Bitcoin Core 28.99.0
P2P Digital Currency
scalar_4x64_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6
7#ifndef SECP256K1_SCALAR_REPR_IMPL_H
8#define SECP256K1_SCALAR_REPR_IMPL_H
9
10#include "checkmem.h"
11#include "int128.h"
12#include "modinv64_impl.h"
13#include "util.h"
14
15/* Limbs of the secp256k1 order. */
16#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
17#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
18#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
19#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
20
21/* Limbs of 2^256 minus the secp256k1 order. */
22#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
23#define SECP256K1_N_C_1 (~SECP256K1_N_1)
24#define SECP256K1_N_C_2 (1)
25
26/* Limbs of half the secp256k1 order. */
27#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
28#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
29#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
30#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
31
33 r->d[0] = v;
34 r->d[1] = 0;
35 r->d[2] = 0;
36 r->d[3] = 0;
37
39}
40
41SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
43 VERIFY_CHECK(count > 0 && count <= 32);
44 VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
45
46 return (a->d[offset >> 6] >> (offset & 0x3F)) & (0xFFFFFFFF >> (32 - count));
47}
48
49SECP256K1_INLINE static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
51 VERIFY_CHECK(count > 0 && count <= 32);
52 VERIFY_CHECK(offset + count <= 256);
53
54 if ((offset + count - 1) >> 6 == offset >> 6) {
55 return secp256k1_scalar_get_bits_limb32(a, offset, count);
56 } else {
57 VERIFY_CHECK((offset >> 6) + 1 < 4);
58 return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & (0xFFFFFFFF >> (32 - count));
59 }
60}
61
63 int yes = 0;
64 int no = 0;
65 no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
66 no |= (a->d[2] < SECP256K1_N_2);
67 yes |= (a->d[2] > SECP256K1_N_2) & ~no;
68 no |= (a->d[1] < SECP256K1_N_1);
69 yes |= (a->d[1] > SECP256K1_N_1) & ~no;
70 yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
71 return yes;
72}
73
74SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
76 VERIFY_CHECK(overflow <= 1);
77
88 r->d[3] = secp256k1_u128_to_u64(&t);
89
91 return overflow;
92}
93
95 int overflow;
99
100 secp256k1_u128_from_u64(&t, a->d[0]);
113 VERIFY_CHECK(overflow == 0 || overflow == 1);
114 secp256k1_scalar_reduce(r, overflow);
115
117 return overflow;
118}
119
120static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
122 volatile int vflag = flag;
124 VERIFY_CHECK(bit < 256);
125
126 bit += ((uint32_t) vflag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
127 secp256k1_u128_from_u64(&t, r->d[0]);
128 secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
131 secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
134 secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
137 secp256k1_u128_accum_u64(&t, ((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
138 r->d[3] = secp256k1_u128_to_u64(&t);
139
142}
143
144static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
145 int over;
146 r->d[0] = secp256k1_read_be64(&b32[24]);
147 r->d[1] = secp256k1_read_be64(&b32[16]);
148 r->d[2] = secp256k1_read_be64(&b32[8]);
149 r->d[3] = secp256k1_read_be64(&b32[0]);
151 if (overflow) {
152 *overflow = over;
153 }
154
156}
157
158static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
160
161 secp256k1_write_be64(&bin[0], a->d[3]);
162 secp256k1_write_be64(&bin[8], a->d[2]);
163 secp256k1_write_be64(&bin[16], a->d[1]);
164 secp256k1_write_be64(&bin[24], a->d[0]);
165}
166
169
170 return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
171}
172
174 uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
177
178 secp256k1_u128_from_u64(&t, ~a->d[0]);
180 r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
181 secp256k1_u128_accum_u64(&t, ~a->d[1]);
183 r->d[1] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
184 secp256k1_u128_accum_u64(&t, ~a->d[2]);
186 r->d[2] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
187 secp256k1_u128_accum_u64(&t, ~a->d[3]);
189 r->d[3] = secp256k1_u128_to_u64(&t) & nonzero;
190
192}
193
195 /* Writing `/` for field division and `//` for integer division, we compute
196 *
197 * a/2 = (a - (a&1))/2 + (a&1)/2
198 * = (a >> 1) + (a&1 ? 1/2 : 0)
199 * = (a >> 1) + (a&1 ? n//2+1 : 0),
200 *
201 * where n is the group order and in the last equality we have used 1/2 = n//2+1 (mod n).
202 * For n//2, we have the constants SECP256K1_N_H_0, ...
203 *
204 * This sum does not overflow. The most extreme case is a = -2, the largest odd scalar. Here:
205 * - the left summand is: a >> 1 = (a - a&1)/2 = (n-2-1)//2 = (n-3)//2
206 * - the right summand is: a&1 ? n//2+1 : 0 = n//2+1 = (n-1)//2 + 2//2 = (n+1)//2
207 * Together they sum to (n-3)//2 + (n+1)//2 = (2n-2)//2 = n - 1, which is less than n.
208 */
209 uint64_t mask = -(uint64_t)(a->d[0] & 1U);
212
213 secp256k1_u128_from_u64(&t, (a->d[0] >> 1) | (a->d[1] << 63));
216 secp256k1_u128_accum_u64(&t, (a->d[1] >> 1) | (a->d[2] << 63));
219 secp256k1_u128_accum_u64(&t, (a->d[2] >> 1) | (a->d[3] << 63));
222 r->d[3] = secp256k1_u128_to_u64(&t) + (a->d[3] >> 1) + (SECP256K1_N_H_3 & mask);
223#ifdef VERIFY
224 /* The line above only computed the bottom 64 bits of r->d[3]; redo the computation
225 * in full 128 bits to make sure the top 64 bits are indeed zero. */
226 secp256k1_u128_accum_u64(&t, a->d[3] >> 1);
230
232#endif
233}
234
237
238 return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
239}
240
242 int yes = 0;
243 int no = 0;
245
246 no |= (a->d[3] < SECP256K1_N_H_3);
247 yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
248 no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
249 no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
250 yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
251 yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
252 return yes;
253}
254
256 /* If we are flag = 0, mask = 00...00 and this is a no-op;
257 * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
258 volatile int vflag = flag;
259 uint64_t mask = -vflag;
260 uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
263
264 secp256k1_u128_from_u64(&t, r->d[0] ^ mask);
266 r->d[0] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
267 secp256k1_u128_accum_u64(&t, r->d[1] ^ mask);
269 r->d[1] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
270 secp256k1_u128_accum_u64(&t, r->d[2] ^ mask);
272 r->d[2] = secp256k1_u128_to_u64(&t) & nonzero; secp256k1_u128_rshift(&t, 64);
273 secp256k1_u128_accum_u64(&t, r->d[3] ^ mask);
275 r->d[3] = secp256k1_u128_to_u64(&t) & nonzero;
276
278 return 2 * (mask == 0) - 1;
279}
280
281/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
282
284#define muladd(a,b) { \
285 uint64_t tl, th; \
286 { \
287 secp256k1_uint128 t; \
288 secp256k1_u128_mul(&t, a, b); \
289 th = secp256k1_u128_hi_u64(&t); /* at most 0xFFFFFFFFFFFFFFFE */ \
290 tl = secp256k1_u128_to_u64(&t); \
291 } \
292 c0 += tl; /* overflow is handled on the next line */ \
293 th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
294 c1 += th; /* overflow is handled on the next line */ \
295 c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
296 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
297}
298
300#define muladd_fast(a,b) { \
301 uint64_t tl, th; \
302 { \
303 secp256k1_uint128 t; \
304 secp256k1_u128_mul(&t, a, b); \
305 th = secp256k1_u128_hi_u64(&t); /* at most 0xFFFFFFFFFFFFFFFE */ \
306 tl = secp256k1_u128_to_u64(&t); \
307 } \
308 c0 += tl; /* overflow is handled on the next line */ \
309 th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
310 c1 += th; /* never overflows by contract (verified in the next line) */ \
311 VERIFY_CHECK(c1 >= th); \
312}
313
315#define sumadd(a) { \
316 unsigned int over; \
317 c0 += (a); /* overflow is handled on the next line */ \
318 over = (c0 < (a)); \
319 c1 += over; /* overflow is handled on the next line */ \
320 c2 += (c1 < over); /* never overflows by contract */ \
321}
322
324#define sumadd_fast(a) { \
325 c0 += (a); /* overflow is handled on the next line */ \
326 c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
327 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
328 VERIFY_CHECK(c2 == 0); \
329}
330
332#define extract(n) { \
333 (n) = c0; \
334 c0 = c1; \
335 c1 = c2; \
336 c2 = 0; \
337}
338
340#define extract_fast(n) { \
341 (n) = c0; \
342 c0 = c1; \
343 c1 = 0; \
344 VERIFY_CHECK(c2 == 0); \
345}
346
347static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
348#ifdef USE_ASM_X86_64
349 /* Reduce 512 bits into 385. */
350 uint64_t m0, m1, m2, m3, m4, m5, m6;
351 uint64_t p0, p1, p2, p3, p4;
352 uint64_t c;
353
354 __asm__ __volatile__(
355 /* Preload. */
356 "movq 32(%%rsi), %%r11\n"
357 "movq 40(%%rsi), %%r12\n"
358 "movq 48(%%rsi), %%r13\n"
359 "movq 56(%%rsi), %%r14\n"
360 /* Initialize r8,r9,r10 */
361 "movq 0(%%rsi), %%r8\n"
362 "xorq %%r9, %%r9\n"
363 "xorq %%r10, %%r10\n"
364 /* (r8,r9) += n0 * c0 */
365 "movq %8, %%rax\n"
366 "mulq %%r11\n"
367 "addq %%rax, %%r8\n"
368 "adcq %%rdx, %%r9\n"
369 /* extract m0 */
370 "movq %%r8, %q0\n"
371 "xorq %%r8, %%r8\n"
372 /* (r9,r10) += l1 */
373 "addq 8(%%rsi), %%r9\n"
374 "adcq $0, %%r10\n"
375 /* (r9,r10,r8) += n1 * c0 */
376 "movq %8, %%rax\n"
377 "mulq %%r12\n"
378 "addq %%rax, %%r9\n"
379 "adcq %%rdx, %%r10\n"
380 "adcq $0, %%r8\n"
381 /* (r9,r10,r8) += n0 * c1 */
382 "movq %9, %%rax\n"
383 "mulq %%r11\n"
384 "addq %%rax, %%r9\n"
385 "adcq %%rdx, %%r10\n"
386 "adcq $0, %%r8\n"
387 /* extract m1 */
388 "movq %%r9, %q1\n"
389 "xorq %%r9, %%r9\n"
390 /* (r10,r8,r9) += l2 */
391 "addq 16(%%rsi), %%r10\n"
392 "adcq $0, %%r8\n"
393 "adcq $0, %%r9\n"
394 /* (r10,r8,r9) += n2 * c0 */
395 "movq %8, %%rax\n"
396 "mulq %%r13\n"
397 "addq %%rax, %%r10\n"
398 "adcq %%rdx, %%r8\n"
399 "adcq $0, %%r9\n"
400 /* (r10,r8,r9) += n1 * c1 */
401 "movq %9, %%rax\n"
402 "mulq %%r12\n"
403 "addq %%rax, %%r10\n"
404 "adcq %%rdx, %%r8\n"
405 "adcq $0, %%r9\n"
406 /* (r10,r8,r9) += n0 */
407 "addq %%r11, %%r10\n"
408 "adcq $0, %%r8\n"
409 "adcq $0, %%r9\n"
410 /* extract m2 */
411 "movq %%r10, %q2\n"
412 "xorq %%r10, %%r10\n"
413 /* (r8,r9,r10) += l3 */
414 "addq 24(%%rsi), %%r8\n"
415 "adcq $0, %%r9\n"
416 "adcq $0, %%r10\n"
417 /* (r8,r9,r10) += n3 * c0 */
418 "movq %8, %%rax\n"
419 "mulq %%r14\n"
420 "addq %%rax, %%r8\n"
421 "adcq %%rdx, %%r9\n"
422 "adcq $0, %%r10\n"
423 /* (r8,r9,r10) += n2 * c1 */
424 "movq %9, %%rax\n"
425 "mulq %%r13\n"
426 "addq %%rax, %%r8\n"
427 "adcq %%rdx, %%r9\n"
428 "adcq $0, %%r10\n"
429 /* (r8,r9,r10) += n1 */
430 "addq %%r12, %%r8\n"
431 "adcq $0, %%r9\n"
432 "adcq $0, %%r10\n"
433 /* extract m3 */
434 "movq %%r8, %q3\n"
435 "xorq %%r8, %%r8\n"
436 /* (r9,r10,r8) += n3 * c1 */
437 "movq %9, %%rax\n"
438 "mulq %%r14\n"
439 "addq %%rax, %%r9\n"
440 "adcq %%rdx, %%r10\n"
441 "adcq $0, %%r8\n"
442 /* (r9,r10,r8) += n2 */
443 "addq %%r13, %%r9\n"
444 "adcq $0, %%r10\n"
445 "adcq $0, %%r8\n"
446 /* extract m4 */
447 "movq %%r9, %q4\n"
448 /* (r10,r8) += n3 */
449 "addq %%r14, %%r10\n"
450 "adcq $0, %%r8\n"
451 /* extract m5 */
452 "movq %%r10, %q5\n"
453 /* extract m6 */
454 "movq %%r8, %q6\n"
455 : "=&g"(m0), "=&g"(m1), "=&g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
456 : "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
457 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
458
459 SECP256K1_CHECKMEM_MSAN_DEFINE(&m0, sizeof(m0));
460 SECP256K1_CHECKMEM_MSAN_DEFINE(&m1, sizeof(m1));
461 SECP256K1_CHECKMEM_MSAN_DEFINE(&m2, sizeof(m2));
462 SECP256K1_CHECKMEM_MSAN_DEFINE(&m3, sizeof(m3));
463 SECP256K1_CHECKMEM_MSAN_DEFINE(&m4, sizeof(m4));
464 SECP256K1_CHECKMEM_MSAN_DEFINE(&m5, sizeof(m5));
465 SECP256K1_CHECKMEM_MSAN_DEFINE(&m6, sizeof(m6));
466
467 /* Reduce 385 bits into 258. */
468 __asm__ __volatile__(
469 /* Preload */
470 "movq %q9, %%r11\n"
471 "movq %q10, %%r12\n"
472 "movq %q11, %%r13\n"
473 /* Initialize (r8,r9,r10) */
474 "movq %q5, %%r8\n"
475 "xorq %%r9, %%r9\n"
476 "xorq %%r10, %%r10\n"
477 /* (r8,r9) += m4 * c0 */
478 "movq %12, %%rax\n"
479 "mulq %%r11\n"
480 "addq %%rax, %%r8\n"
481 "adcq %%rdx, %%r9\n"
482 /* extract p0 */
483 "movq %%r8, %q0\n"
484 "xorq %%r8, %%r8\n"
485 /* (r9,r10) += m1 */
486 "addq %q6, %%r9\n"
487 "adcq $0, %%r10\n"
488 /* (r9,r10,r8) += m5 * c0 */
489 "movq %12, %%rax\n"
490 "mulq %%r12\n"
491 "addq %%rax, %%r9\n"
492 "adcq %%rdx, %%r10\n"
493 "adcq $0, %%r8\n"
494 /* (r9,r10,r8) += m4 * c1 */
495 "movq %13, %%rax\n"
496 "mulq %%r11\n"
497 "addq %%rax, %%r9\n"
498 "adcq %%rdx, %%r10\n"
499 "adcq $0, %%r8\n"
500 /* extract p1 */
501 "movq %%r9, %q1\n"
502 "xorq %%r9, %%r9\n"
503 /* (r10,r8,r9) += m2 */
504 "addq %q7, %%r10\n"
505 "adcq $0, %%r8\n"
506 "adcq $0, %%r9\n"
507 /* (r10,r8,r9) += m6 * c0 */
508 "movq %12, %%rax\n"
509 "mulq %%r13\n"
510 "addq %%rax, %%r10\n"
511 "adcq %%rdx, %%r8\n"
512 "adcq $0, %%r9\n"
513 /* (r10,r8,r9) += m5 * c1 */
514 "movq %13, %%rax\n"
515 "mulq %%r12\n"
516 "addq %%rax, %%r10\n"
517 "adcq %%rdx, %%r8\n"
518 "adcq $0, %%r9\n"
519 /* (r10,r8,r9) += m4 */
520 "addq %%r11, %%r10\n"
521 "adcq $0, %%r8\n"
522 "adcq $0, %%r9\n"
523 /* extract p2 */
524 "movq %%r10, %q2\n"
525 /* (r8,r9) += m3 */
526 "addq %q8, %%r8\n"
527 "adcq $0, %%r9\n"
528 /* (r8,r9) += m6 * c1 */
529 "movq %13, %%rax\n"
530 "mulq %%r13\n"
531 "addq %%rax, %%r8\n"
532 "adcq %%rdx, %%r9\n"
533 /* (r8,r9) += m5 */
534 "addq %%r12, %%r8\n"
535 "adcq $0, %%r9\n"
536 /* extract p3 */
537 "movq %%r8, %q3\n"
538 /* (r9) += m6 */
539 "addq %%r13, %%r9\n"
540 /* extract p4 */
541 "movq %%r9, %q4\n"
542 : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
543 : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
544 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
545
546 SECP256K1_CHECKMEM_MSAN_DEFINE(&p0, sizeof(p0));
547 SECP256K1_CHECKMEM_MSAN_DEFINE(&p1, sizeof(p1));
548 SECP256K1_CHECKMEM_MSAN_DEFINE(&p2, sizeof(p2));
549 SECP256K1_CHECKMEM_MSAN_DEFINE(&p3, sizeof(p3));
550 SECP256K1_CHECKMEM_MSAN_DEFINE(&p4, sizeof(p4));
551
552 /* Reduce 258 bits into 256. */
553 __asm__ __volatile__(
554 /* Preload */
555 "movq %q5, %%r10\n"
556 /* (rax,rdx) = p4 * c0 */
557 "movq %7, %%rax\n"
558 "mulq %%r10\n"
559 /* (rax,rdx) += p0 */
560 "addq %q1, %%rax\n"
561 "adcq $0, %%rdx\n"
562 /* extract r0 */
563 "movq %%rax, 0(%q6)\n"
564 /* Move to (r8,r9) */
565 "movq %%rdx, %%r8\n"
566 "xorq %%r9, %%r9\n"
567 /* (r8,r9) += p1 */
568 "addq %q2, %%r8\n"
569 "adcq $0, %%r9\n"
570 /* (r8,r9) += p4 * c1 */
571 "movq %8, %%rax\n"
572 "mulq %%r10\n"
573 "addq %%rax, %%r8\n"
574 "adcq %%rdx, %%r9\n"
575 /* Extract r1 */
576 "movq %%r8, 8(%q6)\n"
577 "xorq %%r8, %%r8\n"
578 /* (r9,r8) += p4 */
579 "addq %%r10, %%r9\n"
580 "adcq $0, %%r8\n"
581 /* (r9,r8) += p2 */
582 "addq %q3, %%r9\n"
583 "adcq $0, %%r8\n"
584 /* Extract r2 */
585 "movq %%r9, 16(%q6)\n"
586 "xorq %%r9, %%r9\n"
587 /* (r8,r9) += p3 */
588 "addq %q4, %%r8\n"
589 "adcq $0, %%r9\n"
590 /* Extract r3 */
591 "movq %%r8, 24(%q6)\n"
592 /* Extract c */
593 "movq %%r9, %q0\n"
594 : "=g"(c)
595 : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
596 : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
597
598 SECP256K1_CHECKMEM_MSAN_DEFINE(r, sizeof(*r));
599 SECP256K1_CHECKMEM_MSAN_DEFINE(&c, sizeof(c));
600
601#else
603 uint64_t c, c0, c1, c2;
604 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
605 uint64_t m0, m1, m2, m3, m4, m5;
606 uint32_t m6;
607 uint64_t p0, p1, p2, p3;
608 uint32_t p4;
609
610 /* Reduce 512 bits into 385. */
611 /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
612 c0 = l[0]; c1 = 0; c2 = 0;
614 extract_fast(m0);
615 sumadd_fast(l[1]);
618 extract(m1);
619 sumadd(l[2]);
622 sumadd(n0);
623 extract(m2);
624 sumadd(l[3]);
627 sumadd(n1);
628 extract(m3);
630 sumadd(n2);
631 extract(m4);
632 sumadd_fast(n3);
633 extract_fast(m5);
634 VERIFY_CHECK(c0 <= 1);
635 m6 = c0;
636
637 /* Reduce 385 bits into 258. */
638 /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
639 c0 = m0; c1 = 0; c2 = 0;
641 extract_fast(p0);
642 sumadd_fast(m1);
645 extract(p1);
646 sumadd(m2);
649 sumadd(m4);
650 extract(p2);
651 sumadd_fast(m3);
653 sumadd_fast(m5);
654 extract_fast(p3);
655 p4 = c0 + m6;
656 VERIFY_CHECK(p4 <= 2);
657
658 /* Reduce 258 bits into 256. */
659 /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
660 secp256k1_u128_from_u64(&c128, p0);
662 r->d[0] = secp256k1_u128_to_u64(&c128); secp256k1_u128_rshift(&c128, 64);
663 secp256k1_u128_accum_u64(&c128, p1);
665 r->d[1] = secp256k1_u128_to_u64(&c128); secp256k1_u128_rshift(&c128, 64);
666 secp256k1_u128_accum_u64(&c128, p2);
667 secp256k1_u128_accum_u64(&c128, p4);
668 r->d[2] = secp256k1_u128_to_u64(&c128); secp256k1_u128_rshift(&c128, 64);
669 secp256k1_u128_accum_u64(&c128, p3);
670 r->d[3] = secp256k1_u128_to_u64(&c128);
671 c = secp256k1_u128_hi_u64(&c128);
672#endif
673
674 /* Final reduction of r. */
676}
677
678static void secp256k1_scalar_mul_512(uint64_t *l8, const secp256k1_scalar *a, const secp256k1_scalar *b) {
679#ifdef USE_ASM_X86_64
680 const uint64_t *pb = b->d;
681 __asm__ __volatile__(
682 /* Preload */
683 "movq 0(%%rdi), %%r15\n"
684 "movq 8(%%rdi), %%rbx\n"
685 "movq 16(%%rdi), %%rcx\n"
686 "movq 0(%%rdx), %%r11\n"
687 "movq 8(%%rdx), %%r12\n"
688 "movq 16(%%rdx), %%r13\n"
689 "movq 24(%%rdx), %%r14\n"
690 /* (rax,rdx) = a0 * b0 */
691 "movq %%r15, %%rax\n"
692 "mulq %%r11\n"
693 /* Extract l8[0] */
694 "movq %%rax, 0(%%rsi)\n"
695 /* (r8,r9,r10) = (rdx) */
696 "movq %%rdx, %%r8\n"
697 "xorq %%r9, %%r9\n"
698 "xorq %%r10, %%r10\n"
699 /* (r8,r9,r10) += a0 * b1 */
700 "movq %%r15, %%rax\n"
701 "mulq %%r12\n"
702 "addq %%rax, %%r8\n"
703 "adcq %%rdx, %%r9\n"
704 "adcq $0, %%r10\n"
705 /* (r8,r9,r10) += a1 * b0 */
706 "movq %%rbx, %%rax\n"
707 "mulq %%r11\n"
708 "addq %%rax, %%r8\n"
709 "adcq %%rdx, %%r9\n"
710 "adcq $0, %%r10\n"
711 /* Extract l8[1] */
712 "movq %%r8, 8(%%rsi)\n"
713 "xorq %%r8, %%r8\n"
714 /* (r9,r10,r8) += a0 * b2 */
715 "movq %%r15, %%rax\n"
716 "mulq %%r13\n"
717 "addq %%rax, %%r9\n"
718 "adcq %%rdx, %%r10\n"
719 "adcq $0, %%r8\n"
720 /* (r9,r10,r8) += a1 * b1 */
721 "movq %%rbx, %%rax\n"
722 "mulq %%r12\n"
723 "addq %%rax, %%r9\n"
724 "adcq %%rdx, %%r10\n"
725 "adcq $0, %%r8\n"
726 /* (r9,r10,r8) += a2 * b0 */
727 "movq %%rcx, %%rax\n"
728 "mulq %%r11\n"
729 "addq %%rax, %%r9\n"
730 "adcq %%rdx, %%r10\n"
731 "adcq $0, %%r8\n"
732 /* Extract l8[2] */
733 "movq %%r9, 16(%%rsi)\n"
734 "xorq %%r9, %%r9\n"
735 /* (r10,r8,r9) += a0 * b3 */
736 "movq %%r15, %%rax\n"
737 "mulq %%r14\n"
738 "addq %%rax, %%r10\n"
739 "adcq %%rdx, %%r8\n"
740 "adcq $0, %%r9\n"
741 /* Preload a3 */
742 "movq 24(%%rdi), %%r15\n"
743 /* (r10,r8,r9) += a1 * b2 */
744 "movq %%rbx, %%rax\n"
745 "mulq %%r13\n"
746 "addq %%rax, %%r10\n"
747 "adcq %%rdx, %%r8\n"
748 "adcq $0, %%r9\n"
749 /* (r10,r8,r9) += a2 * b1 */
750 "movq %%rcx, %%rax\n"
751 "mulq %%r12\n"
752 "addq %%rax, %%r10\n"
753 "adcq %%rdx, %%r8\n"
754 "adcq $0, %%r9\n"
755 /* (r10,r8,r9) += a3 * b0 */
756 "movq %%r15, %%rax\n"
757 "mulq %%r11\n"
758 "addq %%rax, %%r10\n"
759 "adcq %%rdx, %%r8\n"
760 "adcq $0, %%r9\n"
761 /* Extract l8[3] */
762 "movq %%r10, 24(%%rsi)\n"
763 "xorq %%r10, %%r10\n"
764 /* (r8,r9,r10) += a1 * b3 */
765 "movq %%rbx, %%rax\n"
766 "mulq %%r14\n"
767 "addq %%rax, %%r8\n"
768 "adcq %%rdx, %%r9\n"
769 "adcq $0, %%r10\n"
770 /* (r8,r9,r10) += a2 * b2 */
771 "movq %%rcx, %%rax\n"
772 "mulq %%r13\n"
773 "addq %%rax, %%r8\n"
774 "adcq %%rdx, %%r9\n"
775 "adcq $0, %%r10\n"
776 /* (r8,r9,r10) += a3 * b1 */
777 "movq %%r15, %%rax\n"
778 "mulq %%r12\n"
779 "addq %%rax, %%r8\n"
780 "adcq %%rdx, %%r9\n"
781 "adcq $0, %%r10\n"
782 /* Extract l8[4] */
783 "movq %%r8, 32(%%rsi)\n"
784 "xorq %%r8, %%r8\n"
785 /* (r9,r10,r8) += a2 * b3 */
786 "movq %%rcx, %%rax\n"
787 "mulq %%r14\n"
788 "addq %%rax, %%r9\n"
789 "adcq %%rdx, %%r10\n"
790 "adcq $0, %%r8\n"
791 /* (r9,r10,r8) += a3 * b2 */
792 "movq %%r15, %%rax\n"
793 "mulq %%r13\n"
794 "addq %%rax, %%r9\n"
795 "adcq %%rdx, %%r10\n"
796 "adcq $0, %%r8\n"
797 /* Extract l8[5] */
798 "movq %%r9, 40(%%rsi)\n"
799 /* (r10,r8) += a3 * b3 */
800 "movq %%r15, %%rax\n"
801 "mulq %%r14\n"
802 "addq %%rax, %%r10\n"
803 "adcq %%rdx, %%r8\n"
804 /* Extract l8[6] */
805 "movq %%r10, 48(%%rsi)\n"
806 /* Extract l8[7] */
807 "movq %%r8, 56(%%rsi)\n"
808 : "+d"(pb)
809 : "S"(l8), "D"(a->d)
810 : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
811
812 SECP256K1_CHECKMEM_MSAN_DEFINE(l8, sizeof(*l8) * 8);
813
814#else
815 /* 160 bit accumulator. */
816 uint64_t c0 = 0, c1 = 0;
817 uint32_t c2 = 0;
818
819 /* l8[0..7] = a[0..3] * b[0..3]. */
820 muladd_fast(a->d[0], b->d[0]);
821 extract_fast(l8[0]);
822 muladd(a->d[0], b->d[1]);
823 muladd(a->d[1], b->d[0]);
824 extract(l8[1]);
825 muladd(a->d[0], b->d[2]);
826 muladd(a->d[1], b->d[1]);
827 muladd(a->d[2], b->d[0]);
828 extract(l8[2]);
829 muladd(a->d[0], b->d[3]);
830 muladd(a->d[1], b->d[2]);
831 muladd(a->d[2], b->d[1]);
832 muladd(a->d[3], b->d[0]);
833 extract(l8[3]);
834 muladd(a->d[1], b->d[3]);
835 muladd(a->d[2], b->d[2]);
836 muladd(a->d[3], b->d[1]);
837 extract(l8[4]);
838 muladd(a->d[2], b->d[3]);
839 muladd(a->d[3], b->d[2]);
840 extract(l8[5]);
841 muladd_fast(a->d[3], b->d[3]);
842 extract_fast(l8[6]);
843 VERIFY_CHECK(c1 == 0);
844 l8[7] = c0;
845#endif
846}
847
848#undef sumadd
849#undef sumadd_fast
850#undef muladd
851#undef muladd_fast
852#undef extract
853#undef extract_fast
854
856 uint64_t l[8];
859
862
864}
865
868
869 r1->d[0] = k->d[0];
870 r1->d[1] = k->d[1];
871 r1->d[2] = 0;
872 r1->d[3] = 0;
873 r2->d[0] = k->d[2];
874 r2->d[1] = k->d[3];
875 r2->d[2] = 0;
876 r2->d[3] = 0;
877
880}
881
885
886 return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
887}
888
890 uint64_t l[8];
891 unsigned int shiftlimbs;
892 unsigned int shiftlow;
893 unsigned int shifthigh;
896 VERIFY_CHECK(shift >= 256);
897
899 shiftlimbs = shift >> 6;
900 shiftlow = shift & 0x3F;
901 shifthigh = 64 - shiftlow;
902 r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
903 r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
904 r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
905 r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
906 secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
907
909}
910
912 uint64_t mask0, mask1;
913 volatile int vflag = flag;
915 SECP256K1_CHECKMEM_CHECK_VERIFY(r->d, sizeof(r->d));
916
917 mask0 = vflag + ~((uint64_t)0);
918 mask1 = ~mask0;
919 r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
920 r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
921 r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
922 r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
923
925}
926
928 const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
929
930 /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
931 * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
932 */
933 VERIFY_CHECK(a0 >> 62 == 0);
934 VERIFY_CHECK(a1 >> 62 == 0);
935 VERIFY_CHECK(a2 >> 62 == 0);
936 VERIFY_CHECK(a3 >> 62 == 0);
937 VERIFY_CHECK(a4 >> 8 == 0);
938
939 r->d[0] = a0 | a1 << 62;
940 r->d[1] = a1 >> 2 | a2 << 60;
941 r->d[2] = a2 >> 4 | a3 << 58;
942 r->d[3] = a3 >> 6 | a4 << 56;
943
945}
946
948 const uint64_t M62 = UINT64_MAX >> 2;
949 const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3];
951
952 r->v[0] = a0 & M62;
953 r->v[1] = (a0 >> 62 | a1 << 2) & M62;
954 r->v[2] = (a1 >> 60 | a2 << 4) & M62;
955 r->v[3] = (a2 >> 58 | a3 << 6) & M62;
956 r->v[4] = a3 >> 56;
957}
958
960 {{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
961 0x34F20099AA774EC1LL
962};
963
966#ifdef VERIFY
967 int zero_in = secp256k1_scalar_is_zero(x);
968#endif
970
974
977}
978
981#ifdef VERIFY
982 int zero_in = secp256k1_scalar_is_zero(x);
983#endif
985
989
992}
993
996
997 return !(a->d[0] & 1);
998}
999
1000#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#define SECP256K1_CHECKMEM_MSAN_DEFINE(p, len)
Definition: checkmem.h:60
#define SECP256K1_CHECKMEM_CHECK_VERIFY(p, len)
Definition: checkmem.h:99
static SECP256K1_INLINE uint64_t secp256k1_u128_hi_u64(const secp256k1_uint128 *a)
static SECP256K1_INLINE void secp256k1_u128_from_u64(secp256k1_uint128 *r, uint64_t a)
static SECP256K1_INLINE void secp256k1_u128_rshift(secp256k1_uint128 *r, unsigned int n)
static SECP256K1_INLINE void secp256k1_u128_accum_u64(secp256k1_uint128 *r, uint64_t a)
static SECP256K1_INLINE void secp256k1_u128_accum_mul(secp256k1_uint128 *r, uint64_t a, uint64_t b)
static SECP256K1_INLINE uint64_t secp256k1_u128_to_u64(const secp256k1_uint128 *a)
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
#define SECP256K1_SCALAR_VERIFY(r)
Definition: scalar.h:103
static SECP256K1_INLINE int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
static void secp256k1_scalar_half(secp256k1_scalar *r, const secp256k1_scalar *a)
#define SECP256K1_N_3
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
#define extract(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define SECP256K1_N_C_2
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow)
#define SECP256K1_N_C_1
static SECP256K1_INLINE uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x)
static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
#define SECP256K1_N_1
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l)
#define SECP256K1_N_2
#define SECP256K1_N_H_2
static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a)
static SECP256K1_INLINE void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x)
#define SECP256K1_N_C_0
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
#define extract_fast(n)
Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits.
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a)
#define SECP256K1_N_H_0
static SECP256K1_INLINE int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag)
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define SECP256K1_N_H_1
static SECP256K1_INLINE int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow)
#define SECP256K1_N_0
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static void secp256k1_scalar_mul_512(uint64_t *l8, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define SECP256K1_N_H_3
static SECP256K1_INLINE uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
static SECP256K1_INLINE int secp256k1_scalar_is_one(const secp256k1_scalar *a)
#define SECP256K1_INLINE
Definition: util.h:54
static SECP256K1_INLINE void secp256k1_write_be64(unsigned char *p, uint64_t x)
Definition: util.h:428
#define VERIFY_CHECK(cond)
Definition: util.h:159
static SECP256K1_INLINE uint64_t secp256k1_read_be64(const unsigned char *p)
Definition: util.h:416
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
uint64_t d[4]
Definition: scalar_4x64.h:14
static int count