Bitcoin Core 28.99.0
P2P Digital Currency
merkleblock.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2020 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <merkleblock.h>
7
8#include <hash.h>
10
11
12std::vector<unsigned char> BitsToBytes(const std::vector<bool>& bits)
13{
14 std::vector<unsigned char> ret((bits.size() + 7) / 8);
15 for (unsigned int p = 0; p < bits.size(); p++) {
16 ret[p / 8] |= bits[p] << (p % 8);
17 }
18 return ret;
19}
20
21std::vector<bool> BytesToBits(const std::vector<unsigned char>& bytes)
22{
23 std::vector<bool> ret(bytes.size() * 8);
24 for (unsigned int p = 0; p < ret.size(); p++) {
25 ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0;
26 }
27 return ret;
28}
29
30CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set<Txid>* txids)
31{
32 header = block.GetBlockHeader();
33
34 std::vector<bool> vMatch;
35 std::vector<uint256> vHashes;
36
37 vMatch.reserve(block.vtx.size());
38 vHashes.reserve(block.vtx.size());
39
40 for (unsigned int i = 0; i < block.vtx.size(); i++)
41 {
42 const Txid& hash{block.vtx[i]->GetHash()};
43 if (txids && txids->count(hash)) {
44 vMatch.push_back(true);
45 } else if (filter && filter->IsRelevantAndUpdate(*block.vtx[i])) {
46 vMatch.push_back(true);
47 vMatchedTxn.emplace_back(i, hash);
48 } else {
49 vMatch.push_back(false);
50 }
51 vHashes.push_back(hash);
52 }
53
54 txn = CPartialMerkleTree(vHashes, vMatch);
55}
56
57// NOLINTNEXTLINE(misc-no-recursion)
58uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
59 //we can never have zero txs in a merkle block, we always need the coinbase tx
60 //if we do not have this assert, we can hit a memory access violation when indexing into vTxid
61 assert(vTxid.size() != 0);
62 if (height == 0) {
63 // hash at height 0 is the txids themselves
64 return vTxid[pos];
65 } else {
66 // calculate left hash
67 uint256 left = CalcHash(height-1, pos*2, vTxid), right;
68 // calculate right hash if not beyond the end of the array - copy left hash otherwise
69 if (pos*2+1 < CalcTreeWidth(height-1))
70 right = CalcHash(height-1, pos*2+1, vTxid);
71 else
72 right = left;
73 // combine subhashes
74 return Hash(left, right);
75 }
76}
77
78// NOLINTNEXTLINE(misc-no-recursion)
79void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
80 // determine whether this node is the parent of at least one matched txid
81 bool fParentOfMatch = false;
82 for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
83 fParentOfMatch |= vMatch[p];
84 // store as flag bit
85 vBits.push_back(fParentOfMatch);
86 if (height==0 || !fParentOfMatch) {
87 // if at height 0, or nothing interesting below, store hash and stop
88 vHash.push_back(CalcHash(height, pos, vTxid));
89 } else {
90 // otherwise, don't store any hash, but descend into the subtrees
91 TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
92 if (pos*2+1 < CalcTreeWidth(height-1))
93 TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
94 }
95}
96
97// NOLINTNEXTLINE(misc-no-recursion)
98uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
99 if (nBitsUsed >= vBits.size()) {
100 // overflowed the bits array - failure
101 fBad = true;
102 return uint256();
103 }
104 bool fParentOfMatch = vBits[nBitsUsed++];
105 if (height==0 || !fParentOfMatch) {
106 // if at height 0, or nothing interesting below, use stored hash and do not descend
107 if (nHashUsed >= vHash.size()) {
108 // overflowed the hash array - failure
109 fBad = true;
110 return uint256();
111 }
112 const uint256 &hash = vHash[nHashUsed++];
113 if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid
114 vMatch.push_back(hash);
115 vnIndex.push_back(pos);
116 }
117 return hash;
118 } else {
119 // otherwise, descend into the subtrees to extract matched txids and hashes
120 uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right;
121 if (pos*2+1 < CalcTreeWidth(height-1)) {
122 right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex);
123 if (right == left) {
124 // The left and right branches should never be identical, as the transaction
125 // hashes covered by them must each be unique.
126 fBad = true;
127 }
128 } else {
129 right = left;
130 }
131 // and combine them before returning
132 return Hash(left, right);
133 }
134}
135
136CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
137 // reset state
138 vBits.clear();
139 vHash.clear();
140
141 // calculate height of tree
142 int nHeight = 0;
143 while (CalcTreeWidth(nHeight) > 1)
144 nHeight++;
145
146 // traverse the partial tree
147 TraverseAndBuild(nHeight, 0, vTxid, vMatch);
148}
149
150CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
151
152uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
153 vMatch.clear();
154 // An empty set will not work
155 if (nTransactions == 0)
156 return uint256();
157 // check for excessively high numbers of transactions
159 return uint256();
160 // there can never be more hashes provided than one for every txid
161 if (vHash.size() > nTransactions)
162 return uint256();
163 // there must be at least one bit per node in the partial tree, and at least one node per hash
164 if (vBits.size() < vHash.size())
165 return uint256();
166 // calculate height of tree
167 int nHeight = 0;
168 while (CalcTreeWidth(nHeight) > 1)
169 nHeight++;
170 // traverse the partial tree
171 unsigned int nBitsUsed = 0, nHashUsed = 0;
172 uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
173 // verify that no problems occurred during the tree traversal
174 if (fBad)
175 return uint256();
176 // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
177 if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
178 return uint256();
179 // verify that all hashes were consumed
180 if (nHashUsed != vHash.size())
181 return uint256();
182 return hashMerkleRoot;
183}
int ret
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
CBlockHeader GetBlockHeader() const
Definition: block.h:104
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsRelevantAndUpdate(const CTransaction &tx)
Also adds any outputs which match the filter to the filter (to match their spending txes)
Definition: bloom.cpp:94
CBlockHeader header
Public only for unit testing.
Definition: merkleblock.h:129
std::vector< std::pair< unsigned int, uint256 > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:138
CPartialMerkleTree txn
Definition: merkleblock.h:130
CMerkleBlock()=default
Data structure that represents a partial merkle tree.
Definition: merkleblock.h:56
unsigned int nTransactions
the total number of transactions in the block
Definition: merkleblock.h:59
std::vector< bool > vBits
node-is-parent-of-matched-txid bits
Definition: merkleblock.h:62
bool fBad
flag set when encountering invalid data
Definition: merkleblock.h:68
uint256 ExtractMatches(std::vector< uint256 > &vMatch, std::vector< unsigned int > &vnIndex)
extract the matching txid's represented by this partial merkle tree and their respective indices with...
void TraverseAndBuild(int height, unsigned int pos, const std::vector< uint256 > &vTxid, const std::vector< bool > &vMatch)
recursive function that traverses tree nodes, storing the data as bits and hashes
Definition: merkleblock.cpp:79
uint256 CalcHash(int height, unsigned int pos, const std::vector< uint256 > &vTxid)
calculate the hash of a node in the merkle tree (at leaf level: the txid's themselves)
Definition: merkleblock.cpp:58
std::vector< uint256 > vHash
txids and internal hashes
Definition: merkleblock.h:65
uint256 TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector< uint256 > &vMatch, std::vector< unsigned int > &vnIndex)
recursive function that traverses tree nodes, consuming the bits and hashes produced by TraverseAndBu...
Definition: merkleblock.cpp:98
unsigned int CalcTreeWidth(int height) const
helper function to efficiently calculate the number of nodes at given height in the merkle tree
Definition: merkleblock.h:71
256-bit opaque blob.
Definition: uint256.h:201
static const unsigned int MAX_BLOCK_WEIGHT
The maximum allowed weight for a block, see BIP 141 (network rule)
Definition: consensus.h:15
static const size_t MIN_TRANSACTION_WEIGHT
Definition: consensus.h:23
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
unsigned int nHeight
std::vector< unsigned char > BitsToBytes(const std::vector< bool > &bits)
Definition: merkleblock.cpp:12
std::vector< bool > BytesToBits(const std::vector< unsigned char > &bytes)
Definition: merkleblock.cpp:21
assert(!tx.IsCoinBase())