Bitcoin Core 28.99.0
P2P Digital Currency
scheduler_tests.cpp
Go to the documentation of this file.
1// Copyright (c) 2012-2022 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <random.h>
6#include <scheduler.h>
7#include <util/time.h>
8
9#include <boost/test/unit_test.hpp>
10
11#include <functional>
12#include <mutex>
13#include <thread>
14#include <vector>
15
16BOOST_AUTO_TEST_SUITE(scheduler_tests)
17
18static void microTask(CScheduler& s, std::mutex& mutex, int& counter, int delta, std::chrono::steady_clock::time_point rescheduleTime)
19{
20 {
21 std::lock_guard<std::mutex> lock(mutex);
22 counter += delta;
23 }
24 auto noTime = std::chrono::steady_clock::time_point::min();
25 if (rescheduleTime != noTime) {
26 CScheduler::Function f = std::bind(&microTask, std::ref(s), std::ref(mutex), std::ref(counter), -delta + 1, noTime);
27 s.schedule(f, rescheduleTime);
28 }
29}
30
32{
33 // Stress test: hundreds of microsecond-scheduled tasks,
34 // serviced by 10 threads.
35 //
36 // So... ten shared counters, which if all the tasks execute
37 // properly will sum to the number of tasks done.
38 // Each task adds or subtracts a random amount from one of the
39 // counters, and then schedules another task 0-1000
40 // microseconds in the future to subtract or add from
41 // the counter -random_amount+1, so in the end the shared
42 // counters should sum to the number of initial tasks performed.
43 CScheduler microTasks;
44
45 std::mutex counterMutex[10];
46 int counter[10] = { 0 };
47 FastRandomContext rng{/*fDeterministic=*/true};
48 auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9]
49 auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000]
50 auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000]
51
52 auto start = std::chrono::steady_clock::now();
53 auto now = start;
54 std::chrono::steady_clock::time_point first, last;
55 size_t nTasks = microTasks.getQueueInfo(first, last);
56 BOOST_CHECK(nTasks == 0);
57
58 for (int i = 0; i < 100; ++i) {
59 auto t = now + std::chrono::microseconds(randomMsec(rng));
60 auto tReschedule = now + std::chrono::microseconds(500 + randomMsec(rng));
61 int whichCounter = zeroToNine(rng);
62 CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
63 std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
64 randomDelta(rng), tReschedule);
65 microTasks.schedule(f, t);
66 }
67 nTasks = microTasks.getQueueInfo(first, last);
68 BOOST_CHECK(nTasks == 100);
69 BOOST_CHECK(first < last);
70 BOOST_CHECK(last > now);
71
72 // As soon as these are created they will start running and servicing the queue
73 std::vector<std::thread> microThreads;
74 microThreads.reserve(10);
75 for (int i = 0; i < 5; i++)
76 microThreads.emplace_back(std::bind(&CScheduler::serviceQueue, &microTasks));
77
78 UninterruptibleSleep(std::chrono::microseconds{600});
79 now = std::chrono::steady_clock::now();
80
81 // More threads and more tasks:
82 for (int i = 0; i < 5; i++)
83 microThreads.emplace_back(std::bind(&CScheduler::serviceQueue, &microTasks));
84 for (int i = 0; i < 100; i++) {
85 auto t = now + std::chrono::microseconds(randomMsec(rng));
86 auto tReschedule = now + std::chrono::microseconds(500 + randomMsec(rng));
87 int whichCounter = zeroToNine(rng);
88 CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
89 std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
90 randomDelta(rng), tReschedule);
91 microTasks.schedule(f, t);
92 }
93
94 // Drain the task queue then exit threads
95 microTasks.StopWhenDrained();
96 // wait until all the threads are done
97 for (auto& thread: microThreads) {
98 if (thread.joinable()) thread.join();
99 }
100
101 int counterSum = 0;
102 for (int i = 0; i < 10; i++) {
103 BOOST_CHECK(counter[i] != 0);
104 counterSum += counter[i];
105 }
106 BOOST_CHECK_EQUAL(counterSum, 200);
107}
108
109BOOST_AUTO_TEST_CASE(wait_until_past)
110{
111 std::condition_variable condvar;
112 Mutex mtx;
113 WAIT_LOCK(mtx, lock);
114
115 const auto no_wait = [&](const std::chrono::seconds& d) {
116 return condvar.wait_until(lock, std::chrono::steady_clock::now() - d);
117 };
118
119 BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::seconds{1}));
120 BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::minutes{1}));
121 BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1}));
122 BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{10}));
123 BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{100}));
124 BOOST_CHECK(std::cv_status::timeout == no_wait(std::chrono::hours{1000}));
125}
126
127BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)
128{
129 CScheduler scheduler;
130
131 // each queue should be well ordered with respect to itself but not other queues
132 SerialTaskRunner queue1(scheduler);
133 SerialTaskRunner queue2(scheduler);
134
135 // create more threads than queues
136 // if the queues only permit execution of one task at once then
137 // the extra threads should effectively be doing nothing
138 // if they don't we'll get out of order behaviour
139 std::vector<std::thread> threads;
140 threads.reserve(5);
141 for (int i = 0; i < 5; ++i) {
142 threads.emplace_back([&] { scheduler.serviceQueue(); });
143 }
144
145 // these are not atomic, if SerialTaskRunner prevents
146 // parallel execution at the queue level no synchronization should be required here
147 int counter1 = 0;
148 int counter2 = 0;
149
150 // just simply count up on each queue - if execution is properly ordered then
151 // the callbacks should run in exactly the order in which they were enqueued
152 for (int i = 0; i < 100; ++i) {
153 queue1.insert([i, &counter1]() {
154 bool expectation = i == counter1++;
155 assert(expectation);
156 });
157
158 queue2.insert([i, &counter2]() {
159 bool expectation = i == counter2++;
160 assert(expectation);
161 });
162 }
163
164 // finish up
165 scheduler.StopWhenDrained();
166 for (auto& thread: threads) {
167 if (thread.joinable()) thread.join();
168 }
169
170 BOOST_CHECK_EQUAL(counter1, 100);
171 BOOST_CHECK_EQUAL(counter2, 100);
172}
173
175{
176 CScheduler scheduler;
177
178 int counter{0};
179 CScheduler::Function dummy = [&counter]{counter++;};
180
181 // schedule jobs for 2, 5 & 8 minutes into the future
182
183 scheduler.scheduleFromNow(dummy, std::chrono::minutes{2});
184 scheduler.scheduleFromNow(dummy, std::chrono::minutes{5});
185 scheduler.scheduleFromNow(dummy, std::chrono::minutes{8});
186
187 // check taskQueue
188 std::chrono::steady_clock::time_point first, last;
189 size_t num_tasks = scheduler.getQueueInfo(first, last);
190 BOOST_CHECK_EQUAL(num_tasks, 3ul);
191
192 std::thread scheduler_thread([&]() { scheduler.serviceQueue(); });
193
194 // bump the scheduler forward 5 minutes
195 scheduler.MockForward(std::chrono::minutes{5});
196
197 // ensure scheduler has chance to process all tasks queued for before 1 ms from now.
198 scheduler.scheduleFromNow([&scheduler] { scheduler.stop(); }, std::chrono::milliseconds{1});
199 scheduler_thread.join();
200
201 // check that the queue only has one job remaining
202 num_tasks = scheduler.getQueueInfo(first, last);
203 BOOST_CHECK_EQUAL(num_tasks, 1ul);
204
205 // check that the dummy function actually ran
206 BOOST_CHECK_EQUAL(counter, 2);
207
208 // check that the time of the remaining job has been updated
209 auto now = std::chrono::steady_clock::now();
210 int delta = std::chrono::duration_cast<std::chrono::seconds>(first - now).count();
211 // should be between 2 & 3 minutes from now
212 BOOST_CHECK(delta > 2*60 && delta < 3*60);
213}
214
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void MockForward(std::chrono::seconds delta_seconds) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Mock the scheduler to fast forward in time.
Definition: scheduler.cpp:80
void serviceQueue() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Services the queue 'forever'.
Definition: scheduler.cpp:23
size_t getQueueInfo(std::chrono::steady_clock::time_point &first, std::chrono::steady_clock::time_point &last) const EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Returns number of tasks waiting to be serviced, and first and last task times.
Definition: scheduler.cpp:113
std::function< void()> Function
Definition: scheduler.h:47
void StopWhenDrained() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Tell any threads running serviceQueue to stop when there is no work left to be done.
Definition: scheduler.h:86
void stop() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Tell any threads running serviceQueue to stop as soon as the current task is done.
Definition: scheduler.h:79
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
void schedule(Function f, std::chrono::steady_clock::time_point t) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call func at/after time t.
Definition: scheduler.cpp:71
Fast randomness source.
Definition: random.h:377
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
Class used by CScheduler clients which may schedule multiple jobs which are required to be run serial...
Definition: scheduler.h:125
void insert(std::function< void()> func) override EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex)
Add a callback to be executed.
Definition: scheduler.cpp:176
BOOST_AUTO_TEST_SUITE_END()
#define BOOST_CHECK_EQUAL(v1, v2)
Definition: object.cpp:18
#define BOOST_CHECK(expr)
Definition: object.cpp:17
BOOST_AUTO_TEST_CASE(manythreads)
static void microTask(CScheduler &s, std::mutex &mutex, int &counter, int delta, std::chrono::steady_clock::time_point rescheduleTime)
#define WAIT_LOCK(cs, name)
Definition: sync.h:262
void UninterruptibleSleep(const std::chrono::microseconds &n)
Definition: time.cpp:20
assert(!tx.IsCoinBase())