30#ifndef ANKERL_NANOBENCH_H_INCLUDED
31#define ANKERL_NANOBENCH_H_INCLUDED
34#define ANKERL_NANOBENCH_VERSION_MAJOR 4
35#define ANKERL_NANOBENCH_VERSION_MINOR 3
36#define ANKERL_NANOBENCH_VERSION_PATCH 11
46#include <unordered_map>
49#define ANKERL_NANOBENCH(x) ANKERL_NANOBENCH_PRIVATE_##x()
51#define ANKERL_NANOBENCH_PRIVATE_CXX() __cplusplus
52#define ANKERL_NANOBENCH_PRIVATE_CXX98() 199711L
53#define ANKERL_NANOBENCH_PRIVATE_CXX11() 201103L
54#define ANKERL_NANOBENCH_PRIVATE_CXX14() 201402L
55#define ANKERL_NANOBENCH_PRIVATE_CXX17() 201703L
57#if ANKERL_NANOBENCH(CXX) >= ANKERL_NANOBENCH(CXX17)
58# define ANKERL_NANOBENCH_PRIVATE_NODISCARD() [[nodiscard]]
60# define ANKERL_NANOBENCH_PRIVATE_NODISCARD()
64# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_PUSH() \
65 _Pragma("clang diagnostic push") _Pragma("clang diagnostic ignored \"-Wpadded\"")
66# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_POP() _Pragma("clang diagnostic pop")
68# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_PUSH()
69# define ANKERL_NANOBENCH_PRIVATE_IGNORE_PADDED_POP()
73# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_PUSH() _Pragma("GCC diagnostic push") _Pragma("GCC diagnostic ignored \"-Weffc++\"")
74# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_POP() _Pragma("GCC diagnostic pop")
76# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_PUSH()
77# define ANKERL_NANOBENCH_PRIVATE_IGNORE_EFFCPP_POP()
80#if defined(ANKERL_NANOBENCH_LOG_ENABLED)
82# define ANKERL_NANOBENCH_LOG(x) \
84 std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl; \
87# define ANKERL_NANOBENCH_LOG(x) \
92#define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 0
93#if defined(__linux__) && !defined(ANKERL_NANOBENCH_DISABLE_PERF_COUNTERS)
94# include <linux/version.h>
95# if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 3, 0)
98# undef ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS
99# define ANKERL_NANOBENCH_PRIVATE_PERF_COUNTERS() 1
103#if defined(__clang__)
104# define ANKERL_NANOBENCH_NO_SANITIZE(...) __attribute__((no_sanitize(__VA_ARGS__)))
106# define ANKERL_NANOBENCH_NO_SANITIZE(...)
110# define ANKERL_NANOBENCH_PRIVATE_NOINLINE() __declspec(noinline)
112# define ANKERL_NANOBENCH_PRIVATE_NOINLINE() __attribute__((noinline))
117#if defined(__GNUC__) && __GNUC__ < 5
118# define ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
120# define ANKERL_NANOBENCH_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
125#define ANKERL_NANOBENCH_PRIVATE_NOEXCEPT_STRING_MOVE() std::is_nothrow_move_assignable<std::string>::value
132using Clock = std::conditional<std::chrono::high_resolution_clock::is_steady, std::chrono::high_resolution_clock,
133 std::chrono::steady_clock>::type;
291void render(std::string
const& mustacheTemplate,
Bench const& bench, std::ostream&
out);
301void render(
char const* mustacheTemplate, std::vector<Result>
const& results, std::ostream&
out);
302void render(std::string
const& mustacheTemplate, std::vector<Result>
const& results, std::ostream&
out);
316char const*
csv() noexcept;
359#if ANKERL_NANOBENCH(PERF_COUNTERS)
360class LinuxPerformanceCounters;
388 std::string mBenchmarkTitle =
"benchmark";
389 std::string mBenchmarkName =
"noname";
390 std::string mUnit =
"op";
392 double mComplexityN = -1.0;
393 size_t mNumEpochs = 11;
394 size_t mClockResolutionMultiple =
static_cast<size_t>(1000);
395 std::chrono::nanoseconds mMaxEpochTime = std::chrono::milliseconds(100);
396 std::chrono::nanoseconds mMinEpochTime = std::chrono::milliseconds(1);
397 uint64_t mMinEpochIterations{1};
399 uint64_t mEpochIterations{0};
400 uint64_t mWarmup = 0;
401 std::ostream* mOut =
nullptr;
402 std::chrono::duration<double> mTimeUnit = std::chrono::nanoseconds{1};
403 std::string mTimeUnitName =
"ns";
404 bool mShowPerformanceCounters =
true;
405 bool mIsRelative =
false;
406 std::unordered_map<std::string, std::string> mContext{};
467 std::vector<std::vector<double>> mNameToMeasurements{};
495 static constexpr uint64_t(min)();
496 static constexpr uint64_t(max)();
512 Rng& operator=(
Rng&&) noexcept = default;
513 ~
Rng() noexcept = default;
540 explicit
Rng(uint64_t seed) noexcept;
541 Rng(uint64_t x, uint64_t y) noexcept;
556 inline uint64_t operator()() noexcept;
574 inline uint32_t bounded(uint32_t range) noexcept;
585 inline
double uniform01() noexcept;
594 template <typename Container>
595 void shuffle(Container& container) noexcept;
606 static constexpr uint64_t
rotl(uint64_t x,
unsigned k) noexcept;
658 template <typename Op>
660 Bench& run(
char const* benchmarkName, Op&& op);
662 template <typename Op>
664 Bench& run(
std::
string const& benchmarkName, Op&& op);
670 template <typename Op>
679 Bench& title(
char const* benchmarkTitle);
704 Bench& context(
char const* variableName,
char const* variableValue);
705 Bench& context(
std::
string const& variableName,
std::
string const& variableValue);
726 template <typename T>
727 Bench& batch(T b) noexcept;
751 Bench& timeUnit(
std::chrono::duration<
double> const& tu,
std::
string const& tuName);
753 ANKERL_NANOBENCH(NODISCARD)
std::chrono::duration<
double> const& timeUnit() const noexcept;
785 Bench& clockResolutionMultiple(
size_t multiple) noexcept;
803 Bench& epochs(
size_t numEpochs) noexcept;
816 Bench& maxEpochTime(
std::chrono::nanoseconds t) noexcept;
829 Bench& minEpochTime(
std::chrono::nanoseconds t) noexcept;
842 Bench& minEpochIterations(uint64_t numIters) noexcept;
851 Bench& epochIterations(uint64_t numIters) noexcept;
863 Bench& warmup(uint64_t numWarmupIters) noexcept;
883 Bench& relative(
bool isRelativeEnabled) noexcept;
914 template <typename Arg>
931 template <typename T>
932 Bench& complexityN(T n) noexcept;
991 template <typename Op>
992 BigO complexityBigO(
char const*
name, Op op) const;
994 template <typename Op>
995 BigO complexityBigO(
std::
string const&
name, Op op) const;
1012 std::vector<Result> mResults{};
1022template <
typename Arg>
1027#if defined(_MSC_VER)
1028void doNotOptimizeAwaySink(
void const*);
1030template <
typename T>
1038template <
typename T>
1041 asm volatile(
"" : :
"r,m"(val) :
"memory");
1044template <
typename T>
1046# if defined(__clang__)
1048 asm volatile(
"" :
"+r,m"(val) : :
"memory");
1051 asm volatile(
"" :
"+m,r"(val) : :
"memory");
1098#if ANKERL_NANOBENCH(PERF_COUNTERS)
1099 LinuxPerformanceCounters* mPc =
nullptr;
1115 template <
typename Op>
1117 for (
auto& rangeMeasure :
data) {
1118 rangeMeasure.first = op(rangeMeasure.first);
1125 template <
typename Op>
1127 :
BigO(bigOName, mapRangeMeasure(rangeMeasure, rangeToN)) {}
1129 template <
typename Op>
1131 :
BigO(
std::move(bigOName), mapRangeMeasure(rangeMeasure, rangeToN)) {}
1143 double mNormalizedRootMeanSquare{};
1146std::ostream&
operator<<(std::ostream& os, std::vector<ankerl::nanobench::BigO>
const& bigOs);
1154namespace nanobench {
1161 return (std::numeric_limits<uint64_t>::max)();
1165uint64_t
Rng::operator()() noexcept {
1168 mX = UINT64_C(15241094284759029579) * mY;
1169 mY =
rotl(mY - x, 27);
1175uint32_t
Rng::bounded(uint32_t range) noexcept {
1176 uint64_t
const r32 =
static_cast<uint32_t
>(operator()());
1177 auto multiresult = r32 * range;
1178 return static_cast<uint32_t
>(multiresult >> 32U);
1182 auto i = (UINT64_C(0x3ff) << 52U) | (
operator()() >> 12U);
1186 std::memcpy(&d, &i,
sizeof(
double));
1190template <
typename Container>
1192 auto i = container.size();
1195 auto n = operator()();
1197 auto b1 =
static_cast<decltype(i)
>((
static_cast<uint32_t
>(n) *
static_cast<uint64_t
>(i)) >> 32U);
1198 swap(container[--i], container[b1]);
1200 auto b2 =
static_cast<decltype(i)
>(((n >> 32U) *
static_cast<uint64_t
>(i)) >> 32U);
1201 swap(container[--i], container[b2]);
1206constexpr uint64_t
Rng::
rotl(uint64_t x,
unsigned k) noexcept {
1207 return (x <<
k) | (x >> (64U -
k));
1210template <
typename Op>
1217 while (
auto n = iterationLogic.numIters()) {
1219 Clock::time_point
const before = Clock::now();
1223 Clock::time_point
const after = Clock::now();
1225 pc.updateResults(iterationLogic.numIters());
1226 iterationLogic.
add(after - before, pc);
1233template <
typename Op>
1235 name(benchmarkName);
1236 return run(std::forward<Op>(op));
1239template <
typename Op>
1241 name(benchmarkName);
1242 return run(std::forward<Op>(op));
1245template <
typename Op>
1250template <
typename Op>
1257template <
typename T>
1259 mConfig.mBatch =
static_cast<double>(b);
1264template <
typename T>
1266 mConfig.mComplexityN =
static_cast<double>(n);
1271template <
typename Arg>
1278template <
typename Arg>
1285#if defined(_MSC_VER)
1286template <
typename T>
1288 doNotOptimizeAwaySink(&val);
1297#if defined(ANKERL_NANOBENCH_IMPLEMENT)
1303# include <algorithm>
1313# include <stdexcept>
1315# if defined(__linux__)
1318# if ANKERL_NANOBENCH(PERF_COUNTERS)
1321# include <linux/perf_event.h>
1322# include <sys/ioctl.h>
1323# include <sys/syscall.h>
1329namespace nanobench {
1340class StreamStateRestorer;
1342class MarkDownColumn;
1353namespace nanobench {
1355uint64_t splitMix64(uint64_t& state)
noexcept;
1360template <
typename T>
1361inline double d(T t)
noexcept {
1362 return static_cast<double>(
t);
1364inline double d(Clock::duration duration)
noexcept {
1365 return std::chrono::duration_cast<std::chrono::duration<double>>(duration).
count();
1369inline Clock::duration clockResolution() noexcept;
1373namespace templates {
1375char const*
csv() noexcept {
1376 return R
"DELIM("title";"name";"unit";"batch";"elapsed";"error %";"instructions";"branches";"branch misses";"total"
1377{{#result}}"{{title}}";"{{name}}";"{{unit}}";{{batch}};{{median(elapsed)}};{{medianAbsolutePercentError(elapsed)}};{{median(instructions)}};{{median(branchinstructions)}};{{median(branchmisses)}};{{sumProduct(iterations, elapsed)}}
1382 return R
"DELIM(<html>
1385 <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
1389 <div id="myDiv"></div>
1394 y: [{{#measurement}}{{elapsed}}{{^-last}}, {{/last}}{{/measurement}}],
1398 var title = '{{title}}';
1400 data = data.map(a => Object.assign(a, { boxpoints: 'all', pointpos: 0, type: 'box' }));
1401 var layout = { title: { text: title }, showlegend: false, yaxis: { title: 'time per unit', rangemode: 'tozero', autorange: true } }; Plotly.newPlot('myDiv', data, layout, {responsive: true});
1408char const*
pyperf() noexcept {
1415{{#measurement}} {{elapsed}}{{^-last}},
1416{{/last}}{{/measurement}}
1423 "loops": {{sum(iterations)}},
1424 "inner_loops": {{batch}},
1425 "name": "{{title}}",
1432char const*
json() noexcept {
1436 "title": "{{title}}",
1440 "complexityN": {{complexityN}},
1441 "epochs": {{epochs}},
1442 "clockResolution": {{clockResolution}},
1443 "clockResolutionMultiple": {{clockResolutionMultiple}},
1444 "maxEpochTime": {{maxEpochTime}},
1445 "minEpochTime": {{minEpochTime}},
1446 "minEpochIterations": {{minEpochIterations}},
1447 "epochIterations": {{epochIterations}},
1448 "warmup": {{warmup}},
1449 "relative": {{relative}},
1450 "median(elapsed)": {{median(elapsed)}},
1451 "medianAbsolutePercentError(elapsed)": {{medianAbsolutePercentError(elapsed)}},
1452 "median(instructions)": {{median(instructions)}},
1453 "medianAbsolutePercentError(instructions)": {{medianAbsolutePercentError(instructions)}},
1454 "median(cpucycles)": {{median(cpucycles)}},
1455 "median(contextswitches)": {{median(contextswitches)}},
1456 "median(pagefaults)": {{median(pagefaults)}},
1457 "median(branchinstructions)": {{median(branchinstructions)}},
1458 "median(branchmisses)": {{median(branchmisses)}},
1459 "totalTime": {{sumProduct(iterations, elapsed)}},
1462 "iterations": {{iterations}},
1463 "elapsed": {{elapsed}},
1464 "pagefaults": {{pagefaults}},
1465 "cpucycles": {{cpucycles}},
1466 "contextswitches": {{contextswitches}},
1467 "instructions": {{instructions}},
1468 "branchinstructions": {{branchinstructions}},
1469 "branchmisses": {{branchmisses}}
1470 }{{^-last}},{{/-last}}
1472 }{{^-last}},{{/-last}}
1479 enum class Type { tag, content, section, inverted_section };
1483 std::vector<Node> children;
1488 bool operator==(
char const (&str)[N])
const noexcept {
1490 return static_cast<size_t>(std::distance(begin, end) + 1) == N && 0 == strncmp(str, begin, N - 1);
1496static std::vector<Node> parseMustacheTemplate(
char const** tpl) {
1497 std::vector<Node> nodes;
1500 auto const* begin = std::strstr(*tpl,
"{{");
1501 auto const* end = begin;
1502 if (begin !=
nullptr) {
1505 end = std::strstr(begin,
"}}");
1508 if (begin ==
nullptr || end ==
nullptr) {
1511 nodes.emplace_back(Node{*tpl, *tpl + std::strlen(*tpl), std::vector<Node>{}, Node::Type::content});
1516 nodes.emplace_back(Node{*tpl, begin - 2, std::vector<Node>{}, Node::Type::content});
1528 nodes.emplace_back(Node{begin + 1, end, parseMustacheTemplate(tpl), Node::Type::section});
1533 nodes.emplace_back(Node{begin + 1, end, parseMustacheTemplate(tpl), Node::Type::inverted_section});
1537 nodes.emplace_back(Node{begin, end, std::vector<Node>{}, Node::Type::tag});
1543static bool generateFirstLast(Node
const& n,
size_t idx,
size_t size, std::ostream&
out) {
1545 bool const matchFirst = n ==
"-first";
1546 bool const matchLast = n ==
"-last";
1547 if (!matchFirst && !matchLast) {
1551 bool doWrite =
false;
1552 if (n.type == Node::Type::section) {
1553 doWrite = (matchFirst && idx == 0) || (matchLast && idx == size - 1);
1554 }
else if (n.type == Node::Type::inverted_section) {
1555 doWrite = (matchFirst && idx != 0) || (matchLast && idx != size - 1);
1559 for (
auto const& child : n.children) {
1560 if (child.type == Node::Type::content) {
1561 out.write(child.begin, std::distance(child.begin, child.end));
1568static bool matchCmdArgs(std::string
const& str, std::vector<std::string>& matchResult) {
1569 matchResult.clear();
1570 auto idxOpen = str.find(
'(');
1571 auto idxClose = str.find(
')', idxOpen);
1572 if (idxClose == std::string::npos) {
1576 matchResult.emplace_back(str.substr(0, idxOpen));
1579 matchResult.emplace_back();
1580 for (
size_t i = idxOpen + 1; i != idxClose; ++i) {
1581 if (str[i] ==
' ' || str[i] ==
'\t') {
1585 if (str[i] ==
',') {
1587 matchResult.emplace_back();
1591 matchResult.back() += str[i];
1596static bool generateConfigTag(Node
const& n, Config
const& config, std::ostream&
out) {
1600 out << config.mBenchmarkTitle;
1604 out << config.mBenchmarkName;
1608 out << config.mUnit;
1612 out << config.mBatch;
1615 if (n ==
"complexityN") {
1616 out << config.mComplexityN;
1619 if (n ==
"epochs") {
1620 out << config.mNumEpochs;
1623 if (n ==
"clockResolution") {
1624 out << d(detail::clockResolution());
1627 if (n ==
"clockResolutionMultiple") {
1628 out << config.mClockResolutionMultiple;
1631 if (n ==
"maxEpochTime") {
1632 out << d(config.mMaxEpochTime);
1635 if (n ==
"minEpochTime") {
1636 out << d(config.mMinEpochTime);
1639 if (n ==
"minEpochIterations") {
1640 out << config.mMinEpochIterations;
1643 if (n ==
"epochIterations") {
1644 out << config.mEpochIterations;
1647 if (n ==
"warmup") {
1648 out << config.mWarmup;
1651 if (n ==
"relative") {
1652 out << config.mIsRelative;
1659static std::ostream& generateResultTag(Node
const& n,
Result const& r, std::ostream&
out) {
1660 if (generateConfigTag(n, r.config(),
out)) {
1668 std::vector<std::string> matchResult;
1669 if (matchCmdArgs(std::string(n.begin, n.end), matchResult)) {
1670 if (matchResult.size() == 2) {
1671 if (matchResult[0] ==
"context") {
1672 return out << r.context(matchResult[1]);
1680 if (matchResult[0] ==
"median") {
1681 return out << r.median(m);
1683 if (matchResult[0] ==
"average") {
1684 return out << r.average(m);
1686 if (matchResult[0] ==
"medianAbsolutePercentError") {
1687 return out << r.medianAbsolutePercentError(m);
1689 if (matchResult[0] ==
"sum") {
1690 return out << r.sum(m);
1692 if (matchResult[0] ==
"minimum") {
1693 return out << r.minimum(m);
1695 if (matchResult[0] ==
"maximum") {
1696 return out << r.maximum(m);
1698 }
else if (matchResult.size() == 3) {
1705 if (matchResult[0] ==
"sumProduct") {
1706 return out << r.sumProduct(m1, m2);
1715 throw std::runtime_error(
"command '" + std::string(n.begin, n.end) +
"' not understood");
1718static void generateResultMeasurement(std::vector<Node>
const& nodes,
size_t idx,
Result const& r, std::ostream&
out) {
1719 for (
auto const& n : nodes) {
1720 if (!generateFirstLast(n, idx, r.size(),
out)) {
1723 case Node::Type::content:
1724 out.write(n.begin, std::distance(n.begin, n.end));
1727 case Node::Type::inverted_section:
1728 throw std::runtime_error(
"got a inverted section inside measurement");
1730 case Node::Type::section:
1731 throw std::runtime_error(
"got a section inside measurement");
1733 case Node::Type::tag: {
1738 out << r.get(idx, m);
1747static void generateResult(std::vector<Node>
const& nodes,
size_t idx, std::vector<Result>
const& results, std::ostream&
out) {
1748 auto const& r = results[idx];
1749 for (
auto const& n : nodes) {
1750 if (!generateFirstLast(n, idx, results.size(),
out)) {
1753 case Node::Type::content:
1754 out.write(n.begin, std::distance(n.begin, n.end));
1757 case Node::Type::inverted_section:
1758 throw std::runtime_error(
"got a inverted section inside result");
1760 case Node::Type::section:
1761 if (n ==
"measurement") {
1762 for (
size_t i = 0; i < r.size(); ++i) {
1763 generateResultMeasurement(n.children, i, r,
out);
1766 throw std::runtime_error(
"got a section inside result");
1770 case Node::Type::tag:
1771 generateResultTag(n, r,
out);
1783char const* getEnv(
char const*
name);
1784bool isEndlessRunning(std::string
const&
name);
1785bool isWarningsEnabled();
1787template <
typename T>
1788T parseFile(std::string
const& filename,
bool* fail);
1790void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations);
1791void printStabilityInformationOnce(std::ostream* outStream);
1794uint64_t& singletonHeaderHash() noexcept;
1797Clock::duration calcClockResolution(
size_t numEvaluations) noexcept;
1804class NumSep :
public std::numpunct<char> {
1806 explicit NumSep(
char sep);
1807 char do_thousands_sep()
const override;
1808 std::string do_grouping()
const override;
1817class StreamStateRestorer {
1819 explicit StreamStateRestorer(std::ostream&
s);
1820 ~StreamStateRestorer();
1826 StreamStateRestorer(StreamStateRestorer
const&) =
delete;
1827 StreamStateRestorer& operator=(StreamStateRestorer
const&) =
delete;
1828 StreamStateRestorer(StreamStateRestorer&&) =
delete;
1829 StreamStateRestorer& operator=(StreamStateRestorer&&) =
delete;
1832 std::ostream& mStream;
1833 std::locale mLocale;
1834 std::streamsize
const mPrecision;
1835 std::streamsize
const mWidth;
1836 std::ostream::char_type
const mFill;
1837 std::ostream::fmtflags
const mFmtFlags;
1844 Number(
int width,
int precision,
double value);
1845 Number(
int width,
int precision, int64_t value);
1849 friend std::ostream&
operator<<(std::ostream& os, Number
const& n);
1850 std::ostream& write(std::ostream& os)
const;
1858std::string to_s(uint64_t n);
1860std::ostream&
operator<<(std::ostream& os, Number
const& n);
1862class MarkDownColumn {
1864 MarkDownColumn(
int w,
int prec, std::string tit, std::string suff,
double val)
noexcept;
1874 std::string mSuffix;
1881 explicit MarkDownCode(std::string
const& what);
1884 friend std::ostream&
operator<<(std::ostream& os, MarkDownCode
const& mdCode);
1885 std::ostream& write(std::ostream& os)
const;
1887 std::string mWhat{};
1890std::ostream&
operator<<(std::ostream& os, MarkDownCode
const& mdCode);
1900namespace nanobench {
1903void render(
char const* mustacheTemplate, std::vector<Result>
const& results, std::ostream&
out) {
1904 detail::fmt::StreamStateRestorer
const restorer(
out);
1906 out.precision(std::numeric_limits<double>::digits10);
1907 auto nodes = templates::parseMustacheTemplate(&mustacheTemplate);
1909 for (
auto const& n : nodes) {
1912 case templates::Node::Type::content:
1913 out.write(n.begin, std::distance(n.begin, n.end));
1916 case templates::Node::Type::inverted_section:
1917 throw std::runtime_error(
"unknown list '" + std::string(n.begin, n.end) +
"'");
1919 case templates::Node::Type::section:
1920 if (n ==
"result") {
1921 const size_t nbResults = results.size();
1922 for (
size_t i = 0; i < nbResults; ++i) {
1923 generateResult(n.children, i, results,
out);
1925 }
else if (n ==
"measurement") {
1926 if (results.size() != 1) {
1927 throw std::runtime_error(
1928 "render: can only use section 'measurement' here if there is a single result, but there are " +
1929 detail::fmt::to_s(results.size()));
1932 auto const& r = results.front();
1933 for (
size_t i = 0; i < r.size(); ++i) {
1934 generateResultMeasurement(n.children, i, r,
out);
1937 throw std::runtime_error(
"render: unknown section '" + std::string(n.begin, n.end) +
"'");
1941 case templates::Node::Type::tag:
1942 if (results.size() == 1) {
1944 generateResultTag(n, results.front(),
out);
1947 if (!generateConfigTag(n, results.back().config(),
out)) {
1948 throw std::runtime_error(
"unknown tag '" + std::string(n.begin, n.end) +
"'");
1956void render(std::string
const& mustacheTemplate, std::vector<Result>
const& results, std::ostream&
out) {
1957 render(mustacheTemplate.c_str(), results,
out);
1960void render(
char const* mustacheTemplate,
const Bench& bench, std::ostream&
out) {
1961 render(mustacheTemplate, bench.results(),
out);
1964void render(std::string
const& mustacheTemplate,
const Bench& bench, std::ostream&
out) {
1965 render(mustacheTemplate.c_str(), bench.results(),
out);
1971# if defined(__clang__)
1972# pragma clang diagnostic push
1973# pragma clang diagnostic ignored "-Wexit-time-destructors"
1975 static PerformanceCounters pc;
1976# if defined(__clang__)
1977# pragma clang diagnostic pop
1986# if defined(_MSC_VER)
1987# pragma optimize("", off)
1988void doNotOptimizeAwaySink(
void const*) {}
1989# pragma optimize("", on)
1992template <
typename T>
1993T parseFile(std::string
const& filename,
bool* fail) {
1994 std::ifstream fin(filename);
1997 if (fail !=
nullptr) {
2003char const* getEnv(
char const*
name) {
2004# if defined(_MSC_VER)
2005# pragma warning(push)
2006# pragma warning(disable : 4996)
2008 return std::getenv(
name);
2009# if defined(_MSC_VER)
2010# pragma warning(pop)
2014bool isEndlessRunning(std::string
const&
name) {
2015 auto const*
const endless = getEnv(
"NANOBENCH_ENDLESS");
2016 return nullptr != endless && endless ==
name;
2020bool isWarningsEnabled() {
2021 auto const*
const suppression = getEnv(
"NANOBENCH_SUPPRESS_WARNINGS");
2022 return nullptr == suppression || suppression == std::string(
"0");
2025void gatherStabilityInformation(std::vector<std::string>& warnings, std::vector<std::string>& recommendations) {
2027 recommendations.clear();
2030 warnings.emplace_back(
"DEBUG defined");
2031 bool const recommendCheckFlags =
true;
2033 bool const recommendCheckFlags =
false;
2036 bool recommendPyPerf =
false;
2037# if defined(__linux__)
2038 auto nprocs = sysconf(_SC_NPROCESSORS_CONF);
2040 warnings.emplace_back(
"couldn't figure out number of processors - no governor, turbo check possible");
2043 for (
long id = 0;
id < nprocs; ++id) {
2044 auto idStr = detail::fmt::to_s(
static_cast<uint64_t
>(
id));
2045 auto sysCpu =
"/sys/devices/system/cpu/cpu" + idStr;
2046 auto minFreq = parseFile<int64_t>(sysCpu +
"/cpufreq/scaling_min_freq",
nullptr);
2047 auto maxFreq = parseFile<int64_t>(sysCpu +
"/cpufreq/scaling_max_freq",
nullptr);
2048 if (minFreq != maxFreq) {
2049 auto minMHz = d(minFreq) / 1000.0;
2050 auto maxMHz = d(maxFreq) / 1000.0;
2051 warnings.emplace_back(
"CPU frequency scaling enabled: CPU " + idStr +
" between " +
2052 detail::fmt::Number(1, 1, minMHz).to_s() +
" and " + detail::fmt::Number(1, 1, maxMHz).to_s() +
2054 recommendPyPerf =
true;
2060 auto currentGovernor = parseFile<std::string>(
"/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", &fail);
2061 if (!fail &&
"performance" != currentGovernor) {
2062 warnings.emplace_back(
"CPU governor is '" + currentGovernor +
"' but should be 'performance'");
2063 recommendPyPerf =
true;
2066 auto noTurbo = parseFile<int>(
"/sys/devices/system/cpu/intel_pstate/no_turbo", &fail);
2067 if (!fail && noTurbo == 0) {
2068 warnings.emplace_back(
"Turbo is enabled, CPU frequency will fluctuate");
2069 recommendPyPerf =
true;
2074 if (recommendCheckFlags) {
2075 recommendations.emplace_back(
"Make sure you compile for Release");
2077 if (recommendPyPerf) {
2078 recommendations.emplace_back(
"Use 'pyperf system tune' before benchmarking. See https://github.com/psf/pyperf");
2082void printStabilityInformationOnce(std::ostream* outStream) {
2083 static bool shouldPrint =
true;
2084 if (shouldPrint && (
nullptr != outStream) && isWarningsEnabled()) {
2085 auto& os = *outStream;
2086 shouldPrint =
false;
2087 std::vector<std::string> warnings;
2088 std::vector<std::string> recommendations;
2089 gatherStabilityInformation(warnings, recommendations);
2090 if (warnings.empty()) {
2094 os <<
"Warning, results might be unstable:" << std::endl;
2095 for (
auto const& w : warnings) {
2096 os <<
"* " << w << std::endl;
2099 os << std::endl <<
"Recommendations" << std::endl;
2100 for (
auto const& r : recommendations) {
2101 os <<
"* " << r << std::endl;
2107uint64_t& singletonHeaderHash() noexcept {
2108 static uint64_t sHeaderHash{};
2113inline uint64_t hash_combine(uint64_t seed, uint64_t val) {
2114 return seed ^ (val + UINT64_C(0x9e3779b9) + (seed << 6U) + (seed >> 2U));
2118Clock::duration calcClockResolution(
size_t numEvaluations)
noexcept {
2119 auto bestDuration = Clock::duration::max();
2120 Clock::time_point tBegin;
2121 Clock::time_point tEnd;
2122 for (
size_t i = 0; i < numEvaluations; ++i) {
2123 tBegin = Clock::now();
2125 tEnd = Clock::now();
2126 }
while (tBegin == tEnd);
2127 bestDuration = (std::min)(bestDuration, tEnd - tBegin);
2129 return bestDuration;
2133Clock::duration clockResolution() noexcept {
2134 static Clock::duration
const sResolution = calcClockResolution(20);
2139struct IterationLogic::Impl {
2140 enum class State { warmup, upscaling_runtime, measuring, endless };
2142 explicit Impl(Bench
const& bench)
2144 , mResult(bench.config()) {
2145 printStabilityInformationOnce(mBench.output());
2148 mTargetRuntimePerEpoch = detail::clockResolution() * mBench.clockResolutionMultiple();
2149 if (mTargetRuntimePerEpoch > mBench.maxEpochTime()) {
2150 mTargetRuntimePerEpoch = mBench.maxEpochTime();
2152 if (mTargetRuntimePerEpoch < mBench.minEpochTime()) {
2153 mTargetRuntimePerEpoch = mBench.minEpochTime();
2156 if (isEndlessRunning(mBench.name())) {
2157 std::cerr <<
"NANOBENCH_ENDLESS set: running '" << mBench.name() <<
"' endlessly" << std::endl;
2158 mNumIters = (std::numeric_limits<uint64_t>::max)();
2159 mState = State::endless;
2160 }
else if (0 != mBench.warmup()) {
2161 mNumIters = mBench.warmup();
2162 mState = State::warmup;
2163 }
else if (0 != mBench.epochIterations()) {
2165 mNumIters = mBench.epochIterations();
2166 mState = State::measuring;
2168 mNumIters = mBench.minEpochIterations();
2169 mState = State::upscaling_runtime;
2174 ANKERL_NANOBENCH(NODISCARD) uint64_t calcBestNumIters(std::chrono::nanoseconds elapsed, uint64_t iters)
noexcept {
2175 auto doubleElapsed = d(elapsed);
2176 auto doubleTargetRuntimePerEpoch = d(mTargetRuntimePerEpoch);
2177 auto doubleNewIters = doubleTargetRuntimePerEpoch / doubleElapsed * d(iters);
2179 auto doubleMinEpochIters = d(mBench.minEpochIterations());
2180 if (doubleNewIters < doubleMinEpochIters) {
2181 doubleNewIters = doubleMinEpochIters;
2183 doubleNewIters *= 1.0 + 0.2 * mRng.uniform01();
2187 return static_cast<uint64_t
>(doubleNewIters + 0.5);
2191 if (elapsed * 10 < mTargetRuntimePerEpoch) {
2193 if (mNumIters * 10 < mNumIters) {
2195 showResult(
"iterations overflow. Maybe your code got optimized away?");
2201 mNumIters = calcBestNumIters(elapsed, mNumIters);
2205 void add(std::chrono::nanoseconds elapsed, PerformanceCounters
const& pc)
noexcept {
2206# if defined(ANKERL_NANOBENCH_LOG_ENABLED)
2207 auto oldIters = mNumIters;
2212 if (isCloseEnoughForMeasurements(elapsed)) {
2215 mState = State::measuring;
2216 mNumIters = calcBestNumIters(elapsed, mNumIters);
2219 mState = State::upscaling_runtime;
2224 case State::upscaling_runtime:
2225 if (isCloseEnoughForMeasurements(elapsed)) {
2227 mState = State::measuring;
2228 mTotalElapsed += elapsed;
2229 mTotalNumIters += mNumIters;
2230 mResult.add(elapsed, mNumIters, pc);
2231 mNumIters = calcBestNumIters(mTotalElapsed, mTotalNumIters);
2237 case State::measuring:
2240 mTotalElapsed += elapsed;
2241 mTotalNumIters += mNumIters;
2242 mResult.add(elapsed, mNumIters, pc);
2243 if (0 != mBench.epochIterations()) {
2244 mNumIters = mBench.epochIterations();
2246 mNumIters = calcBestNumIters(mTotalElapsed, mTotalNumIters);
2250 case State::endless:
2251 mNumIters = (std::numeric_limits<uint64_t>::max)();
2255 if (
static_cast<uint64_t
>(mResult.size()) == mBench.epochs()) {
2261 ANKERL_NANOBENCH_LOG(mBench.name() <<
": " << detail::fmt::Number(20, 3, d(elapsed.count())) <<
" elapsed, "
2262 << detail::fmt::Number(20, 3, d(mTargetRuntimePerEpoch.count())) <<
" target. oldIters="
2263 << oldIters <<
", mNumIters=" << mNumIters <<
", mState=" <<
static_cast<int>(mState));
2267 void showResult(std::string
const& errorMessage)
const {
2270 if (mBench.output() !=
nullptr) {
2272 std::vector<fmt::MarkDownColumn> columns;
2276 if (mBench.relative()) {
2278 if (!mBench.results().empty()) {
2281 columns.emplace_back(11, 1,
"relative",
"%", d);
2284 if (mBench.complexityN() > 0) {
2285 columns.emplace_back(14, 0,
"complexityN",
"", mBench.complexityN());
2288 columns.emplace_back(22, 2, mBench.timeUnitName() +
"/" + mBench.unit(),
"",
2289 rMedian / (mBench.timeUnit().count() * mBench.batch()));
2290 columns.emplace_back(22, 2, mBench.unit() +
"/s",
"", rMedian <= 0.0 ? 0.0 : mBench.batch() / rMedian);
2293 columns.emplace_back(10, 1,
"err%",
"%", rErrorMedian * 100.0);
2295 double rInsMedian = -1.0;
2298 columns.emplace_back(18, 2,
"ins/" + mBench.unit(),
"", rInsMedian / mBench.batch());
2301 double rCycMedian = -1.0;
2304 columns.emplace_back(18, 2,
"cyc/" + mBench.unit(),
"", rCycMedian / mBench.batch());
2306 if (rInsMedian > 0.0 && rCycMedian > 0.0) {
2307 columns.emplace_back(9, 3,
"IPC",
"", rCycMedian <= 0.0 ? 0.0 : rInsMedian / rCycMedian);
2311 columns.emplace_back(17, 2,
"bra/" + mBench.unit(),
"", rBraMedian / mBench.batch());
2314 if (rBraMedian >= 1e-9) {
2317 columns.emplace_back(10, 1,
"miss%",
"%", p);
2324 auto& os = *mBench.output();
2328 hash = hash_combine(std::hash<std::string>{}(mBench.unit()), hash);
2329 hash = hash_combine(std::hash<std::string>{}(mBench.title()), hash);
2330 hash = hash_combine(std::hash<std::string>{}(mBench.timeUnitName()), hash);
2331 hash = hash_combine(std::hash<double>{}(mBench.timeUnit().
count()), hash);
2332 hash = hash_combine(std::hash<bool>{}(mBench.relative()), hash);
2333 hash = hash_combine(std::hash<bool>{}(mBench.performanceCounters()), hash);
2335 if (hash != singletonHeaderHash()) {
2336 singletonHeaderHash() = hash;
2340 for (
auto const& col : columns) {
2343 os <<
"| " << mBench.title() << std::endl;
2345 for (
auto const& col : columns) {
2346 os << col.separator();
2348 os <<
"|:" << std::string(mBench.title().size() + 1U,
'-') << std::endl;
2351 if (!errorMessage.empty()) {
2352 for (
auto const& col : columns) {
2353 os << col.invalid();
2355 os <<
"| :boom: " << fmt::MarkDownCode(mBench.name()) <<
" (" << errorMessage <<
')' << std::endl;
2357 for (
auto const& col : columns) {
2361 auto showUnstable = isWarningsEnabled() && rErrorMedian >= 0.05;
2363 os <<
":wavy_dash: ";
2365 os << fmt::MarkDownCode(mBench.name());
2367 auto avgIters = d(mTotalNumIters) / d(mBench.epochs());
2369 auto suggestedIters =
static_cast<uint64_t
>(avgIters * 10 + 0.5);
2371 os <<
" (Unstable with ~" << detail::fmt::Number(1, 1, avgIters)
2372 <<
" iters. Increase `minEpochIterations` to e.g. " << suggestedIters <<
")";
2379 ANKERL_NANOBENCH(NODISCARD)
bool isCloseEnoughForMeasurements(std::chrono::nanoseconds elapsed)
const noexcept {
2380 return elapsed * 3 >= mTargetRuntimePerEpoch * 2;
2383 uint64_t mNumIters = 1;
2384 Bench
const& mBench;
2385 std::chrono::nanoseconds mTargetRuntimePerEpoch{};
2388 std::chrono::nanoseconds mTotalElapsed{};
2389 uint64_t mTotalNumIters = 0;
2390 State mState = State::upscaling_runtime;
2394IterationLogic::IterationLogic(Bench
const& bench)
2395 : mPimpl(new Impl(bench)) {}
2397IterationLogic::~IterationLogic() {
2401uint64_t IterationLogic::numIters() const noexcept {
2403 return mPimpl->mNumIters;
2406void IterationLogic::add(std::chrono::nanoseconds elapsed, PerformanceCounters
const& pc)
noexcept {
2407 mPimpl->add(elapsed, pc);
2410void IterationLogic::moveResultTo(std::vector<Result>& results)
noexcept {
2411 results.emplace_back(std::move(mPimpl->mResult));
2414# if ANKERL_NANOBENCH(PERF_COUNTERS)
2417class LinuxPerformanceCounters {
2420 Target(uint64_t* targetValue_,
bool correctMeasuringOverhead_,
bool correctLoopOverhead_)
2421 : targetValue(targetValue_)
2422 , correctMeasuringOverhead(correctMeasuringOverhead_)
2423 , correctLoopOverhead(correctLoopOverhead_) {}
2425 uint64_t* targetValue{};
2426 bool correctMeasuringOverhead{};
2427 bool correctLoopOverhead{};
2430 LinuxPerformanceCounters() =
default;
2431 LinuxPerformanceCounters(LinuxPerformanceCounters
const&) =
delete;
2432 LinuxPerformanceCounters(LinuxPerformanceCounters&&) =
delete;
2433 LinuxPerformanceCounters& operator=(LinuxPerformanceCounters
const&) =
delete;
2434 LinuxPerformanceCounters& operator=(LinuxPerformanceCounters&&) =
delete;
2435 ~LinuxPerformanceCounters();
2438 inline void start() {}
2440 inline void stop() {}
2442 bool monitor(perf_sw_ids swId, Target target);
2443 bool monitor(perf_hw_id hwId, Target target);
2451 inline void beginMeasure() {
2457 mHasError = -1 == ioctl(mFd, PERF_EVENT_IOC_RESET, PERF_IOC_FLAG_GROUP);
2463 mHasError = -1 == ioctl(mFd, PERF_EVENT_IOC_ENABLE, PERF_IOC_FLAG_GROUP);
2466 inline void endMeasure() {
2472 mHasError = (-1 == ioctl(mFd, PERF_EVENT_IOC_DISABLE, PERF_IOC_FLAG_GROUP));
2477 auto const numBytes =
sizeof(uint64_t) * mCounters.size();
2478 auto ret = read(mFd, mCounters.data(), numBytes);
2479 mHasError =
ret !=
static_cast<ssize_t
>(numBytes);
2482 void updateResults(uint64_t numIters);
2485 template <
typename T>
2486 static inline T divRounded(T a, T divisor) {
2487 return (a + divisor / 2) / divisor;
2491 static inline uint32_t mix(uint32_t x) noexcept {
2498 template <
typename Op>
2500 void calibrate(Op&& op) {
2502 for (
auto& v : mCalibratedOverhead) {
2507 auto newCalibration = mCalibratedOverhead;
2508 for (
auto& v : newCalibration) {
2509 v = (std::numeric_limits<uint64_t>::max)();
2511 for (
size_t iter = 0; iter < 100; ++iter) {
2519 for (
size_t i = 0; i < newCalibration.size(); ++i) {
2520 auto diff = mCounters[i];
2521 if (newCalibration[i] > diff) {
2522 newCalibration[i] = diff;
2527 mCalibratedOverhead = std::move(newCalibration);
2534 uint64_t
const numIters = 100000U + (std::random_device{}() & 3U);
2535 uint64_t n = numIters;
2536 uint32_t x = 1234567;
2544 auto measure1 = mCounters;
2555 auto measure2 = mCounters;
2557 for (
size_t i = 0; i < mCounters.size(); ++i) {
2559 auto m1 = measure1[i] > mCalibratedOverhead[i] ? measure1[i] - mCalibratedOverhead[i] : 0;
2560 auto m2 = measure2[i] > mCalibratedOverhead[i] ? measure2[i] - mCalibratedOverhead[i] : 0;
2561 auto overhead = m1 * 2 > m2 ? m1 * 2 - m2 : 0;
2563 mLoopOverhead[i] = divRounded(overhead, numIters);
2569 bool monitor(uint32_t type, uint64_t eventid, Target target);
2571 std::map<uint64_t, Target> mIdToTarget{};
2574 std::vector<uint64_t> mCounters{3};
2575 std::vector<uint64_t> mCalibratedOverhead{3};
2576 std::vector<uint64_t> mLoopOverhead{3};
2578 uint64_t mTimeEnabledNanos = 0;
2579 uint64_t mTimeRunningNanos = 0;
2581 bool mHasError =
false;
2585LinuxPerformanceCounters::~LinuxPerformanceCounters() {
2591bool LinuxPerformanceCounters::monitor(perf_sw_ids swId, LinuxPerformanceCounters::Target target) {
2592 return monitor(PERF_TYPE_SOFTWARE, swId, target);
2595bool LinuxPerformanceCounters::monitor(perf_hw_id hwId, LinuxPerformanceCounters::Target target) {
2596 return monitor(PERF_TYPE_HARDWARE, hwId, target);
2601void LinuxPerformanceCounters::updateResults(uint64_t numIters) {
2603 for (
auto& id_value : mIdToTarget) {
2604 *id_value.second.targetValue = UINT64_C(0);
2611 mTimeEnabledNanos = mCounters[1] - mCalibratedOverhead[1];
2612 mTimeRunningNanos = mCounters[2] - mCalibratedOverhead[2];
2614 for (uint64_t i = 0; i < mCounters[0]; ++i) {
2615 auto idx =
static_cast<size_t>(3 + i * 2 + 0);
2616 auto id = mCounters[idx + 1U];
2618 auto it = mIdToTarget.find(
id);
2619 if (it != mIdToTarget.end()) {
2621 auto& tgt = it->second;
2622 *tgt.targetValue = mCounters[idx];
2623 if (tgt.correctMeasuringOverhead) {
2624 if (*tgt.targetValue >= mCalibratedOverhead[idx]) {
2625 *tgt.targetValue -= mCalibratedOverhead[idx];
2627 *tgt.targetValue = 0U;
2630 if (tgt.correctLoopOverhead) {
2631 auto correctionVal = mLoopOverhead[idx] * numIters;
2632 if (*tgt.targetValue >= correctionVal) {
2633 *tgt.targetValue -= correctionVal;
2635 *tgt.targetValue = 0U;
2642bool LinuxPerformanceCounters::monitor(uint32_t type, uint64_t eventid, Target target) {
2643 *target.targetValue = (std::numeric_limits<uint64_t>::max)();
2648 auto pea = perf_event_attr();
2649 std::memset(&pea, 0,
sizeof(perf_event_attr));
2651 pea.size =
sizeof(perf_event_attr);
2652 pea.config = eventid;
2654 pea.exclude_kernel = 1;
2658 pea.read_format = PERF_FORMAT_GROUP | PERF_FORMAT_ID | PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
2662# if defined(PERF_FLAG_FD_CLOEXEC)
2663 const unsigned long flags = PERF_FLAG_FD_CLOEXEC;
2665 const unsigned long flags = 0;
2669 auto fd =
static_cast<int>(syscall(__NR_perf_event_open, &pea, pid, cpu, mFd,
flags));
2679 if (-1 == ioctl(fd, PERF_EVENT_IOC_ID, &
id)) {
2685 mIdToTarget.emplace(
id, target);
2688 auto size = 3 + 2 * mIdToTarget.size();
2689 mCounters.resize(size);
2690 mCalibratedOverhead.resize(size);
2691 mLoopOverhead.resize(size);
2696PerformanceCounters::PerformanceCounters()
2697 : mPc(new LinuxPerformanceCounters())
2702 mHas.cpuCycles = mPc->monitor(PERF_COUNT_HW_REF_CPU_CYCLES, LinuxPerformanceCounters::Target(&mVal.cpuCycles,
true,
false));
2703 if (!mHas.cpuCycles) {
2705 mHas.cpuCycles = mPc->monitor(PERF_COUNT_HW_CPU_CYCLES, LinuxPerformanceCounters::Target(&mVal.cpuCycles,
true,
false));
2707 mHas.instructions = mPc->monitor(PERF_COUNT_HW_INSTRUCTIONS, LinuxPerformanceCounters::Target(&mVal.instructions,
true,
true));
2708 mHas.branchInstructions =
2709 mPc->monitor(PERF_COUNT_HW_BRANCH_INSTRUCTIONS, LinuxPerformanceCounters::Target(&mVal.branchInstructions,
true,
false));
2710 mHas.branchMisses = mPc->monitor(PERF_COUNT_HW_BRANCH_MISSES, LinuxPerformanceCounters::Target(&mVal.branchMisses,
true,
false));
2714 mHas.pageFaults = mPc->monitor(PERF_COUNT_SW_PAGE_FAULTS, LinuxPerformanceCounters::Target(&mVal.pageFaults,
true,
false));
2715 mHas.contextSwitches =
2716 mPc->monitor(PERF_COUNT_SW_CONTEXT_SWITCHES, LinuxPerformanceCounters::Target(&mVal.contextSwitches,
true,
false));
2720 auto before = ankerl::nanobench::Clock::now();
2721 auto after = ankerl::nanobench::Clock::now();
2726 if (mPc->hasError()) {
2728 mHas = PerfCountSet<bool>{};
2732PerformanceCounters::~PerformanceCounters() {
2737void PerformanceCounters::beginMeasure() {
2738 mPc->beginMeasure();
2741void PerformanceCounters::endMeasure() {
2745void PerformanceCounters::updateResults(uint64_t numIters) {
2746 mPc->updateResults(numIters);
2751PerformanceCounters::PerformanceCounters() =
default;
2752PerformanceCounters::~PerformanceCounters() =
default;
2753void PerformanceCounters::beginMeasure() {}
2754void PerformanceCounters::endMeasure() {}
2755void PerformanceCounters::updateResults(uint64_t) {}
2759ANKERL_NANOBENCH(NODISCARD) PerfCountSet<uint64_t>
const& PerformanceCounters::val() const noexcept {
2762ANKERL_NANOBENCH(NODISCARD) PerfCountSet<bool>
const& PerformanceCounters::has() const noexcept {
2770NumSep::NumSep(
char sep)
2773char NumSep::do_thousands_sep()
const {
2777std::string NumSep::do_grouping()
const {
2782StreamStateRestorer::StreamStateRestorer(std::ostream&
s)
2784 , mLocale(
s.getloc())
2785 , mPrecision(
s.precision())
2788 , mFmtFlags(
s.
flags()) {}
2790StreamStateRestorer::~StreamStateRestorer() {
2795void StreamStateRestorer::restore() {
2796 mStream.imbue(mLocale);
2797 mStream.precision(mPrecision);
2798 mStream.width(mWidth);
2799 mStream.fill(mFill);
2800 mStream.flags(mFmtFlags);
2803Number::Number(
int width,
int precision, int64_t value)
2805 , mPrecision(precision)
2806 , mValue(d(value)) {}
2808Number::Number(
int width,
int precision,
double value)
2810 , mPrecision(precision)
2813std::ostream& Number::write(std::ostream& os)
const {
2814 StreamStateRestorer
const restorer(os);
2815 os.imbue(std::locale(os.getloc(),
new NumSep(
',')));
2816 os << std::setw(mWidth) << std::setprecision(mPrecision) << std::fixed << mValue;
2820std::string Number::to_s()
const {
2821 std::stringstream ss;
2826std::string to_s(uint64_t n) {
2829 str +=
static_cast<char>(
'0' +
static_cast<char>(n % 10));
2832 std::reverse(str.begin(), str.end());
2836std::ostream&
operator<<(std::ostream& os, Number
const& n) {
2840MarkDownColumn::MarkDownColumn(
int w,
int prec, std::string tit, std::string suff,
double val) noexcept
2843 , mTitle(std::move(tit))
2844 , mSuffix(std::move(suff))
2847std::string MarkDownColumn::title()
const {
2848 std::stringstream ss;
2849 ss <<
'|' << std::setw(mWidth - 2) << std::right << mTitle <<
' ';
2853std::string MarkDownColumn::separator()
const {
2854 std::string sep(
static_cast<size_t>(mWidth),
'-');
2860std::string MarkDownColumn::invalid()
const {
2861 std::string sep(
static_cast<size_t>(mWidth),
' ');
2863 sep[sep.size() - 2] =
'-';
2867std::string MarkDownColumn::value()
const {
2868 std::stringstream ss;
2869 auto width = mWidth - 2 -
static_cast<int>(mSuffix.size());
2870 ss <<
'|' << Number(width, mPrecision, mValue) << mSuffix <<
' ';
2875MarkDownCode::MarkDownCode(std::string
const& what) {
2876 mWhat.reserve(what.size() + 2);
2877 mWhat.push_back(
'`');
2878 for (
char const c : what) {
2881 mWhat.push_back(
'`');
2884 mWhat.push_back(
'`');
2887std::ostream& MarkDownCode::write(std::ostream& os)
const {
2891std::ostream&
operator<<(std::ostream& os, MarkDownCode
const& mdCode) {
2892 return mdCode.write(os);
2898Config::Config() =
default;
2899Config::~Config() =
default;
2900Config& Config::operator=(Config
const&) =
default;
2901Config& Config::operator=(Config&&) noexcept(
ANKERL_NANOBENCH(NOEXCEPT_STRING_MOVE)) = default;
2902Config::Config(Config const&) = default;
2903Config::Config(Config&&) noexcept = default;
2913template <
typename T>
2914inline constexpr typename std::underlying_type<T>::type u(T val)
noexcept {
2915 return static_cast<typename std::underlying_type<T>::type
>(val);
2921 : mConfig(
std::move(benchmarkConfig))
2922 , mNameToMeasurements{
detail::u(
Result::Measure::_size)} {}
2924void Result::add(Clock::duration totalElapsed, uint64_t iters, detail::PerformanceCounters
const& pc) {
2928 double const dIters = d(iters);
2929 mNameToMeasurements[u(Result::Measure::iterations)].push_back(dIters);
2931 mNameToMeasurements[u(Result::Measure::elapsed)].push_back(d(totalElapsed) / dIters);
2932 if (pc.has().pageFaults) {
2933 mNameToMeasurements[u(Result::Measure::pagefaults)].push_back(d(pc.val().pageFaults) / dIters);
2935 if (pc.has().cpuCycles) {
2936 mNameToMeasurements[u(Result::Measure::cpucycles)].push_back(d(pc.val().cpuCycles) / dIters);
2938 if (pc.has().contextSwitches) {
2939 mNameToMeasurements[u(Result::Measure::contextswitches)].push_back(d(pc.val().contextSwitches) / dIters);
2941 if (pc.has().instructions) {
2942 mNameToMeasurements[u(Result::Measure::instructions)].push_back(d(pc.val().instructions) / dIters);
2944 if (pc.has().branchInstructions) {
2945 double branchInstructions = 0.0;
2947 if (pc.val().branchInstructions > iters + 1U) {
2948 branchInstructions = d(pc.val().branchInstructions - (iters + 1U));
2950 mNameToMeasurements[u(Result::Measure::branchinstructions)].push_back(branchInstructions / dIters);
2952 if (pc.has().branchMisses) {
2954 double branchMisses = d(pc.val().branchMisses);
2955 if (branchMisses > branchInstructions) {
2957 branchMisses = branchInstructions;
2961 branchMisses -= 1.0;
2962 if (branchMisses < 1.0) {
2965 mNameToMeasurements[u(Result::Measure::branchmisses)].push_back(branchMisses / dIters);
2970Config
const& Result::config() const noexcept {
2974inline double calcMedian(std::vector<double>&
data) {
2978 std::sort(
data.begin(),
data.end());
2980 auto midIdx =
data.size() / 2U;
2981 if (1U == (
data.size() & 1U)) {
2982 return data[midIdx];
2984 return (
data[midIdx - 1U] +
data[midIdx]) / 2U;
2987double Result::median(Measure m)
const {
2989 auto data = mNameToMeasurements[detail::u(m)];
2990 return calcMedian(
data);
2993double Result::average(Measure m)
const {
2995 auto const&
data = mNameToMeasurements[detail::u(m)];
3001 return sum(m) / d(
data.size());
3004double Result::medianAbsolutePercentError(Measure m)
const {
3006 auto data = mNameToMeasurements[detail::u(m)];
3010 auto med = calcMedian(
data);
3013 for (
auto& x :
data) {
3019 return calcMedian(
data);
3023 auto const&
data = mNameToMeasurements[detail::u(m)];
3024 return std::accumulate(
data.begin(),
data.end(), 0.0);
3027double Result::sumProduct(Measure m1, Measure m2)
const noexcept {
3028 auto const& data1 = mNameToMeasurements[detail::u(m1)];
3029 auto const& data2 = mNameToMeasurements[detail::u(m2)];
3031 if (data1.size() != data2.size()) {
3035 double result = 0.0;
3036 for (
size_t i = 0,
s = data1.size(); i !=
s; ++i) {
3037 result += data1[i] * data2[i];
3042bool Result::has(Measure m)
const noexcept {
3043 return !mNameToMeasurements[detail::u(m)].empty();
3046double Result::get(
size_t idx, Measure m)
const {
3047 auto const&
data = mNameToMeasurements[detail::u(m)];
3048 return data.at(idx);
3051bool Result::empty() const noexcept {
3052 return 0U == size();
3055size_t Result::size() const noexcept {
3056 auto const&
data = mNameToMeasurements[detail::u(Measure::elapsed)];
3060double Result::minimum(Measure m)
const noexcept {
3061 auto const&
data = mNameToMeasurements[detail::u(m)];
3067 return *std::min_element(
data.begin(),
data.end());
3070double Result::maximum(Measure m)
const noexcept {
3071 auto const&
data = mNameToMeasurements[detail::u(m)];
3077 return *std::max_element(
data.begin(),
data.end());
3080std::string
const& Result::context(
char const* variableName)
const {
3081 return mConfig.mContext.at(variableName);
3084std::string
const& Result::context(std::string
const& variableName)
const {
3085 return mConfig.mContext.at(variableName);
3088Result::Measure Result::fromString(std::string
const& str) {
3089 if (str ==
"elapsed") {
3090 return Measure::elapsed;
3092 if (str ==
"iterations") {
3093 return Measure::iterations;
3095 if (str ==
"pagefaults") {
3096 return Measure::pagefaults;
3098 if (str ==
"cpucycles") {
3099 return Measure::cpucycles;
3101 if (str ==
"contextswitches") {
3102 return Measure::contextswitches;
3104 if (str ==
"instructions") {
3105 return Measure::instructions;
3107 if (str ==
"branchinstructions") {
3108 return Measure::branchinstructions;
3110 if (str ==
"branchmisses") {
3111 return Measure::branchmisses;
3114 return Measure::_size;
3119 mConfig.mOut = &std::cout;
3122Bench::Bench(Bench&&) noexcept = default;
3123Bench& Bench::operator=(Bench&&) noexcept(
ANKERL_NANOBENCH(NOEXCEPT_STRING_MOVE)) = default;
3124Bench::Bench(Bench const&) = default;
3125Bench& Bench::operator=(Bench const&) = default;
3126Bench::~Bench() noexcept = default;
3128double Bench::batch() const noexcept {
3129 return mConfig.mBatch;
3132double Bench::complexityN() const noexcept {
3133 return mConfig.mComplexityN;
3138Bench& Bench::relative(
bool isRelativeEnabled)
noexcept {
3139 mConfig.mIsRelative = isRelativeEnabled;
3142bool Bench::relative() const noexcept {
3143 return mConfig.mIsRelative;
3147 mConfig.mShowPerformanceCounters = showPerformanceCounters;
3151 return mConfig.mShowPerformanceCounters;
3157Bench& Bench::unit(
char const* u) {
3158 if (u != mConfig.mUnit) {
3165Bench& Bench::unit(std::string
const& u) {
3166 return unit(u.c_str());
3169std::string
const& Bench::unit() const noexcept {
3170 return mConfig.mUnit;
3173Bench& Bench::timeUnit(std::chrono::duration<double>
const& tu, std::string
const& tuName) {
3174 mConfig.mTimeUnit = tu;
3175 mConfig.mTimeUnitName = tuName;
3179std::string
const& Bench::timeUnitName() const noexcept {
3180 return mConfig.mTimeUnitName;
3183std::chrono::duration<double>
const& Bench::timeUnit() const noexcept {
3184 return mConfig.mTimeUnit;
3188Bench& Bench::title(
const char* benchmarkTitle) {
3189 if (benchmarkTitle != mConfig.mBenchmarkTitle) {
3192 mConfig.mBenchmarkTitle = benchmarkTitle;
3195Bench& Bench::title(std::string
const& benchmarkTitle) {
3196 if (benchmarkTitle != mConfig.mBenchmarkTitle) {
3199 mConfig.mBenchmarkTitle = benchmarkTitle;
3203std::string
const& Bench::title() const noexcept {
3204 return mConfig.mBenchmarkTitle;
3208 mConfig.mBenchmarkName = benchmarkName;
3212Bench&
Bench::name(std::string
const& benchmarkName) {
3213 mConfig.mBenchmarkName = benchmarkName;
3218 return mConfig.mBenchmarkName;
3221Bench& Bench::context(
char const* variableName,
char const* variableValue) {
3222 mConfig.mContext[variableName] = variableValue;
3226Bench& Bench::context(std::string
const& variableName, std::string
const& variableValue) {
3227 mConfig.mContext[variableName] = variableValue;
3231Bench& Bench::clearContext() {
3232 mConfig.mContext.clear();
3237Bench& Bench::epochs(
size_t numEpochs)
noexcept {
3238 mConfig.mNumEpochs = numEpochs;
3241size_t Bench::epochs() const noexcept {
3242 return mConfig.mNumEpochs;
3246Bench& Bench::clockResolutionMultiple(
size_t multiple)
noexcept {
3247 mConfig.mClockResolutionMultiple = multiple;
3250size_t Bench::clockResolutionMultiple() const noexcept {
3251 return mConfig.mClockResolutionMultiple;
3255Bench& Bench::maxEpochTime(std::chrono::nanoseconds t)
noexcept {
3256 mConfig.mMaxEpochTime =
t;
3259std::chrono::nanoseconds Bench::maxEpochTime() const noexcept {
3260 return mConfig.mMaxEpochTime;
3264Bench& Bench::minEpochTime(std::chrono::nanoseconds t)
noexcept {
3265 mConfig.mMinEpochTime =
t;
3268std::chrono::nanoseconds Bench::minEpochTime() const noexcept {
3269 return mConfig.mMinEpochTime;
3272Bench& Bench::minEpochIterations(uint64_t numIters)
noexcept {
3273 mConfig.mMinEpochIterations = (numIters == 0) ? 1 : numIters;
3276uint64_t Bench::minEpochIterations() const noexcept {
3277 return mConfig.mMinEpochIterations;
3280Bench& Bench::epochIterations(uint64_t numIters)
noexcept {
3281 mConfig.mEpochIterations = numIters;
3284uint64_t Bench::epochIterations() const noexcept {
3285 return mConfig.mEpochIterations;
3288Bench& Bench::warmup(uint64_t numWarmupIters)
noexcept {
3289 mConfig.mWarmup = numWarmupIters;
3292uint64_t Bench::warmup() const noexcept {
3293 return mConfig.mWarmup;
3296Bench& Bench::config(Config
const& benchmarkConfig) {
3297 mConfig = benchmarkConfig;
3300Config
const& Bench::config() const noexcept {
3304Bench& Bench::output(std::ostream* outstream)
noexcept {
3305 mConfig.mOut = outstream;
3310 return mConfig.mOut;
3313std::vector<Result>
const& Bench::results() const noexcept {
3317Bench&
Bench::render(
char const* templateContent, std::ostream& os) {
3322Bench&
Bench::render(std::string
const& templateContent, std::ostream& os) {
3327std::vector<BigO> Bench::complexityBigO()
const {
3328 std::vector<BigO> bigOs;
3329 auto rangeMeasure = BigO::collectRangeMeasure(mResults);
3330 bigOs.emplace_back(
"O(1)", rangeMeasure, [](
double) {
3333 bigOs.emplace_back(
"O(n)", rangeMeasure, [](
double n) {
3336 bigOs.emplace_back(
"O(log n)", rangeMeasure, [](
double n) {
3337 return std::log2(n);
3339 bigOs.emplace_back(
"O(n log n)", rangeMeasure, [](
double n) {
3340 return n * std::log2(n);
3342 bigOs.emplace_back(
"O(n^2)", rangeMeasure, [](
double n) {
3345 bigOs.emplace_back(
"O(n^3)", rangeMeasure, [](
double n) {
3348 std::sort(bigOs.begin(), bigOs.end());
3355 std::random_device rd;
3356 std::uniform_int_distribution<uint64_t> dist;
3360 }
while (mX == 0 && mY == 0);
3364uint64_t splitMix64(uint64_t& state) noexcept {
3365 uint64_t z = (state += UINT64_C(0x9e3779b97f4a7c15));
3366 z = (z ^ (z >> 30U)) * UINT64_C(0xbf58476d1ce4e5b9);
3367 z = (z ^ (z >> 27U)) * UINT64_C(0x94d049bb133111eb);
3368 return z ^ (z >> 31U);
3372Rng::Rng(uint64_t seed) noexcept
3373 : mX(splitMix64(seed))
3374 , mY(splitMix64(seed)) {
3375 for (
size_t i = 0; i < 10; ++i) {
3381Rng::Rng(uint64_t x, uint64_t y) noexcept
3385Rng Rng::copy() const noexcept {
3389Rng::Rng(std::vector<uint64_t>
const&
data)
3392 if (
data.size() != 2) {
3393 throw std::runtime_error(
"ankerl::nanobench::Rng::Rng: needed exactly 2 entries in data, but got " +
3394 detail::fmt::to_s(
data.size()));
3400std::vector<uint64_t> Rng::state()
const {
3401 std::vector<uint64_t>
data(2);
3407BigO::RangeMeasure BigO::collectRangeMeasure(std::vector<Result>
const& results) {
3408 BigO::RangeMeasure rangeMeasure;
3409 for (
auto const& result : results) {
3410 if (result.config().mComplexityN > 0.0) {
3411 rangeMeasure.emplace_back(result.config().mComplexityN, result.median(Result::Measure::elapsed));
3414 return rangeMeasure;
3417BigO::BigO(std::string bigOName, RangeMeasure
const& rangeMeasure)
3418 : mName(
std::move(bigOName)) {
3421 double sumRangeMeasure = 0.0;
3422 double sumRangeRange = 0.0;
3424 for (
const auto& rm : rangeMeasure) {
3425 sumRangeMeasure += rm.first * rm.second;
3426 sumRangeRange += rm.first * rm.first;
3428 mConstant = sumRangeMeasure / sumRangeRange;
3432 double sumMeasure = 0.0;
3433 for (
const auto& rm : rangeMeasure) {
3434 auto diff = mConstant * rm.first - rm.second;
3437 sumMeasure += rm.second;
3440 auto n = detail::d(rangeMeasure.size());
3441 auto mean = sumMeasure / n;
3442 mNormalizedRootMeanSquare = std::sqrt(err / n) / mean;
3445BigO::BigO(
const char* bigOName, RangeMeasure
const& rangeMeasure)
3446 : BigO(
std::string(bigOName), rangeMeasure) {}
3448std::string
const&
BigO::name() const noexcept {
3452double BigO::constant() const noexcept {
3456double BigO::normalizedRootMeanSquare() const noexcept {
3457 return mNormalizedRootMeanSquare;
3461 return std::tie(mNormalizedRootMeanSquare, mName) < std::tie(other.mNormalizedRootMeanSquare, other.mName);
3464std::ostream&
operator<<(std::ostream& os, BigO
const& bigO) {
3465 return os << bigO.constant() <<
" * " << bigO.name() <<
", rms=" << bigO.normalizedRootMeanSquare();
3468std::ostream&
operator<<(std::ostream& os, std::vector<ankerl::nanobench::BigO>
const& bigOs) {
3469 detail::fmt::StreamStateRestorer
const restorer(os);
3470 os << std::endl <<
"| coefficient | err% | complexity" << std::endl <<
"|--------------:|-------:|------------" << std::endl;
3471 for (
auto const& bigO : bigOs) {
3472 os <<
"|" << std::setw(14) << std::setprecision(7) << std::scientific << bigO.constant() <<
" ";
3473 os <<
"|" << detail::fmt::Number(6, 1, bigO.normalizedRootMeanSquare() * 100.0) <<
"% ";
3474 os <<
"| " << bigO.name();
Main entry point to nanobench's benchmarking facility.
Bench & operator=(Bench const &other)
ANKERL_NANOBENCH(NODISCARD) std Bench & doNotOptimizeAway(Arg &&arg)
Retrieves all benchmark results collected by the bench object so far.
Bench & run(char const *benchmarkName, Op &&op)
Repeatedly calls op() based on the configuration, and performs measurements.
Bench & batch(T b) noexcept
Sets the batch size.
std::vector< BigO > complexityBigO() const
Bench()
Creates a new benchmark for configuration and running of benchmarks.
Bench & operator=(Bench &&other) noexcept(ANKERL_NANOBENCH(NOEXCEPT_STRING_MOVE))
Bench(Bench &&other) noexcept
Bench(Bench const &other)
Bench & complexityN(T n) noexcept
static RangeMeasure mapRangeMeasure(RangeMeasure data, Op op)
BigO(std::string bigOName, RangeMeasure const &scaledRangeMeasure)
std::vector< std::pair< double, double > > RangeMeasure
BigO(char const *bigOName, RangeMeasure const &rangeMeasure, Op rangeToN)
static RangeMeasure collectRangeMeasure(std::vector< Result > const &results)
BigO(std::string bigOName, RangeMeasure const &rangeMeasure, Op rangeToN)
BigO(char const *bigOName, RangeMeasure const &scaledRangeMeasure)
Result(Config benchmarkConfig)
static Measure fromString(std::string const &str)
void add(Clock::duration totalElapsed, uint64_t iters, detail::PerformanceCounters const &pc)
Result(Result &&other) noexcept
ANKERL_NANOBENCH(NODISCARD) Config const &config() const noexcept
Result & operator=(Result const &other)
Result(Result const &other)
Result & operator=(Result &&other) noexcept(ANKERL_NANOBENCH(NOEXCEPT_STRING_MOVE))
An extremely fast random generator.
static constexpr uint64_t() min()
Rng(Rng const &)=delete
As a safety precaution, we don't allow copying.
void shuffle(Container &container) noexcept
Shuffles all entries in the given container.
Rng(Rng &&) noexcept=default
Rng & operator=(Rng const &)=delete
Same as Rng(Rng const&), we don't allow assignment.
static constexpr uint64_t() max()
double uniform01() noexcept
Provides a random uniform double value between 0 and 1.
uint64_t result_type
This RNG provides 64bit randomness.
void moveResultTo(std::vector< Result > &results) noexcept
void add(std::chrono::nanoseconds elapsed, PerformanceCounters const &pc) noexcept
IterationLogic(IterationLogic &&)=delete
IterationLogic & operator=(IterationLogic const &)=delete
ANKERL_NANOBENCH(NODISCARD) uint64_t numIters() const noexcept
IterationLogic(IterationLogic const &)=delete
IterationLogic(Bench const &bench)
IterationLogic & operator=(IterationLogic &&)=delete
#define T(expected, seed, data)
void doNotOptimizeAway(T &val)
PerformanceCounters & performanceCounters()
void doNotOptimizeAway(T const &val)
char const * json() noexcept
Template to generate JSON data.
char const * csv() noexcept
CSV data for the benchmark results.
char const * pyperf() noexcept
Output in pyperf compatible JSON format, which can be used for more analyzation.
char const * htmlBoxplot() noexcept
HTML output that uses plotly to generate an interactive boxplot chart. See the tutorial for an exampl...
void render(char const *mustacheTemplate, Bench const &bench, std::ostream &out)
Renders output from a mustache-like template and benchmark results.
std::conditional< std::chrono::high_resolution_clock::is_steady, std::chrono::high_resolution_clock, std::chrono::steady_clock >::type Clock
void render(std::string const &mustacheTemplate, std::vector< Result > const &results, std::ostream &out)
std::ostream & operator<<(std::ostream &os, BigO const &bigO)
std::ostream & operator<<(std::ostream &os, std::vector< ankerl::nanobench::BigO > const &bigOs)
void doNotOptimizeAway(Arg &&arg)
Makes sure none of the given arguments are optimized away by the compiler.
#define ANKERL_NANOBENCH_LOG(x)
#define ANKERL_NANOBENCH_NO_SANITIZE(...)
#define ANKERL_NANOBENCH(x)
bool operator==(const CNetAddr &a, const CNetAddr &b)
bool operator<(const CNetAddr &a, const CNetAddr &b)
Config & operator=(Config const &other)
Config(Config const &other)
Config & operator=(Config &&other) noexcept(ANKERL_NANOBENCH(NOEXCEPT_STRING_MOVE))
Config(Config &&other) noexcept
static SECP256K1_INLINE uint64_t rotl(const uint64_t x, int k)