Bitcoin Core 28.99.0
P2P Digital Currency
bench_ecmult.c
Go to the documentation of this file.
1/***********************************************************************
2 * Copyright (c) 2017 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
6#include <stdio.h>
7
8#include "secp256k1.c"
9#include "../include/secp256k1.h"
10
11#include "util.h"
12#include "hash_impl.h"
13#include "field_impl.h"
14#include "group_impl.h"
15#include "scalar_impl.h"
16#include "ecmult_impl.h"
17#include "bench.h"
18
19#define POINTS 32768
20
21static void help(char **argv) {
22 printf("Benchmark EC multiplication algorithms\n");
23 printf("\n");
24 printf("Usage: %s <help|pippenger_wnaf|strauss_wnaf|simple>\n", argv[0]);
25 printf("The output shows the number of multiplied and summed points right after the\n");
26 printf("function name. The letter 'g' indicates that one of the points is the generator.\n");
27 printf("The benchmarks are divided by the number of points.\n");
28 printf("\n");
29 printf("default (ecmult_multi): picks pippenger_wnaf or strauss_wnaf depending on the\n");
30 printf(" batch size\n");
31 printf("pippenger_wnaf: for all batch sizes\n");
32 printf("strauss_wnaf: for all batch sizes\n");
33 printf("simple: multiply and sum each point individually\n");
34}
35
36typedef struct {
37 /* Setup once in advance */
46
47 /* Changes per benchmark */
48 size_t count;
50
51 /* Changes per benchmark iteration, used to pick different scalars and pubkeys
52 * in each run. */
53 size_t offset1;
54 size_t offset2;
55
56 /* Benchmark output. */
59
60/* Hashes x into [0, POINTS) twice and store the result in offset1 and offset2. */
61static void hash_into_offset(bench_data* data, size_t x) {
62 data->offset1 = (x * 0x537b7f6f + 0x8f66a481) % POINTS;
63 data->offset2 = (x * 0x7f6f537b + 0x6a1a8f49) % POINTS;
64}
65
66/* Check correctness of the benchmark by computing
67 * sum(outputs) ?= (sum(scalars_gen) + sum(seckeys)*sum(scalars))*G */
68static void bench_ecmult_teardown_helper(bench_data* data, size_t* seckey_offset, size_t* scalar_offset, size_t* scalar_gen_offset, int iters) {
69 int i;
70 secp256k1_gej sum_output, tmp;
71 secp256k1_scalar sum_scalars;
72
73 secp256k1_gej_set_infinity(&sum_output);
74 secp256k1_scalar_set_int(&sum_scalars, 0);
75 for (i = 0; i < iters; ++i) {
76 secp256k1_gej_add_var(&sum_output, &sum_output, &data->output[i], NULL);
77 if (scalar_gen_offset != NULL) {
78 secp256k1_scalar_add(&sum_scalars, &sum_scalars, &data->scalars[(*scalar_gen_offset+i) % POINTS]);
79 }
80 if (seckey_offset != NULL) {
81 secp256k1_scalar s = data->seckeys[(*seckey_offset+i) % POINTS];
82 secp256k1_scalar_mul(&s, &s, &data->scalars[(*scalar_offset+i) % POINTS]);
83 secp256k1_scalar_add(&sum_scalars, &sum_scalars, &s);
84 }
85 }
86 secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &tmp, &sum_scalars);
87 CHECK(secp256k1_gej_eq_var(&tmp, &sum_output));
88}
89
90static void bench_ecmult_setup(void* arg) {
91 bench_data* data = (bench_data*)arg;
92 /* Re-randomize offset to ensure that we're using different scalars and
93 * group elements in each run. */
94 hash_into_offset(data, data->offset1);
95}
96
97static void bench_ecmult_gen(void* arg, int iters) {
98 bench_data* data = (bench_data*)arg;
99 int i;
100
101 for (i = 0; i < iters; ++i) {
102 secp256k1_ecmult_gen(&data->ctx->ecmult_gen_ctx, &data->output[i], &data->scalars[(data->offset1+i) % POINTS]);
103 }
104}
105
106static void bench_ecmult_gen_teardown(void* arg, int iters) {
107 bench_data* data = (bench_data*)arg;
108 bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
109}
110
111static void bench_ecmult_const(void* arg, int iters) {
112 bench_data* data = (bench_data*)arg;
113 int i;
114
115 for (i = 0; i < iters; ++i) {
116 secp256k1_ecmult_const(&data->output[i], &data->pubkeys[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS]);
117 }
118}
119
120static void bench_ecmult_const_teardown(void* arg, int iters) {
121 bench_data* data = (bench_data*)arg;
122 bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
123}
124
125static void bench_ecmult_1p(void* arg, int iters) {
126 bench_data* data = (bench_data*)arg;
127 int i;
128
129 for (i = 0; i < iters; ++i) {
130 secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], NULL);
131 }
132}
133
134static void bench_ecmult_1p_teardown(void* arg, int iters) {
135 bench_data* data = (bench_data*)arg;
136 bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, NULL, iters);
137}
138
139static void bench_ecmult_0p_g(void* arg, int iters) {
140 bench_data* data = (bench_data*)arg;
141 int i;
142
143 for (i = 0; i < iters; ++i) {
144 secp256k1_ecmult(&data->output[i], NULL, &secp256k1_scalar_zero, &data->scalars[(data->offset1+i) % POINTS]);
145 }
146}
147
148static void bench_ecmult_0p_g_teardown(void* arg, int iters) {
149 bench_data* data = (bench_data*)arg;
150 bench_ecmult_teardown_helper(data, NULL, NULL, &data->offset1, iters);
151}
152
153static void bench_ecmult_1p_g(void* arg, int iters) {
154 bench_data* data = (bench_data*)arg;
155 int i;
156
157 for (i = 0; i < iters/2; ++i) {
158 secp256k1_ecmult(&data->output[i], &data->pubkeys_gej[(data->offset1+i) % POINTS], &data->scalars[(data->offset2+i) % POINTS], &data->scalars[(data->offset1+i) % POINTS]);
159 }
160}
161
162static void bench_ecmult_1p_g_teardown(void* arg, int iters) {
163 bench_data* data = (bench_data*)arg;
164 bench_ecmult_teardown_helper(data, &data->offset1, &data->offset2, &data->offset1, iters/2);
165}
166
167static void run_ecmult_bench(bench_data* data, int iters) {
168 char str[32];
169 sprintf(str, "ecmult_gen");
171 sprintf(str, "ecmult_const");
173 /* ecmult with non generator point */
174 sprintf(str, "ecmult_1p");
176 /* ecmult with generator point */
177 sprintf(str, "ecmult_0p_g");
179 /* ecmult with generator and non-generator point. The reported time is per point. */
180 sprintf(str, "ecmult_1p_g");
182}
183
184static int bench_ecmult_multi_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) {
185 bench_data* data = (bench_data*)arg;
186 if (data->includes_g) ++idx;
187 if (idx == 0) {
188 *sc = data->scalars[data->offset1];
190 } else {
191 *sc = data->scalars[(data->offset1 + idx) % POINTS];
192 *ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS];
193 }
194 return 1;
195}
196
197static void bench_ecmult_multi(void* arg, int iters) {
198 bench_data* data = (bench_data*)arg;
199
200 int includes_g = data->includes_g;
201 int iter;
202 int count = data->count;
203 iters = iters / data->count;
204
205 for (iter = 0; iter < iters; ++iter) {
206 data->ecmult_multi(&data->ctx->error_callback, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_ecmult_multi_callback, arg, count - includes_g);
207 data->offset1 = (data->offset1 + count) % POINTS;
208 data->offset2 = (data->offset2 + count - 1) % POINTS;
209 }
210}
211
212static void bench_ecmult_multi_setup(void* arg) {
213 bench_data* data = (bench_data*)arg;
214 hash_into_offset(data, data->count);
215}
216
217static void bench_ecmult_multi_teardown(void* arg, int iters) {
218 bench_data* data = (bench_data*)arg;
219 int iter;
220 iters = iters / data->count;
221 /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */
222 for (iter = 0; iter < iters; ++iter) {
223 secp256k1_gej tmp;
224 secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL);
226 }
227}
228
229static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) {
231 unsigned char c[10] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0};
232 unsigned char buf[32];
233 int overflow = 0;
234 c[6] = num;
235 c[7] = num >> 8;
236 c[8] = num >> 16;
237 c[9] = num >> 24;
239 secp256k1_sha256_write(&sha256, c, sizeof(c));
241 secp256k1_scalar_set_b32(scalar, buf, &overflow);
242 CHECK(!overflow);
243}
244
245static void run_ecmult_multi_bench(bench_data* data, size_t count, int includes_g, int num_iters) {
246 char str[32];
247 size_t iters = 1 + num_iters / count;
248 size_t iter;
249
250 data->count = count;
251 data->includes_g = includes_g;
252
253 /* Compute (the negation of) the expected results directly. */
254 hash_into_offset(data, data->count);
255 for (iter = 0; iter < iters; ++iter) {
257 secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS];
258 size_t i = 0;
259 for (i = 0; i + 1 < count; ++i) {
260 secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]);
261 secp256k1_scalar_add(&total, &total, &tmp);
262 }
263 secp256k1_scalar_negate(&total, &total);
264 secp256k1_ecmult(&data->expected_output[iter], NULL, &secp256k1_scalar_zero, &total);
265 }
266
267 /* Run the benchmark. */
268 if (includes_g) {
269 sprintf(str, "ecmult_multi_%ip_g", (int)count - 1);
270 } else {
271 sprintf(str, "ecmult_multi_%ip", (int)count);
272 }
274}
275
276int main(int argc, char **argv) {
278 int i, p;
279 size_t scratch_size;
280
281 int iters = get_iters(10000);
282
283 data.ecmult_multi = secp256k1_ecmult_multi_var;
284
285 if (argc > 1) {
286 if(have_flag(argc, argv, "-h")
287 || have_flag(argc, argv, "--help")
288 || have_flag(argc, argv, "help")) {
289 help(argv);
290 return 0;
291 } else if(have_flag(argc, argv, "pippenger_wnaf")) {
292 printf("Using pippenger_wnaf:\n");
294 } else if(have_flag(argc, argv, "strauss_wnaf")) {
295 printf("Using strauss_wnaf:\n");
297 } else if(have_flag(argc, argv, "simple")) {
298 printf("Using simple algorithm:\n");
299 } else {
300 fprintf(stderr, "%s: unrecognized argument '%s'.\n\n", argv[0], argv[1]);
301 help(argv);
302 return 1;
303 }
304 }
305
308 if (!have_flag(argc, argv, "simple")) {
309 data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size);
310 } else {
311 data.scratch = NULL;
312 }
313
314 /* Allocate stuff */
315 data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS);
316 data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS);
317 data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS);
318 data.pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS);
319 data.expected_output = malloc(sizeof(secp256k1_gej) * (iters + 1));
320 data.output = malloc(sizeof(secp256k1_gej) * (iters + 1));
321
322 /* Generate a set of scalars, and private/public keypairs. */
324 secp256k1_scalar_set_int(&data.seckeys[0], 1);
325 for (i = 0; i < POINTS; ++i) {
326 generate_scalar(i, &data.scalars[i]);
327 if (i) {
328 secp256k1_gej_double_var(&data.pubkeys_gej[i], &data.pubkeys_gej[i - 1], NULL);
329 secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
330 }
331 }
332 secp256k1_ge_set_all_gej_var(data.pubkeys, data.pubkeys_gej, POINTS);
333
334
336 /* Initialize offset1 and offset2 */
338 run_ecmult_bench(&data, iters);
339
340 for (i = 1; i <= 8; ++i) {
341 run_ecmult_multi_bench(&data, i, 1, iters);
342 }
343
344 /* This is disabled with low count of iterations because the loop runs 77 times even with iters=1
345 * and the higher it goes the longer the computation takes(more points)
346 * So we don't run this benchmark with low iterations to prevent slow down */
347 if (iters > 2) {
348 for (p = 0; p <= 11; ++p) {
349 for (i = 9; i <= 16; ++i) {
350 run_ecmult_multi_bench(&data, i << p, 1, iters);
351 }
352 }
353 }
354
355 if (data.scratch != NULL) {
357 }
359 free(data.scalars);
360 free(data.pubkeys);
361 free(data.pubkeys_gej);
362 free(data.seckeys);
363 free(data.output);
364 free(data.expected_output);
365
366 return(0);
367}
static void bench_ecmult_const(void *arg, int iters)
Definition: bench_ecmult.c:111
static void bench_ecmult_gen_teardown(void *arg, int iters)
Definition: bench_ecmult.c:106
static int bench_ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *ge, size_t idx, void *arg)
Definition: bench_ecmult.c:184
static void bench_ecmult_teardown_helper(bench_data *data, size_t *seckey_offset, size_t *scalar_offset, size_t *scalar_gen_offset, int iters)
Definition: bench_ecmult.c:68
int main(int argc, char **argv)
Definition: bench_ecmult.c:276
static void bench_ecmult_setup(void *arg)
Definition: bench_ecmult.c:90
static void bench_ecmult_gen(void *arg, int iters)
Definition: bench_ecmult.c:97
static void generate_scalar(uint32_t num, secp256k1_scalar *scalar)
Definition: bench_ecmult.c:229
static void bench_ecmult_const_teardown(void *arg, int iters)
Definition: bench_ecmult.c:120
static void bench_ecmult_multi_setup(void *arg)
Definition: bench_ecmult.c:212
static void bench_ecmult_1p_g_teardown(void *arg, int iters)
Definition: bench_ecmult.c:162
static void bench_ecmult_1p(void *arg, int iters)
Definition: bench_ecmult.c:125
static void bench_ecmult_1p_teardown(void *arg, int iters)
Definition: bench_ecmult.c:134
static void bench_ecmult_multi(void *arg, int iters)
Definition: bench_ecmult.c:197
static void hash_into_offset(bench_data *data, size_t x)
Definition: bench_ecmult.c:61
static void help(char **argv)
Definition: bench_ecmult.c:21
static void bench_ecmult_0p_g_teardown(void *arg, int iters)
Definition: bench_ecmult.c:148
static void run_ecmult_bench(bench_data *data, int iters)
Definition: bench_ecmult.c:167
static void bench_ecmult_1p_g(void *arg, int iters)
Definition: bench_ecmult.c:153
static void bench_ecmult_0p_g(void *arg, int iters)
Definition: bench_ecmult.c:139
static void bench_ecmult_multi_teardown(void *arg, int iters)
Definition: bench_ecmult.c:217
#define POINTS
Definition: bench_ecmult.c:19
static void run_ecmult_multi_bench(bench_data *data, size_t count, int includes_g, int num_iters)
Definition: bench_ecmult.c:245
static void run_benchmark(char *name, void(*benchmark)(void *), void(*setup)(void *), void(*teardown)(void *), void *data, int count, int iter)
Definition: bench.c:26
static int secp256k1_ecmult_multi_var(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q)
Multiply: R = q*A (in constant-time for q)
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
#define STRAUSS_SCRATCH_OBJECTS
Definition: ecmult_impl.h:50
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:406
static size_t secp256k1_strauss_scratch_size(size_t n_points)
Definition: ecmult_impl.h:361
static int secp256k1_ecmult_pippenger_batch_single(const secp256k1_callback *error_callback, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n)
Definition: ecmult_impl.h:718
int(* secp256k1_ecmult_multi_func)(const secp256k1_callback *error_callback, secp256k1_scratch *, secp256k1_gej *, const secp256k1_scalar *, secp256k1_ecmult_multi_callback cb, void *, size_t)
Definition: ecmult_impl.h:806
static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b)
Check two group elements (jacobian) for equality in variable time.
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr)
Set r equal to the double of a.
static void secp256k1_gej_set_infinity(secp256k1_gej *r)
Set a group element (jacobian) equal to the point at infinity.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr)
Set r equal to the sum of a and b.
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len)
Set a batch of group elements equal to the inputs given in jacobian coordinates.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
static const secp256k1_ge secp256k1_ge_const_g
Definition: group_impl.h:72
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
Internal SHA-256 implementation.
Definition: sha256.cpp:70
void printf(FormatStringCheck< sizeof...(Args)> fmt, const Args &... args)
Format list of arguments to std::cout, according to the given format string.
Definition: tinyformat.h:1089
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the complement of a scalar (modulo the group order).
static const secp256k1_scalar secp256k1_scalar_zero
Definition: scalar_impl.h:28
static int get_iters(int default_iters)
Definition: bench.h:170
static void print_output_table_header_row(void)
Definition: bench.h:179
static int have_flag(int argc, char **argv, char *flag)
Definition: bench.h:132
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash)
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32)
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size)
static void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scratch_space *scratch)
Definition: secp256k1.c:228
static secp256k1_scratch_space * secp256k1_scratch_space_create(const secp256k1_context *ctx, size_t max_size)
Definition: secp256k1.c:223
SECP256K1_API void secp256k1_context_destroy(secp256k1_context *ctx) SECP256K1_ARG_NONNULL(1)
Destroy a secp256k1 context object (created in dynamically allocated memory).
Definition: secp256k1.c:187
SECP256K1_API secp256k1_context * secp256k1_context_create(unsigned int flags) SECP256K1_WARN_UNUSED_RESULT
Create a secp256k1 context object (in dynamically allocated memory).
Definition: secp256k1.c:141
#define SECP256K1_CONTEXT_NONE
Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size,...
Definition: secp256k1.h:202
secp256k1_scalar * seckeys
Definition: bench_ecmult.c:43
secp256k1_gej * output
Definition: bench_ecmult.c:57
secp256k1_gej * pubkeys_gej
Definition: bench_ecmult.c:42
size_t offset2
Definition: bench_ecmult.c:54
secp256k1_ecmult_multi_func ecmult_multi
Definition: bench_ecmult.c:45
int includes_g
Definition: bench_ecmult.c:49
size_t offset1
Definition: bench_ecmult.c:53
secp256k1_scratch_space * scratch
Definition: bench_ecmult.c:39
secp256k1_ge * pubkeys
Definition: bench_ecmult.c:41
size_t count
Definition: bench_ecmult.c:48
secp256k1_scalar * scalars
Definition: bench_ecmult.c:40
secp256k1_gej * expected_output
Definition: bench_ecmult.c:44
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13
static int count