Bitcoin Core 30.99.0
P2P Digital Currency
bench_ecmult.c
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2017 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6#include <stdio.h>
7#include <stdlib.h>
8
9#include "secp256k1.c"
10#include "../include/secp256k1.h"
11
12#include "util.h"
13#include "hash_impl.h"
14#include "field_impl.h"
15#include "group_impl.h"
16#include "scalar_impl.h"
17#include "ecmult_impl.h"
18#include "bench.h"
19
20#define POINTS 32768
21
22static void help(char **argv, int default_iters) {
23 printf("Benchmark EC multiplication algorithms\n");
24 printf("\n");
25 printf("The default number of iterations for each benchmark is %d. This can be\n", default_iters);
26 printf("customized using the SECP256K1_BENCH_ITERS environment variable.\n");
27 printf("\n");
28 printf("Usage: %s <help|pippenger_wnaf|strauss_wnaf|simple>\n", argv[0]);
29 printf("The output shows the number of multiplied and summed points right after the\n");
30 printf("function name. The letter 'g' indicates that one of the points is the generator.\n");
31 printf("The benchmarks are divided by the number of points.\n");
32 printf("\n");
33 printf("default (ecmult_multi): picks pippenger_wnaf or strauss_wnaf depending on the\n");
34 printf(" batch size\n");
35 printf("pippenger_wnaf: for all batch sizes\n");
36 printf("strauss_wnaf: for all batch sizes\n");
37 printf("simple: multiply and sum each point individually\n");
38}
39
40typedef struct {
41 /* Setup once in advance */
50
51 /* Changes per benchmark */
52 size_t count;
54
55 /* Changes per benchmark iteration, used to pick different scalars and pubkeys
56 * in each run. */
57 size_t offset1;
58 size_t offset2;
59
60 /* Benchmark output. */
64
65/* Hashes x into [0, POINTS) twice and store the result in offset1 and offset2. */
66static void hash_into_offset(bench_data* data, size_t x) {
67 data->offset1 = (x * 0x537b7f6f + 0x8f66a481) % POINTS;
68 data->offset2 = (x * 0x7f6f537b + 0x6a1a8f49) % POINTS;
69}
70
71/* Check correctness of the benchmark by computing
72 * sum(outputs) ?= (sum(scalars_gen) + sum(seckeys)*sum(scalars))*G */
73static void bench_ecmult_teardown_helper(bench_data* data, size_t* seckey_offset, size_t* scalar_offset, size_t* scalar_gen_offset, int iters) {
74 int i;
75 secp256k1_gej sum_output, tmp;
76 secp256k1_scalar sum_scalars;
77
78 secp256k1_gej_set_infinity(&sum_output);
79 secp256k1_scalar_set_int(&sum_scalars, 0);
80 for (i = 0; i < iters; ++i) {
81 secp256k1_gej_add_var(&sum_output, &sum_output, &data->output[i], NULL);
82 if (scalar_gen_offset != NULL) {
83 secp256k1_scalar_add(&sum_scalars, &sum_scalars, &data->scalars[(*scalar_gen_offset+i) % POINTS]);
84 }
85 if (seckey_offset != NULL) {
86 secp256k1_scalar s = data->seckeys[(*seckey_offset+i) % POINTS];
87 secp256k1_scalar_mul(&s, &s, &data->scalars[(*scalar_offset+i) % POINTS]);
88 secp256k1_scalar_add(&sum_scalars, &sum_scalars, &s);
89 }
90 }
91 secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &tmp, &sum_scalars);
92 CHECK(secp256k1_gej_eq_var(&tmp, &sum_output));
93}
94
95static void bench_ecmult_setup(void* arg) {
96 bench_data* data = (bench_data*)arg;
97 /* Re-randomize offset to ensure that we're using different scalars and
98 * group elements in each run. */
99 hash_into_offset(data, data->offset1);
100}
101
102static void bench_ecmult_gen(void* arg, int iters) {
103 bench_data* data = (bench_data*)arg;
104 int i;
105
106 for (i = 0; i < iters; ++i) {
107 secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &data->output[i], &data->scalars[(data->offset1+i) % POINTS]);
108 }
109}
110
111static void bench_ecmult_gen_teardown(void* arg, int iters) {
112 bench_data* data = (bench_data*)arg;
113 bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
114}
115
116static void bench_ecmult_const(void* arg, int iters) {
117 bench_data* data = (bench_data*)arg;
118 int i;
119
120 for (i = 0; i < iters; ++i) {
121 secp256k1_ecmult_const(&data->output[i], &data->pubkeys[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS]);
122 }
123}
124
125static void bench_ecmult_const_teardown(void* arg, int iters) {
126 bench_data* data = (bench_data*)arg;
127 bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
128}
129
130static void bench_ecmult_const_xonly(void* arg, int iters) {
131 bench_data* data = (bench_data*)arg;
132 int i;
133
134 for (i = 0; i < iters; ++i) {
135 const secp256k1_ge* pubkey = &data->pubkeys[(data->offset1+i) % POINTS];
136 const secp256k1_scalar* scalar = &data->scalars[(data->offset2+i) % POINTS];
137 int known_on_curve = 1;
138 secp256k1_ecmult_const_xonly(&data->output_xonly[i], &pubkey->x, NULL, scalar, known_on_curve);
139 }
140}
141
142static void bench_ecmult_const_xonly_teardown(void* arg, int iters) {
143 bench_data* data = (bench_data*)arg;
144 int i;
145
146 /* verify by comparing with x coordinate of regular ecmult result */
147 for (i = 0; i < iters; ++i) {
148 const secp256k1_gej* pubkey_gej = &data->pubkeys_gej[(data->offset1+i) % POINTS];
149 const secp256k1_scalar* scalar = &data->scalars[(data->offset2+i) % POINTS];
150 secp256k1_gej expected_gej;
151 secp256k1_ecmult(&expected_gej, pubkey_gej, scalar, NULL);
152 CHECK(secp256k1_gej_eq_x_var(&data->output_xonly[i], &expected_gej));
153 }
154}
155
156static void bench_ecmult_1p(void* arg, int iters) {
157 bench_data* data = (bench_data*)arg;
158 int i;
159
160 for (i = 0; i < iters; ++i) {
161 secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], NULL);
162 }
163}
164
165static void bench_ecmult_1p_teardown(void* arg, int iters) {
166 bench_data* data = (bench_data*)arg;
167 bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
168}
169
170static void bench_ecmult_0p_g(void* arg, int iters) {
171 bench_data* data = (bench_data*)arg;
172 int i;
173
174 for (i = 0; i < iters; ++i) {
175 secp256k1_ecmult(&data->output[i], NULL, &secp256k1_scalar_zero, &data->scalars[(data->offset1+i) % POINTS]);
176 }
177}
178
179static void bench_ecmult_0p_g_teardown(void* arg, int iters) {
180 bench_data* data = (bench_data*)arg;
181 bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
182}
183
184static void bench_ecmult_1p_g(void* arg, int iters) {
185 bench_data* data = (bench_data*)arg;
186 int i;
187
188 for (i = 0; i < iters/2; ++i) {
189 secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], &data->scalars[(data->offset1+i) % POINTS]);
190 }
191}
192
193static void bench_ecmult_1p_g_teardown(void* arg, int iters) {
194 bench_data* data = (bench_data*)arg;
195 bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, &data->offset1, iters/2);
196}
197
198static void run_ecmult_bench(bench_data* data, int iters) {
199 char str[32];
200 sprintf(str, "ecmult_gen");
202 sprintf(str, "ecmult_const");
204 sprintf(str, "ecmult_const_xonly");
206 /* ecmult with non generator point */
207 sprintf(str, "ecmult_1p");
209 /* ecmult with generator point */
210 sprintf(str, "ecmult_0p_g");
212 /* ecmult with generator and non-generator point. The reported time is per point. */
213 sprintf(str, "ecmult_1p_g");
215}
216
217static int bench_ecmult_multi_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
218 bench_data* data = (bench_data*)arg;
219 if (data->includes_g) ++idx;
220 if (idx == 0) {
221 *sc = data->scalars[data->offset1];
223 } else {
224 *sc = data->scalars[(data->offset1 + idx) % POINTS];
225 *ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
226 }
227 return 1;
228}
229
230static void bench_ecmult_multi(void* arg, int iters) {
231 bench_data* data = (bench_data*)arg;
232
233 int includes_g = data->includes_g;
234 int iter;
235 int count = data->count;
236 iters = iters / data->count;
237
238 for (iter = 0; iter < iters; ++iter) {
239 data->ecmult_multi(&data->ctx->error_callback, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_ecmult_multi_callback, arg, count - includes_g);
240 data->offset1 = (data->offset1 + count) % POINTS;
241 data->offset2 = (data->offset2 + count - 1) % POINTS;
242 }
243}
244
245static void bench_ecmult_multi_setup(void* arg) {
246 bench_data* data = (bench_data*)arg;
247 hash_into_offset(data, data->count);
248}
249
250static void bench_ecmult_multi_teardown(void* arg, int iters) {
251 bench_data* data = (bench_data*)arg;
252 int iter;
253 iters = iters / data->count;
254 /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
255 for (iter = 0; iter < iters; ++iter) {
256 secp256k1_gej tmp;
257 secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
259 }
260}
261
262static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
264 unsigned char c[10] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
265 unsigned char buf[32];
266 int overflow = 0;
267 c[6] = num;
268 c[7] = num >> 8;
269 c[8] = num >> 16;
270 c[9] = num >> 24;
272 secp256k1_sha256_write(&sha256, c, sizeof(c));
274 secp256k1_scalar_set_b32(scalar, buf, &overflow);
275 CHECK(!overflow);
276}
277
278static void run_ecmult_multi_bench(bench_data* data, size_t count, int includes_g, int num_iters) {
279 char str[32];
280 size_t iters = 1 + num_iters / count;
281 size_t iter;
282
283 data->count = count;
284 data->includes_g = includes_g;
285
286 /* Compute (the negation of) the expected results directly. */
287 hash_into_offset(data, data->count);
288 for (iter = 0; iter < iters; ++iter) {
290 secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
291 size_t i = 0;
292 for (i = 0; i + 1 < count; ++i) {
293 secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
294 secp256k1_scalar_add(&total, &total, &tmp);
295 }
296 secp256k1_scalar_negate(&total, &total);
297 secp256k1_ecmult(&data->expected_output[iter], NULL, &secp256k1_scalar_zero, &total);
298 }
299
300 /* Run the benchmark. */
301 if (includes_g) {
302 sprintf(str, "ecmult_multi_%ip_g", (int)count - 1);
303 } else {
304 sprintf(str, "ecmult_multi_%ip", (int)count);
305 }
307}
308
309int main(int argc, char **argv) {
311 int i, p;
312 size_t scratch_size;
313
314 int default_iters = 10000;
315 int iters = get_iters(default_iters);
316 if (iters == 0) {
317 help(argv, default_iters);
318 return EXIT_FAILURE;
319 }
320
321 data.ecmult_multi = secp256k1_ecmult_multi_var;
322
323 if (argc > 1) {
324 if(have_flag(argc, argv, "-h")
325 || have_flag(argc, argv, "--help")
326 || have_flag(argc, argv, "help")) {
327 help(argv, default_iters);
328 return EXIT_SUCCESS;
329 } else if(have_flag(argc, argv, "pippenger_wnaf")) {
330 printf("Using pippenger_wnaf:\n");
332 } else if(have_flag(argc, argv, "strauss_wnaf")) {
333 printf("Using strauss_wnaf:\n");
335 } else if(have_flag(argc, argv, "simple")) {
336 printf("Using simple algorithm:\n");
337 } else {
338 fprintf(stderr, "%s: unrecognized argument '%s'.\n\n", argv[0], argv[1]);
339 help(argv, default_iters);
340 return EXIT_FAILURE;
341 }
342 }
343
346 if (!have_flag(argc, argv, "simple")) {
347 data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size);
348 } else {
349 data.scratch = NULL;
350 }
351
352 /* Allocate stuff */
353 data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
354 data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
355 data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
356 data.pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
357 data.expected_output = malloc(sizeof(secp256k1_gej) * (iters + 1));
358 data.output = malloc(sizeof(secp256k1_gej) * (iters + 1));
359 data.output_xonly = malloc(sizeof(secp256k1_fe) * (iters + 1));
360
361 /* Generate a set of scalars, and private/public keypairs. */
363 secp256k1_scalar_set_int(&data.seckeys[0], 1);
364 for (i = 0; i < POINTS; ++i) {
365 generate_scalar(i, &data.scalars[i]);
366 if (i) {
367 secp256k1_gej_double_var(&data.pubkeys_gej[i], &data.pubkeys_gej[i - 1], NULL);
368 secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
369 }
370 }
371 secp256k1_ge_set_all_gej_var(data.pubkeys, data.pubkeys_gej, POINTS);
372
373
375 /* Initialize offset1 and offset2 */
377 run_ecmult_bench(&data, iters);
378
379 for (i = 1; i <= 8; ++i) {
380 run_ecmult_multi_bench(&data, i, 1, iters);
381 }
382
383 /* This is disabled with low count of iterations because the loop runs 77 times even with iters=1
384 * and the higher it goes the longer the computation takes(more points)
385 * So we don't run this benchmark with low iterations to prevent slow down */
386 if (iters > 2) {
387 for (p = 0; p <= 11; ++p) {
388 for (i = 9; i <= 16; ++i) {
389 run_ecmult_multi_bench(&data, i << p, 1, iters);
390 }
391 }
392 } else {
393 printf("Skipping some benchmarks due to SECP256K1_BENCH_ITERS <= 2\n");
394 }
395
396 if (data.scratch != NULL) {
398 }
400 free(data.scalars);
401 free(data.pubkeys);
402 free(data.pubkeys_gej);
403 free(data.seckeys);
404 free(data.output_xonly);
405 free(data.output);
406 free(data.expected_output);
407
408 return EXIT_SUCCESS;
409}
static void bench_ecmult_const(void *arg, int iters)
Definition: bench_ecmult.c:116
static void bench_ecmult_gen_teardown(void *arg, int iters)
Definition: bench_ecmult.c:111
static int bench_ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *ge, size_t idx, void *arg)
Definition: bench_ecmult.c:217
static void bench_ecmult_teardown_helper(bench_data *data, size_t *seckey_offset, size_t *scalar_offset, size_t *scalar_gen_offset, int iters)
Definition: bench_ecmult.c:73
int main(int argc, char **argv)
Definition: bench_ecmult.c:309
static void bench_ecmult_const_xonly(void *arg, int iters)
Definition: bench_ecmult.c:130
static void bench_ecmult_setup(void *arg)
Definition: bench_ecmult.c:95
static void bench_ecmult_gen(void *arg, int iters)
Definition: bench_ecmult.c:102
static void generate_scalar(uint32_t num, secp256k1_scalar *scalar)
Definition: bench_ecmult.c:262
static void bench_ecmult_const_teardown(void *arg, int iters)
Definition: bench_ecmult.c:125
static void bench_ecmult_multi_setup(void *arg)
Definition: bench_ecmult.c:245
static void bench_ecmult_1p_g_teardown(void *arg, int iters)
Definition: bench_ecmult.c:193
static void bench_ecmult_1p(void *arg, int iters)
Definition: bench_ecmult.c:156
static void bench_ecmult_const_xonly_teardown(void *arg, int iters)
Definition: bench_ecmult.c:142
static void bench_ecmult_1p_teardown(void *arg, int iters)
Definition: bench_ecmult.c:165
static void bench_ecmult_multi(void *arg, int iters)
Definition: bench_ecmult.c:230
static void hash_into_offset(bench_data *data, size_t x)
Definition: bench_ecmult.c:66
static void help(char **argv, int default_iters)
Definition: bench_ecmult.c:22
static void bench_ecmult_0p_g_teardown(void *arg, int iters)
Definition: bench_ecmult.c:179
static void run_ecmult_bench(bench_data *data, int iters)
Definition: bench_ecmult.c:198
static void bench_ecmult_1p_g(void *arg, int iters)
Definition: bench_ecmult.c:184
static void bench_ecmult_0p_g(void *arg, int iters)
Definition: bench_ecmult.c:170
static void bench_ecmult_multi_teardown(void *arg, int iters)
Definition: bench_ecmult.c:250
#define POINTS
Definition: bench_ecmult.c:20
static void run_ecmult_multi_bench(bench_data *data, size_t count, int includes_g, int num_iters)
Definition: bench_ecmult.c:278
return EXIT_SUCCESS
static void run_benchmark(char *name, void(*benchmark)(void *), void(*setup)(void *), void(*teardown)(void *), void *data, int count, int iter)
Definition: bench.c:26
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static int secp256k1_ecmult_const_xonly(secp256k1_fe *r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve)
Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point only,...
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q)
Multiply: R = q*A (in constant-time for q)
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
#define STRAUSS_SCRATCH_OBJECTS
Definition: ecmult_impl.h:50
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:422
static size_t secp256k1_strauss_scratch_size(size_t n_points)
Definition: ecmult_impl.h:377
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:734
int(* secp256k1_ecmult_multi_func)(const secp256k1_callback *error_callback, secp256k1_scratch *, secp256k1_gej *, const secp256k1_scalar *, secp256k1_ecmult_multi_callback cb, void *, size_t)
Definition: ecmult_impl.h:822
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b)
Check two group elements (jacobian) for equality in variable time.
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
Compare the X coordinate of a group element (jacobian).
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Set group elements r[0:len] (affine) equal to group elements a[0:len] (jacobian).
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:72
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
Internal SHA-256 implementation.
Definition: sha256.cpp:68
void printf(FormatStringCheck< sizeof...(Args)> fmt, const Args &... args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1096
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static const secp256k1_scalar secp256k1_scalar_zero
Definition: scalar_impl.h:28
static int get_iters(int default_iters)
Definition: bench.h:150
static void print_output_table_header_row(void)
Definition: bench.h:165
static int have_flag(int argc, char **argv, char *flag)
Definition: bench.h:112
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
#define ALIGNMENT
Definition: util.h:176
static void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scratch_space *scratch)
Definition: secp256k1.c:228
static secp256k1_scratch_space * secp256k1_scratch_space_create(const secp256k1_context *ctx, size_t max_size)
Definition: secp256k1.c:223
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:187
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:141
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:214
secp256k1_scalar * seckeys
Definition: bench_ecmult.c:47
secp256k1_gej * output
Definition: bench_ecmult.c:61
secp256k1_gej * pubkeys_gej
Definition: bench_ecmult.c:46
size_t offset2
Definition: bench_ecmult.c:58
secp256k1_ecmult_multi_func ecmult_multi
Definition: bench_ecmult.c:49
int includes_g
Definition: bench_ecmult.c:53
size_t offset1
Definition: bench_ecmult.c:57
secp256k1_scratch_space * scratch
Definition: bench_ecmult.c:43
secp256k1_ge * pubkeys
Definition: bench_ecmult.c:45
size_t count
Definition: bench_ecmult.c:52
secp256k1_fe * output_xonly
Definition: bench_ecmult.c:62
secp256k1_scalar * scalars
Definition: bench_ecmult.c:44
secp256k1_gej * expected_output
Definition: bench_ecmult.c:48
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe x
Definition: group.h:17
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
static int count