Bitcoin Core 28.99.0
P2P Digital Currency
txrequest.cpp
Go to the documentation of this file.
1// Copyright (c) 2020-2021 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <txrequest.h>
6
7#include <crypto/siphash.h>
8#include <net.h>
10#include <random.h>
11#include <uint256.h>
12
13#include <boost/multi_index/indexed_by.hpp>
14#include <boost/multi_index/ordered_index.hpp>
15#include <boost/multi_index/sequenced_index.hpp>
16#include <boost/multi_index/tag.hpp>
17#include <boost/multi_index_container.hpp>
18#include <boost/tuple/tuple.hpp>
19
20#include <chrono>
21#include <unordered_map>
22#include <utility>
23
24#include <assert.h>
25
26namespace {
27
42enum class State : uint8_t {
44 CANDIDATE_DELAYED,
46 CANDIDATE_READY,
50 CANDIDATE_BEST,
52 REQUESTED,
54 COMPLETED,
55};
56
58using SequenceNumber = uint64_t;
59
61struct Announcement {
63 const uint256 m_txhash;
65 std::chrono::microseconds m_time;
67 const NodeId m_peer;
69 const SequenceNumber m_sequence : 59;
71 const bool m_preferred : 1;
73 const bool m_is_wtxid : 1;
74
76 State m_state : 3 {State::CANDIDATE_DELAYED};
77 State GetState() const { return m_state; }
78 void SetState(State state) { m_state = state; }
79
81 bool IsSelected() const
82 {
83 return GetState() == State::CANDIDATE_BEST || GetState() == State::REQUESTED;
84 }
85
87 bool IsWaiting() const
88 {
89 return GetState() == State::REQUESTED || GetState() == State::CANDIDATE_DELAYED;
90 }
91
93 bool IsSelectable() const
94 {
95 return GetState() == State::CANDIDATE_READY || GetState() == State::CANDIDATE_BEST;
96 }
97
99 Announcement(const GenTxid& gtxid, NodeId peer, bool preferred, std::chrono::microseconds reqtime,
100 SequenceNumber sequence)
101 : m_txhash(gtxid.GetHash()), m_time(reqtime), m_peer(peer), m_sequence(sequence), m_preferred(preferred),
102 m_is_wtxid{gtxid.IsWtxid()} {}
103};
104
106using Priority = uint64_t;
107
112class PriorityComputer {
113 const uint64_t m_k0, m_k1;
114public:
115 explicit PriorityComputer(bool deterministic) :
116 m_k0{deterministic ? 0 : FastRandomContext().rand64()},
117 m_k1{deterministic ? 0 : FastRandomContext().rand64()} {}
118
119 Priority operator()(const uint256& txhash, NodeId peer, bool preferred) const
120 {
121 uint64_t low_bits = CSipHasher(m_k0, m_k1).Write(txhash).Write(peer).Finalize() >> 1;
122 return low_bits | uint64_t{preferred} << 63;
123 }
124
125 Priority operator()(const Announcement& ann) const
126 {
127 return operator()(ann.m_txhash, ann.m_peer, ann.m_preferred);
128 }
129};
130
131// Definitions for the 3 indexes used in the main data structure.
132//
133// Each index has a By* type to identify it, a By*View data type to represent the view of announcement it is sorted
134// by, and an By*ViewExtractor type to convert an announcement into the By*View type.
135// See https://www.boost.org/doc/libs/1_58_0/libs/multi_index/doc/reference/key_extraction.html#key_extractors
136// for more information about the key extraction concept.
137
138// The ByPeer index is sorted by (peer, state == CANDIDATE_BEST, txhash)
139//
140// Uses:
141// * Looking up existing announcements by peer/txhash, by checking both (peer, false, txhash) and
142// (peer, true, txhash).
143// * Finding all CANDIDATE_BEST announcements for a given peer in GetRequestable.
144struct ByPeer {};
145using ByPeerView = std::tuple<NodeId, bool, const uint256&>;
146struct ByPeerViewExtractor
147{
148 using result_type = ByPeerView;
149 result_type operator()(const Announcement& ann) const
150 {
151 return ByPeerView{ann.m_peer, ann.GetState() == State::CANDIDATE_BEST, ann.m_txhash};
152 }
153};
154
155// The ByTxHash index is sorted by (txhash, state, priority).
156//
157// Note: priority == 0 whenever state != CANDIDATE_READY.
158//
159// Uses:
160// * Deleting all announcements with a given txhash in ForgetTxHash.
161// * Finding the best CANDIDATE_READY to convert to CANDIDATE_BEST, when no other CANDIDATE_READY or REQUESTED
162// announcement exists for that txhash.
163// * Determining when no more non-COMPLETED announcements for a given txhash exist, so the COMPLETED ones can be
164// deleted.
165struct ByTxHash {};
166using ByTxHashView = std::tuple<const uint256&, State, Priority>;
167class ByTxHashViewExtractor {
168 const PriorityComputer& m_computer;
169public:
170 explicit ByTxHashViewExtractor(const PriorityComputer& computer) : m_computer(computer) {}
171 using result_type = ByTxHashView;
172 result_type operator()(const Announcement& ann) const
173 {
174 const Priority prio = (ann.GetState() == State::CANDIDATE_READY) ? m_computer(ann) : 0;
175 return ByTxHashView{ann.m_txhash, ann.GetState(), prio};
176 }
177};
178
179enum class WaitState {
181 FUTURE_EVENT,
183 NO_EVENT,
185 PAST_EVENT,
186};
187
188WaitState GetWaitState(const Announcement& ann)
189{
190 if (ann.IsWaiting()) return WaitState::FUTURE_EVENT;
191 if (ann.IsSelectable()) return WaitState::PAST_EVENT;
192 return WaitState::NO_EVENT;
193}
194
195// The ByTime index is sorted by (wait_state, time).
196//
197// All announcements with a timestamp in the future can be found by iterating the index forward from the beginning.
198// All announcements with a timestamp in the past can be found by iterating the index backwards from the end.
199//
200// Uses:
201// * Finding CANDIDATE_DELAYED announcements whose reqtime has passed, and REQUESTED announcements whose expiry has
202// passed.
203// * Finding CANDIDATE_READY/BEST announcements whose reqtime is in the future (when the clock time went backwards).
204struct ByTime {};
205using ByTimeView = std::pair<WaitState, std::chrono::microseconds>;
206struct ByTimeViewExtractor
207{
208 using result_type = ByTimeView;
209 result_type operator()(const Announcement& ann) const
210 {
211 return ByTimeView{GetWaitState(ann), ann.m_time};
212 }
213};
214
215struct Announcement_Indices final : boost::multi_index::indexed_by<
216 boost::multi_index::ordered_unique<boost::multi_index::tag<ByPeer>, ByPeerViewExtractor>,
217 boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTxHash>, ByTxHashViewExtractor>,
218 boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTime>, ByTimeViewExtractor>
219>
220{};
221
223using Index = boost::multi_index_container<
224 Announcement,
225 Announcement_Indices
226>;
227
229template<typename Tag>
230using Iter = typename Index::index<Tag>::type::iterator;
231
233struct PeerInfo {
234 size_t m_total = 0;
235 size_t m_completed = 0;
236 size_t m_requested = 0;
237};
238
240struct TxHashInfo
241{
243 size_t m_candidate_delayed = 0;
245 size_t m_candidate_ready = 0;
247 size_t m_candidate_best = 0;
249 size_t m_requested = 0;
251 Priority m_priority_candidate_best = std::numeric_limits<Priority>::max();
253 Priority m_priority_best_candidate_ready = std::numeric_limits<Priority>::min();
255 std::vector<NodeId> m_peers;
256};
257
259bool operator==(const PeerInfo& a, const PeerInfo& b)
260{
261 return std::tie(a.m_total, a.m_completed, a.m_requested) ==
262 std::tie(b.m_total, b.m_completed, b.m_requested);
263};
264
266std::unordered_map<NodeId, PeerInfo> RecomputePeerInfo(const Index& index)
267{
268 std::unordered_map<NodeId, PeerInfo> ret;
269 for (const Announcement& ann : index) {
270 PeerInfo& info = ret[ann.m_peer];
271 ++info.m_total;
272 info.m_requested += (ann.GetState() == State::REQUESTED);
273 info.m_completed += (ann.GetState() == State::COMPLETED);
274 }
275 return ret;
276}
277
279std::map<uint256, TxHashInfo> ComputeTxHashInfo(const Index& index, const PriorityComputer& computer)
280{
281 std::map<uint256, TxHashInfo> ret;
282 for (const Announcement& ann : index) {
283 TxHashInfo& info = ret[ann.m_txhash];
284 // Classify how many announcements of each state we have for this txhash.
285 info.m_candidate_delayed += (ann.GetState() == State::CANDIDATE_DELAYED);
286 info.m_candidate_ready += (ann.GetState() == State::CANDIDATE_READY);
287 info.m_candidate_best += (ann.GetState() == State::CANDIDATE_BEST);
288 info.m_requested += (ann.GetState() == State::REQUESTED);
289 // And track the priority of the best CANDIDATE_READY/CANDIDATE_BEST announcements.
290 if (ann.GetState() == State::CANDIDATE_BEST) {
291 info.m_priority_candidate_best = computer(ann);
292 }
293 if (ann.GetState() == State::CANDIDATE_READY) {
294 info.m_priority_best_candidate_ready = std::max(info.m_priority_best_candidate_ready, computer(ann));
295 }
296 // Also keep track of which peers this txhash has an announcement for (so we can detect duplicates).
297 info.m_peers.push_back(ann.m_peer);
298 }
299 return ret;
300}
301
302GenTxid ToGenTxid(const Announcement& ann)
303{
304 return ann.m_is_wtxid ? GenTxid::Wtxid(ann.m_txhash) : GenTxid::Txid(ann.m_txhash);
305}
306
307} // namespace
308
313 SequenceNumber m_current_sequence{0};
314
316 const PriorityComputer m_computer;
317
319 Index m_index;
320
322 std::unordered_map<NodeId, PeerInfo> m_peerinfo;
323
324public:
325 void SanityCheck() const
326 {
327 // Recompute m_peerdata from m_index. This verifies the data in it as it should just be caching statistics
328 // on m_index. It also verifies the invariant that no PeerInfo announcements with m_total==0 exist.
329 assert(m_peerinfo == RecomputePeerInfo(m_index));
330
331 // Calculate per-txhash statistics from m_index, and validate invariants.
332 for (auto& item : ComputeTxHashInfo(m_index, m_computer)) {
333 TxHashInfo& info = item.second;
334
335 // Cannot have only COMPLETED peer (txhash should have been forgotten already)
336 assert(info.m_candidate_delayed + info.m_candidate_ready + info.m_candidate_best + info.m_requested > 0);
337
338 // Can have at most 1 CANDIDATE_BEST/REQUESTED peer
339 assert(info.m_candidate_best + info.m_requested <= 1);
340
341 // If there are any CANDIDATE_READY announcements, there must be exactly one CANDIDATE_BEST or REQUESTED
342 // announcement.
343 if (info.m_candidate_ready > 0) {
344 assert(info.m_candidate_best + info.m_requested == 1);
345 }
346
347 // If there is both a CANDIDATE_READY and a CANDIDATE_BEST announcement, the CANDIDATE_BEST one must be
348 // at least as good (equal or higher priority) as the best CANDIDATE_READY.
349 if (info.m_candidate_ready && info.m_candidate_best) {
350 assert(info.m_priority_candidate_best >= info.m_priority_best_candidate_ready);
351 }
352
353 // No txhash can have been announced by the same peer twice.
354 std::sort(info.m_peers.begin(), info.m_peers.end());
355 assert(std::adjacent_find(info.m_peers.begin(), info.m_peers.end()) == info.m_peers.end());
356 }
357 }
358
359 void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
360 {
361 for (const Announcement& ann : m_index) {
362 if (ann.IsWaiting()) {
363 // REQUESTED and CANDIDATE_DELAYED must have a time in the future (they should have been converted
364 // to COMPLETED/CANDIDATE_READY respectively).
365 assert(ann.m_time > now);
366 } else if (ann.IsSelectable()) {
367 // CANDIDATE_READY and CANDIDATE_BEST cannot have a time in the future (they should have remained
368 // CANDIDATE_DELAYED, or should have been converted back to it if time went backwards).
369 assert(ann.m_time <= now);
370 }
371 }
372 }
373
374private:
376 template<typename Tag>
377 Iter<Tag> Erase(Iter<Tag> it)
378 {
379 auto peerit = m_peerinfo.find(it->m_peer);
380 peerit->second.m_completed -= it->GetState() == State::COMPLETED;
381 peerit->second.m_requested -= it->GetState() == State::REQUESTED;
382 if (--peerit->second.m_total == 0) m_peerinfo.erase(peerit);
383 return m_index.get<Tag>().erase(it);
384 }
385
387 template<typename Tag, typename Modifier>
388 void Modify(Iter<Tag> it, Modifier modifier)
389 {
390 auto peerit = m_peerinfo.find(it->m_peer);
391 peerit->second.m_completed -= it->GetState() == State::COMPLETED;
392 peerit->second.m_requested -= it->GetState() == State::REQUESTED;
393 m_index.get<Tag>().modify(it, std::move(modifier));
394 peerit->second.m_completed += it->GetState() == State::COMPLETED;
395 peerit->second.m_requested += it->GetState() == State::REQUESTED;
396 }
397
401 void PromoteCandidateReady(Iter<ByTxHash> it)
402 {
403 assert(it != m_index.get<ByTxHash>().end());
404 assert(it->GetState() == State::CANDIDATE_DELAYED);
405 // Convert CANDIDATE_DELAYED to CANDIDATE_READY first.
406 Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
407 // The following code relies on the fact that the ByTxHash is sorted by txhash, and then by state (first
408 // _DELAYED, then _READY, then _BEST/REQUESTED). Within the _READY announcements, the best one (highest
409 // priority) comes last. Thus, if an existing _BEST exists for the same txhash that this announcement may
410 // be preferred over, it must immediately follow the newly created _READY.
411 auto it_next = std::next(it);
412 if (it_next == m_index.get<ByTxHash>().end() || it_next->m_txhash != it->m_txhash ||
413 it_next->GetState() == State::COMPLETED) {
414 // This is the new best CANDIDATE_READY, and there is no IsSelected() announcement for this txhash
415 // already.
416 Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
417 } else if (it_next->GetState() == State::CANDIDATE_BEST) {
418 Priority priority_old = m_computer(*it_next);
419 Priority priority_new = m_computer(*it);
420 if (priority_new > priority_old) {
421 // There is a CANDIDATE_BEST announcement already, but this one is better.
422 Modify<ByTxHash>(it_next, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
423 Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
424 }
425 }
426 }
427
430 void ChangeAndReselect(Iter<ByTxHash> it, State new_state)
431 {
432 assert(new_state == State::COMPLETED || new_state == State::CANDIDATE_DELAYED);
433 assert(it != m_index.get<ByTxHash>().end());
434 if (it->IsSelected() && it != m_index.get<ByTxHash>().begin()) {
435 auto it_prev = std::prev(it);
436 // The next best CANDIDATE_READY, if any, immediately precedes the REQUESTED or CANDIDATE_BEST
437 // announcement in the ByTxHash index.
438 if (it_prev->m_txhash == it->m_txhash && it_prev->GetState() == State::CANDIDATE_READY) {
439 // If one such CANDIDATE_READY exists (for this txhash), convert it to CANDIDATE_BEST.
440 Modify<ByTxHash>(it_prev, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
441 }
442 }
443 Modify<ByTxHash>(it, [new_state](Announcement& ann){ ann.SetState(new_state); });
444 }
445
447 bool IsOnlyNonCompleted(Iter<ByTxHash> it)
448 {
449 assert(it != m_index.get<ByTxHash>().end());
450 assert(it->GetState() != State::COMPLETED); // Not allowed to call this on COMPLETED announcements.
451
452 // This announcement has a predecessor that belongs to the same txhash. Due to ordering, and the
453 // fact that 'it' is not COMPLETED, its predecessor cannot be COMPLETED here.
454 if (it != m_index.get<ByTxHash>().begin() && std::prev(it)->m_txhash == it->m_txhash) return false;
455
456 // This announcement has a successor that belongs to the same txhash, and is not COMPLETED.
457 if (std::next(it) != m_index.get<ByTxHash>().end() && std::next(it)->m_txhash == it->m_txhash &&
458 std::next(it)->GetState() != State::COMPLETED) return false;
459
460 return true;
461 }
462
466 bool MakeCompleted(Iter<ByTxHash> it)
467 {
468 assert(it != m_index.get<ByTxHash>().end());
469
470 // Nothing to be done if it's already COMPLETED.
471 if (it->GetState() == State::COMPLETED) return true;
472
473 if (IsOnlyNonCompleted(it)) {
474 // This is the last non-COMPLETED announcement for this txhash. Delete all.
475 uint256 txhash = it->m_txhash;
476 do {
477 it = Erase<ByTxHash>(it);
478 } while (it != m_index.get<ByTxHash>().end() && it->m_txhash == txhash);
479 return false;
480 }
481
482 // Mark the announcement COMPLETED, and select the next best announcement (the first CANDIDATE_READY) if
483 // needed.
484 ChangeAndReselect(it, State::COMPLETED);
485
486 return true;
487 }
488
493 void SetTimePoint(std::chrono::microseconds now, std::vector<std::pair<NodeId, GenTxid>>* expired)
494 {
495 if (expired) expired->clear();
496
497 // Iterate over all CANDIDATE_DELAYED and REQUESTED from old to new, as long as they're in the past,
498 // and convert them to CANDIDATE_READY and COMPLETED respectively.
499 while (!m_index.empty()) {
500 auto it = m_index.get<ByTime>().begin();
501 if (it->GetState() == State::CANDIDATE_DELAYED && it->m_time <= now) {
502 PromoteCandidateReady(m_index.project<ByTxHash>(it));
503 } else if (it->GetState() == State::REQUESTED && it->m_time <= now) {
504 if (expired) expired->emplace_back(it->m_peer, ToGenTxid(*it));
505 MakeCompleted(m_index.project<ByTxHash>(it));
506 } else {
507 break;
508 }
509 }
510
511 while (!m_index.empty()) {
512 // If time went backwards, we may need to demote CANDIDATE_BEST and CANDIDATE_READY announcements back
513 // to CANDIDATE_DELAYED. This is an unusual edge case, and unlikely to matter in production. However,
514 // it makes it much easier to specify and test TxRequestTracker::Impl's behaviour.
515 auto it = std::prev(m_index.get<ByTime>().end());
516 if (it->IsSelectable() && it->m_time > now) {
517 ChangeAndReselect(m_index.project<ByTxHash>(it), State::CANDIDATE_DELAYED);
518 } else {
519 break;
520 }
521 }
522 }
523
524public:
525 explicit Impl(bool deterministic) :
526 m_computer(deterministic),
527 // Explicitly initialize m_index as we need to pass a reference to m_computer to ByTxHashViewExtractor.
528 m_index(boost::make_tuple(
529 boost::make_tuple(ByPeerViewExtractor(), std::less<ByPeerView>()),
530 boost::make_tuple(ByTxHashViewExtractor(m_computer), std::less<ByTxHashView>()),
531 boost::make_tuple(ByTimeViewExtractor(), std::less<ByTimeView>())
532 )) {}
533
534 // Disable copying and assigning (a default copy won't work due the stateful ByTxHashViewExtractor).
535 Impl(const Impl&) = delete;
536 Impl& operator=(const Impl&) = delete;
537
539 {
540 auto& index = m_index.get<ByPeer>();
541 auto it = index.lower_bound(ByPeerView{peer, false, uint256::ZERO});
542 while (it != index.end() && it->m_peer == peer) {
543 // Check what to continue with after this iteration. 'it' will be deleted in what follows, so we need to
544 // decide what to continue with afterwards. There are a number of cases to consider:
545 // - std::next(it) is end() or belongs to a different peer. In that case, this is the last iteration
546 // of the loop (denote this by setting it_next to end()).
547 // - 'it' is not the only non-COMPLETED announcement for its txhash. This means it will be deleted, but
548 // no other Announcement objects will be modified. Continue with std::next(it) if it belongs to the
549 // same peer, but decide this ahead of time (as 'it' may change position in what follows).
550 // - 'it' is the only non-COMPLETED announcement for its txhash. This means it will be deleted along
551 // with all other announcements for the same txhash - which may include std::next(it). However, other
552 // than 'it', no announcements for the same peer can be affected (due to (peer, txhash) uniqueness).
553 // In other words, the situation where std::next(it) is deleted can only occur if std::next(it)
554 // belongs to a different peer but the same txhash as 'it'. This is covered by the first bulletpoint
555 // already, and we'll have set it_next to end().
556 auto it_next = (std::next(it) == index.end() || std::next(it)->m_peer != peer) ? index.end() :
557 std::next(it);
558 // If the announcement isn't already COMPLETED, first make it COMPLETED (which will mark other
559 // CANDIDATEs as CANDIDATE_BEST, or delete all of a txhash's announcements if no non-COMPLETED ones are
560 // left).
561 if (MakeCompleted(m_index.project<ByTxHash>(it))) {
562 // Then actually delete the announcement (unless it was already deleted by MakeCompleted).
563 Erase<ByPeer>(it);
564 }
565 it = it_next;
566 }
567 }
568
569 void ForgetTxHash(const uint256& txhash)
570 {
571 auto it = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_DELAYED, 0});
572 while (it != m_index.get<ByTxHash>().end() && it->m_txhash == txhash) {
573 it = Erase<ByTxHash>(it);
574 }
575 }
576
577 void ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
578 std::chrono::microseconds reqtime)
579 {
580 // Bail out if we already have a CANDIDATE_BEST announcement for this (txhash, peer) combination. The case
581 // where there is a non-CANDIDATE_BEST announcement already will be caught by the uniqueness property of the
582 // ByPeer index when we try to emplace the new object below.
583 if (m_index.get<ByPeer>().count(ByPeerView{peer, true, gtxid.GetHash()})) return;
584
585 // Try creating the announcement with CANDIDATE_DELAYED state (which will fail due to the uniqueness
586 // of the ByPeer index if a non-CANDIDATE_BEST announcement already exists with the same txhash and peer).
587 // Bail out in that case.
588 auto ret = m_index.get<ByPeer>().emplace(gtxid, peer, preferred, reqtime, m_current_sequence);
589 if (!ret.second) return;
590
591 // Update accounting metadata.
592 ++m_peerinfo[peer].m_total;
594 }
595
597 std::vector<GenTxid> GetRequestable(NodeId peer, std::chrono::microseconds now,
598 std::vector<std::pair<NodeId, GenTxid>>* expired)
599 {
600 // Move time.
601 SetTimePoint(now, expired);
602
603 // Find all CANDIDATE_BEST announcements for this peer.
604 std::vector<const Announcement*> selected;
605 auto it_peer = m_index.get<ByPeer>().lower_bound(ByPeerView{peer, true, uint256::ZERO});
606 while (it_peer != m_index.get<ByPeer>().end() && it_peer->m_peer == peer &&
607 it_peer->GetState() == State::CANDIDATE_BEST) {
608 selected.emplace_back(&*it_peer);
609 ++it_peer;
610 }
611
612 // Sort by sequence number.
613 std::sort(selected.begin(), selected.end(), [](const Announcement* a, const Announcement* b) {
614 return a->m_sequence < b->m_sequence;
615 });
616
617 // Convert to GenTxid and return.
618 std::vector<GenTxid> ret;
619 ret.reserve(selected.size());
620 std::transform(selected.begin(), selected.end(), std::back_inserter(ret), [](const Announcement* ann) {
621 return ToGenTxid(*ann);
622 });
623 return ret;
624 }
625
626 void RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
627 {
628 auto it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
629 if (it == m_index.get<ByPeer>().end()) {
630 // There is no CANDIDATE_BEST announcement, look for a _READY or _DELAYED instead. If the caller only
631 // ever invokes RequestedTx with the values returned by GetRequestable, and no other non-const functions
632 // other than ForgetTxHash and GetRequestable in between, this branch will never execute (as txhashes
633 // returned by GetRequestable always correspond to CANDIDATE_BEST announcements).
634
635 it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
636 if (it == m_index.get<ByPeer>().end() || (it->GetState() != State::CANDIDATE_DELAYED &&
637 it->GetState() != State::CANDIDATE_READY)) {
638 // There is no CANDIDATE announcement tracked for this peer, so we have nothing to do. Either this
639 // txhash wasn't tracked at all (and the caller should have called ReceivedInv), or it was already
640 // requested and/or completed for other reasons and this is just a superfluous RequestedTx call.
641 return;
642 }
643
644 // Look for an existing CANDIDATE_BEST or REQUESTED with the same txhash. We only need to do this if the
645 // found announcement had a different state than CANDIDATE_BEST. If it did, invariants guarantee that no
646 // other CANDIDATE_BEST or REQUESTED can exist.
647 auto it_old = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_BEST, 0});
648 if (it_old != m_index.get<ByTxHash>().end() && it_old->m_txhash == txhash) {
649 if (it_old->GetState() == State::CANDIDATE_BEST) {
650 // The data structure's invariants require that there can be at most one CANDIDATE_BEST or one
651 // REQUESTED announcement per txhash (but not both simultaneously), so we have to convert any
652 // existing CANDIDATE_BEST to another CANDIDATE_* when constructing another REQUESTED.
653 // It doesn't matter whether we pick CANDIDATE_READY or _DELAYED here, as SetTimePoint()
654 // will correct it at GetRequestable() time. If time only goes forward, it will always be
655 // _READY, so pick that to avoid extra work in SetTimePoint().
656 Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::CANDIDATE_READY); });
657 } else if (it_old->GetState() == State::REQUESTED) {
658 // As we're no longer waiting for a response to the previous REQUESTED announcement, convert it
659 // to COMPLETED. This also helps guaranteeing progress.
660 Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::COMPLETED); });
661 }
662 }
663 }
664
665 Modify<ByPeer>(it, [expiry](Announcement& ann) {
666 ann.SetState(State::REQUESTED);
667 ann.m_time = expiry;
668 });
669 }
670
671 void ReceivedResponse(NodeId peer, const uint256& txhash)
672 {
673 // We need to search the ByPeer index for both (peer, false, txhash) and (peer, true, txhash).
674 auto it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
675 if (it == m_index.get<ByPeer>().end()) {
676 it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
677 }
678 if (it != m_index.get<ByPeer>().end()) MakeCompleted(m_index.project<ByTxHash>(it));
679 }
680
681 size_t CountInFlight(NodeId peer) const
682 {
683 auto it = m_peerinfo.find(peer);
684 if (it != m_peerinfo.end()) return it->second.m_requested;
685 return 0;
686 }
687
688 size_t CountCandidates(NodeId peer) const
689 {
690 auto it = m_peerinfo.find(peer);
691 if (it != m_peerinfo.end()) return it->second.m_total - it->second.m_requested - it->second.m_completed;
692 return 0;
693 }
694
695 size_t Count(NodeId peer) const
696 {
697 auto it = m_peerinfo.find(peer);
698 if (it != m_peerinfo.end()) return it->second.m_total;
699 return 0;
700 }
701
703 size_t Size() const { return m_index.size(); }
704
705 uint64_t ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
706 {
707 // Return Priority as a uint64_t as Priority is internal.
708 return uint64_t{m_computer(txhash, peer, preferred)};
709 }
710
711};
712
714 m_impl{std::make_unique<TxRequestTracker::Impl>(deterministic)} {}
715
717
718void TxRequestTracker::ForgetTxHash(const uint256& txhash) { m_impl->ForgetTxHash(txhash); }
719void TxRequestTracker::DisconnectedPeer(NodeId peer) { m_impl->DisconnectedPeer(peer); }
720size_t TxRequestTracker::CountInFlight(NodeId peer) const { return m_impl->CountInFlight(peer); }
721size_t TxRequestTracker::CountCandidates(NodeId peer) const { return m_impl->CountCandidates(peer); }
722size_t TxRequestTracker::Count(NodeId peer) const { return m_impl->Count(peer); }
723size_t TxRequestTracker::Size() const { return m_impl->Size(); }
724void TxRequestTracker::SanityCheck() const { m_impl->SanityCheck(); }
725
726void TxRequestTracker::PostGetRequestableSanityCheck(std::chrono::microseconds now) const
727{
728 m_impl->PostGetRequestableSanityCheck(now);
729}
730
731void TxRequestTracker::ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
732 std::chrono::microseconds reqtime)
733{
734 m_impl->ReceivedInv(peer, gtxid, preferred, reqtime);
735}
736
737void TxRequestTracker::RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
738{
739 m_impl->RequestedTx(peer, txhash, expiry);
740}
741
743{
744 m_impl->ReceivedResponse(peer, txhash);
745}
746
747std::vector<GenTxid> TxRequestTracker::GetRequestable(NodeId peer, std::chrono::microseconds now,
748 std::vector<std::pair<NodeId, GenTxid>>* expired)
749{
750 return m_impl->GetRequestable(peer, now, expired);
751}
752
753uint64_t TxRequestTracker::ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
754{
755 return m_impl->ComputePriority(txhash, peer, preferred);
756}
int ret
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
Fast randomness source.
Definition: random.h:377
A generic txid reference (txid or wtxid).
Definition: transaction.h:428
bool m_is_wtxid
Definition: transaction.h:429
static GenTxid Wtxid(const uint256 &hash)
Definition: transaction.h:435
Actual implementation for TxRequestTracker's data structure.
Definition: txrequest.cpp:310
const PriorityComputer m_computer
This tracker's priority computer.
Definition: txrequest.cpp:316
std::vector< GenTxid > GetRequestable(NodeId peer, std::chrono::microseconds now, std::vector< std::pair< NodeId, GenTxid > > *expired)
Find the GenTxids to request now from peer.
Definition: txrequest.cpp:597
void SetTimePoint(std::chrono::microseconds now, std::vector< std::pair< NodeId, GenTxid > > *expired)
Make the data structure consistent with a given point in time:
Definition: txrequest.cpp:493
void PromoteCandidateReady(Iter< ByTxHash > it)
Convert a CANDIDATE_DELAYED announcement into a CANDIDATE_READY.
Definition: txrequest.cpp:401
SequenceNumber m_current_sequence
The current sequence number.
Definition: txrequest.cpp:313
Iter< Tag > Erase(Iter< Tag > it)
Wrapper around Index::...::erase that keeps m_peerinfo up to date.
Definition: txrequest.cpp:377
void ReceivedResponse(NodeId peer, const uint256 &txhash)
Definition: txrequest.cpp:671
size_t CountInFlight(NodeId peer) const
Definition: txrequest.cpp:681
size_t Size() const
Count how many announcements are being tracked in total across all peers and transactions.
Definition: txrequest.cpp:703
void ReceivedInv(NodeId peer, const GenTxid &gtxid, bool preferred, std::chrono::microseconds reqtime)
Definition: txrequest.cpp:577
Impl(const Impl &)=delete
bool MakeCompleted(Iter< ByTxHash > it)
Convert any announcement to a COMPLETED one.
Definition: txrequest.cpp:466
void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
Definition: txrequest.cpp:359
Index m_index
This tracker's main data structure. See SanityCheck() for the invariants that apply to it.
Definition: txrequest.cpp:319
bool IsOnlyNonCompleted(Iter< ByTxHash > it)
Check if 'it' is the only announcement for a given txhash that isn't COMPLETED.
Definition: txrequest.cpp:447
void SanityCheck() const
Definition: txrequest.cpp:325
void ForgetTxHash(const uint256 &txhash)
Definition: txrequest.cpp:569
uint64_t ComputePriority(const uint256 &txhash, NodeId peer, bool preferred) const
Definition: txrequest.cpp:705
std::unordered_map< NodeId, PeerInfo > m_peerinfo
Map with this tracker's per-peer statistics.
Definition: txrequest.cpp:322
Impl(bool deterministic)
Definition: txrequest.cpp:525
void RequestedTx(NodeId peer, const uint256 &txhash, std::chrono::microseconds expiry)
Definition: txrequest.cpp:626
void ChangeAndReselect(Iter< ByTxHash > it, State new_state)
Change the state of an announcement to something non-IsSelected().
Definition: txrequest.cpp:430
size_t CountCandidates(NodeId peer) const
Definition: txrequest.cpp:688
Impl & operator=(const Impl &)=delete
size_t Count(NodeId peer) const
Definition: txrequest.cpp:695
void Modify(Iter< Tag > it, Modifier modifier)
Wrapper around Index::...::modify that keeps m_peerinfo up to date.
Definition: txrequest.cpp:388
void DisconnectedPeer(NodeId peer)
Definition: txrequest.cpp:538
Data structure to keep track of, and schedule, transaction downloads from peers.
Definition: txrequest.h:96
void ReceivedInv(NodeId peer, const GenTxid &gtxid, bool preferred, std::chrono::microseconds reqtime)
Adds a new CANDIDATE announcement.
Definition: txrequest.cpp:731
void SanityCheck() const
Run internal consistency check (testing only).
Definition: txrequest.cpp:724
size_t CountInFlight(NodeId peer) const
Count how many REQUESTED announcements a peer has.
Definition: txrequest.cpp:720
size_t CountCandidates(NodeId peer) const
Count how many CANDIDATE announcements a peer has.
Definition: txrequest.cpp:721
TxRequestTracker(bool deterministic=false)
Construct a TxRequestTracker.
Definition: txrequest.cpp:713
const std::unique_ptr< Impl > m_impl
Definition: txrequest.h:99
void DisconnectedPeer(NodeId peer)
Deletes all announcements for a given peer.
Definition: txrequest.cpp:719
void ReceivedResponse(NodeId peer, const uint256 &txhash)
Converts a CANDIDATE or REQUESTED announcement to a COMPLETED one.
Definition: txrequest.cpp:742
uint64_t ComputePriority(const uint256 &txhash, NodeId peer, bool preferred) const
Access to the internal priority computation (testing only)
Definition: txrequest.cpp:753
void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
Run a time-dependent internal consistency check (testing only).
Definition: txrequest.cpp:726
void RequestedTx(NodeId peer, const uint256 &txhash, std::chrono::microseconds expiry)
Marks a transaction as requested, with a specified expiry.
Definition: txrequest.cpp:737
size_t Count(NodeId peer) const
Count how many announcements a peer has (REQUESTED, CANDIDATE, and COMPLETED combined).
Definition: txrequest.cpp:722
size_t Size() const
Count how many announcements are being tracked in total across all peers and transaction hashes.
Definition: txrequest.cpp:723
std::vector< GenTxid > GetRequestable(NodeId peer, std::chrono::microseconds now, std::vector< std::pair< NodeId, GenTxid > > *expired=nullptr)
Find the txids to request now from peer.
Definition: txrequest.cpp:747
void ForgetTxHash(const uint256 &txhash)
Deletes all announcements for a given txhash (both txid and wtxid ones).
Definition: txrequest.cpp:718
256-bit opaque blob.
Definition: uint256.h:190
static const uint256 ZERO
Definition: uint256.h:198
uint64_t sequence
int64_t NodeId
Definition: net.h:97
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:607
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
assert(!tx.IsCoinBase())