Bitcoin Core 29.99.0
P2P Digital Currency
txrequest.cpp
Go to the documentation of this file.
1// Copyright (c) 2020-present The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <txrequest.h>
6
7#include <crypto/siphash.h>
8#include <net.h>
10#include <random.h>
11#include <uint256.h>
12
13#include <boost/multi_index/indexed_by.hpp>
14#include <boost/multi_index/ordered_index.hpp>
15#include <boost/multi_index/sequenced_index.hpp>
16#include <boost/multi_index/tag.hpp>
17#include <boost/multi_index_container.hpp>
18#include <boost/tuple/tuple.hpp>
19
20#include <chrono>
21#include <unordered_map>
22#include <utility>
23
24#include <cassert>
25
26namespace {
27
42enum class State : uint8_t {
44 CANDIDATE_DELAYED,
46 CANDIDATE_READY,
50 CANDIDATE_BEST,
52 REQUESTED,
54 COMPLETED,
55};
56
58using SequenceNumber = uint64_t;
59
61struct Announcement {
63 const GenTxid m_gtxid;
65 std::chrono::microseconds m_time;
67 const NodeId m_peer;
69 const SequenceNumber m_sequence : 59;
71 const bool m_preferred : 1;
73 State m_state : 3 {State::CANDIDATE_DELAYED};
74 State GetState() const { return m_state; }
75 void SetState(State state) { m_state = state; }
76
78 bool IsSelected() const
79 {
80 return GetState() == State::CANDIDATE_BEST || GetState() == State::REQUESTED;
81 }
82
84 bool IsWaiting() const
85 {
86 return GetState() == State::REQUESTED || GetState() == State::CANDIDATE_DELAYED;
87 }
88
90 bool IsSelectable() const
91 {
92 return GetState() == State::CANDIDATE_READY || GetState() == State::CANDIDATE_BEST;
93 }
94
96 Announcement(const GenTxid& gtxid, NodeId peer, bool preferred, std::chrono::microseconds reqtime,
97 SequenceNumber sequence)
98 : m_gtxid(gtxid), m_time(reqtime), m_peer(peer), m_sequence(sequence), m_preferred(preferred) {}
99};
100
102using Priority = uint64_t;
103
108class PriorityComputer {
109 const uint64_t m_k0, m_k1;
110public:
111 explicit PriorityComputer(bool deterministic) :
112 m_k0{deterministic ? 0 : FastRandomContext().rand64()},
113 m_k1{deterministic ? 0 : FastRandomContext().rand64()} {}
114
115 Priority operator()(const uint256& txhash, NodeId peer, bool preferred) const
116 {
117 uint64_t low_bits = CSipHasher(m_k0, m_k1).Write(txhash).Write(peer).Finalize() >> 1;
118 return low_bits | uint64_t{preferred} << 63;
119 }
120
121 Priority operator()(const Announcement& ann) const
122 {
123 return operator()(ann.m_gtxid.ToUint256(), ann.m_peer, ann.m_preferred);
124 }
125};
126
127// Definitions for the 3 indexes used in the main data structure.
128//
129// Each index has a By* type to identify it, a By*View data type to represent the view of announcement it is sorted
130// by, and an By*ViewExtractor type to convert an announcement into the By*View type.
131// See https://www.boost.org/doc/libs/1_58_0/libs/multi_index/doc/reference/key_extraction.html#key_extractors
132// for more information about the key extraction concept.
133
134// The ByPeer index is sorted by (peer, state == CANDIDATE_BEST, txhash)
135//
136// Uses:
137// * Looking up existing announcements by peer/txhash, by checking both (peer, false, txhash) and
138// (peer, true, txhash).
139// * Finding all CANDIDATE_BEST announcements for a given peer in GetRequestable.
140struct ByPeer {};
141using ByPeerView = std::tuple<NodeId, bool, const uint256&>;
142struct ByPeerViewExtractor
143{
144 using result_type = ByPeerView;
145 result_type operator()(const Announcement& ann) const
146 {
147 return ByPeerView{ann.m_peer, ann.GetState() == State::CANDIDATE_BEST, ann.m_gtxid.ToUint256()};
148 }
149};
150
151// The ByTxHash index is sorted by (txhash, state, priority).
152//
153// Note: priority == 0 whenever state != CANDIDATE_READY.
154//
155// Uses:
156// * Deleting all announcements with a given txhash in ForgetTxHash.
157// * Finding the best CANDIDATE_READY to convert to CANDIDATE_BEST, when no other CANDIDATE_READY or REQUESTED
158// announcement exists for that txhash.
159// * Determining when no more non-COMPLETED announcements for a given txhash exist, so the COMPLETED ones can be
160// deleted.
161struct ByTxHash {};
162using ByTxHashView = std::tuple<const uint256&, State, Priority>;
163class ByTxHashViewExtractor {
164 const PriorityComputer& m_computer;
165public:
166 explicit ByTxHashViewExtractor(const PriorityComputer& computer) : m_computer(computer) {}
167 using result_type = ByTxHashView;
168 result_type operator()(const Announcement& ann) const
169 {
170 const Priority prio = (ann.GetState() == State::CANDIDATE_READY) ? m_computer(ann) : 0;
171 return ByTxHashView{ann.m_gtxid.ToUint256(), ann.GetState(), prio};
172 }
173};
174
175enum class WaitState {
177 FUTURE_EVENT,
179 NO_EVENT,
181 PAST_EVENT,
182};
183
184WaitState GetWaitState(const Announcement& ann)
185{
186 if (ann.IsWaiting()) return WaitState::FUTURE_EVENT;
187 if (ann.IsSelectable()) return WaitState::PAST_EVENT;
188 return WaitState::NO_EVENT;
189}
190
191// The ByTime index is sorted by (wait_state, time).
192//
193// All announcements with a timestamp in the future can be found by iterating the index forward from the beginning.
194// All announcements with a timestamp in the past can be found by iterating the index backwards from the end.
195//
196// Uses:
197// * Finding CANDIDATE_DELAYED announcements whose reqtime has passed, and REQUESTED announcements whose expiry has
198// passed.
199// * Finding CANDIDATE_READY/BEST announcements whose reqtime is in the future (when the clock time went backwards).
200struct ByTime {};
201using ByTimeView = std::pair<WaitState, std::chrono::microseconds>;
202struct ByTimeViewExtractor
203{
204 using result_type = ByTimeView;
205 result_type operator()(const Announcement& ann) const
206 {
207 return ByTimeView{GetWaitState(ann), ann.m_time};
208 }
209};
210
211struct Announcement_Indices final : boost::multi_index::indexed_by<
212 boost::multi_index::ordered_unique<boost::multi_index::tag<ByPeer>, ByPeerViewExtractor>,
213 boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTxHash>, ByTxHashViewExtractor>,
214 boost::multi_index::ordered_non_unique<boost::multi_index::tag<ByTime>, ByTimeViewExtractor>
215>
216{};
217
219using Index = boost::multi_index_container<
220 Announcement,
221 Announcement_Indices
222>;
223
225template<typename Tag>
226using Iter = typename Index::index<Tag>::type::iterator;
227
229struct PeerInfo {
230 size_t m_total = 0;
231 size_t m_completed = 0;
232 size_t m_requested = 0;
233};
234
236struct TxHashInfo
237{
239 size_t m_candidate_delayed = 0;
241 size_t m_candidate_ready = 0;
243 size_t m_candidate_best = 0;
245 size_t m_requested = 0;
247 Priority m_priority_candidate_best = std::numeric_limits<Priority>::max();
249 Priority m_priority_best_candidate_ready = std::numeric_limits<Priority>::min();
251 std::vector<NodeId> m_peers;
252};
253
255bool operator==(const PeerInfo& a, const PeerInfo& b)
256{
257 return std::tie(a.m_total, a.m_completed, a.m_requested) ==
258 std::tie(b.m_total, b.m_completed, b.m_requested);
259};
260
262std::unordered_map<NodeId, PeerInfo> RecomputePeerInfo(const Index& index)
263{
264 std::unordered_map<NodeId, PeerInfo> ret;
265 for (const Announcement& ann : index) {
266 PeerInfo& info = ret[ann.m_peer];
267 ++info.m_total;
268 info.m_requested += (ann.GetState() == State::REQUESTED);
269 info.m_completed += (ann.GetState() == State::COMPLETED);
270 }
271 return ret;
272}
273
275std::map<uint256, TxHashInfo> ComputeTxHashInfo(const Index& index, const PriorityComputer& computer)
276{
277 std::map<uint256, TxHashInfo> ret;
278 for (const Announcement& ann : index) {
279 TxHashInfo& info = ret[ann.m_gtxid.ToUint256()];
280 // Classify how many announcements of each state we have for this txhash.
281 info.m_candidate_delayed += (ann.GetState() == State::CANDIDATE_DELAYED);
282 info.m_candidate_ready += (ann.GetState() == State::CANDIDATE_READY);
283 info.m_candidate_best += (ann.GetState() == State::CANDIDATE_BEST);
284 info.m_requested += (ann.GetState() == State::REQUESTED);
285 // And track the priority of the best CANDIDATE_READY/CANDIDATE_BEST announcements.
286 if (ann.GetState() == State::CANDIDATE_BEST) {
287 info.m_priority_candidate_best = computer(ann);
288 }
289 if (ann.GetState() == State::CANDIDATE_READY) {
290 info.m_priority_best_candidate_ready = std::max(info.m_priority_best_candidate_ready, computer(ann));
291 }
292 // Also keep track of which peers this txhash has an announcement for (so we can detect duplicates).
293 info.m_peers.push_back(ann.m_peer);
294 }
295 return ret;
296}
297
298} // namespace
299
304 SequenceNumber m_current_sequence{0};
305
307 const PriorityComputer m_computer;
308
310 Index m_index;
311
313 std::unordered_map<NodeId, PeerInfo> m_peerinfo;
314
315public:
316 void SanityCheck() const
317 {
318 // Recompute m_peerdata from m_index. This verifies the data in it as it should just be caching statistics
319 // on m_index. It also verifies the invariant that no PeerInfo announcements with m_total==0 exist.
320 assert(m_peerinfo == RecomputePeerInfo(m_index));
321
322 // Calculate per-txhash statistics from m_index, and validate invariants.
323 for (auto& item : ComputeTxHashInfo(m_index, m_computer)) {
324 TxHashInfo& info = item.second;
325
326 // Cannot have only COMPLETED peer (txhash should have been forgotten already)
327 assert(info.m_candidate_delayed + info.m_candidate_ready + info.m_candidate_best + info.m_requested > 0);
328
329 // Can have at most 1 CANDIDATE_BEST/REQUESTED peer
330 assert(info.m_candidate_best + info.m_requested <= 1);
331
332 // If there are any CANDIDATE_READY announcements, there must be exactly one CANDIDATE_BEST or REQUESTED
333 // announcement.
334 if (info.m_candidate_ready > 0) {
335 assert(info.m_candidate_best + info.m_requested == 1);
336 }
337
338 // If there is both a CANDIDATE_READY and a CANDIDATE_BEST announcement, the CANDIDATE_BEST one must be
339 // at least as good (equal or higher priority) as the best CANDIDATE_READY.
340 if (info.m_candidate_ready && info.m_candidate_best) {
341 assert(info.m_priority_candidate_best >= info.m_priority_best_candidate_ready);
342 }
343
344 // No txhash can have been announced by the same peer twice.
345 std::sort(info.m_peers.begin(), info.m_peers.end());
346 assert(std::adjacent_find(info.m_peers.begin(), info.m_peers.end()) == info.m_peers.end());
347 }
348 }
349
350 void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
351 {
352 for (const Announcement& ann : m_index) {
353 if (ann.IsWaiting()) {
354 // REQUESTED and CANDIDATE_DELAYED must have a time in the future (they should have been converted
355 // to COMPLETED/CANDIDATE_READY respectively).
356 assert(ann.m_time > now);
357 } else if (ann.IsSelectable()) {
358 // CANDIDATE_READY and CANDIDATE_BEST cannot have a time in the future (they should have remained
359 // CANDIDATE_DELAYED, or should have been converted back to it if time went backwards).
360 assert(ann.m_time <= now);
361 }
362 }
363 }
364
365private:
367 template<typename Tag>
368 Iter<Tag> Erase(Iter<Tag> it)
369 {
370 auto peerit = m_peerinfo.find(it->m_peer);
371 peerit->second.m_completed -= it->GetState() == State::COMPLETED;
372 peerit->second.m_requested -= it->GetState() == State::REQUESTED;
373 if (--peerit->second.m_total == 0) m_peerinfo.erase(peerit);
374 return m_index.get<Tag>().erase(it);
375 }
376
378 template<typename Tag, typename Modifier>
379 void Modify(Iter<Tag> it, Modifier modifier)
380 {
381 auto peerit = m_peerinfo.find(it->m_peer);
382 peerit->second.m_completed -= it->GetState() == State::COMPLETED;
383 peerit->second.m_requested -= it->GetState() == State::REQUESTED;
384 m_index.get<Tag>().modify(it, std::move(modifier));
385 peerit->second.m_completed += it->GetState() == State::COMPLETED;
386 peerit->second.m_requested += it->GetState() == State::REQUESTED;
387 }
388
392 void PromoteCandidateReady(Iter<ByTxHash> it)
393 {
394 assert(it != m_index.get<ByTxHash>().end());
395 assert(it->GetState() == State::CANDIDATE_DELAYED);
396 // Convert CANDIDATE_DELAYED to CANDIDATE_READY first.
397 Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
398 // The following code relies on the fact that the ByTxHash is sorted by txhash, and then by state (first
399 // _DELAYED, then _READY, then _BEST/REQUESTED). Within the _READY announcements, the best one (highest
400 // priority) comes last. Thus, if an existing _BEST exists for the same txhash that this announcement may
401 // be preferred over, it must immediately follow the newly created _READY.
402 auto it_next = std::next(it);
403 if (it_next == m_index.get<ByTxHash>().end() || it_next->m_gtxid.ToUint256() != it->m_gtxid.ToUint256() ||
404 it_next->GetState() == State::COMPLETED) {
405 // This is the new best CANDIDATE_READY, and there is no IsSelected() announcement for this txhash
406 // already.
407 Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
408 } else if (it_next->GetState() == State::CANDIDATE_BEST) {
409 Priority priority_old = m_computer(*it_next);
410 Priority priority_new = m_computer(*it);
411 if (priority_new > priority_old) {
412 // There is a CANDIDATE_BEST announcement already, but this one is better.
413 Modify<ByTxHash>(it_next, [](Announcement& ann){ ann.SetState(State::CANDIDATE_READY); });
414 Modify<ByTxHash>(it, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
415 }
416 }
417 }
418
421 void ChangeAndReselect(Iter<ByTxHash> it, State new_state)
422 {
423 assert(new_state == State::COMPLETED || new_state == State::CANDIDATE_DELAYED);
424 assert(it != m_index.get<ByTxHash>().end());
425 if (it->IsSelected() && it != m_index.get<ByTxHash>().begin()) {
426 auto it_prev = std::prev(it);
427 // The next best CANDIDATE_READY, if any, immediately precedes the REQUESTED or CANDIDATE_BEST
428 // announcement in the ByTxHash index.
429 if (it_prev->m_gtxid.ToUint256() == it->m_gtxid.ToUint256() && it_prev->GetState() == State::CANDIDATE_READY) {
430 // If one such CANDIDATE_READY exists (for this txhash), convert it to CANDIDATE_BEST.
431 Modify<ByTxHash>(it_prev, [](Announcement& ann){ ann.SetState(State::CANDIDATE_BEST); });
432 }
433 }
434 Modify<ByTxHash>(it, [new_state](Announcement& ann){ ann.SetState(new_state); });
435 }
436
438 bool IsOnlyNonCompleted(Iter<ByTxHash> it)
439 {
440 assert(it != m_index.get<ByTxHash>().end());
441 assert(it->GetState() != State::COMPLETED); // Not allowed to call this on COMPLETED announcements.
442
443 // This announcement has a predecessor that belongs to the same txhash. Due to ordering, and the
444 // fact that 'it' is not COMPLETED, its predecessor cannot be COMPLETED here.
445 if (it != m_index.get<ByTxHash>().begin() && std::prev(it)->m_gtxid.ToUint256() == it->m_gtxid.ToUint256()) return false;
446
447 // This announcement has a successor that belongs to the same txhash, and is not COMPLETED.
448 if (std::next(it) != m_index.get<ByTxHash>().end() && std::next(it)->m_gtxid.ToUint256() == it->m_gtxid.ToUint256() &&
449 std::next(it)->GetState() != State::COMPLETED) return false;
450
451 return true;
452 }
453
457 bool MakeCompleted(Iter<ByTxHash> it)
458 {
459 assert(it != m_index.get<ByTxHash>().end());
460
461 // Nothing to be done if it's already COMPLETED.
462 if (it->GetState() == State::COMPLETED) return true;
463
464 if (IsOnlyNonCompleted(it)) {
465 // This is the last non-COMPLETED announcement for this txhash. Delete all.
466 uint256 txhash = it->m_gtxid.ToUint256();
467 do {
468 it = Erase<ByTxHash>(it);
469 } while (it != m_index.get<ByTxHash>().end() && it->m_gtxid.ToUint256() == txhash);
470 return false;
471 }
472
473 // Mark the announcement COMPLETED, and select the next best announcement (the first CANDIDATE_READY) if
474 // needed.
475 ChangeAndReselect(it, State::COMPLETED);
476
477 return true;
478 }
479
484 void SetTimePoint(std::chrono::microseconds now, std::vector<std::pair<NodeId, GenTxid>>* expired)
485 {
486 if (expired) expired->clear();
487
488 // Iterate over all CANDIDATE_DELAYED and REQUESTED from old to new, as long as they're in the past,
489 // and convert them to CANDIDATE_READY and COMPLETED respectively.
490 while (!m_index.empty()) {
491 auto it = m_index.get<ByTime>().begin();
492 if (it->GetState() == State::CANDIDATE_DELAYED && it->m_time <= now) {
493 PromoteCandidateReady(m_index.project<ByTxHash>(it));
494 } else if (it->GetState() == State::REQUESTED && it->m_time <= now) {
495 if (expired) expired->emplace_back(it->m_peer, it->m_gtxid);
496 MakeCompleted(m_index.project<ByTxHash>(it));
497 } else {
498 break;
499 }
500 }
501
502 while (!m_index.empty()) {
503 // If time went backwards, we may need to demote CANDIDATE_BEST and CANDIDATE_READY announcements back
504 // to CANDIDATE_DELAYED. This is an unusual edge case, and unlikely to matter in production. However,
505 // it makes it much easier to specify and test TxRequestTracker::Impl's behaviour.
506 auto it = std::prev(m_index.get<ByTime>().end());
507 if (it->IsSelectable() && it->m_time > now) {
508 ChangeAndReselect(m_index.project<ByTxHash>(it), State::CANDIDATE_DELAYED);
509 } else {
510 break;
511 }
512 }
513 }
514
515public:
516 explicit Impl(bool deterministic) :
517 m_computer(deterministic),
518 // Explicitly initialize m_index as we need to pass a reference to m_computer to ByTxHashViewExtractor.
519 m_index(boost::make_tuple(
520 boost::make_tuple(ByPeerViewExtractor(), std::less<ByPeerView>()),
521 boost::make_tuple(ByTxHashViewExtractor(m_computer), std::less<ByTxHashView>()),
522 boost::make_tuple(ByTimeViewExtractor(), std::less<ByTimeView>())
523 )) {}
524
525 // Disable copying and assigning (a default copy won't work due the stateful ByTxHashViewExtractor).
526 Impl(const Impl&) = delete;
527 Impl& operator=(const Impl&) = delete;
528
530 {
531 auto& index = m_index.get<ByPeer>();
532 auto it = index.lower_bound(ByPeerView{peer, false, uint256::ZERO});
533 while (it != index.end() && it->m_peer == peer) {
534 // Check what to continue with after this iteration. 'it' will be deleted in what follows, so we need to
535 // decide what to continue with afterwards. There are a number of cases to consider:
536 // - std::next(it) is end() or belongs to a different peer. In that case, this is the last iteration
537 // of the loop (denote this by setting it_next to end()).
538 // - 'it' is not the only non-COMPLETED announcement for its txhash. This means it will be deleted, but
539 // no other Announcement objects will be modified. Continue with std::next(it) if it belongs to the
540 // same peer, but decide this ahead of time (as 'it' may change position in what follows).
541 // - 'it' is the only non-COMPLETED announcement for its txhash. This means it will be deleted along
542 // with all other announcements for the same txhash - which may include std::next(it). However, other
543 // than 'it', no announcements for the same peer can be affected (due to (peer, txhash) uniqueness).
544 // In other words, the situation where std::next(it) is deleted can only occur if std::next(it)
545 // belongs to a different peer but the same txhash as 'it'. This is covered by the first bulletpoint
546 // already, and we'll have set it_next to end().
547 auto it_next = (std::next(it) == index.end() || std::next(it)->m_peer != peer) ? index.end() :
548 std::next(it);
549 // If the announcement isn't already COMPLETED, first make it COMPLETED (which will mark other
550 // CANDIDATEs as CANDIDATE_BEST, or delete all of a txhash's announcements if no non-COMPLETED ones are
551 // left).
552 if (MakeCompleted(m_index.project<ByTxHash>(it))) {
553 // Then actually delete the announcement (unless it was already deleted by MakeCompleted).
554 Erase<ByPeer>(it);
555 }
556 it = it_next;
557 }
558 }
559
560 void ForgetTxHash(const uint256& txhash)
561 {
562 auto it = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_DELAYED, 0});
563 while (it != m_index.get<ByTxHash>().end() && it->m_gtxid.ToUint256() == txhash) {
564 it = Erase<ByTxHash>(it);
565 }
566 }
567
568 void GetCandidatePeers(const uint256& txhash, std::vector<NodeId>& result_peers) const
569 {
570 auto it = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_DELAYED, 0});
571 while (it != m_index.get<ByTxHash>().end() && it->m_gtxid.ToUint256() == txhash && it->GetState() != State::COMPLETED) {
572 result_peers.push_back(it->m_peer);
573 ++it;
574 }
575 }
576
577 void ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
578 std::chrono::microseconds reqtime)
579 {
580 // Bail out if we already have a CANDIDATE_BEST announcement for this (txhash, peer) combination. The case
581 // where there is a non-CANDIDATE_BEST announcement already will be caught by the uniqueness property of the
582 // ByPeer index when we try to emplace the new object below.
583 if (m_index.get<ByPeer>().count(ByPeerView{peer, true, gtxid.ToUint256()})) return;
584
585 // Try creating the announcement with CANDIDATE_DELAYED state (which will fail due to the uniqueness
586 // of the ByPeer index if a non-CANDIDATE_BEST announcement already exists with the same txhash and peer).
587 // Bail out in that case.
588 auto ret = m_index.get<ByPeer>().emplace(gtxid, peer, preferred, reqtime, m_current_sequence);
589 if (!ret.second) return;
590
591 // Update accounting metadata.
592 ++m_peerinfo[peer].m_total;
594 }
595
597 std::vector<GenTxid> GetRequestable(NodeId peer, std::chrono::microseconds now,
598 std::vector<std::pair<NodeId, GenTxid>>* expired)
599 {
600 // Move time.
601 SetTimePoint(now, expired);
602
603 // Find all CANDIDATE_BEST announcements for this peer.
604 std::vector<const Announcement*> selected;
605 auto it_peer = m_index.get<ByPeer>().lower_bound(ByPeerView{peer, true, uint256::ZERO});
606 while (it_peer != m_index.get<ByPeer>().end() && it_peer->m_peer == peer &&
607 it_peer->GetState() == State::CANDIDATE_BEST) {
608 selected.emplace_back(&*it_peer);
609 ++it_peer;
610 }
611
612 // Sort by sequence number.
613 std::sort(selected.begin(), selected.end(), [](const Announcement* a, const Announcement* b) {
614 return a->m_sequence < b->m_sequence;
615 });
616
617 // Convert to GenTxid and return.
618 std::vector<GenTxid> ret;
619 ret.reserve(selected.size());
620 std::transform(selected.begin(), selected.end(), std::back_inserter(ret), [](const Announcement* ann) {
621 return ann->m_gtxid;
622 });
623 return ret;
624 }
625
626 void RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
627 {
628 auto it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
629 if (it == m_index.get<ByPeer>().end()) {
630 // There is no CANDIDATE_BEST announcement, look for a _READY or _DELAYED instead. If the caller only
631 // ever invokes RequestedTx with the values returned by GetRequestable, and no other non-const functions
632 // other than ForgetTxHash and GetRequestable in between, this branch will never execute (as txhashes
633 // returned by GetRequestable always correspond to CANDIDATE_BEST announcements).
634
635 it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
636 if (it == m_index.get<ByPeer>().end() || (it->GetState() != State::CANDIDATE_DELAYED &&
637 it->GetState() != State::CANDIDATE_READY)) {
638 // There is no CANDIDATE announcement tracked for this peer, so we have nothing to do. Either this
639 // txhash wasn't tracked at all (and the caller should have called ReceivedInv), or it was already
640 // requested and/or completed for other reasons and this is just a superfluous RequestedTx call.
641 return;
642 }
643
644 // Look for an existing CANDIDATE_BEST or REQUESTED with the same txhash. We only need to do this if the
645 // found announcement had a different state than CANDIDATE_BEST. If it did, invariants guarantee that no
646 // other CANDIDATE_BEST or REQUESTED can exist.
647 auto it_old = m_index.get<ByTxHash>().lower_bound(ByTxHashView{txhash, State::CANDIDATE_BEST, 0});
648 if (it_old != m_index.get<ByTxHash>().end() && it_old->m_gtxid.ToUint256() == txhash) {
649 if (it_old->GetState() == State::CANDIDATE_BEST) {
650 // The data structure's invariants require that there can be at most one CANDIDATE_BEST or one
651 // REQUESTED announcement per txhash (but not both simultaneously), so we have to convert any
652 // existing CANDIDATE_BEST to another CANDIDATE_* when constructing another REQUESTED.
653 // It doesn't matter whether we pick CANDIDATE_READY or _DELAYED here, as SetTimePoint()
654 // will correct it at GetRequestable() time. If time only goes forward, it will always be
655 // _READY, so pick that to avoid extra work in SetTimePoint().
656 Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::CANDIDATE_READY); });
657 } else if (it_old->GetState() == State::REQUESTED) {
658 // As we're no longer waiting for a response to the previous REQUESTED announcement, convert it
659 // to COMPLETED. This also helps guaranteeing progress.
660 Modify<ByTxHash>(it_old, [](Announcement& ann) { ann.SetState(State::COMPLETED); });
661 }
662 }
663 }
664
665 Modify<ByPeer>(it, [expiry](Announcement& ann) {
666 ann.SetState(State::REQUESTED);
667 ann.m_time = expiry;
668 });
669 }
670
671 void ReceivedResponse(NodeId peer, const uint256& txhash)
672 {
673 // We need to search the ByPeer index for both (peer, false, txhash) and (peer, true, txhash).
674 auto it = m_index.get<ByPeer>().find(ByPeerView{peer, false, txhash});
675 if (it == m_index.get<ByPeer>().end()) {
676 it = m_index.get<ByPeer>().find(ByPeerView{peer, true, txhash});
677 }
678 if (it != m_index.get<ByPeer>().end()) MakeCompleted(m_index.project<ByTxHash>(it));
679 }
680
681 size_t CountInFlight(NodeId peer) const
682 {
683 auto it = m_peerinfo.find(peer);
684 if (it != m_peerinfo.end()) return it->second.m_requested;
685 return 0;
686 }
687
688 size_t CountCandidates(NodeId peer) const
689 {
690 auto it = m_peerinfo.find(peer);
691 if (it != m_peerinfo.end()) return it->second.m_total - it->second.m_requested - it->second.m_completed;
692 return 0;
693 }
694
695 size_t Count(NodeId peer) const
696 {
697 auto it = m_peerinfo.find(peer);
698 if (it != m_peerinfo.end()) return it->second.m_total;
699 return 0;
700 }
701
703 size_t Size() const { return m_index.size(); }
704
705 uint64_t ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
706 {
707 // Return Priority as a uint64_t as Priority is internal.
708 return uint64_t{m_computer(txhash, peer, preferred)};
709 }
710
711};
712
714 m_impl{std::make_unique<TxRequestTracker::Impl>(deterministic)} {}
715
717
718void TxRequestTracker::ForgetTxHash(const uint256& txhash) { m_impl->ForgetTxHash(txhash); }
719void TxRequestTracker::DisconnectedPeer(NodeId peer) { m_impl->DisconnectedPeer(peer); }
720size_t TxRequestTracker::CountInFlight(NodeId peer) const { return m_impl->CountInFlight(peer); }
721size_t TxRequestTracker::CountCandidates(NodeId peer) const { return m_impl->CountCandidates(peer); }
722size_t TxRequestTracker::Count(NodeId peer) const { return m_impl->Count(peer); }
723size_t TxRequestTracker::Size() const { return m_impl->Size(); }
724void TxRequestTracker::GetCandidatePeers(const uint256& txhash, std::vector<NodeId>& result_peers) const { return m_impl->GetCandidatePeers(txhash, result_peers); }
725void TxRequestTracker::SanityCheck() const { m_impl->SanityCheck(); }
726
727void TxRequestTracker::PostGetRequestableSanityCheck(std::chrono::microseconds now) const
728{
729 m_impl->PostGetRequestableSanityCheck(now);
730}
731
732void TxRequestTracker::ReceivedInv(NodeId peer, const GenTxid& gtxid, bool preferred,
733 std::chrono::microseconds reqtime)
734{
735 m_impl->ReceivedInv(peer, gtxid, preferred, reqtime);
736}
737
738void TxRequestTracker::RequestedTx(NodeId peer, const uint256& txhash, std::chrono::microseconds expiry)
739{
740 m_impl->RequestedTx(peer, txhash, expiry);
741}
742
744{
745 m_impl->ReceivedResponse(peer, txhash);
746}
747
748std::vector<GenTxid> TxRequestTracker::GetRequestable(NodeId peer, std::chrono::microseconds now,
749 std::vector<std::pair<NodeId, GenTxid>>* expired)
750{
751 return m_impl->GetRequestable(peer, now, expired);
752}
753
754uint64_t TxRequestTracker::ComputePriority(const uint256& txhash, NodeId peer, bool preferred) const
755{
756 return m_impl->ComputePriority(txhash, peer, preferred);
757}
int ret
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
Fast randomness source.
Definition: random.h:386
Actual implementation for TxRequestTracker's data structure.
Definition: txrequest.cpp:301
const PriorityComputer m_computer
This tracker's priority computer.
Definition: txrequest.cpp:307
std::vector< GenTxid > GetRequestable(NodeId peer, std::chrono::microseconds now, std::vector< std::pair< NodeId, GenTxid > > *expired)
Find the GenTxids to request now from peer.
Definition: txrequest.cpp:597
void SetTimePoint(std::chrono::microseconds now, std::vector< std::pair< NodeId, GenTxid > > *expired)
Make the data structure consistent with a given point in time:
Definition: txrequest.cpp:484
void PromoteCandidateReady(Iter< ByTxHash > it)
Convert a CANDIDATE_DELAYED announcement into a CANDIDATE_READY.
Definition: txrequest.cpp:392
SequenceNumber m_current_sequence
The current sequence number.
Definition: txrequest.cpp:304
Iter< Tag > Erase(Iter< Tag > it)
Wrapper around Index::...::erase that keeps m_peerinfo up to date.
Definition: txrequest.cpp:368
void GetCandidatePeers(const uint256 &txhash, std::vector< NodeId > &result_peers) const
Definition: txrequest.cpp:568
void ReceivedResponse(NodeId peer, const uint256 &txhash)
Definition: txrequest.cpp:671
size_t CountInFlight(NodeId peer) const
Definition: txrequest.cpp:681
size_t Size() const
Count how many announcements are being tracked in total across all peers and transactions.
Definition: txrequest.cpp:703
void ReceivedInv(NodeId peer, const GenTxid &gtxid, bool preferred, std::chrono::microseconds reqtime)
Definition: txrequest.cpp:577
Impl(const Impl &)=delete
bool MakeCompleted(Iter< ByTxHash > it)
Convert any announcement to a COMPLETED one.
Definition: txrequest.cpp:457
void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
Definition: txrequest.cpp:350
Index m_index
This tracker's main data structure. See SanityCheck() for the invariants that apply to it.
Definition: txrequest.cpp:310
bool IsOnlyNonCompleted(Iter< ByTxHash > it)
Check if 'it' is the only announcement for a given txhash that isn't COMPLETED.
Definition: txrequest.cpp:438
void SanityCheck() const
Definition: txrequest.cpp:316
void ForgetTxHash(const uint256 &txhash)
Definition: txrequest.cpp:560
uint64_t ComputePriority(const uint256 &txhash, NodeId peer, bool preferred) const
Definition: txrequest.cpp:705
std::unordered_map< NodeId, PeerInfo > m_peerinfo
Map with this tracker's per-peer statistics.
Definition: txrequest.cpp:313
Impl(bool deterministic)
Definition: txrequest.cpp:516
void RequestedTx(NodeId peer, const uint256 &txhash, std::chrono::microseconds expiry)
Definition: txrequest.cpp:626
void ChangeAndReselect(Iter< ByTxHash > it, State new_state)
Change the state of an announcement to something non-IsSelected().
Definition: txrequest.cpp:421
size_t CountCandidates(NodeId peer) const
Definition: txrequest.cpp:688
Impl & operator=(const Impl &)=delete
size_t Count(NodeId peer) const
Definition: txrequest.cpp:695
void Modify(Iter< Tag > it, Modifier modifier)
Wrapper around Index::...::modify that keeps m_peerinfo up to date.
Definition: txrequest.cpp:379
void DisconnectedPeer(NodeId peer)
Definition: txrequest.cpp:529
Data structure to keep track of, and schedule, transaction downloads from peers.
Definition: txrequest.h:100
void ReceivedInv(NodeId peer, const GenTxid &gtxid, bool preferred, std::chrono::microseconds reqtime)
Adds a new CANDIDATE announcement.
Definition: txrequest.cpp:732
void SanityCheck() const
Run internal consistency check (testing only).
Definition: txrequest.cpp:725
size_t CountInFlight(NodeId peer) const
Count how many REQUESTED announcements a peer has.
Definition: txrequest.cpp:720
void GetCandidatePeers(const uint256 &txhash, std::vector< NodeId > &result_peers) const
For some txhash (txid or wtxid), finds all peers with non-COMPLETED announcements and appends them to...
Definition: txrequest.cpp:724
size_t CountCandidates(NodeId peer) const
Count how many CANDIDATE announcements a peer has.
Definition: txrequest.cpp:721
TxRequestTracker(bool deterministic=false)
Construct a TxRequestTracker.
Definition: txrequest.cpp:713
const std::unique_ptr< Impl > m_impl
Definition: txrequest.h:103
void DisconnectedPeer(NodeId peer)
Deletes all announcements for a given peer.
Definition: txrequest.cpp:719
void ReceivedResponse(NodeId peer, const uint256 &txhash)
Converts a CANDIDATE or REQUESTED announcement to a COMPLETED one.
Definition: txrequest.cpp:743
uint64_t ComputePriority(const uint256 &txhash, NodeId peer, bool preferred) const
Access to the internal priority computation (testing only)
Definition: txrequest.cpp:754
void PostGetRequestableSanityCheck(std::chrono::microseconds now) const
Run a time-dependent internal consistency check (testing only).
Definition: txrequest.cpp:727
void RequestedTx(NodeId peer, const uint256 &txhash, std::chrono::microseconds expiry)
Marks a transaction as requested, with a specified expiry.
Definition: txrequest.cpp:738
size_t Count(NodeId peer) const
Count how many announcements a peer has (REQUESTED, CANDIDATE, and COMPLETED combined).
Definition: txrequest.cpp:722
size_t Size() const
Count how many announcements are being tracked in total across all peers and transaction hashes.
Definition: txrequest.cpp:723
std::vector< GenTxid > GetRequestable(NodeId peer, std::chrono::microseconds now, std::vector< std::pair< NodeId, GenTxid > > *expired=nullptr)
Find the txids to request now from peer.
Definition: txrequest.cpp:748
void ForgetTxHash(const uint256 &txhash)
Deletes all announcements for a given txhash (both txid and wtxid ones).
Definition: txrequest.cpp:718
256-bit opaque blob.
Definition: uint256.h:196
static const uint256 ZERO
Definition: uint256.h:204
uint64_t sequence
int64_t NodeId
Definition: net.h:98
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:607
assert(!tx.IsCoinBase())