_TEST_LAMBDA 9
54# elif EXHAUSTIVE_TEST_ORDER == 199
55# define EXHAUSTIVE_TEST_LAMBDA 92
56# else
57# error No known lambda for the specified exhaustive test group order.
58# endif
59/* End of section generated by sage/gen_exhaustive_groups.sage. */
60
69 VERIFY_CHECK(r1 != k);
70 VERIFY_CHECK(r2 != k);
71 VERIFY_CHECK(r1 != r2);
72
73 *r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
74 *r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
75
78}
79#else
84 0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL,
85 0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL
86);
87
88#ifdef VERIFY
89static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k);
90#endif
91
92/*
93 * Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
94 * beta^3 == 1 mod p, where n is the curve order and p is the field order.
95 *
96 * Furthermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
97 * roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
98 * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
99 *
100 * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
101 * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
102 * is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a
103 * reduced basis {a1 + b1*l, a2 + b2*l} where
104 *
105 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
106 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
107 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
108 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
109 *
110 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
111 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
112 * and k2 are small in absolute value.
113 *
114 * The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives
115 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
116 * compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for
117 * the constants a1 and a2.
118 *
119 * g1, g2 are precomputed constants used to replace division with a rounded multiplication
120 * when decomposing the scalar for an endomorphism-based point multiplication.
121 *
122 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
123 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
124 *
125 * The derivation is described in the paper "Efficient Software Implementation of Public-Key
126 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
127 * Section 4.3 (here we use a somewhat higher-precision estimate):
128 * d = a1*b2 - b1*a2
129 * g1 = round(2^384 * b2/d)
130 * g2 = round(2^384 * (-b1)/d)
131 *
132 * (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
133 * can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda).
134 *
135 * The function below splits k into r1 and r2, such that
136 * - r1 + lambda * r2 == k (mod n)
137 * - either r1 < 2^128 or -r1 mod n < 2^128
138 * - either r2 < 2^128 or -r2 mod n < 2^128
139 *
140 * See proof below.
141 */
143 secp256k1_scalar c1, c2;
144 static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
145 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
146 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
147 );
148 static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
149 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
150 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
151 );
153 0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL,
154 0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL
155 );
157 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
158 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
159 );
161 VERIFY_CHECK(r1 != k);
162 VERIFY_CHECK(r2 != k);
163 VERIFY_CHECK(r1 != r2);
164
165 /* these _var calls are constant time since the shift amount is constant */
166 secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384);
167 secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384);
168 secp256k1_scalar_mul(&c1, &c1, &minus_b1);
169 secp256k1_scalar_mul(&c2, &c2, &minus_b2);
170 secp256k1_scalar_add(r2, &c1, &c2);
173 secp256k1_scalar_add(r1, r1, k);
174
177#ifdef VERIFY
178 secp256k1_scalar_split_lambda_verify(r1, r2, k);
179#endif
180}
181
182#ifdef VERIFY
183/*
184 * Proof for secp256k1_scalar_split_lambda's bounds.
185 *
186 * Let
187 * - epsilon1 = 2^256 * |g1/2^384 - b2/d|
188 * - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
189 * - c1 = round(k*g1/2^384)
190 * - c2 = round(k*g2/2^384)
191 *
192 * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
193 *
194 * |c1 - k*b2/d|
195 * =
196 * |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
197 * <= {triangle inequality}
198 * |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
199 * =
200 * |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
201 * < {rounding in c1 and 0 <= k < 2^256}
202 * 2^-1 + 2^256 * |g1/2^384 - b2/d|
203 * = {definition of epsilon1}
204 * 2^-1 + epsilon1
205 *
206 * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
207 *
208 * |c2 - k*(-b1)/d|
209 * =
210 * |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
211 * <= {triangle inequality}
212 * |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
213 * =
214 * |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
215 * < {rounding in c2 and 0 <= k < 2^256}
216 * 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
217 * = {definition of epsilon2}
218 * 2^-1 + epsilon2
219 *
220 * Let
221 * - k1 = k - c1*a1 - c2*a2
222 * - k2 = - c1*b1 - c2*b2
223 *
224 * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
225 *
226 * |k1|
227 * = {definition of k1}
228 * |k - c1*a1 - c2*a2|
229 * = {(a1*b2 - b1*a2)/n = 1}
230 * |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
231 * =
232 * |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
233 * <= {triangle inequality}
234 * a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
235 * < {Lemma 1 and Lemma 2}
236 * a1*(2^-1 + epsilon1) + a2*(2^-1 + epsilon2)
237 * < {rounding up to an integer}
238 * (a1 + a2 + 1)/2
239 * < {rounding up to a power of 2}
240 * 2^128
241 *
242 * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
243 *
244 * |k2|
245 * = {definition of k2}
246 * |- c1*a1 - c2*a2|
247 * = {(b1*b2 - b1*b2)/n = 0}
248 * |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
249 * =
250 * |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
251 * <= {triangle inequality}
252 * (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
253 * < {Lemma 1 and Lemma 2}
254 * (-b1)*(2^-1 + epsilon1) + b2*(2^-1 + epsilon2)
255 * < {rounding up to an integer}
256 * (-b1 + b2)/2 + 1
257 * < {rounding up to a power of 2}
258 * 2^128
259 *
260 * Let
261 * - r2 = k2 mod n
262 * - r1 = k - r2*lambda mod n.
263 *
264 * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
265 *
266 * Lemma 5: r1 == k1 mod n.
267 *
268 * r1
269 * == {definition of r1 and r2}
270 * k - k2*lambda
271 * == {definition of k2}
272 * k - (- c1*b1 - c2*b2)*lambda
273 * ==
274 * k + c1*b1*lambda + c2*b2*lambda
275 * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
276 * k - c1*a1 - c2*a2
277 * == {definition of k1}
278 * k1
279 *
280 * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
281 *
282 * - either r1 < 2^128 or -r1 mod n < 2^128
283 * - either r2 < 2^128 or -r2 mod n < 2^128.
284 *
285 * Q.E.D.
286 */
287static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) {
289 unsigned char buf1[32];
290 unsigned char buf2[32];
291
292 /* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */
293 static const unsigned char k1_bound[32] = {
294 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
295 0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77
296 };
297
298 /* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */
299 static const unsigned char k2_bound[32] = {
300 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
301 0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed
302 };
303
305 secp256k1_scalar_add(&s, &s, r1);
307
309 secp256k1_scalar_get_b32(buf1, r1);
311 VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0);
312
314 secp256k1_scalar_get_b32(buf1, r2);
316 VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0);
317}
318#endif /* VERIFY */
319#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */
320
321#endif /* SECP256K1_SCALAR_IMPL_H */
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
#define SECP256K1_SCALAR_VERIFY(r)
Definition: scalar.h:103
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer.
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
Definition: scalar_4x64.h:17
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static void secp256k1_scalar_verify(const secp256k1_scalar *r)
Definition: scalar_impl.h:42
static SECP256K1_INLINE void secp256k1_scalar_clear(secp256k1_scalar *r)
Definition: scalar_impl.h:30
static const secp256k1_scalar secp256k1_scalar_zero
Definition: scalar_impl.h:28
static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin)
Definition: scalar_impl.h:34
static const secp256k1_scalar secp256k1_scalar_one
Definition: scalar_impl.h:27
static const secp256k1_scalar secp256k1_const_lambda
The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where lambda is:
Definition: scalar_impl.h:83
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Definition: scalar_impl.h:142
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n)
Semantics like memcmp.
Definition: util.h:255
#define SECP256K1_INLINE
Definition: util.h:54
static SECP256K1_INLINE void secp256k1_memclear(void *ptr, size_t len)
Definition: util.h:223
#define VERIFY_CHECK(cond)
Definition: util.h:159
#define SECP256K1_RESTRICT
Definition: util.h:194
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
#define EXHAUSTIVE_TEST_ORDER