Bitcoin Core 28.99.0
P2P Digital Currency
modinv64_impl.h
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2020 Peter Dettman *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef SECP256K1_MODINV64_IMPL_H
8#define SECP256K1_MODINV64_IMPL_H
9
10#include "int128.h"
11#include "modinv64.h"
12
13/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
14 * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
15 *
16 * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
17 * implementation for N=62, using 62-bit signed limbs represented as int64_t.
18 */
19
20/* Data type for transition matrices (see section 3 of explanation).
21 *
22 * t = [ u v ]
23 * [ q r ]
24 */
25typedef struct {
26 int64_t u, v, q, r;
28
29#ifdef VERIFY
30/* Helper function to compute the absolute value of an int64_t.
31 * (we don't use abs/labs/llabs as it depends on the int sizes). */
32static int64_t secp256k1_modinv64_abs(int64_t v) {
33 VERIFY_CHECK(v > INT64_MIN);
34 if (v < 0) return -v;
35 return v;
36}
37
38static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
39
40/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
41static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) {
42 const uint64_t M62 = UINT64_MAX >> 2;
44 int i;
46 for (i = 0; i < 4; ++i) {
47 if (i < alen) secp256k1_i128_accum_mul(&c, a->v[i], factor);
48 r->v[i] = secp256k1_i128_to_u64(&c) & M62; secp256k1_i128_rshift(&c, 62);
49 }
50 if (4 < alen) secp256k1_i128_accum_mul(&c, a->v[4], factor);
53 r->v[4] = secp256k1_i128_to_i64(&c);
54}
55
56/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
57static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) {
58 int i;
60 secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
61 secp256k1_modinv64_mul_62(&bm, b, 5, factor);
62 for (i = 0; i < 4; ++i) {
63 /* Verify that all but the top limb of a and b are normalized. */
64 VERIFY_CHECK(am.v[i] >> 62 == 0);
65 VERIFY_CHECK(bm.v[i] >> 62 == 0);
66 }
67 for (i = 4; i >= 0; --i) {
68 if (am.v[i] < bm.v[i]) return -1;
69 if (am.v[i] > bm.v[i]) return 1;
70 }
71 return 0;
72}
73
74/* Check if the determinant of t is equal to 1 << n. If abs, check if |det t| == 1 << n. */
75static int secp256k1_modinv64_det_check_pow2(const secp256k1_modinv64_trans2x2 *t, unsigned int n, int abs) {
77 secp256k1_i128_det(&a, t->u, t->v, t->q, t->r);
78 if (secp256k1_i128_check_pow2(&a, n, 1)) return 1;
79 if (abs && secp256k1_i128_check_pow2(&a, n, -1)) return 1;
80 return 0;
81}
82#endif
83
84/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
85 * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
86 * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
87 * [0,2^62). */
89 const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
90 int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
91 volatile int64_t cond_add, cond_negate;
92
93#ifdef VERIFY
94 /* Verify that all limbs are in range (-2^62,2^62). */
95 int i;
96 for (i = 0; i < 5; ++i) {
97 VERIFY_CHECK(r->v[i] >= -M62);
98 VERIFY_CHECK(r->v[i] <= M62);
99 }
100 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
101 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
102#endif
103
104 /* In a first step, add the modulus if the input is negative, and then negate if requested.
105 * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
106 * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
107 * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
108 * indeed the behavior of the right shift operator). */
109 cond_add = r4 >> 63;
110 r0 += modinfo->modulus.v[0] & cond_add;
111 r1 += modinfo->modulus.v[1] & cond_add;
112 r2 += modinfo->modulus.v[2] & cond_add;
113 r3 += modinfo->modulus.v[3] & cond_add;
114 r4 += modinfo->modulus.v[4] & cond_add;
115 cond_negate = sign >> 63;
116 r0 = (r0 ^ cond_negate) - cond_negate;
117 r1 = (r1 ^ cond_negate) - cond_negate;
118 r2 = (r2 ^ cond_negate) - cond_negate;
119 r3 = (r3 ^ cond_negate) - cond_negate;
120 r4 = (r4 ^ cond_negate) - cond_negate;
121 /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
122 r1 += r0 >> 62; r0 &= M62;
123 r2 += r1 >> 62; r1 &= M62;
124 r3 += r2 >> 62; r2 &= M62;
125 r4 += r3 >> 62; r3 &= M62;
126
127 /* In a second step add the modulus again if the result is still negative, bringing
128 * r to range [0,modulus). */
129 cond_add = r4 >> 63;
130 r0 += modinfo->modulus.v[0] & cond_add;
131 r1 += modinfo->modulus.v[1] & cond_add;
132 r2 += modinfo->modulus.v[2] & cond_add;
133 r3 += modinfo->modulus.v[3] & cond_add;
134 r4 += modinfo->modulus.v[4] & cond_add;
135 /* And propagate again. */
136 r1 += r0 >> 62; r0 &= M62;
137 r2 += r1 >> 62; r1 &= M62;
138 r3 += r2 >> 62; r2 &= M62;
139 r4 += r3 >> 62; r3 &= M62;
140
141 r->v[0] = r0;
142 r->v[1] = r1;
143 r->v[2] = r2;
144 r->v[3] = r3;
145 r->v[4] = r4;
146
147 VERIFY_CHECK(r0 >> 62 == 0);
148 VERIFY_CHECK(r1 >> 62 == 0);
149 VERIFY_CHECK(r2 >> 62 == 0);
150 VERIFY_CHECK(r3 >> 62 == 0);
151 VERIFY_CHECK(r4 >> 62 == 0);
152 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
153 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
154}
155
156/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
157 * Note that the transformation matrix is scaled by 2^62 and not 2^59.
158 *
159 * Input: zeta: initial zeta
160 * f0: bottom limb of initial f
161 * g0: bottom limb of initial g
162 * Output: t: transition matrix
163 * Return: final zeta
164 *
165 * Implements the divsteps_n_matrix function from the explanation.
166 */
167static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
168 /* u,v,q,r are the elements of the transformation matrix being built up,
169 * starting with the identity matrix times 8 (because the caller expects
170 * a result scaled by 2^62). Semantically they are signed integers
171 * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
172 * permits left shifting (which is UB for negative numbers). The range
173 * being inside [-2^63,2^63) means that casting to signed works correctly.
174 */
175 uint64_t u = 8, v = 0, q = 0, r = 8;
176 volatile uint64_t c1, c2;
177 uint64_t mask1, mask2, f = f0, g = g0, x, y, z;
178 int i;
179
180 for (i = 3; i < 62; ++i) {
181 VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
182 VERIFY_CHECK((u * f0 + v * g0) == f << i);
183 VERIFY_CHECK((q * f0 + r * g0) == g << i);
184 /* Compute conditional masks for (zeta < 0) and for (g & 1). */
185 c1 = zeta >> 63;
186 mask1 = c1;
187 c2 = g & 1;
188 mask2 = -c2;
189 /* Compute x,y,z, conditionally negated versions of f,u,v. */
190 x = (f ^ mask1) - mask1;
191 y = (u ^ mask1) - mask1;
192 z = (v ^ mask1) - mask1;
193 /* Conditionally add x,y,z to g,q,r. */
194 g += x & mask2;
195 q += y & mask2;
196 r += z & mask2;
197 /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
198 mask1 &= mask2;
199 /* Conditionally change zeta into -zeta-2 or zeta-1. */
200 zeta = (zeta ^ mask1) - 1;
201 /* Conditionally add g,q,r to f,u,v. */
202 f += g & mask1;
203 u += q & mask1;
204 v += r & mask1;
205 /* Shifts */
206 g >>= 1;
207 u <<= 1;
208 v <<= 1;
209 /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
210 VERIFY_CHECK(zeta >= -591 && zeta <= 591);
211 }
212 /* Return data in t and return value. */
213 t->u = (int64_t)u;
214 t->v = (int64_t)v;
215 t->q = (int64_t)q;
216 t->r = (int64_t)r;
217
218 /* The determinant of t must be a power of two. This guarantees that multiplication with t
219 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
220 * will be divided out again). As each divstep's individual matrix has determinant 2, the
221 * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
222 * 8*identity (which has determinant 2^6) means the overall outputs has determinant
223 * 2^65. */
224 VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 65, 0));
225
226 return zeta;
227}
228
229/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
230 *
231 * Input: eta: initial eta
232 * f0: bottom limb of initial f
233 * g0: bottom limb of initial g
234 * Output: t: transition matrix
235 * Return: final eta
236 *
237 * Implements the divsteps_n_matrix_var function from the explanation.
238 */
239static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) {
240 /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
241 uint64_t u = 1, v = 0, q = 0, r = 1;
242 uint64_t f = f0, g = g0, m;
243 uint32_t w;
244 int i = 62, limit, zeros;
245
246 for (;;) {
247 /* Use a sentinel bit to count zeros only up to i. */
248 zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
249 /* Perform zeros divsteps at once; they all just divide g by two. */
250 g >>= zeros;
251 u <<= zeros;
252 v <<= zeros;
253 eta -= zeros;
254 i -= zeros;
255 /* We're done once we've done 62 divsteps. */
256 if (i == 0) break;
257 VERIFY_CHECK((f & 1) == 1);
258 VERIFY_CHECK((g & 1) == 1);
259 VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
260 VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
261 /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
262 VERIFY_CHECK(eta >= -745 && eta <= 745);
263 /* If eta is negative, negate it and replace f,g with g,-f. */
264 if (eta < 0) {
265 uint64_t tmp;
266 eta = -eta;
267 tmp = f; f = g; g = -tmp;
268 tmp = u; u = q; q = -tmp;
269 tmp = v; v = r; r = -tmp;
270 /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
271 * out (as we'd be done before that point), and no more than eta+1 can be done as its
272 * sign will flip again once that happens. */
273 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
274 VERIFY_CHECK(limit > 0 && limit <= 62);
275 /* m is a mask for the bottom min(limit, 6) bits. */
276 m = (UINT64_MAX >> (64 - limit)) & 63U;
277 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
278 * bits. */
279 w = (f * g * (f * f - 2)) & m;
280 } else {
281 /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
282 * eta tends to be smaller here. */
283 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
284 VERIFY_CHECK(limit > 0 && limit <= 62);
285 /* m is a mask for the bottom min(limit, 4) bits. */
286 m = (UINT64_MAX >> (64 - limit)) & 15U;
287 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
288 * bits. */
289 w = f + (((f + 1) & 4) << 1);
290 w = (-w * g) & m;
291 }
292 g += f * w;
293 q += u * w;
294 r += v * w;
295 VERIFY_CHECK((g & m) == 0);
296 }
297 /* Return data in t and return value. */
298 t->u = (int64_t)u;
299 t->v = (int64_t)v;
300 t->q = (int64_t)q;
301 t->r = (int64_t)r;
302
303 /* The determinant of t must be a power of two. This guarantees that multiplication with t
304 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
305 * will be divided out again). As each divstep's individual matrix has determinant 2, the
306 * aggregate of 62 of them will have determinant 2^62. */
307 VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 0));
308
309 return eta;
310}
311
312/* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
313 * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
314 * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
315 *
316 * Input: eta: initial eta
317 * f0: bottom limb of initial f
318 * g0: bottom limb of initial g
319 * Output: t: transition matrix
320 * Input/Output: (*jacp & 1) is bitflipped if and only if the Jacobi symbol of (f | g) changes sign
321 * by applying the returned transformation matrix to it. The other bits of *jacp may
322 * change, but are meaningless.
323 * Return: final eta
324 */
325static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) {
326 /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
327 uint64_t u = 1, v = 0, q = 0, r = 1;
328 uint64_t f = f0, g = g0, m;
329 uint32_t w;
330 int i = 62, limit, zeros;
331 int jac = *jacp;
332
333 for (;;) {
334 /* Use a sentinel bit to count zeros only up to i. */
335 zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
336 /* Perform zeros divsteps at once; they all just divide g by two. */
337 g >>= zeros;
338 u <<= zeros;
339 v <<= zeros;
340 eta -= zeros;
341 i -= zeros;
342 /* Update the bottom bit of jac: when dividing g by an odd power of 2,
343 * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
344 jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
345 /* We're done once we've done 62 posdivsteps. */
346 if (i == 0) break;
347 VERIFY_CHECK((f & 1) == 1);
348 VERIFY_CHECK((g & 1) == 1);
349 VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
350 VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
351 /* If eta is negative, negate it and replace f,g with g,f. */
352 if (eta < 0) {
353 uint64_t tmp;
354 eta = -eta;
355 tmp = f; f = g; g = tmp;
356 tmp = u; u = q; q = tmp;
357 tmp = v; v = r; r = tmp;
358 /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
359 * if both f and g are 3 mod 4. */
360 jac ^= ((f & g) >> 1);
361 /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
362 * out (as we'd be done before that point), and no more than eta+1 can be done as its
363 * sign will flip again once that happens. */
364 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
365 VERIFY_CHECK(limit > 0 && limit <= 62);
366 /* m is a mask for the bottom min(limit, 6) bits. */
367 m = (UINT64_MAX >> (64 - limit)) & 63U;
368 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
369 * bits. */
370 w = (f * g * (f * f - 2)) & m;
371 } else {
372 /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
373 * eta tends to be smaller here. */
374 limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
375 VERIFY_CHECK(limit > 0 && limit <= 62);
376 /* m is a mask for the bottom min(limit, 4) bits. */
377 m = (UINT64_MAX >> (64 - limit)) & 15U;
378 /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
379 * bits. */
380 w = f + (((f + 1) & 4) << 1);
381 w = (-w * g) & m;
382 }
383 g += f * w;
384 q += u * w;
385 r += v * w;
386 VERIFY_CHECK((g & m) == 0);
387 }
388 /* Return data in t and return value. */
389 t->u = (int64_t)u;
390 t->v = (int64_t)v;
391 t->q = (int64_t)q;
392 t->r = (int64_t)r;
393
394 /* The determinant of t must be a power of two. This guarantees that multiplication with t
395 * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
396 * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
397 * the aggregate of 62 of them will have determinant 2^62 or -2^62. */
398 VERIFY_CHECK(secp256k1_modinv64_det_check_pow2(t, 62, 1));
399
400 *jacp = jac;
401 return eta;
402}
403
404/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
405 *
406 * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
407 * (-2^62,2^62).
408 *
409 * This implements the update_de function from the explanation.
410 */
412 const uint64_t M62 = UINT64_MAX >> 2;
413 const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
414 const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
415 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
416 int64_t md, me, sd, se;
417 secp256k1_int128 cd, ce;
418 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
419 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
420 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
421 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
422 VERIFY_CHECK(secp256k1_modinv64_abs(u) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(v))); /* |u|+|v| <= 2^62 */
423 VERIFY_CHECK(secp256k1_modinv64_abs(q) <= (((int64_t)1 << 62) - secp256k1_modinv64_abs(r))); /* |q|+|r| <= 2^62 */
424
425 /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
426 sd = d4 >> 63;
427 se = e4 >> 63;
428 md = (u & sd) + (v & se);
429 me = (q & sd) + (r & se);
430 /* Begin computing t*[d,e]. */
431 secp256k1_i128_mul(&cd, u, d0);
432 secp256k1_i128_accum_mul(&cd, v, e0);
433 secp256k1_i128_mul(&ce, q, d0);
434 secp256k1_i128_accum_mul(&ce, r, e0);
435 /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
436 md -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&cd) + md) & M62;
437 me -= (modinfo->modulus_inv62 * secp256k1_i128_to_u64(&ce) + me) & M62;
438 /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
439 secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[0], md);
440 secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[0], me);
441 /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
442 VERIFY_CHECK((secp256k1_i128_to_u64(&cd) & M62) == 0); secp256k1_i128_rshift(&cd, 62);
443 VERIFY_CHECK((secp256k1_i128_to_u64(&ce) & M62) == 0); secp256k1_i128_rshift(&ce, 62);
444 /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
445 secp256k1_i128_accum_mul(&cd, u, d1);
446 secp256k1_i128_accum_mul(&cd, v, e1);
447 secp256k1_i128_accum_mul(&ce, q, d1);
448 secp256k1_i128_accum_mul(&ce, r, e1);
449 if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
450 secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[1], md);
451 secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[1], me);
452 }
453 d->v[0] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
454 e->v[0] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
455 /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
456 secp256k1_i128_accum_mul(&cd, u, d2);
457 secp256k1_i128_accum_mul(&cd, v, e2);
458 secp256k1_i128_accum_mul(&ce, q, d2);
459 secp256k1_i128_accum_mul(&ce, r, e2);
460 if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
461 secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[2], md);
462 secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[2], me);
463 }
464 d->v[1] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
465 e->v[1] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
466 /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
467 secp256k1_i128_accum_mul(&cd, u, d3);
468 secp256k1_i128_accum_mul(&cd, v, e3);
469 secp256k1_i128_accum_mul(&ce, q, d3);
470 secp256k1_i128_accum_mul(&ce, r, e3);
471 if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
472 secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[3], md);
473 secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[3], me);
474 }
475 d->v[2] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
476 e->v[2] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
477 /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
478 secp256k1_i128_accum_mul(&cd, u, d4);
479 secp256k1_i128_accum_mul(&cd, v, e4);
480 secp256k1_i128_accum_mul(&ce, q, d4);
481 secp256k1_i128_accum_mul(&ce, r, e4);
482 secp256k1_i128_accum_mul(&cd, modinfo->modulus.v[4], md);
483 secp256k1_i128_accum_mul(&ce, modinfo->modulus.v[4], me);
484 d->v[3] = secp256k1_i128_to_u64(&cd) & M62; secp256k1_i128_rshift(&cd, 62);
485 e->v[3] = secp256k1_i128_to_u64(&ce) & M62; secp256k1_i128_rshift(&ce, 62);
486 /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
487 d->v[4] = secp256k1_i128_to_i64(&cd);
488 e->v[4] = secp256k1_i128_to_i64(&ce);
489
490 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
491 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
492 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
493 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
494}
495
496/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
497 *
498 * This implements the update_fg function from the explanation.
499 */
501 const uint64_t M62 = UINT64_MAX >> 2;
502 const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
503 const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
504 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
505 secp256k1_int128 cf, cg;
506 /* Start computing t*[f,g]. */
507 secp256k1_i128_mul(&cf, u, f0);
508 secp256k1_i128_accum_mul(&cf, v, g0);
509 secp256k1_i128_mul(&cg, q, f0);
510 secp256k1_i128_accum_mul(&cg, r, g0);
511 /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
512 VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
513 VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
514 /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
515 secp256k1_i128_accum_mul(&cf, u, f1);
516 secp256k1_i128_accum_mul(&cf, v, g1);
517 secp256k1_i128_accum_mul(&cg, q, f1);
518 secp256k1_i128_accum_mul(&cg, r, g1);
519 f->v[0] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
520 g->v[0] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
521 /* Compute limb 2 of t*[f,g], and store it as output limb 1. */
522 secp256k1_i128_accum_mul(&cf, u, f2);
523 secp256k1_i128_accum_mul(&cf, v, g2);
524 secp256k1_i128_accum_mul(&cg, q, f2);
525 secp256k1_i128_accum_mul(&cg, r, g2);
526 f->v[1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
527 g->v[1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
528 /* Compute limb 3 of t*[f,g], and store it as output limb 2. */
529 secp256k1_i128_accum_mul(&cf, u, f3);
530 secp256k1_i128_accum_mul(&cf, v, g3);
531 secp256k1_i128_accum_mul(&cg, q, f3);
532 secp256k1_i128_accum_mul(&cg, r, g3);
533 f->v[2] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
534 g->v[2] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
535 /* Compute limb 4 of t*[f,g], and store it as output limb 3. */
536 secp256k1_i128_accum_mul(&cf, u, f4);
537 secp256k1_i128_accum_mul(&cf, v, g4);
538 secp256k1_i128_accum_mul(&cg, q, f4);
539 secp256k1_i128_accum_mul(&cg, r, g4);
540 f->v[3] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
541 g->v[3] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
542 /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
543 f->v[4] = secp256k1_i128_to_i64(&cf);
544 g->v[4] = secp256k1_i128_to_i64(&cg);
545}
546
547/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
548 *
549 * Version that operates on a variable number of limbs in f and g.
550 *
551 * This implements the update_fg function from the explanation.
552 */
554 const uint64_t M62 = UINT64_MAX >> 2;
555 const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
556 int64_t fi, gi;
557 secp256k1_int128 cf, cg;
558 int i;
559 VERIFY_CHECK(len > 0);
560 /* Start computing t*[f,g]. */
561 fi = f->v[0];
562 gi = g->v[0];
563 secp256k1_i128_mul(&cf, u, fi);
564 secp256k1_i128_accum_mul(&cf, v, gi);
565 secp256k1_i128_mul(&cg, q, fi);
566 secp256k1_i128_accum_mul(&cg, r, gi);
567 /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
568 VERIFY_CHECK((secp256k1_i128_to_u64(&cf) & M62) == 0); secp256k1_i128_rshift(&cf, 62);
569 VERIFY_CHECK((secp256k1_i128_to_u64(&cg) & M62) == 0); secp256k1_i128_rshift(&cg, 62);
570 /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
571 * down by 62 bits). */
572 for (i = 1; i < len; ++i) {
573 fi = f->v[i];
574 gi = g->v[i];
575 secp256k1_i128_accum_mul(&cf, u, fi);
576 secp256k1_i128_accum_mul(&cf, v, gi);
577 secp256k1_i128_accum_mul(&cg, q, fi);
578 secp256k1_i128_accum_mul(&cg, r, gi);
579 f->v[i - 1] = secp256k1_i128_to_u64(&cf) & M62; secp256k1_i128_rshift(&cf, 62);
580 g->v[i - 1] = secp256k1_i128_to_u64(&cg) & M62; secp256k1_i128_rshift(&cg, 62);
581 }
582 /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
583 f->v[len - 1] = secp256k1_i128_to_i64(&cf);
584 g->v[len - 1] = secp256k1_i128_to_i64(&cg);
585}
586
587/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
589 /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
590 secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
591 secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
594 int i;
595 int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
596
597 /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
598 for (i = 0; i < 10; ++i) {
599 /* Compute transition matrix and new zeta after 59 divsteps. */
601 zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
602 /* Update d,e using that transition matrix. */
603 secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
604 /* Update f,g using that transition matrix. */
605 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
606 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
607 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
608 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
609
611
612 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
613 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
614 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
615 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
616 }
617
618 /* At this point sufficient iterations have been performed that g must have reached 0
619 * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
620 * values i.e. +/- 1, and d now contains +/- the modular inverse. */
621
622 /* g == 0 */
623 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
624 /* |f| == 1, or (x == 0 and d == 0 and f == modulus) */
625 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
626 secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
627 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
628 secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
629 secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0));
630
631 /* Optionally negate d, normalize to [0,modulus), and return it. */
632 secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo);
633 *x = d;
634}
635
636/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
638 /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
639 secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
640 secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
643#ifdef VERIFY
644 int i = 0;
645#endif
646 int j, len = 5;
647 int64_t eta = -1; /* eta = -delta; delta is initially 1 */
648 int64_t cond, fn, gn;
649
650 /* Do iterations of 62 divsteps each until g=0. */
651 while (1) {
652 /* Compute transition matrix and new eta after 62 divsteps. */
654 eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
655 /* Update d,e using that transition matrix. */
656 secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo);
657 /* Update f,g using that transition matrix. */
658 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
659 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
660 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
661 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
662
664 /* If the bottom limb of g is zero, there is a chance that g=0. */
665 if (g.v[0] == 0) {
666 cond = 0;
667 /* Check if the other limbs are also 0. */
668 for (j = 1; j < len; ++j) {
669 cond |= g.v[j];
670 }
671 /* If so, we're done. */
672 if (cond == 0) break;
673 }
674
675 /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
676 fn = f.v[len - 1];
677 gn = g.v[len - 1];
678 cond = ((int64_t)len - 2) >> 63;
679 cond |= fn ^ (fn >> 63);
680 cond |= gn ^ (gn >> 63);
681 /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
682 if (cond == 0) {
683 f.v[len - 2] |= (uint64_t)fn << 62;
684 g.v[len - 2] |= (uint64_t)gn << 62;
685 --len;
686 }
687
688 VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
689 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
690 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
691 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
692 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
693 }
694
695 /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
696 * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
697
698 /* g == 0 */
699 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
700 /* |f| == 1, or (x == 0 and d == 0 and f == modulus) */
701 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
702 secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
703 (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
704 secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
705 secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0));
706
707 /* Optionally negate d, normalize to [0,modulus), and return it. */
708 secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
709 *x = d;
710}
711
712/* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
713 * In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
714#ifdef VERIFY
715#define JACOBI64_ITERATIONS 12
716#else
717#define JACOBI64_ITERATIONS 25
718#endif
719
720/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1. */
722 /* Start with f=modulus, g=x, eta=-1. */
725 int j, len = 5;
726 int64_t eta = -1; /* eta = -delta; delta is initially 1 */
727 int64_t cond, fn, gn;
728 int jac = 0;
729 int count;
730
731 /* The input limbs must all be non-negative. */
732 VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
733
734 /* If x > 0, then if the loop below converges, it converges to f=g=gcd(x,modulus). Since we
735 * require that gcd(x,modulus)=1 and modulus>=3, x cannot be 0. Thus, we must reach f=1 (or
736 * time out). */
737 VERIFY_CHECK((g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4]) != 0);
738
739 for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
740 /* Compute transition matrix and new eta after 62 posdivsteps. */
742 eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
743 /* Update f,g using that transition matrix. */
744 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
745 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
746 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
747 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
748
750 /* If the bottom limb of f is 1, there is a chance that f=1. */
751 if (f.v[0] == 1) {
752 cond = 0;
753 /* Check if the other limbs are also 0. */
754 for (j = 1; j < len; ++j) {
755 cond |= f.v[j];
756 }
757 /* If so, we're done. When f=1, the Jacobi symbol (g | f)=1. */
758 if (cond == 0) return 1 - 2*(jac & 1);
759 }
760
761 /* Determine if len>1 and limb (len-1) of both f and g is 0. */
762 fn = f.v[len - 1];
763 gn = g.v[len - 1];
764 cond = ((int64_t)len - 2) >> 63;
765 cond |= fn;
766 cond |= gn;
767 /* If so, reduce length. */
768 if (cond == 0) --len;
769
770 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
771 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
772 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
773 VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
774 }
775
776 /* The loop failed to converge to f=g after 1550 iterations. Return 0, indicating unknown result. */
777 return 0;
778}
779
780#endif /* SECP256K1_MODINV64_IMPL_H */
int128_t secp256k1_int128
Definition: int128_native.h:17
static SECP256K1_INLINE void secp256k1_i128_det(secp256k1_int128 *r, int64_t a, int64_t b, int64_t c, int64_t d)
static SECP256K1_INLINE void secp256k1_i128_rshift(secp256k1_int128 *r, unsigned int n)
static SECP256K1_INLINE uint64_t secp256k1_i128_to_u64(const secp256k1_int128 *a)
static SECP256K1_INLINE void secp256k1_i128_from_i64(secp256k1_int128 *r, int64_t a)
static SECP256K1_INLINE int secp256k1_i128_eq_var(const secp256k1_int128 *a, const secp256k1_int128 *b)
static SECP256K1_INLINE int64_t secp256k1_i128_to_i64(const secp256k1_int128 *a)
static SECP256K1_INLINE void secp256k1_i128_mul(secp256k1_int128 *r, int64_t a, int64_t b)
static SECP256K1_INLINE int secp256k1_i128_check_pow2(const secp256k1_int128 *r, unsigned int n, int sign)
static SECP256K1_INLINE void secp256k1_i128_accum_mul(secp256k1_int128 *r, int64_t a, int64_t b)
static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp)
static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t)
static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo)
Definition: modinv64_impl.h:88
#define JACOBI64_ITERATIONS
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t)
static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo)
static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t)
static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t)
static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo *modinfo)
static int sign(const secp256k1_context *ctx, struct signer_secrets *signer_secrets, struct signer *signer, const secp256k1_musig_keyagg_cache *cache, const unsigned char *msg32, unsigned char *sig64)
Definition: musig.c:105
static SECP256K1_INLINE int secp256k1_ctz64_var(uint64_t x)
Definition: util.h:382
#define VERIFY_CHECK(cond)
Definition: util.h:159
secp256k1_modinv64_signed62 modulus
Definition: modinv64.h:25
static int count