Bitcoin Core 30.99.0
P2P Digital Currency
ecmult_impl.h
Go to the documentation of this file.
1/******************************************************************************
2 * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php. *
5 ******************************************************************************/
6
7#ifndef SECP256K1_ECMULT_IMPL_H
8#define SECP256K1_ECMULT_IMPL_H
9
10#include <string.h>
11#include <stdint.h>
12
13#include "util.h"
14#include "group.h"
15#include "scalar.h"
16#include "ecmult.h"
17#include "precomputed_ecmult.h"
18
19#if defined(EXHAUSTIVE_TEST_ORDER)
20/* We need to lower these values for exhaustive tests because
21 * the tables cannot have infinities in them (this breaks the
22 * affine-isomorphism stuff which tracks z-ratios) */
23# if EXHAUSTIVE_TEST_ORDER > 128
24# define WINDOW_A 5
25# elif EXHAUSTIVE_TEST_ORDER > 8
26# define WINDOW_A 4
27# else
28# define WINDOW_A 2
29# endif
30#else
31/* optimal for 128-bit and 256-bit exponents. */
32# define WINDOW_A 5
42#endif
43
44#define WNAF_BITS 128
45#define WNAF_SIZE_BITS(bits, w) CEIL_DIV(bits, w)
46#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
47
48/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
49#define PIPPENGER_SCRATCH_OBJECTS 6
50#define STRAUSS_SCRATCH_OBJECTS 5
51
52#define PIPPENGER_MAX_BUCKET_WINDOW 12
53
54/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
55#define ECMULT_PIPPENGER_THRESHOLD 88
56
57#define ECMULT_MAX_POINTS_PER_BATCH 5000000
58
74 secp256k1_gej d, ai;
75 secp256k1_ge d_ge;
76 size_t i;
77
79
80 secp256k1_gej_double_var(&d, a, NULL);
81
82 /*
83 * Perform the additions using an isomorphic curve Y^2 = X^3 + 7*C^6 where C := d.z.
84 * The isomorphism, phi, maps a secp256k1 point (x, y) to the point (x*C^2, y*C^3) on the other curve.
85 * In Jacobian coordinates phi maps (x, y, z) to (x*C^2, y*C^3, z) or, equivalently to (x, y, z/C).
86 *
87 * phi(x, y, z) = (x*C^2, y*C^3, z) = (x, y, z/C)
88 * d_ge := phi(d) = (d.x, d.y, 1)
89 * ai := phi(a) = (a.x*C^2, a.y*C^3, a.z)
90 *
91 * The group addition functions work correctly on these isomorphic curves.
92 * In particular phi(d) is easy to represent in affine coordinates under this isomorphism.
93 * This lets us use the faster secp256k1_gej_add_ge_var group addition function that we wouldn't be able to use otherwise.
94 */
95 secp256k1_ge_set_xy(&d_ge, &d.x, &d.y);
96 secp256k1_ge_set_gej_zinv(&pre_a[0], a, &d.z);
97 secp256k1_gej_set_ge(&ai, &pre_a[0]);
98 ai.z = a->z;
99
100 /* pre_a[0] is the point (a.x*C^2, a.y*C^3, a.z*C) which is equivalent to a.
101 * Set zr[0] to C, which is the ratio between the omitted z(pre_a[0]) value and a.z.
102 */
103 zr[0] = d.z;
104
105 for (i = 1; i < n; i++) {
106 secp256k1_gej_add_ge_var(&ai, &ai, &d_ge, &zr[i]);
107 secp256k1_ge_set_xy(&pre_a[i], &ai.x, &ai.y);
108 }
109
110 /* Multiply the last z-coordinate by C to undo the isomorphism.
111 * Since the z-coordinates of the pre_a values are implied by the zr array of z-coordinate ratios,
112 * undoing the isomorphism here undoes the isomorphism for all pre_a values.
113 */
114 secp256k1_fe_mul(z, &ai.z, &d.z);
115}
116
118 (void)n;
119 (void)w;
120 VERIFY_CHECK(((n) & 1) == 1);
121 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1));
122 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1));
123}
124
127 if (n > 0) {
128 *r = pre[(n-1)/2];
129 } else {
130 *r = pre[(-n-1)/2];
131 secp256k1_fe_negate(&(r->y), &(r->y), 1);
132 }
133}
134
137 if (n > 0) {
138 secp256k1_ge_set_xy(r, &x[(n-1)/2], &pre[(n-1)/2].y);
139 } else {
140 secp256k1_ge_set_xy(r, &x[(-n-1)/2], &pre[(-n-1)/2].y);
141 secp256k1_fe_negate(&(r->y), &(r->y), 1);
142 }
143}
144
147 if (n > 0) {
148 secp256k1_ge_from_storage(r, &pre[(n-1)/2]);
149 } else {
150 secp256k1_ge_from_storage(r, &pre[(-n-1)/2]);
151 secp256k1_fe_negate(&(r->y), &(r->y), 1);
152 }
153}
154
162static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
164 int last_set_bit = -1;
165 int bit = 0;
166 int sign = 1;
167 int carry = 0;
168
169 VERIFY_CHECK(wnaf != NULL);
170 VERIFY_CHECK(0 <= len && len <= 256);
171 VERIFY_CHECK(a != NULL);
172 VERIFY_CHECK(2 <= w && w <= 31);
173
174 for (bit = 0; bit < len; bit++) {
175 wnaf[bit] = 0;
176 }
177
178 s = *a;
179 if (secp256k1_scalar_get_bits_limb32(&s, 255, 1)) {
181 sign = -1;
182 }
183
184 bit = 0;
185 while (bit < len) {
186 int now;
187 int word;
188 if (secp256k1_scalar_get_bits_limb32(&s, bit, 1) == (unsigned int)carry) {
189 bit++;
190 continue;
191 }
192
193 now = w;
194 if (now > len - bit) {
195 now = len - bit;
196 }
197
198 word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
199
200 carry = (word >> (w-1)) & 1;
201 word -= carry << w;
202
203 wnaf[bit] = sign * word;
204 last_set_bit = bit;
205
206 bit += now;
207 }
208#ifdef VERIFY
209 {
210 int verify_bit = bit;
211
212 VERIFY_CHECK(carry == 0);
213
214 while (verify_bit < 256) {
215 VERIFY_CHECK(secp256k1_scalar_get_bits_limb32(&s, verify_bit, 1) == 0);
216 verify_bit++;
217 }
218 }
219#endif
220 return last_set_bit + 1;
221}
222
223/* Same as secp256k1_ecmult_wnaf, but stores to int8_t array. Requires w <= 8. */
224static int secp256k1_ecmult_wnaf_small(int8_t *wnaf, int len, const secp256k1_scalar *a, int w) {
225 int wnaf_tmp[256];
226 int ret, i;
227
228 VERIFY_CHECK(2 <= w && w <= 8);
229 ret = secp256k1_ecmult_wnaf(wnaf_tmp, len, a, w);
230
231 for (i = 0; i < len; i++) {
232 wnaf[i] = (int8_t)wnaf_tmp[i];
233 }
234
235 return ret;
236}
237
239 int8_t wnaf_na_1[129];
240 int8_t wnaf_na_lam[129];
243};
244
246 /* aux is used to hold z-ratios, and then used to hold pre_a[i].x * BETA values. */
250};
251
252static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
253 secp256k1_ge tmpa;
254 secp256k1_fe Z;
255 /* Split G factors. */
256 secp256k1_scalar ng_1, ng_128;
257 int wnaf_ng_1[129];
258 int bits_ng_1 = 0;
259 int wnaf_ng_128[129];
260 int bits_ng_128 = 0;
261 int i;
262 int bits = 0;
263 size_t np;
264 size_t no = 0;
265
267 for (np = 0; np < num; ++np) {
268 secp256k1_gej tmp;
269 secp256k1_scalar na_1, na_lam;
270 if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
271 continue;
272 }
273 /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
274 secp256k1_scalar_split_lambda(&na_1, &na_lam, &na[np]);
275
276 /* build wnaf representation for na_1 and na_lam. */
277 state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf_small(state->ps[no].wnaf_na_1, 129, &na_1, WINDOW_A);
278 state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf_small(state->ps[no].wnaf_na_lam, 129, &na_lam, WINDOW_A);
279 VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
280 VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
281 if (state->ps[no].bits_na_1 > bits) {
282 bits = state->ps[no].bits_na_1;
283 }
284 if (state->ps[no].bits_na_lam > bits) {
285 bits = state->ps[no].bits_na_lam;
286 }
287
288 /* Calculate odd multiples of a.
289 * All multiples are brought to the same Z 'denominator', which is stored
290 * in Z. Due to secp256k1' isomorphism we can do all operations pretending
291 * that the Z coordinate was 1, use affine addition formulae, and correct
292 * the Z coordinate of the result once at the end.
293 * The exception is the precomputed G table points, which are actually
294 * affine. Compared to the base used for other points, they have a Z ratio
295 * of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
296 * isomorphism to efficiently add with a known Z inverse.
297 */
298 tmp = a[np];
299 if (no) {
300 secp256k1_gej_rescale(&tmp, &Z);
301 }
303 if (no) secp256k1_fe_mul(state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), state->aux + no * ECMULT_TABLE_SIZE(WINDOW_A), &(a[np].z));
304
305 ++no;
306 }
307
308 /* Bring them to the same Z denominator. */
309 if (no) {
311 }
312
313 for (np = 0; np < no; ++np) {
314 size_t j;
315 for (j = 0; j < ECMULT_TABLE_SIZE(WINDOW_A); j++) {
317 }
318 }
319
320 if (ng) {
321 /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
322 secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
323
324 /* Build wnaf representation for ng_1 and ng_128 */
325 bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
326 bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
327 if (bits_ng_1 > bits) {
328 bits = bits_ng_1;
329 }
330 if (bits_ng_128 > bits) {
331 bits = bits_ng_128;
332 }
333 }
334
336
337 for (i = bits - 1; i >= 0; i--) {
338 int n;
339 secp256k1_gej_double_var(r, r, NULL);
340 for (np = 0; np < no; ++np) {
341 if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
343 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
344 }
345 if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
347 secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
348 }
349 }
350 if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
352 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
353 }
354 if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
356 secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
357 }
358 }
359
361 secp256k1_fe_mul(&r->z, &r->z, &Z);
362 }
363}
364
365static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
369 struct secp256k1_strauss_state state;
370
371 state.aux = aux;
372 state.pre_a = pre_a;
373 state.ps = ps;
374 secp256k1_ecmult_strauss_wnaf(&state, r, 1, a, na, ng);
375}
376
377static size_t secp256k1_strauss_scratch_size(size_t n_points) {
378 static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
379 return n_points*point_size;
380}
381
382static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
383 secp256k1_gej* points;
384 secp256k1_scalar* scalars;
385 struct secp256k1_strauss_state state;
386 size_t i;
387 const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
388
390 if (inp_g_sc == NULL && n_points == 0) {
391 return 1;
392 }
393
394 /* We allocate STRAUSS_SCRATCH_OBJECTS objects on the scratch space. If these
395 * allocations change, make sure to update the STRAUSS_SCRATCH_OBJECTS
396 * constant and strauss_scratch_size accordingly. */
397 points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej));
398 scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
399 state.aux = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
400 state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
401 state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
402
403 if (points == NULL || scalars == NULL || state.aux == NULL || state.pre_a == NULL || state.ps == NULL) {
404 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
405 return 0;
406 }
407
408 for (i = 0; i < n_points; i++) {
409 secp256k1_ge point;
410 if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
411 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
412 return 0;
413 }
414 secp256k1_gej_set_ge(&points[i], &point);
415 }
416 secp256k1_ecmult_strauss_wnaf(&state, r, n_points, points, scalars, inp_g_sc);
417 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
418 return 1;
419}
420
421/* Wrapper for secp256k1_ecmult_multi_func interface */
422static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
423 return secp256k1_ecmult_strauss_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
424}
425
426static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
428}
429
437static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
438 int skew = 0;
439 int pos;
440 int max_pos;
441 int last_w;
442 const secp256k1_scalar *work = s;
443
445 for (pos = 0; pos < WNAF_SIZE(w); pos++) {
446 wnaf[pos] = 0;
447 }
448 return 0;
449 }
450
452 skew = 1;
453 }
454
455 wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
456 /* Compute last window size. Relevant when window size doesn't divide the
457 * number of bits in the scalar */
458 last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
459
460 /* Store the position of the first nonzero word in max_pos to allow
461 * skipping leading zeros when calculating the wnaf. */
462 for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
463 int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
464 if(val != 0) {
465 break;
466 }
467 wnaf[pos] = 0;
468 }
469 max_pos = pos;
470 pos = 1;
471
472 while (pos <= max_pos) {
473 int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
474 if ((val & 1) == 0) {
475 wnaf[pos - 1] -= (1 << w);
476 wnaf[pos] = (val + 1);
477 } else {
478 wnaf[pos] = val;
479 }
480 /* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
481 * is strictly negative or strictly positive respectively. Only change
482 * coefficients at previous positions because above code assumes that
483 * wnaf[pos - 1] is odd.
484 */
485 if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
486 if (wnaf[pos - 1] == 1) {
487 wnaf[pos - 2] += 1 << w;
488 } else {
489 wnaf[pos - 2] -= 1 << w;
490 }
491 wnaf[pos - 1] = 0;
492 }
493 ++pos;
494 }
495
496 return skew;
497}
498
501 size_t input_pos;
502};
503
507};
508
509/*
510 * pippenger_wnaf computes the result of a multi-point multiplication as
511 * follows: The scalars are brought into wnaf with n_wnaf elements each. Then
512 * for every i < n_wnaf, first each point is added to a "bucket" corresponding
513 * to the point's wnaf[i]. Second, the buckets are added together such that
514 * r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
515 */
516static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
517 size_t n_wnaf = WNAF_SIZE(bucket_window+1);
518 size_t np;
519 size_t no = 0;
520 int i;
521
522 for (np = 0; np < num; ++np) {
523 if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
524 continue;
525 }
526 state->ps[no].input_pos = np;
527 state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
528 no++;
529 }
531
532 if (no == 0) {
533 return 1;
534 }
535
536 for (i = n_wnaf - 1; i >= 0; i--) {
537 secp256k1_gej running_sum;
538 int j;
539 size_t buc;
540
541 for (buc = 0; buc < ECMULT_TABLE_SIZE(bucket_window+2); buc++) {
542 secp256k1_gej_set_infinity(&buckets[buc]);
543 }
544
545 for (np = 0; np < no; ++np) {
546 int n = state->wnaf_na[np*n_wnaf + i];
547 struct secp256k1_pippenger_point_state point_state = state->ps[np];
548 secp256k1_ge tmp;
549
550 if (i == 0) {
551 /* correct for wnaf skew */
552 int skew = point_state.skew_na;
553 if (skew) {
554 secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
555 secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
556 }
557 }
558 if (n > 0) {
559 buc = (n - 1)/2;
560 secp256k1_gej_add_ge_var(&buckets[buc], &buckets[buc], &pt[point_state.input_pos], NULL);
561 } else if (n < 0) {
562 buc = -(n + 1)/2;
563 secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
564 secp256k1_gej_add_ge_var(&buckets[buc], &buckets[buc], &tmp, NULL);
565 }
566 }
567
568 for (j = 0; j < bucket_window; j++) {
569 secp256k1_gej_double_var(r, r, NULL);
570 }
571
572 secp256k1_gej_set_infinity(&running_sum);
573 /* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
574 * = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
575 * + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
576 * using an intermediate running sum:
577 * running_sum = bucket[0] + bucket[1] + bucket[2] + ...
578 *
579 * The doubling is done implicitly by deferring the final window doubling (of 'r').
580 */
581 for (buc = ECMULT_TABLE_SIZE(bucket_window+2) - 1; buc > 0; buc--) {
582 secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[buc], NULL);
583 secp256k1_gej_add_var(r, r, &running_sum, NULL);
584 }
585
586 secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
587 secp256k1_gej_double_var(r, r, NULL);
588 secp256k1_gej_add_var(r, r, &running_sum, NULL);
589 }
590 return 1;
591}
592
598 if (n <= 1) {
599 return 1;
600 } else if (n <= 4) {
601 return 2;
602 } else if (n <= 20) {
603 return 3;
604 } else if (n <= 57) {
605 return 4;
606 } else if (n <= 136) {
607 return 5;
608 } else if (n <= 235) {
609 return 6;
610 } else if (n <= 1260) {
611 return 7;
612 } else if (n <= 4420) {
613 return 9;
614 } else if (n <= 7880) {
615 return 10;
616 } else if (n <= 16050) {
617 return 11;
618 } else {
620 }
621}
622
626static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
627 switch(bucket_window) {
628 case 1: return 1;
629 case 2: return 4;
630 case 3: return 20;
631 case 4: return 57;
632 case 5: return 136;
633 case 6: return 235;
634 case 7: return 1260;
635 case 8: return 1260;
636 case 9: return 4420;
637 case 10: return 7880;
638 case 11: return 16050;
639 case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
640 }
641 return 0;
642}
643
644
646 secp256k1_scalar tmp = *s1;
647 secp256k1_scalar_split_lambda(s1, s2, &tmp);
649
650 if (secp256k1_scalar_is_high(s1)) {
652 secp256k1_ge_neg(p1, p1);
653 }
654 if (secp256k1_scalar_is_high(s2)) {
656 secp256k1_ge_neg(p2, p2);
657 }
658}
659
664static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
665 size_t entries = 2*n_points + 2;
666 size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
667 return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
668}
669
670static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
671 const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
672 /* Use 2(n+1) with the endomorphism, when calculating batch
673 * sizes. The reason for +1 is that we add the G scalar to the list of
674 * other scalars. */
675 size_t entries = 2*n_points + 2;
676 secp256k1_ge *points;
677 secp256k1_scalar *scalars;
678 secp256k1_gej *buckets;
679 struct secp256k1_pippenger_state *state_space;
680 size_t idx = 0;
681 size_t point_idx = 0;
682 int bucket_window;
683
685 if (inp_g_sc == NULL && n_points == 0) {
686 return 1;
687 }
688 bucket_window = secp256k1_pippenger_bucket_window(n_points);
689
690 /* We allocate PIPPENGER_SCRATCH_OBJECTS objects on the scratch space. If
691 * these allocations change, make sure to update the
692 * PIPPENGER_SCRATCH_OBJECTS constant and pippenger_scratch_size
693 * accordingly. */
694 points = (secp256k1_ge *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
695 scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
696 state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
697 if (points == NULL || scalars == NULL || state_space == NULL) {
698 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
699 return 0;
700 }
701 state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
702 state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
703 buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, ((size_t)1 << bucket_window) * sizeof(*buckets));
704 if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
705 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
706 return 0;
707 }
708
709 if (inp_g_sc != NULL) {
710 scalars[0] = *inp_g_sc;
711 points[0] = secp256k1_ge_const_g;
712 idx++;
713 secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
714 idx++;
715 }
716
717 while (point_idx < n_points) {
718 if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
719 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
720 return 0;
721 }
722 idx++;
723 secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
724 idx++;
725 point_idx++;
726 }
727
728 secp256k1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
729 secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
730 return 1;
731}
732
733/* Wrapper for secp256k1_ecmult_multi_func interface */
734static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
735 return secp256k1_ecmult_pippenger_batch(error_callback, scratch, r, inp_g_sc, cb, cbdata, n, 0);
736}
737
743static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) {
744 size_t max_alloc = secp256k1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
745 int bucket_window;
746 size_t res = 0;
747
748 for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
749 size_t n_points;
750 size_t max_points = secp256k1_pippenger_bucket_window_inv(bucket_window);
751 size_t space_for_points;
752 size_t space_overhead;
753 size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
754
755 entry_size = 2*entry_size;
756 space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
757 if (space_overhead > max_alloc) {
758 break;
759 }
760 space_for_points = max_alloc - space_overhead;
761
762 n_points = space_for_points/entry_size;
763 n_points = n_points > max_points ? max_points : n_points;
764 if (n_points > res) {
765 res = n_points;
766 }
767 if (n_points < max_points) {
768 /* A larger bucket_window may support even more points. But if we
769 * would choose that then the caller couldn't safely use any number
770 * smaller than what this function returns */
771 break;
772 }
773 }
774 return res;
775}
776
777/* Computes ecmult_multi by simply multiplying and adding each point. Does not
778 * require a scratch space */
779static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
780 size_t point_idx;
781 secp256k1_gej tmpj;
782
785 /* r = inp_g_sc*G */
786 secp256k1_ecmult(r, &tmpj, &secp256k1_scalar_zero, inp_g_sc);
787 for (point_idx = 0; point_idx < n_points; point_idx++) {
788 secp256k1_ge point;
789 secp256k1_gej pointj;
790 secp256k1_scalar scalar;
791 if (!cb(&scalar, &point, point_idx, cbdata)) {
792 return 0;
793 }
794 /* r += scalar*point */
795 secp256k1_gej_set_ge(&pointj, &point);
796 secp256k1_ecmult(&tmpj, &pointj, &scalar, NULL);
797 secp256k1_gej_add_var(r, r, &tmpj, NULL);
798 }
799 return 1;
800}
801
802/* Compute the number of batches and the batch size given the maximum batch size and the
803 * total number of points */
804static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
805 if (max_n_batch_points == 0) {
806 return 0;
807 }
808 if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
809 max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
810 }
811 if (n == 0) {
812 *n_batches = 0;
813 *n_batch_points = 0;
814 return 1;
815 }
816 /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
817 *n_batches = CEIL_DIV(n, max_n_batch_points);
818 *n_batch_points = CEIL_DIV(n, *n_batches);
819 return 1;
820}
821
823static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
824 size_t i;
825
826 int (*f)(const secp256k1_callback* error_callback, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t);
827 size_t n_batches;
828 size_t n_batch_points;
829
831 if (inp_g_sc == NULL && n == 0) {
832 return 1;
833 } else if (n == 0) {
834 secp256k1_ecmult(r, r, &secp256k1_scalar_zero, inp_g_sc);
835 return 1;
836 }
837 if (scratch == NULL) {
838 return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
839 }
840
841 /* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
842 * a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
843 * As a first step check if there's enough space for Pippenger's algo (which requires less space
844 * than Strauss' algo) and if not, use the simple algorithm. */
845 if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) {
846 return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
847 }
848 if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
850 } else {
851 if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) {
852 return secp256k1_ecmult_multi_simple_var(r, inp_g_sc, cb, cbdata, n);
853 }
855 }
856 for(i = 0; i < n_batches; i++) {
857 size_t nbp = n < n_batch_points ? n : n_batch_points;
858 size_t offset = n_batch_points*i;
859 secp256k1_gej tmp;
860 if (!f(error_callback, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
861 return 0;
862 }
863 secp256k1_gej_add_var(r, r, &tmp, NULL);
864 n -= nbp;
865 }
866 return 1;
867}
868
869#endif /* SECP256K1_ECMULT_IMPL_H */
int ret
#define ECMULT_TABLE_SIZE(w)
The number of entries a table with precomputed multiples needs to have.
Definition: ecmult.h:41
int() secp256k1_ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data)
Definition: ecmult.h:46
#define STRAUSS_SCRATCH_OBJECTS
Definition: ecmult_impl.h:50
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window)
Returns the maximum optimal number of points for a bucket_window.
Definition: ecmult_impl.h:626
static size_t secp256k1_pippenger_max_points(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
Returns the maximum number of points in addition to G that can be used with a given scratch space.
Definition: ecmult_impl.h:743
static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset)
Definition: ecmult_impl.h:670
#define WNAF_SIZE(w)
Definition: ecmult_impl.h:46
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:422
static size_t secp256k1_strauss_max_points(const secp256k1_callback *error_callback, secp256k1_scratch *scratch)
Definition: ecmult_impl.h:426
static void secp256k1_ecmult_odd_multiples_table(size_t n, secp256k1_ge *pre_a, secp256k1_fe *zr, secp256k1_fe *z, const secp256k1_gej *a)
Fill a table 'pre_a' with precomputed odd multiples of a.
Definition: ecmult_impl.h:73
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:437
static SECP256K1_INLINE void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2)
Definition: ecmult_impl.h:645
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w)
Convert a number to WNAF notation.
Definition: ecmult_impl.h:162
static SECP256K1_INLINE void secp256k1_ecmult_table_get_ge_storage(secp256k1_ge *r, const secp256k1_ge_storage *pre, int n, int w)
Definition: ecmult_impl.h:145
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:823
static SECP256K1_INLINE void secp256k1_ecmult_table_get_ge_lambda(secp256k1_ge *r, const secp256k1_ge *pre, const secp256k1_fe *x, int n, int w)
Definition: ecmult_impl.h:135
#define WINDOW_A
Definition: ecmult_impl.h:32
static size_t secp256k1_strauss_scratch_size(size_t n_points)
Definition: ecmult_impl.h:377
#define ECMULT_PIPPENGER_THRESHOLD
Definition: ecmult_impl.h:55
static int secp256k1_ecmult_multi_simple_var(secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points)
Definition: ecmult_impl.h:779
static int secp256k1_pippenger_bucket_window(size_t n)
Returns optimal bucket_window (number of bits of a scalar represented by a set of buckets) for a give...
Definition: ecmult_impl.h:597
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:734
#define WNAF_BITS
Larger values for ECMULT_WINDOW_SIZE result in possibly better performance at the cost of an exponent...
Definition: ecmult_impl.h:44
static int secp256k1_ecmult_wnaf_small(int8_t *wnaf, int len, const secp256k1_scalar *a, int w)
Definition: ecmult_impl.h:224
#define ECMULT_MAX_POINTS_PER_BATCH
Definition: ecmult_impl.h:57
#define PIPPENGER_MAX_BUCKET_WINDOW
Definition: ecmult_impl.h:52
#define PIPPENGER_SCRATCH_OBJECTS
Definition: ecmult_impl.h:49
static int secp256k1_ecmult_strauss_batch(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset)
Definition: ecmult_impl.h:382
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Definition: ecmult_impl.h:365
static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n)
Definition: ecmult_impl.h:804
static SECP256K1_INLINE void secp256k1_ecmult_table_verify(int n, int w)
Definition: ecmult_impl.h:117
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num)
Definition: ecmult_impl.h:516
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window)
Returns the scratch size required for a given number of points (excluding base point G) without consi...
Definition: ecmult_impl.h:664
static SECP256K1_INLINE void secp256k1_ecmult_table_get_ge(secp256k1_ge *r, const secp256k1_ge *pre, int n, int w)
Definition: ecmult_impl.h:125
static void secp256k1_ecmult_strauss_wnaf(const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Definition: ecmult_impl.h:252
int(* secp256k1_ecmult_multi_func)(const secp256k1_callback *error_callback, secp256k1_scratch *, secp256k1_gej *, const secp256k1_scalar *, secp256k1_ecmult_multi_callback cb, void *, size_t)
Definition: ecmult_impl.h:822
#define secp256k1_fe_negate(r, a, m)
Negate a field element.
Definition: field.h:211
static const secp256k1_fe secp256k1_const_beta
Definition: field.h:69
#define secp256k1_fe_mul
Definition: field.h:93
#define secp256k1_fe_set_int
Definition: field.h:83
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv)
Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv).
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a)
Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y)
Set a group element equal to the point with given X and Y coordinates.
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b (with b given in affine coordinates).
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a)
Convert a group element back from the storage type.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b)
Rescale a jacobian point by b which must be non-zero.
static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr)
Bring a batch of inputs to the same global z "denominator", based on ratios between (omitted) z coord...
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a)
Set r equal to the inverse of a (i.e., mirrored around the X axis)
static int secp256k1_ge_is_infinity(const secp256k1_ge *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi)
Definition: group_impl.h:99
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:72
static int sign(const secp256k1_context *ctx, struct signer_secrets *signer_secrets, struct signer *signer, const secp256k1_musig_keyagg_cache *cache, const unsigned char *msg32, unsigned char *sig64)
Definition: musig.c:106
const secp256k1_ge_storage secp256k1_pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]
const secp256k1_ge_storage secp256k1_pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]
#define WINDOW_G
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
Find r1 and r2 such that r1+r2*2^128 = k.
static int secp256k1_scalar_is_even(const secp256k1_scalar *a)
Check whether a scalar, considered as an nonnegative integer, is even.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static uint32_t secp256k1_scalar_get_bits_limb32(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
Access bits (1 < count <= 32) from a scalar.
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
Check whether a scalar is higher than the group order divided by 2.
static void secp256k1_scalar_split_lambda(secp256k1_scalar *SECP256K1_RESTRICT r1, secp256k1_scalar *SECP256K1_RESTRICT r2, const secp256k1_scalar *SECP256K1_RESTRICT k)
Find r1 and r2 such that r1+r2*lambda = k, where r1 and r2 or their negations are maximum 128 bits lo...
static uint32_t secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
Access bits (1 < count <= 32) from a scalar.
static const secp256k1_scalar secp256k1_scalar_zero
Definition: scalar_impl.h:28
static void secp256k1_scratch_apply_checkpoint(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, size_t checkpoint)
Applies a check point received from secp256k1_scratch_checkpoint, undoing all allocations since that ...
static size_t secp256k1_scratch_max_allocation(const secp256k1_callback *error_callback, const secp256k1_scratch *scratch, size_t n_objects)
Returns the maximum allocation the scratch space will allow.
static void * secp256k1_scratch_alloc(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, size_t n)
Returns a pointer into the most recently allocated frame, or NULL if there is insufficient available ...
static size_t secp256k1_scratch_checkpoint(const secp256k1_callback *error_callback, const secp256k1_scratch *scratch)
Returns an opaque object used to "checkpoint" a scratch space.
#define SECP256K1_INLINE
Definition: util.h:54
#define VERIFY_CHECK(cond)
Definition: util.h:159
#define CEIL_DIV(x, y)
Definition: util.h:180
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
secp256k1_fe y
Definition: group.h:30
secp256k1_fe x
Definition: group.h:29
secp256k1_fe z
Definition: group.h:31
struct secp256k1_pippenger_point_state * ps
Definition: ecmult_impl.h:506
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
secp256k1_fe * aux
Definition: ecmult_impl.h:247
struct secp256k1_strauss_point_state * ps
Definition: ecmult_impl.h:249
secp256k1_ge * pre_a
Definition: ecmult_impl.h:248