Bitcoin Core 28.99.0
P2P Digital Currency
muhash.cpp
Go to the documentation of this file.
1// Copyright (c) 2017-2022 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <crypto/muhash.h>
6
7#include <crypto/chacha20.h>
8#include <crypto/common.h>
9#include <hash.h>
10
11#include <cassert>
12#include <cstdio>
13#include <limits>
14
15namespace {
16
17using limb_t = Num3072::limb_t;
18using double_limb_t = Num3072::double_limb_t;
19constexpr int LIMB_SIZE = Num3072::LIMB_SIZE;
21constexpr limb_t MAX_PRIME_DIFF = 1103717;
22
24inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n)
25{
26 n = c0;
27 c0 = c1;
28 c1 = c2;
29 c2 = 0;
30}
31
33inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b)
34{
35 double_limb_t t = (double_limb_t)a * b;
36 c1 = t >> LIMB_SIZE;
37 c0 = t;
38}
39
40/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */
41inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n)
42{
43 double_limb_t t = (double_limb_t)d0 * n + c0;
44 c0 = t;
45 t >>= LIMB_SIZE;
46 t += (double_limb_t)d1 * n + c1;
47 c1 = t;
48 t >>= LIMB_SIZE;
49 c2 = t + d2 * n;
50}
51
52/* [c0,c1] *= n */
53inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n)
54{
55 double_limb_t t = (double_limb_t)c0 * n;
56 c0 = t;
57 t >>= LIMB_SIZE;
58 t += (double_limb_t)c1 * n;
59 c1 = t;
60}
61
63inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
64{
65 double_limb_t t = (double_limb_t)a * b;
66 limb_t th = t >> LIMB_SIZE;
67 limb_t tl = t;
68
69 c0 += tl;
70 th += (c0 < tl) ? 1 : 0;
71 c1 += th;
72 c2 += (c1 < th) ? 1 : 0;
73}
74
76inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
77{
78 double_limb_t t = (double_limb_t)a * b;
79 limb_t th = t >> LIMB_SIZE;
80 limb_t tl = t;
81
82 c0 += tl;
83 limb_t tt = th + ((c0 < tl) ? 1 : 0);
84 c1 += tt;
85 c2 += (c1 < tt) ? 1 : 0;
86 c0 += tl;
87 th += (c0 < tl) ? 1 : 0;
88 c1 += th;
89 c2 += (c1 < th) ? 1 : 0;
90}
91
96inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n)
97{
98 limb_t c2 = 0;
99
100 // add
101 c0 += a;
102 if (c0 < a) {
103 c1 += 1;
104
105 // Handle case when c1 has overflown
106 if (c1 == 0)
107 c2 = 1;
108 }
109
110 // extract
111 n = c0;
112 c0 = c1;
113 c1 = c2;
114}
115
117inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul)
118{
119 for (int j = 0; j < sq; ++j) in_out.Square();
120 in_out.Multiply(mul);
121}
122
123} // namespace
124
127{
128 if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false;
129 for (int i = 1; i < LIMBS; ++i) {
130 if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false;
131 }
132 return true;
133}
134
136{
137 limb_t c0 = MAX_PRIME_DIFF;
138 limb_t c1 = 0;
139 for (int i = 0; i < LIMBS; ++i) {
140 addnextract2(c0, c1, this->limbs[i], this->limbs[i]);
141 }
142}
143
145{
146 // For fast exponentiation a sliding window exponentiation with repunit
147 // precomputation is utilized. See "Fast Point Decompression for Standard
148 // Elliptic Curves" (Brumley, Järvinen, 2008).
149
150 Num3072 p[12]; // p[i] = a^(2^(2^i)-1)
151 Num3072 out;
152
153 p[0] = *this;
154
155 for (int i = 0; i < 11; ++i) {
156 p[i + 1] = p[i];
157 for (int j = 0; j < (1 << i); ++j) p[i + 1].Square();
158 p[i + 1].Multiply(p[i]);
159 }
160
161 out = p[11];
162
163 square_n_mul(out, 512, p[9]);
164 square_n_mul(out, 256, p[8]);
165 square_n_mul(out, 128, p[7]);
166 square_n_mul(out, 64, p[6]);
167 square_n_mul(out, 32, p[5]);
168 square_n_mul(out, 8, p[3]);
169 square_n_mul(out, 2, p[1]);
170 square_n_mul(out, 1, p[0]);
171 square_n_mul(out, 5, p[2]);
172 square_n_mul(out, 3, p[0]);
173 square_n_mul(out, 2, p[0]);
174 square_n_mul(out, 4, p[0]);
175 square_n_mul(out, 4, p[1]);
176 square_n_mul(out, 3, p[0]);
177
178 return out;
179}
180
182{
183 limb_t c0 = 0, c1 = 0, c2 = 0;
184 Num3072 tmp;
185
186 /* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */
187 for (int j = 0; j < LIMBS - 1; ++j) {
188 limb_t d0 = 0, d1 = 0, d2 = 0;
189 mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]);
190 for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]);
191 mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
192 for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]);
193 extract3(c0, c1, c2, tmp.limbs[j]);
194 }
195
196 /* Compute limb N-1 of a*b into tmp. */
197 assert(c2 == 0);
198 for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]);
199 extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
200
201 /* Perform a second reduction. */
202 muln2(c0, c1, MAX_PRIME_DIFF);
203 for (int j = 0; j < LIMBS; ++j) {
204 addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
205 }
206
207 assert(c1 == 0);
208 assert(c0 == 0 || c0 == 1);
209
210 /* Perform up to two more reductions if the internal state has already
211 * overflown the MAX of Num3072 or if it is larger than the modulus or
212 * if both are the case.
213 * */
214 if (this->IsOverflow()) this->FullReduce();
215 if (c0) this->FullReduce();
216}
217
219{
220 limb_t c0 = 0, c1 = 0, c2 = 0;
221 Num3072 tmp;
222
223 /* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */
224 for (int j = 0; j < LIMBS - 1; ++j) {
225 limb_t d0 = 0, d1 = 0, d2 = 0;
226 for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]);
227 if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]);
228 mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
229 for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]);
230 if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]);
231 extract3(c0, c1, c2, tmp.limbs[j]);
232 }
233
234 assert(c2 == 0);
235 for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]);
236 extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
237
238 /* Perform a second reduction. */
239 muln2(c0, c1, MAX_PRIME_DIFF);
240 for (int j = 0; j < LIMBS; ++j) {
241 addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
242 }
243
244 assert(c1 == 0);
245 assert(c0 == 0 || c0 == 1);
246
247 /* Perform up to two more reductions if the internal state has already
248 * overflown the MAX of Num3072 or if it is larger than the modulus or
249 * if both are the case.
250 * */
251 if (this->IsOverflow()) this->FullReduce();
252 if (c0) this->FullReduce();
253}
254
256{
257 this->limbs[0] = 1;
258 for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0;
259}
260
262{
263 if (this->IsOverflow()) this->FullReduce();
264
265 Num3072 inv{};
266 if (a.IsOverflow()) {
267 Num3072 b = a;
268 b.FullReduce();
269 inv = b.GetInverse();
270 } else {
271 inv = a.GetInverse();
272 }
273
274 this->Multiply(inv);
275 if (this->IsOverflow()) this->FullReduce();
276}
277
278Num3072::Num3072(const unsigned char (&data)[BYTE_SIZE]) {
279 for (int i = 0; i < LIMBS; ++i) {
280 if (sizeof(limb_t) == 4) {
281 this->limbs[i] = ReadLE32(data + 4 * i);
282 } else if (sizeof(limb_t) == 8) {
283 this->limbs[i] = ReadLE64(data + 8 * i);
284 }
285 }
286}
287
288void Num3072::ToBytes(unsigned char (&out)[BYTE_SIZE]) {
289 for (int i = 0; i < LIMBS; ++i) {
290 if (sizeof(limb_t) == 4) {
291 WriteLE32(out + i * 4, this->limbs[i]);
292 } else if (sizeof(limb_t) == 8) {
293 WriteLE64(out + i * 8, this->limbs[i]);
294 }
295 }
296}
297
299 unsigned char tmp[Num3072::BYTE_SIZE];
300
301 uint256 hashed_in{(HashWriter{} << in).GetSHA256()};
302 static_assert(sizeof(tmp) % ChaCha20Aligned::BLOCKLEN == 0);
303 ChaCha20Aligned{MakeByteSpan(hashed_in)}.Keystream(MakeWritableByteSpan(tmp));
304 Num3072 out{tmp};
305
306 return out;
307}
308
310{
311 m_numerator = ToNum3072(in);
312}
313
315{
316 m_numerator.Divide(m_denominator);
317 m_denominator.SetToOne(); // Needed to keep the MuHash object valid
318
319 unsigned char data[Num3072::BYTE_SIZE];
320 m_numerator.ToBytes(data);
321
322 out = (HashWriter{} << data).GetSHA256();
323}
324
326{
327 m_numerator.Multiply(mul.m_numerator);
328 m_denominator.Multiply(mul.m_denominator);
329 return *this;
330}
331
333{
334 m_numerator.Multiply(div.m_denominator);
335 m_denominator.Multiply(div.m_numerator);
336 return *this;
337}
338
340 m_numerator.Multiply(ToNum3072(in));
341 return *this;
342}
343
345 m_denominator.Multiply(ToNum3072(in));
346 return *this;
347}
ChaCha20 cipher that only operates on multiples of 64 bytes.
Definition: chacha20.h:26
static constexpr unsigned BLOCKLEN
Block size (inputs/outputs to Keystream / Crypt should be multiples of this).
Definition: chacha20.h:35
A writer stream (for serialization) that computes a 256-bit hash.
Definition: hash.h:101
A class representing MuHash sets.
Definition: muhash.h:91
Num3072 ToNum3072(Span< const unsigned char > in)
Definition: muhash.cpp:298
MuHash3072() noexcept=default
void Finalize(uint256 &out) noexcept
Definition: muhash.cpp:314
MuHash3072 & Remove(Span< const unsigned char > in) noexcept
Definition: muhash.cpp:344
MuHash3072 & operator/=(const MuHash3072 &div) noexcept
Definition: muhash.cpp:332
MuHash3072 & Insert(Span< const unsigned char > in) noexcept
Definition: muhash.cpp:339
MuHash3072 & operator*=(const MuHash3072 &mul) noexcept
Definition: muhash.cpp:325
Definition: muhash.h:14
Num3072 GetInverse() const
Definition: muhash.cpp:144
void Square()
Definition: muhash.cpp:218
static constexpr int LIMBS
Definition: muhash.h:31
static constexpr size_t BYTE_SIZE
Definition: muhash.h:21
bool IsOverflow() const
Indicates whether d is larger than the modulus.
Definition: muhash.cpp:126
void ToBytes(unsigned char(&out)[BYTE_SIZE])
Definition: muhash.cpp:288
limb_t limbs[LIMBS]
Definition: muhash.h:34
void SetToOne()
Definition: muhash.cpp:255
static constexpr int LIMB_SIZE
Definition: muhash.h:32
void Divide(const Num3072 &a)
Definition: muhash.cpp:261
void FullReduce()
Definition: muhash.cpp:135
uint64_t double_limb_t
Definition: muhash.h:29
uint32_t limb_t
Definition: muhash.h:30
Num3072()
Definition: muhash.h:50
void Multiply(const Num3072 &a)
Definition: muhash.cpp:181
256-bit opaque blob.
Definition: uint256.h:201
void WriteLE32(B *ptr, uint32_t x)
Definition: common.h:50
uint64_t ReadLE64(const B *ptr)
Definition: common.h:35
void WriteLE64(B *ptr, uint64_t x)
Definition: common.h:57
uint32_t ReadLE32(const B *ptr)
Definition: common.h:27
Span< const std::byte > MakeByteSpan(V &&v) noexcept
Definition: span.h:269
Span< std::byte > MakeWritableByteSpan(V &&v) noexcept
Definition: span.h:274
assert(!tx.IsCoinBase())