Bitcoin Core 28.99.0
P2P Digital Currency
ecmult_impl.h
Go to the documentation of this file.
1/******************************************************************************
2 * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php. *
5 ******************************************************************************/
6
7#ifndef SECP256K1_ECMULT_IMPL_H
8#define SECP256K1_ECMULT_IMPL_H
9
10#include <string.h>
11#include <stdint.h>
12
13#include "util.h"
14#include "group.h"
15#include "scalar.h"
16#include "ecmult.h"
17#include "precomputed_ecmult.h"
18
19#if defined(EXHAUSTIVE_TEST_ORDER)
20/* We need to lower these values for exhaustive tests because
21 * the tables cannot have infinities in them (this breaks the
22 * affine-isomorphism stuff which tracks z-ratios) */
23# if EXHAUSTIVE_TEST_ORDER > 128
24# define WINDOW_A 5
25# elif EXHAUSTIVE_TEST_ORDER > 8
26# define WINDOW_A 4
27# else
28# define WINDOW_A 2
29# endif
30#else
31/* optimal for 128-bit and 256-bit exponents. */
32# define WINDOW_A 5
42#endif
43
44#define WNAF_BITS 128
45#define WNAF_SIZE_BITS(bits, w) CEIL_DIV(bits, w)
46#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
47
48/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
49#define PIPPENGER_SCRATCH_OBJECTS 6
50#define STRAUSS_SCRATCH_OBJECTS 5
51
52#define PIPPENGER_MAX_BUCKET_WINDOW 12
53
54/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
55#define ECMULT_PIPPENGER_THRESHOLD 88
56
57#define ECMULT_MAX_POINTS_PER_BATCH 5000000
58
74 secp256k1_gej d, ai;
75 secp256k1_ge d_ge;
76 int i;
77
79
80 secp256k1_gej_double_var(&d, a, NULL);
81
82 /*
83 * Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
84 * The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
85 * In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
86 *
87 * phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
88 * d_ge := phi(d) = (d.x, d.y, 1)
89 * ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
90 *
91 * The group addition functions work correctly on these isomorphic curves.
92 * In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
93 * This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
94 */
95 secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
96 secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
97 secp256k1_gej_set_ge(&ai, &pre_a[0]);
98 ai.z = a->z;
99
100 /* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a.
101 * Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
102 */
103 zr[0] = d.z;
104
105 for (i = 1; i < n; i++) {
106 secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
107 secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
108 }
109
110 /* Multiply the last z-coordinate by C to undo the isomorphism.
111 * Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
112 * undoing the isomorphism here undoes the isomorphism for all pre_a values.
113 */
114 secp256k1_fe_mul(z, &ai.z, &d.z);
115}
116
118 (void)n;
119 (void)w;
120 VERIFY_CHECK(((n) & 1) == 1);
121 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1));
122 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1));
123}
124
127 if (n > 0) {
128 *r = pre[(n-1)/2];
129 } else {
130 *r = pre[(-n-1)/2];
131 secp256k1_fe_negate(&(r->y), &(r->y), 1);
132 }
133}
134
137 if (n > 0) {
138 secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y);
139 } else {
140 secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y);
141 secp256k1_fe_negate(&(r->y), &(r->y), 1);
142 }
143}
144
147 if (n > 0) {
148 secp256k1_ge_from_storage(r, &pre[(n-1)/2]);
149 } else {
150 secp256k1_ge_from_storage(r, &pre[(-n-1)/2]);
151 secp256k1_fe_negate(&(r->y), &(r->y), 1);
152 }
153}
154
162static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
164 int last_set_bit = -1;
165 int bit = 0;
166 int sign = 1;
167 int carry = 0;
168
169 VERIFY_CHECK(wnaf != NULL);
170 VERIFY_CHECK(0 <= len && len <= 256);
171 VERIFY_CHECK(a != NULL);
172 VERIFY_CHECK(2 <= w && w <= 31);
173
174 for (bit = 0; bit < len; bit++) {
175 wnaf[bit] = 0;
176 }
177
178 s = *a;
179 if (secp256k1_scalar_get_bits_limb32(&s, 255, 1)) {
181 sign = -1;
182 }
183
184 bit = 0;
185 while (bit < len) {
186 int now;
187 int word;
188 if (secp256k1_scalar_get_bits_limb32(&s, bit, 1) == (unsigned int)carry) {
189 bit++;
190 continue;
191 }
192
193 now = w;
194 if (now > len - bit) {
195 now = len - bit;
196 }
197
198 word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
199
200 carry = (word >> (w-1)) & 1;
201 word -= carry << w;
202
203 wnaf[bit] = sign * word;
204 last_set_bit = bit;
205
206 bit += now;
207 }
208#ifdef VERIFY
209 {
210 int verify_bit = bit;
211
212 VERIFY_CHECK(carry == 0);
213
214 while (verify_bit < 256) {
215 VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&s, verify_bit, 1) == 0);
216 verify_bit++;
217 }
218 }
219#endif
220 return last_set_bit + 1;
221}
222
224 int wnaf_na_1[129];
225 int wnaf_na_lam[129];
228};
229
231 /* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */
235};
236
237static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
238 secp256k1_ge tmpa;
239 secp256k1_fe Z;
240 /* Split G factors. */
241 secp256k1_scalar ng_1, ng_128;
242 int wnaf_ng_1[129];
243 int bits_ng_1 = 0;
244 int wnaf_ng_128[129];
245 int bits_ng_128 = 0;
246 int i;
247 int bits = 0;
248 size_t np;
249 size_t no = 0;
250
252 for (np = 0; np < num; ++np) {
253 secp256k1_gej tmp;
254 secp256k1_scalar na_1, na_lam;
255 if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
256 continue;
257 }
258 /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
259 secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]);
260
261 /* build wnaf representation for na_1 and na_lam. */
262 state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &na_1, WINDOW_A);
263 state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A);
264 VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
265 VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
266 if (state->ps[no].bits_na_1 > bits) {
267 bits = state->ps[no].bits_na_1;
268 }
269 if (state->ps[no].bits_na_lam > bits) {
270 bits = state->ps[no].bits_na_lam;
271 }
272
273 /* Calculate odd multiples of a.
274 * All multiples are brought to the same Z 'denominator', which is stored
275 * in Z. Due to secp256k1' isomorphism we can do all operations pretending
276 * that the Z coordinate was 1, use affine addition formulae, and correct
277 * the Z coordinate of the result once at the end.
278 * The exception is the precomputed G table points, which are actually
279 * affine. Compared to the base used for other points, they have a Z ratio
280 * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
281 * isomorphism to efficiently add with a known Z inverse.
282 */
283 tmp = a[np];
284 if (no) {
285 secp256k1_gej_rescale(&tmp, &Z);
286 }
288 if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z));
289
290 ++no;
291 }
292
293 /* Bring them to the same Z denominator. */
294 if (no) {
296 }
297
298 for (np = 0; np < no; ++np) {
299 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
301 }
302 }
303
304 if (ng) {
305 /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
306 secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
307
308 /* Build wnaf representation for ng_1 and ng_128 */
309 bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
310 bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
311 if (bits_ng_1 > bits) {
312 bits = bits_ng_1;
313 }
314 if (bits_ng_128 > bits) {
315 bits = bits_ng_128;
316 }
317 }
318
320
321 for (i = bits - 1; i >= 0; i--) {
322 int n;
323 secp256k1_gej_double_var(r, r, NULL);
324 for (np = 0; np < no; ++np) {
325 if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
327 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
328 }
329 if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
331 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
332 }
333 }
334 if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
336 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
337 }
338 if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
340 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
341 }
342 }
343
344 if (!r->infinity) {
345 secp256k1_fe_mul(&r->z, &r->z, &Z);
346 }
347}
348
349static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
353 struct secp256k1_strauss_state state;
354
355 state.aux = aux;
356 state.pre_a = pre_a;
357 state.ps = ps;
358 secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng);
359}
360
361static size_t secp256k1_strauss_scratch_size(size_t n_points) {
362 static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
363 return n_points*point_size;
364}
365
366static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
367 secp256k1_gej* points;
368 secp256k1_scalar* scalars;
369 struct secp256k1_strauss_state state;
370 size_t i;
371 const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
372
374 if (inp_g_sc == NULL && n_points == 0) {
375 return 1;
376 }
377
378 /* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these
379 * allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS
380 * constant and strauss_scratch_size accordingly. */
381 points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej));
382 scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
383 state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
384 state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
385 state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
386
387 if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) {
388 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
389 return 0;
390 }
391
392 for (i = 0; i < n_points; i++) {
393 secp256k1_ge point;
394 if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
395 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
396 return 0;
397 }
398 secp256k1_gej_set_ge(&points[i], &point);
399 }
400 secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc);
401 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
402 return 1;
403}
404
405/* Wrapper for secp256k1_ecmult_multi_func interface */
406static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
407 return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
408}
409
410static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
412}
413
421static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
422 int skew = 0;
423 int pos;
424 int max_pos;
425 int last_w;
426 const secp256k1_scalar *work = s;
427
429 for (pos = 0; pos < WNAF_SIZE(w); pos++) {
430 wnaf[pos] = 0;
431 }
432 return 0;
433 }
434
436 skew = 1;
437 }
438
439 wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
440 /* Compute last window size. Relevant when window size doesn't divide the
441 * number of bits in the scalar */
442 last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
443
444 /* Store the position of the first nonzero word in max_pos to allow
445 * skipping leading zeros when calculating the wnaf. */
446 for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
447 int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
448 if(val != 0) {
449 break;
450 }
451 wnaf[pos] = 0;
452 }
453 max_pos = pos;
454 pos = 1;
455
456 while (pos <= max_pos) {
457 int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
458 if ((val & 1) == 0) {
459 wnaf[pos - 1] -= (1 << w);
460 wnaf[pos] = (val + 1);
461 } else {
462 wnaf[pos] = val;
463 }
464 /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
465 * is strictly negative or strictly positive respectively. Only change
466 * coefficients at previous positions because above code assumes that
467 * wnaf[pos - 1] is odd.
468 */
469 if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
470 if (wnaf[pos - 1] == 1) {
471 wnaf[pos - 2] += 1 << w;
472 } else {
473 wnaf[pos - 2] -= 1 << w;
474 }
475 wnaf[pos - 1] = 0;
476 }
477 ++pos;
478 }
479
480 return skew;
481}
482
485 size_t input_pos;
486};
487
491};
492
493/*
494 * pippenger_wnaf computes the result of a multi-point multiplication as
495 * follows: The scalars are brought into wnaf with n_wnaf elements each. Then
496 * for every i < n_wnaf, first each point is added to a "bucket" corresponding
497 * to the point's wnaf[i]. Second, the buckets are added together such that
498 * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
499 */
500static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
501 size_t n_wnaf = WNAF_SIZE(bucket_window+1);
502 size_t np;
503 size_t no = 0;
504 int i;
505 int j;
506
507 for (np = 0; np < num; ++np) {
508 if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
509 continue;
510 }
511 state->ps[no].input_pos = np;
512 state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
513 no++;
514 }
516
517 if (no == 0) {
518 return 1;
519 }
520
521 for (i = n_wnaf - 1; i >= 0; i--) {
522 secp256k1_gej running_sum;
523
524 for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
525 secp256k1_gej_set_infinity(&buckets[j]);
526 }
527
528 for (np = 0; np < no; ++np) {
529 int n = state->wnaf_na[np*n_wnaf + i];
530 struct secp256k1_pippenger_point_state point_state = state->ps[np];
531 secp256k1_ge tmp;
532 int idx;
533
534 if (i == 0) {
535 /* correct for wnaf skew */
536 int skew = point_state.skew_na;
537 if (skew) {
538 secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
539 secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
540 }
541 }
542 if (n > 0) {
543 idx = (n - 1)/2;
544 secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
545 } else if (n < 0) {
546 idx = -(n + 1)/2;
547 secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
548 secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
549 }
550 }
551
552 for(j = 0; j < bucket_window; j++) {
553 secp256k1_gej_double_var(r, r, NULL);
554 }
555
556 secp256k1_gej_set_infinity(&running_sum);
557 /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
558 * = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
559 * + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
560 * using an intermediate running sum:
561 * running_sum = bucket[0] + bucket[1] + bucket[2] + ...
562 *
563 * The doubling is done implicitly by deferring the final window doubling (of 'r').
564 */
565 for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
566 secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
567 secp256k1_gej_add_var(r, r, &running_sum, NULL);
568 }
569
570 secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
571 secp256k1_gej_double_var(r, r, NULL);
572 secp256k1_gej_add_var(r, r, &running_sum, NULL);
573 }
574 return 1;
575}
576
582 if (n <= 1) {
583 return 1;
584 } else if (n <= 4) {
585 return 2;
586 } else if (n <= 20) {
587 return 3;
588 } else if (n <= 57) {
589 return 4;
590 } else if (n <= 136) {
591 return 5;
592 } else if (n <= 235) {
593 return 6;
594 } else if (n <= 1260) {
595 return 7;
596 } else if (n <= 4420) {
597 return 9;
598 } else if (n <= 7880) {
599 return 10;
600 } else if (n <= 16050) {
601 return 11;
602 } else {
604 }
605}
606
610static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
611 switch(bucket_window) {
612 case 1: return 1;
613 case 2: return 4;
614 case 3: return 20;
615 case 4: return 57;
616 case 5: return 136;
617 case 6: return 235;
618 case 7: return 1260;
619 case 8: return 1260;
620 case 9: return 4420;
621 case 10: return 7880;
622 case 11: return 16050;
623 case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
624 }
625 return 0;
626}
627
628
630 secp256k1_scalar tmp = *s1;
631 secp256k1_scalar_split_lambda(s1, s2, &tmp);
633
634 if (secp256k1_scalar_is_high(s1)) {
636 secp256k1_ge_neg(p1, p1);
637 }
638 if (secp256k1_scalar_is_high(s2)) {
640 secp256k1_ge_neg(p2, p2);
641 }
642}
643
648static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
649 size_t entries = 2*n_points + 2;
650 size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
651 return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
652}
653
654static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
655 const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
656 /* Use 2(n+1) with the endomorphism, when calculating batch
657 * sizes. The reason for +1 is that we add the G scalar to the list of
658 * other scalars. */
659 size_t entries = 2*n_points + 2;
660 secp256k1_ge *points;
661 secp256k1_scalar *scalars;
662 secp256k1_gej *buckets;
663 struct secp256k1_pippenger_state *state_space;
664 size_t idx = 0;
665 size_t point_idx = 0;
666 int bucket_window;
667
669 if (inp_g_sc == NULL && n_points == 0) {
670 return 1;
671 }
672 bucket_window = secp256k1_pippenger_bucket_window(n_points);
673
674 /* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If
675 * these allocations change, make sure to update the
676 * PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size
677 * accordingly. */
678 points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
679 scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
680 state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
681 if (points == NULL || scalars == NULL || state_space == NULL) {
682 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
683 return 0;
684 }
685 state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
686 state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
687 buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
688 if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
689 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
690 return 0;
691 }
692
693 if (inp_g_sc != NULL) {
694 scalars[0] = *inp_g_sc;
695 points[0] = secp256k1_ge_const_g;
696 idx++;
697 secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
698 idx++;
699 }
700
701 while (point_idx < n_points) {
702 if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
703 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
704 return 0;
705 }
706 idx++;
707 secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
708 idx++;
709 point_idx++;
710 }
711
712 secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
713 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
714 return 1;
715}
716
717/* Wrapper for secp256k1_ecmult_multi_func interface */
718static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
719 return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
720}
721
727static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
728 size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
729 int bucket_window;
730 size_t res = 0;
731
732 for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
733 size_t n_points;
734 size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
735 size_t space_for_points;
736 size_t space_overhead;
737 size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
738
739 entry_size = 2*entry_size;
740 space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
741 if (space_overhead > max_alloc) {
742 break;
743 }
744 space_for_points = max_alloc - space_overhead;
745
746 n_points = space_for_points/entry_size;
747 n_points = n_points > max_points ? max_points : n_points;
748 if (n_points > res) {
749 res = n_points;
750 }
751 if (n_points < max_points) {
752 /* A larger bucket_window may support even more points. But if we
753 * would choose that then the caller couldn't safely use any number
754 * smaller than what this function returns */
755 break;
756 }
757 }
758 return res;
759}
760
761/* Computes ecmult_multi by simply multiplying and adding each point. Does not
762 * require a scratch space */
763static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
764 size_t point_idx;
765 secp256k1_gej tmpj;
766
769 /* r = inp_g_sc*G */
770 secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
771 for (point_idx = 0; point_idx < n_points; point_idx++) {
772 secp256k1_ge point;
773 secp256k1_gej pointj;
774 secp256k1_scalar scalar;
775 if (!cb(&scalar, &point, point_idx, cbdata)) {
776 return 0;
777 }
778 /* r += scalar*point */
779 secp256k1_gej_set_ge(&pointj, &point);
780 secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL);
781 secp256k1_gej_add_var(r, r, &tmpj, NULL);
782 }
783 return 1;
784}
785
786/* Compute the number of batches and the batch size given the maximum batch size and the
787 * total number of points */
788static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
789 if (max_n_batch_points == 0) {
790 return 0;
791 }
792 if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
793 max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
794 }
795 if (n == 0) {
796 *n_batches = 0;
797 *n_batch_points = 0;
798 return 1;
799 }
800 /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
801 *n_batches = CEIL_DIV(n, max_n_batch_points);
802 *n_batch_points = CEIL_DIV(n, *n_batches);
803 return 1;
804}
805
807static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
808 size_t i;
809
810 int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
811 size_t n_batches;
812 size_t n_batch_points;
813
815 if (inp_g_sc == NULL && n == 0) {
816 return 1;
817 } else if (n == 0) {
818 secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
819 return 1;
820 }
821 if (scratch == NULL) {
822 return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
823 }
824
825 /* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
826 * a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
827 * As a first step check if there's enough space for Pippenger's algo (which requires less space
828 * than Strauss' algo) and if not, use the simple algorithm. */
829 if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) {
830 return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
831 }
832 if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
834 } else {
835 if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) {
836 return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
837 }
839 }
840 for(i = 0; i < n_batches; i++) {
841 size_t nbp = n < n_batch_points ? n : n_batch_points;
842 size_t offset = n_batch_points*i;
843 secp256k1_gej tmp;
844 if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
845 return 0;
846 }
847 secp256k1_gej_add_var(r, r, &tmp, NULL);
848 n -= nbp;
849 }
850 return 1;
851}
852
853#endif /* SECP256K1_ECMULT_IMPL_H */
#define ECMULT_TABLE_SIZE(w)
The number of entries a table with precomputed multiples needs to have.
Definition: ecmult.h:41
int() secp256k1_ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data)
Definition: ecmult.h:46
#define STRAUSS_SCRATCH_OBJECTS
Definition: ecmult_impl.h:50
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window)
Returns the maximum optimal number of points for a bucket_window.
Definition: ecmult_impl.h:610
static size_t secp256k1_pippenger_max_points(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
Returns the maximum number of points in addition to G that can be used with a given scratch space.
Definition: ecmult_impl.h:727
static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset)
Definition: ecmult_impl.h:654
#define WNAF_SIZE(w)
Definition: ecmult_impl.h:46
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:406
static size_t secp256k1_strauss_max_points(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
Definition: ecmult_impl.h:410
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:421
static SECP256K1_INLINE void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2)
Definition: ecmult_impl.h:629
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:162
static SECP256K1_INLINE void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w)
Definition: ecmult_impl.h:145
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:807
static SECP256K1_INLINE void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w)
Definition: ecmult_impl.h:135
#define WINDOW_A
Definition: ecmult_impl.h:32
static size_t secp256k1_strauss_scratch_size(size_t n_points)
Definition: ecmult_impl.h:361
#define ECMULT_PIPPENGER_THRESHOLD
Definition: ecmult_impl.h:55
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points)
Definition: ecmult_impl.h:763
static int secp256k1_pippenger_bucket_window(size_t n)
Returns optimal bucket_window (number of bits of a scalar represented by a set of buckets) for a give...
Definition: ecmult_impl.h:581
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:718
#define WNAF_BITS
Larger values for ECMULT_WINDOW_SIZE result in possibly better performance at the cost of an exponent...
Definition: ecmult_impl.h:44
#define ECMULT_MAX_POINTS_PER_BATCH
Definition: ecmult_impl.h:57
#define PIPPENGER_MAX_BUCKET_WINDOW
Definition: ecmult_impl.h:52
#define PIPPENGER_SCRATCH_OBJECTS
Definition: ecmult_impl.h:49
static int secp256k1_ecmult_strauss_batch(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset)
Definition: ecmult_impl.h:366
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Definition: ecmult_impl.h:349
static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n)
Definition: ecmult_impl.h:788
static SECP256K1_INLINE void secp256k1_ecmult_table_verify(int n, int w)
Definition: ecmult_impl.h:117
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num)
Definition: ecmult_impl.h:500
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window)
Returns the scratch size required for a given number of points (excluding base point G) without consi...
Definition: ecmult_impl.h:648
static SECP256K1_INLINE void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w)
Definition: ecmult_impl.h:125
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a)
Fill a table 'pre_a' with precomputed odd multiples of a.
Definition: ecmult_impl.h:73
static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Definition: ecmult_impl.h:237
int(* secp256k1_ecmult_multi_func)(const secp256k1_callback *error_callback, secp256k1_scratch *, secp256k1_gej *, const secp256k1_scalar *, secp256k1_ecmult_multi_callback cb, void *, size_t)
Definition: ecmult_impl.h:806
#define secp256k1_fe_negate(r, a, m)
Negate a field element.
Definition: field.h:211
static const secp256k1_fe secp256k1_const_beta
Definition: field.h:69
#define secp256k1_fe_mul
Definition: field.h:93
#define secp256k1_fe_set_int
Definition: field.h:83
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Set a group element equal to the point with given X and Y coordinates.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
Convert a group element back from the storage type.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr)
Bring a batch of inputs to the same global z "denominator", based on ratios between (omitted) z coord...
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi)
Definition: group_impl.h:99
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:72
static int sign(const secp256k1_context *ctx, struct signer_secrets *signer_secrets, struct signer *signer, const secp256k1_musig_keyagg_cache *cache, const unsigned char *msg32, unsigned char *sig64)
Definition: musig.c:105
const secp256k1_ge_storage secp256k1_pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]
const secp256k1_ge_storage secp256k1_pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]
#define WINDOW_G
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
Find r1 and r2 such that r1+r2*2^128 = k.
static int secp256k1_scalar_is_even(const secp256k1_scalar *a)
Check whether a scalar, considered as an nonnegative integer, is even.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
Access bits (1 < count <= 32) from a scalar.
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
Check whether a scalar is higher than the group order divided by 2.
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their negations are maximum 128 bits lo...
static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
Access bits (1 < count <= 32) from a scalar.
static const secp256k1_scalar secp256k1_scalar_zero
Definition: scalar_impl.h:28
static void secp256k1_scratch_apply_checkpoint(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, size_t checkpoint)
Applies a check point received from secp256k1_scratch_checkpoint, undoing all allocations since that ...
static size_t secp256k1_scratch_max_allocation(const secp256k1_callback *error_callback, const secp256k1_scratch *scratch, size_t n_objects)
Returns the maximum allocation the scratch space will allow.
static void * secp256k1_scratch_alloc(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, size_t n)
Returns a pointer into the most recently allocated frame, or NULL if there is insufficient available ...
static size_t secp256k1_scratch_checkpoint(const secp256k1_callback *error_callback, const secp256k1_scratch *scratch)
Returns an opaque object used to "checkpoint" a scratch space.
#define SECP256K1_INLINE
Definition: util.h:54
#define VERIFY_CHECK(cond)
Definition: util.h:159
#define CEIL_DIV(x, y)
Definition: util.h:180
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
secp256k1_fe y
Definition: group.h:30
secp256k1_fe x
Definition: group.h:29
int infinity
Definition: group.h:32
secp256k1_fe z
Definition: group.h:31
struct secp256k1_pippenger_point_state * ps
Definition: ecmult_impl.h:490
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
secp256k1_fe * aux
Definition: ecmult_impl.h:232
struct secp256k1_strauss_point_state * ps
Definition: ecmult_impl.h:234
secp256k1_ge * pre_a
Definition: ecmult_impl.h:233