7#ifndef SECP256K1_SCALAR_REPR_IMPL_H
8#define SECP256K1_SCALAR_REPR_IMPL_H
16#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
17#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
18#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
19#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
22#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
23#define SECP256K1_N_C_1 (~SECP256K1_N_1)
24#define SECP256K1_N_C_2 (1)
27#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
28#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
29#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
30#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
46 return (a->
d[offset >> 6] >> (offset & 0x3F)) & (0xFFFFFFFF >> (32 -
count));
54 if ((offset +
count - 1) >> 6 == offset >> 6) {
58 return ((a->
d[offset >> 6] >> (offset & 0x3F)) | (a->
d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & (0xFFFFFFFF >> (32 -
count));
122 volatile int vflag = flag;
127 bit += ((uint32_t) vflag - 1) & 0x100;
171 return (a->
d[0] | a->
d[1] | a->
d[2] | a->
d[3]) == 0;
210 uint64_t mask = -(uint64_t)(a->
d[0] & 1U);
239 return ((a->
d[0] ^ 1) | a->
d[1] | a->
d[2] | a->
d[3]) == 0;
259 volatile int vflag = flag;
260 uint64_t mask = -vflag;
280 return 2 * (mask == 0) - 1;
286#define muladd(a,b) { \
289 secp256k1_uint128 t; \
290 secp256k1_u128_mul(&t, a, b); \
291 th = secp256k1_u128_hi_u64(&t); \
292 tl = secp256k1_u128_to_u64(&t); \
298 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
302#define muladd_fast(a,b) { \
305 secp256k1_uint128 t; \
306 secp256k1_u128_mul(&t, a, b); \
307 th = secp256k1_u128_hi_u64(&t); \
308 tl = secp256k1_u128_to_u64(&t); \
313 VERIFY_CHECK(c1 >= th); \
326#define sumadd_fast(a) { \
329 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
330 VERIFY_CHECK(c2 == 0); \
334#define extract(n) { \
342#define extract_fast(n) { \
346 VERIFY_CHECK(c2 == 0); \
352 uint64_t m0, m1, m2, m3, m4, m5, m6;
353 uint64_t p0, p1, p2, p3, p4;
356 __asm__ __volatile__(
358 "movq 32(%%rsi), %%r11\n"
359 "movq 40(%%rsi), %%r12\n"
360 "movq 48(%%rsi), %%r13\n"
361 "movq 56(%%rsi), %%r14\n"
363 "movq 0(%%rsi), %%r8\n"
365 "xorq %%r10, %%r10\n"
375 "addq 8(%%rsi), %%r9\n"
381 "adcq %%rdx, %%r10\n"
387 "adcq %%rdx, %%r10\n"
393 "addq 16(%%rsi), %%r10\n"
399 "addq %%rax, %%r10\n"
405 "addq %%rax, %%r10\n"
409 "addq %%r11, %%r10\n"
414 "xorq %%r10, %%r10\n"
416 "addq 24(%%rsi), %%r8\n"
442 "adcq %%rdx, %%r10\n"
451 "addq %%r14, %%r10\n"
457 :
"=&g"(m0),
"=&g"(m1),
"=&g"(m2),
"=g"(m3),
"=g"(m4),
"=g"(m5),
"=g"(m6)
459 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"cc");
470 __asm__ __volatile__(
478 "xorq %%r10, %%r10\n"
494 "adcq %%rdx, %%r10\n"
500 "adcq %%rdx, %%r10\n"
512 "addq %%rax, %%r10\n"
518 "addq %%rax, %%r10\n"
522 "addq %%r11, %%r10\n"
544 :
"=&g"(p0),
"=&g"(p1),
"=&g"(p2),
"=g"(p3),
"=g"(p4)
546 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"cc");
555 __asm__ __volatile__(
565 "movq %%rax, 0(%q6)\n"
578 "movq %%r8, 8(%q6)\n"
587 "movq %%r9, 16(%q6)\n"
593 "movq %%r8, 24(%q6)\n"
598 :
"rax",
"rdx",
"r8",
"r9",
"r10",
"cc",
"memory");
605 uint64_t c, c0, c1, c2;
606 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
607 uint64_t m0, m1, m2, m3, m4, m5;
609 uint64_t p0, p1, p2, p3;
614 c0 = l[0]; c1 = 0; c2 = 0;
641 c0 = m0; c1 = 0; c2 = 0;
682 const uint64_t *pb = b->
d;
683 __asm__ __volatile__(
685 "movq 0(%%rdi), %%r15\n"
686 "movq 8(%%rdi), %%rbx\n"
687 "movq 16(%%rdi), %%rcx\n"
688 "movq 0(%%rdx), %%r11\n"
689 "movq 8(%%rdx), %%r12\n"
690 "movq 16(%%rdx), %%r13\n"
691 "movq 24(%%rdx), %%r14\n"
693 "movq %%r15, %%rax\n"
696 "movq %%rax, 0(%%rsi)\n"
700 "xorq %%r10, %%r10\n"
702 "movq %%r15, %%rax\n"
708 "movq %%rbx, %%rax\n"
714 "movq %%r8, 8(%%rsi)\n"
717 "movq %%r15, %%rax\n"
720 "adcq %%rdx, %%r10\n"
723 "movq %%rbx, %%rax\n"
726 "adcq %%rdx, %%r10\n"
729 "movq %%rcx, %%rax\n"
732 "adcq %%rdx, %%r10\n"
735 "movq %%r9, 16(%%rsi)\n"
738 "movq %%r15, %%rax\n"
740 "addq %%rax, %%r10\n"
744 "movq 24(%%rdi), %%r15\n"
746 "movq %%rbx, %%rax\n"
748 "addq %%rax, %%r10\n"
752 "movq %%rcx, %%rax\n"
754 "addq %%rax, %%r10\n"
758 "movq %%r15, %%rax\n"
760 "addq %%rax, %%r10\n"
764 "movq %%r10, 24(%%rsi)\n"
765 "xorq %%r10, %%r10\n"
767 "movq %%rbx, %%rax\n"
773 "movq %%rcx, %%rax\n"
779 "movq %%r15, %%rax\n"
785 "movq %%r8, 32(%%rsi)\n"
788 "movq %%rcx, %%rax\n"
791 "adcq %%rdx, %%r10\n"
794 "movq %%r15, %%rax\n"
797 "adcq %%rdx, %%r10\n"
800 "movq %%r9, 40(%%rsi)\n"
802 "movq %%r15, %%rax\n"
804 "addq %%rax, %%r10\n"
807 "movq %%r10, 48(%%rsi)\n"
809 "movq %%r8, 56(%%rsi)\n"
812 :
"rax",
"rbx",
"rcx",
"r8",
"r9",
"r10",
"r11",
"r12",
"r13",
"r14",
"r15",
"cc",
"memory");
818 uint64_t c0 = 0, c1 = 0;
888 return ((a->
d[0] ^ b->
d[0]) | (a->
d[1] ^ b->
d[1]) | (a->
d[2] ^ b->
d[2]) | (a->
d[3] ^ b->
d[3])) == 0;
893 unsigned int shiftlimbs;
894 unsigned int shiftlow;
895 unsigned int shifthigh;
901 shiftlimbs = shift >> 6;
902 shiftlow = shift & 0x3F;
903 shifthigh = 64 - shiftlow;
904 r->
d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
905 r->
d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
906 r->
d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
907 r->
d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
914 uint64_t mask0, mask1;
915 volatile int vflag = flag;
920 mask0 = vflag + ~((uint64_t)0);
922 r->
d[0] = (r->
d[0] & mask0) | (a->
d[0] & mask1);
923 r->
d[1] = (r->
d[1] & mask0) | (a->
d[1] & mask1);
924 r->
d[2] = (r->
d[2] & mask0) | (a->
d[2] & mask1);
925 r->
d[3] = (r->
d[3] & mask0) | (a->
d[3] & mask1);
931 const uint64_t a0 = a->
v[0], a1 = a->
v[1], a2 = a->
v[2], a3 = a->
v[3], a4 = a->
v[4];
942 r->
d[0] = a0 | a1 << 62;
943 r->
d[1] = a1 >> 2 | a2 << 60;
944 r->
d[2] = a2 >> 4 | a3 << 58;
945 r->
d[3] = a3 >> 6 | a4 << 56;
951 const uint64_t M62 = UINT64_MAX >> 2;
952 const uint64_t a0 = a->
d[0], a1 = a->
d[1], a2 = a->
d[2], a3 = a->
d[3];
956 r->
v[1] = (a0 >> 62 | a1 << 2) & M62;
957 r->
v[2] = (a1 >> 60 | a2 << 4) & M62;
958 r->
v[3] = (a2 >> 58 | a3 << 6) & M62;
963 {{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
1000 return !(a->
d[0] & 1);
#define SECP256K1_CHECKMEM_MSAN_DEFINE(p, len)
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len)
static SECP256K1_INLINE uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a)
static SECP256K1_INLINE void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a)
static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n)
static SECP256K1_INLINE void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a)
static SECP256K1_INLINE void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b)
static SECP256K1_INLINE uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a)
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
#define SECP256K1_SCALAR_VERIFY(r)
static SECP256K1_INLINE int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a)
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
#define extract(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow)
static SECP256K1_INLINE uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x)
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a)
static SECP256K1_INLINE void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x)
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
#define extract_fast(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag)
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
static SECP256K1_INLINE int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow)
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static void secp256k1_scalar_mul_512(uint64_t *l8, const secp256k1_scalar *a, const secp256k1_scalar *b)
static SECP256K1_INLINE uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
static SECP256K1_INLINE int secp256k1_scalar_is_one(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_write_be64(unsigned char *p, uint64_t x)
#define VERIFY_CHECK(cond)
static SECP256K1_INLINE uint64_t secp256k1_read_be64(const unsigned char *p)
A scalar modulo the group order of the secp256k1 curve.