Bitcoin Core 28.99.0
P2P Digital Currency
coins_tests.cpp
Go to the documentation of this file.
1// Copyright (c) 2014-2022 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <addresstype.h>
6#include <clientversion.h>
7#include <coins.h>
8#include <streams.h>
10#include <test/util/random.h>
12#include <txdb.h>
13#include <uint256.h>
14#include <undo.h>
15#include <util/strencodings.h>
16
17#include <map>
18#include <string>
19#include <variant>
20#include <vector>
21
22#include <boost/test/unit_test.hpp>
23
24using namespace util::hex_literals;
25
26int ApplyTxInUndo(Coin&& undo, CCoinsViewCache& view, const COutPoint& out);
27void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight);
28
29namespace
30{
32bool operator==(const Coin &a, const Coin &b) {
33 // Empty Coin objects are always equal.
34 if (a.IsSpent() && b.IsSpent()) return true;
35 return a.fCoinBase == b.fCoinBase &&
36 a.nHeight == b.nHeight &&
37 a.out == b.out;
38}
39
40class CCoinsViewTest : public CCoinsView
41{
42 FastRandomContext& m_rng;
43 uint256 hashBestBlock_;
44 std::map<COutPoint, Coin> map_;
45
46public:
47 CCoinsViewTest(FastRandomContext& rng) : m_rng{rng} {}
48
49 std::optional<Coin> GetCoin(const COutPoint& outpoint) const override
50 {
51 if (auto it{map_.find(outpoint)}; it != map_.end()) {
52 if (!it->second.IsSpent() || m_rng.randbool()) {
53 return it->second; // TODO spent coins shouldn't be returned
54 }
55 }
56 return std::nullopt;
57 }
58
59 uint256 GetBestBlock() const override { return hashBestBlock_; }
60
61 bool BatchWrite(CoinsViewCacheCursor& cursor, const uint256& hashBlock) override
62 {
63 for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)){
64 if (it->second.IsDirty()) {
65 // Same optimization used in CCoinsViewDB is to only write dirty entries.
66 map_[it->first] = it->second.coin;
67 if (it->second.coin.IsSpent() && m_rng.randrange(3) == 0) {
68 // Randomly delete empty entries on write.
69 map_.erase(it->first);
70 }
71 }
72 }
73 if (!hashBlock.IsNull())
74 hashBestBlock_ = hashBlock;
75 return true;
76 }
77};
78
79class CCoinsViewCacheTest : public CCoinsViewCache
80{
81public:
82 explicit CCoinsViewCacheTest(CCoinsView* _base) : CCoinsViewCache(_base) {}
83
84 void SelfTest(bool sanity_check = true) const
85 {
86 // Manually recompute the dynamic usage of the whole data, and compare it.
87 size_t ret = memusage::DynamicUsage(cacheCoins);
88 size_t count = 0;
89 for (const auto& entry : cacheCoins) {
90 ret += entry.second.coin.DynamicMemoryUsage();
91 ++count;
92 }
95 if (sanity_check) {
97 }
98 }
99
100 CCoinsMap& map() const { return cacheCoins; }
101 CoinsCachePair& sentinel() const { return m_sentinel; }
102 size_t& usage() const { return cachedCoinsUsage; }
103};
104
105} // namespace
106
108
109static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;
110
112// This is a large randomized insert/remove simulation test on a variable-size
113// stack of caches on top of CCoinsViewTest.
114//
115// It will randomly create/update/delete Coin entries to a tip of caches, with
116// txids picked from a limited list of random 256-bit hashes. Occasionally, a
117// new tip is added to the stack of caches, or the tip is flushed and removed.
118//
119// During the process, booleans are kept to make sure that the randomized
120// operation hits all branches.
121//
122// If fake_best_block is true, assign a random uint256 to mock the recording
123// of best block on flush. This is necessary when using CCoinsViewDB as the base,
124// otherwise we'll hit an assertion in BatchWrite.
125//
126void SimulationTest(CCoinsView* base, bool fake_best_block)
127{
128 // Various coverage trackers.
129 bool removed_all_caches = false;
130 bool reached_4_caches = false;
131 bool added_an_entry = false;
132 bool added_an_unspendable_entry = false;
133 bool removed_an_entry = false;
134 bool updated_an_entry = false;
135 bool found_an_entry = false;
136 bool missed_an_entry = false;
137 bool uncached_an_entry = false;
138 bool flushed_without_erase = false;
139
140 // A simple map to track what we expect the cache stack to represent.
141 std::map<COutPoint, Coin> result;
142
143 // The cache stack.
144 std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
145 stack.push_back(std::make_unique<CCoinsViewCacheTest>(base)); // Start with one cache.
146
147 // Use a limited set of random transaction ids, so we do test overwriting entries.
148 std::vector<Txid> txids;
149 txids.resize(NUM_SIMULATION_ITERATIONS / 8);
150 for (unsigned int i = 0; i < txids.size(); i++) {
151 txids[i] = Txid::FromUint256(m_rng.rand256());
152 }
153
154 for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
155 // Do a random modification.
156 {
157 auto txid = txids[m_rng.randrange(txids.size())]; // txid we're going to modify in this iteration.
158 Coin& coin = result[COutPoint(txid, 0)];
159
160 // Determine whether to test HaveCoin before or after Access* (or both). As these functions
161 // can influence each other's behaviour by pulling things into the cache, all combinations
162 // are tested.
163 bool test_havecoin_before = m_rng.randbits(2) == 0;
164 bool test_havecoin_after = m_rng.randbits(2) == 0;
165
166 bool result_havecoin = test_havecoin_before ? stack.back()->HaveCoin(COutPoint(txid, 0)) : false;
167
168 // Infrequently, test usage of AccessByTxid instead of AccessCoin - the
169 // former just delegates to the latter and returns the first unspent in a txn.
170 const Coin& entry = (m_rng.randrange(500) == 0) ?
171 AccessByTxid(*stack.back(), txid) : stack.back()->AccessCoin(COutPoint(txid, 0));
172 BOOST_CHECK(coin == entry);
173
174 if (test_havecoin_before) {
175 BOOST_CHECK(result_havecoin == !entry.IsSpent());
176 }
177
178 if (test_havecoin_after) {
179 bool ret = stack.back()->HaveCoin(COutPoint(txid, 0));
180 BOOST_CHECK(ret == !entry.IsSpent());
181 }
182
183 if (m_rng.randrange(5) == 0 || coin.IsSpent()) {
184 Coin newcoin;
185 newcoin.out.nValue = RandMoney(m_rng);
186 newcoin.nHeight = 1;
187
188 // Infrequently test adding unspendable coins.
189 if (m_rng.randrange(16) == 0 && coin.IsSpent()) {
190 newcoin.out.scriptPubKey.assign(1 + m_rng.randbits(6), OP_RETURN);
192 added_an_unspendable_entry = true;
193 } else {
194 // Random sizes so we can test memory usage accounting
195 newcoin.out.scriptPubKey.assign(m_rng.randbits(6), 0);
196 (coin.IsSpent() ? added_an_entry : updated_an_entry) = true;
197 coin = newcoin;
198 }
199 bool is_overwrite = !coin.IsSpent() || m_rng.rand32() & 1;
200 stack.back()->AddCoin(COutPoint(txid, 0), std::move(newcoin), is_overwrite);
201 } else {
202 // Spend the coin.
203 removed_an_entry = true;
204 coin.Clear();
205 BOOST_CHECK(stack.back()->SpendCoin(COutPoint(txid, 0)));
206 }
207 }
208
209 // Once every 10 iterations, remove a random entry from the cache
210 if (m_rng.randrange(10) == 0) {
211 COutPoint out(txids[m_rng.rand32() % txids.size()], 0);
212 int cacheid = m_rng.rand32() % stack.size();
213 stack[cacheid]->Uncache(out);
214 uncached_an_entry |= !stack[cacheid]->HaveCoinInCache(out);
215 }
216
217 // Once every 1000 iterations and at the end, verify the full cache.
218 if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
219 for (const auto& entry : result) {
220 bool have = stack.back()->HaveCoin(entry.first);
221 const Coin& coin = stack.back()->AccessCoin(entry.first);
222 BOOST_CHECK(have == !coin.IsSpent());
223 BOOST_CHECK(coin == entry.second);
224 if (coin.IsSpent()) {
225 missed_an_entry = true;
226 } else {
227 BOOST_CHECK(stack.back()->HaveCoinInCache(entry.first));
228 found_an_entry = true;
229 }
230 }
231 for (const auto& test : stack) {
232 test->SelfTest();
233 }
234 }
235
236 if (m_rng.randrange(100) == 0) {
237 // Every 100 iterations, flush an intermediate cache
238 if (stack.size() > 1 && m_rng.randbool() == 0) {
239 unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
240 if (fake_best_block) stack[flushIndex]->SetBestBlock(m_rng.rand256());
241 bool should_erase = m_rng.randrange(4) < 3;
242 BOOST_CHECK(should_erase ? stack[flushIndex]->Flush() : stack[flushIndex]->Sync());
243 flushed_without_erase |= !should_erase;
244 }
245 }
246 if (m_rng.randrange(100) == 0) {
247 // Every 100 iterations, change the cache stack.
248 if (stack.size() > 0 && m_rng.randbool() == 0) {
249 //Remove the top cache
250 if (fake_best_block) stack.back()->SetBestBlock(m_rng.rand256());
251 bool should_erase = m_rng.randrange(4) < 3;
252 BOOST_CHECK(should_erase ? stack.back()->Flush() : stack.back()->Sync());
253 flushed_without_erase |= !should_erase;
254 stack.pop_back();
255 }
256 if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
257 //Add a new cache
258 CCoinsView* tip = base;
259 if (stack.size() > 0) {
260 tip = stack.back().get();
261 } else {
262 removed_all_caches = true;
263 }
264 stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
265 if (stack.size() == 4) {
266 reached_4_caches = true;
267 }
268 }
269 }
270 }
271
272 // Verify coverage.
273 BOOST_CHECK(removed_all_caches);
274 BOOST_CHECK(reached_4_caches);
275 BOOST_CHECK(added_an_entry);
276 BOOST_CHECK(added_an_unspendable_entry);
277 BOOST_CHECK(removed_an_entry);
278 BOOST_CHECK(updated_an_entry);
279 BOOST_CHECK(found_an_entry);
280 BOOST_CHECK(missed_an_entry);
281 BOOST_CHECK(uncached_an_entry);
282 BOOST_CHECK(flushed_without_erase);
283}
284}; // struct CacheTest
285
286// Run the above simulation for multiple base types.
287BOOST_FIXTURE_TEST_CASE(coins_cache_simulation_test, CacheTest)
288{
289 CCoinsViewTest base{m_rng};
290 SimulationTest(&base, false);
291
292 CCoinsViewDB db_base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
293 SimulationTest(&db_base, true);
294}
295
297// Store of all necessary tx and undo data for next test
298typedef std::map<COutPoint, std::tuple<CTransaction,CTxUndo,Coin>> UtxoData;
300
301UtxoData::iterator FindRandomFrom(const std::set<COutPoint> &utxoSet) {
302 assert(utxoSet.size());
303 auto utxoSetIt = utxoSet.lower_bound(COutPoint(Txid::FromUint256(m_rng.rand256()), 0));
304 if (utxoSetIt == utxoSet.end()) {
305 utxoSetIt = utxoSet.begin();
306 }
307 auto utxoDataIt = utxoData.find(*utxoSetIt);
308 assert(utxoDataIt != utxoData.end());
309 return utxoDataIt;
310}
311}; // struct UpdateTest
312
313
314// This test is similar to the previous test
315// except the emphasis is on testing the functionality of UpdateCoins
316// random txs are created and UpdateCoins is used to update the cache stack
317// In particular it is tested that spending a duplicate coinbase tx
318// has the expected effect (the other duplicate is overwritten at all cache levels)
319BOOST_FIXTURE_TEST_CASE(updatecoins_simulation_test, UpdateTest)
320{
321 SeedRandomForTest(SeedRand::ZEROS);
322
323 bool spent_a_duplicate_coinbase = false;
324 // A simple map to track what we expect the cache stack to represent.
325 std::map<COutPoint, Coin> result;
326
327 // The cache stack.
328 CCoinsViewTest base{m_rng}; // A CCoinsViewTest at the bottom.
329 std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
330 stack.push_back(std::make_unique<CCoinsViewCacheTest>(&base)); // Start with one cache.
331
332 // Track the txids we've used in various sets
333 std::set<COutPoint> coinbase_coins;
334 std::set<COutPoint> disconnected_coins;
335 std::set<COutPoint> duplicate_coins;
336 std::set<COutPoint> utxoset;
337
338 for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
339 uint32_t randiter = m_rng.rand32();
340
341 // 19/20 txs add a new transaction
342 if (randiter % 20 < 19) {
344 tx.vin.resize(1);
345 tx.vout.resize(1);
346 tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
347 tx.vout[0].scriptPubKey.assign(m_rng.rand32() & 0x3F, 0); // Random sizes so we can test memory usage accounting
348 const int height{int(m_rng.rand32() >> 1)};
349 Coin old_coin;
350
351 // 2/20 times create a new coinbase
352 if (randiter % 20 < 2 || coinbase_coins.size() < 10) {
353 // 1/10 of those times create a duplicate coinbase
354 if (m_rng.randrange(10) == 0 && coinbase_coins.size()) {
355 auto utxod = FindRandomFrom(coinbase_coins);
356 // Reuse the exact same coinbase
357 tx = CMutableTransaction{std::get<0>(utxod->second)};
358 // shouldn't be available for reconnection if it's been duplicated
359 disconnected_coins.erase(utxod->first);
360
361 duplicate_coins.insert(utxod->first);
362 }
363 else {
364 coinbase_coins.insert(COutPoint(tx.GetHash(), 0));
365 }
366 assert(CTransaction(tx).IsCoinBase());
367 }
368
369 // 17/20 times reconnect previous or add a regular tx
370 else {
371
372 COutPoint prevout;
373 // 1/20 times reconnect a previously disconnected tx
374 if (randiter % 20 == 2 && disconnected_coins.size()) {
375 auto utxod = FindRandomFrom(disconnected_coins);
376 tx = CMutableTransaction{std::get<0>(utxod->second)};
377 prevout = tx.vin[0].prevout;
378 if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevout)) {
379 disconnected_coins.erase(utxod->first);
380 continue;
381 }
382
383 // If this tx is already IN the UTXO, then it must be a coinbase, and it must be a duplicate
384 if (utxoset.count(utxod->first)) {
385 assert(CTransaction(tx).IsCoinBase());
386 assert(duplicate_coins.count(utxod->first));
387 }
388 disconnected_coins.erase(utxod->first);
389 }
390
391 // 16/20 times create a regular tx
392 else {
393 auto utxod = FindRandomFrom(utxoset);
394 prevout = utxod->first;
395
396 // Construct the tx to spend the coins of prevouthash
397 tx.vin[0].prevout = prevout;
398 assert(!CTransaction(tx).IsCoinBase());
399 }
400 // In this simple test coins only have two states, spent or unspent, save the unspent state to restore
401 old_coin = result[prevout];
402 // Update the expected result of prevouthash to know these coins are spent
403 result[prevout].Clear();
404
405 utxoset.erase(prevout);
406
407 // The test is designed to ensure spending a duplicate coinbase will work properly
408 // if that ever happens and not resurrect the previously overwritten coinbase
409 if (duplicate_coins.count(prevout)) {
410 spent_a_duplicate_coinbase = true;
411 }
412
413 }
414 // Update the expected result to know about the new output coins
415 assert(tx.vout.size() == 1);
416 const COutPoint outpoint(tx.GetHash(), 0);
417 result[outpoint] = Coin{tx.vout[0], height, CTransaction{tx}.IsCoinBase()};
418
419 // Call UpdateCoins on the top cache
420 CTxUndo undo;
421 UpdateCoins(CTransaction{tx}, *(stack.back()), undo, height);
422
423 // Update the utxo set for future spends
424 utxoset.insert(outpoint);
425
426 // Track this tx and undo info to use later
427 utxoData.emplace(outpoint, std::make_tuple(tx,undo,old_coin));
428 } else if (utxoset.size()) {
429 //1/20 times undo a previous transaction
430 auto utxod = FindRandomFrom(utxoset);
431
432 CTransaction &tx = std::get<0>(utxod->second);
433 CTxUndo &undo = std::get<1>(utxod->second);
434 Coin &orig_coin = std::get<2>(utxod->second);
435
436 // Update the expected result
437 // Remove new outputs
438 result[utxod->first].Clear();
439 // If not coinbase restore prevout
440 if (!tx.IsCoinBase()) {
441 result[tx.vin[0].prevout] = orig_coin;
442 }
443
444 // Disconnect the tx from the current UTXO
445 // See code in DisconnectBlock
446 // remove outputs
447 BOOST_CHECK(stack.back()->SpendCoin(utxod->first));
448 // restore inputs
449 if (!tx.IsCoinBase()) {
450 const COutPoint &out = tx.vin[0].prevout;
451 Coin coin = undo.vprevout[0];
452 ApplyTxInUndo(std::move(coin), *(stack.back()), out);
453 }
454 // Store as a candidate for reconnection
455 disconnected_coins.insert(utxod->first);
456
457 // Update the utxoset
458 utxoset.erase(utxod->first);
459 if (!tx.IsCoinBase())
460 utxoset.insert(tx.vin[0].prevout);
461 }
462
463 // Once every 1000 iterations and at the end, verify the full cache.
464 if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
465 for (const auto& entry : result) {
466 bool have = stack.back()->HaveCoin(entry.first);
467 const Coin& coin = stack.back()->AccessCoin(entry.first);
468 BOOST_CHECK(have == !coin.IsSpent());
469 BOOST_CHECK(coin == entry.second);
470 }
471 }
472
473 // One every 10 iterations, remove a random entry from the cache
474 if (utxoset.size() > 1 && m_rng.randrange(30) == 0) {
475 stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(utxoset)->first);
476 }
477 if (disconnected_coins.size() > 1 && m_rng.randrange(30) == 0) {
478 stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(disconnected_coins)->first);
479 }
480 if (duplicate_coins.size() > 1 && m_rng.randrange(30) == 0) {
481 stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(duplicate_coins)->first);
482 }
483
484 if (m_rng.randrange(100) == 0) {
485 // Every 100 iterations, flush an intermediate cache
486 if (stack.size() > 1 && m_rng.randbool() == 0) {
487 unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
488 BOOST_CHECK(stack[flushIndex]->Flush());
489 }
490 }
491 if (m_rng.randrange(100) == 0) {
492 // Every 100 iterations, change the cache stack.
493 if (stack.size() > 0 && m_rng.randbool() == 0) {
494 BOOST_CHECK(stack.back()->Flush());
495 stack.pop_back();
496 }
497 if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
498 CCoinsView* tip = &base;
499 if (stack.size() > 0) {
500 tip = stack.back().get();
501 }
502 stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
503 }
504 }
505 }
506
507 // Verify coverage.
508 BOOST_CHECK(spent_a_duplicate_coinbase);
509}
510
511BOOST_AUTO_TEST_CASE(ccoins_serialization)
512{
513 // Good example
514 DataStream ss1{"97f23c835800816115944e077fe7c803cfa57f29b36bf87c1d35"_hex};
515 Coin cc1;
516 ss1 >> cc1;
517 BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
518 BOOST_CHECK_EQUAL(cc1.nHeight, 203998U);
519 BOOST_CHECK_EQUAL(cc1.out.nValue, CAmount{60000000000});
520 BOOST_CHECK_EQUAL(HexStr(cc1.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("816115944e077fe7c803cfa57f29b36bf87c1d35"_hex_u8)))));
521
522 // Good example
523 DataStream ss2{"8ddf77bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex};
524 Coin cc2;
525 ss2 >> cc2;
526 BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
527 BOOST_CHECK_EQUAL(cc2.nHeight, 120891U);
528 BOOST_CHECK_EQUAL(cc2.out.nValue, 110397);
529 BOOST_CHECK_EQUAL(HexStr(cc2.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex_u8)))));
530
531 // Smallest possible example
532 DataStream ss3{"000006"_hex};
533 Coin cc3;
534 ss3 >> cc3;
535 BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
536 BOOST_CHECK_EQUAL(cc3.nHeight, 0U);
539
540 // scriptPubKey that ends beyond the end of the stream
541 DataStream ss4{"000007"_hex};
542 try {
543 Coin cc4;
544 ss4 >> cc4;
545 BOOST_CHECK_MESSAGE(false, "We should have thrown");
546 } catch (const std::ios_base::failure&) {
547 }
548
549 // Very large scriptPubKey (3*10^9 bytes) past the end of the stream
550 DataStream tmp{};
551 uint64_t x = 3000000000ULL;
552 tmp << VARINT(x);
553 BOOST_CHECK_EQUAL(HexStr(tmp), "8a95c0bb00");
554 DataStream ss5{"00008a95c0bb00"_hex};
555 try {
556 Coin cc5;
557 ss5 >> cc5;
558 BOOST_CHECK_MESSAGE(false, "We should have thrown");
559 } catch (const std::ios_base::failure&) {
560 }
561}
562
563const static COutPoint OUTPOINT;
564constexpr CAmount SPENT {-1};
565constexpr CAmount ABSENT{-2};
566constexpr CAmount VALUE1{100};
567constexpr CAmount VALUE2{200};
568constexpr CAmount VALUE3{300};
569
570struct CoinEntry {
571 enum class State { CLEAN, DIRTY, FRESH, DIRTY_FRESH };
572
575
576 constexpr CoinEntry(const CAmount v, const State s) : value{v}, state{s} {}
577
578 bool operator==(const CoinEntry& o) const = default;
579 friend std::ostream& operator<<(std::ostream& os, const CoinEntry& e) { return os << e.value << ", " << e.state; }
580
581 constexpr bool IsDirtyFresh() const { return state == State::DIRTY_FRESH; }
582 constexpr bool IsDirty() const { return state == State::DIRTY || IsDirtyFresh(); }
583 constexpr bool IsFresh() const { return state == State::FRESH || IsDirtyFresh(); }
584
585 static constexpr State ToState(const bool is_dirty, const bool is_fresh) {
586 if (is_dirty && is_fresh) return State::DIRTY_FRESH;
587 if (is_dirty) return State::DIRTY;
588 if (is_fresh) return State::FRESH;
589 return State::CLEAN;
590 }
591};
592
593using MaybeCoin = std::optional<CoinEntry>;
594using CoinOrError = std::variant<MaybeCoin, std::string>;
595
596constexpr MaybeCoin MISSING {std::nullopt};
611
612constexpr auto EX_OVERWRITE_UNSPENT{"Attempted to overwrite an unspent coin (when possible_overwrite is false)"};
613constexpr auto EX_FRESH_MISAPPLIED {"FRESH flag misapplied to coin that exists in parent cache"};
614
615static void SetCoinsValue(const CAmount value, Coin& coin)
616{
617 assert(value != ABSENT);
618 coin.Clear();
619 assert(coin.IsSpent());
620 if (value != SPENT) {
621 coin.out.nValue = value;
622 coin.nHeight = 1;
623 assert(!coin.IsSpent());
624 }
625}
626
627static size_t InsertCoinsMapEntry(CCoinsMap& map, CoinsCachePair& sentinel, const CoinEntry& cache_coin)
628{
629 CCoinsCacheEntry entry;
630 SetCoinsValue(cache_coin.value, entry.coin);
631 auto [iter, inserted] = map.emplace(OUTPOINT, std::move(entry));
632 assert(inserted);
633 if (cache_coin.IsDirty()) CCoinsCacheEntry::SetDirty(*iter, sentinel);
634 if (cache_coin.IsFresh()) CCoinsCacheEntry::SetFresh(*iter, sentinel);
635 return iter->second.coin.DynamicMemoryUsage();
636}
637
638static MaybeCoin GetCoinsMapEntry(const CCoinsMap& map, const COutPoint& outp = OUTPOINT)
639{
640 if (auto it{map.find(outp)}; it != map.end()) {
641 return CoinEntry{
642 it->second.coin.IsSpent() ? SPENT : it->second.coin.out.nValue,
643 CoinEntry::ToState(it->second.IsDirty(), it->second.IsFresh())};
644 }
645 return MISSING;
646}
647
648static void WriteCoinsViewEntry(CCoinsView& view, const MaybeCoin& cache_coin)
649{
650 CoinsCachePair sentinel{};
651 sentinel.second.SelfRef(sentinel);
653 CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
654 auto usage{cache_coin ? InsertCoinsMapEntry(map, sentinel, *cache_coin) : 0};
655 auto cursor{CoinsViewCacheCursor(usage, sentinel, map, /*will_erase=*/true)};
656 BOOST_CHECK(view.BatchWrite(cursor, {}));
657}
658
660{
661public:
662 SingleEntryCacheTest(const CAmount base_value, const MaybeCoin& cache_coin)
663 {
664 auto base_cache_coin{base_value == ABSENT ? MISSING : CoinEntry{base_value, CoinEntry::State::DIRTY}};
665 WriteCoinsViewEntry(base, base_cache_coin);
666 if (cache_coin) cache.usage() += InsertCoinsMapEntry(cache.map(), cache.sentinel(), *cache_coin);
667 }
668
670 CCoinsViewCacheTest base{&root};
671 CCoinsViewCacheTest cache{&base};
672};
673
674static void CheckAccessCoin(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
675{
676 SingleEntryCacheTest test{base_value, cache_coin};
677 auto& coin = test.cache.AccessCoin(OUTPOINT);
678 BOOST_CHECK_EQUAL(coin.IsSpent(), !test.cache.GetCoin(OUTPOINT));
679 test.cache.SelfTest(/*sanity_check=*/false);
680 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
681}
682
684{
685 /* Check AccessCoin behavior, requesting a coin from a cache view layered on
686 * top of a base view, and checking the resulting entry in the cache after
687 * the access.
688 * Base Cache Expected
689 */
690 for (auto base_value : {ABSENT, SPENT, VALUE1}) {
691 CheckAccessCoin(base_value, MISSING, base_value == VALUE1 ? VALUE1_CLEAN : MISSING);
692
697
702 }
703}
704
705static void CheckSpendCoins(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
706{
707 SingleEntryCacheTest test{base_value, cache_coin};
708 test.cache.SpendCoin(OUTPOINT);
709 test.cache.SelfTest();
710 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
711}
712
714{
715 /* Check SpendCoin behavior, requesting a coin from a cache view layered on
716 * top of a base view, spending, and then checking
717 * the resulting entry in the cache after the modification.
718 * Base Cache Expected
719 */
720 for (auto base_value : {ABSENT, SPENT, VALUE1}) {
721 CheckSpendCoins(base_value, MISSING, base_value == VALUE1 ? SPENT_DIRTY : MISSING);
722
724 CheckSpendCoins(base_value, SPENT_FRESH, MISSING );
727
729 CheckSpendCoins(base_value, VALUE2_FRESH, MISSING );
732 }
733}
734
735static void CheckAddCoin(const CAmount base_value, const MaybeCoin& cache_coin, const CAmount modify_value, const CoinOrError& expected, const bool coinbase)
736{
737 SingleEntryCacheTest test{base_value, cache_coin};
738 bool possible_overwrite{coinbase};
739 auto add_coin{[&] { test.cache.AddCoin(OUTPOINT, Coin{CTxOut{modify_value, CScript{}}, 1, coinbase}, possible_overwrite); }};
740 if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
741 add_coin();
742 test.cache.SelfTest();
743 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
744 } else {
745 BOOST_CHECK_EXCEPTION(add_coin(), std::logic_error, HasReason(std::get<std::string>(expected)));
746 }
747}
748
750{
751 /* Check AddCoin behavior, requesting a new coin from a cache view,
752 * writing a modification to the coin, and then checking the resulting
753 * entry in the cache after the modification. Verify behavior with the
754 * AddCoin coinbase argument set to false, and to true.
755 * Base Cache Write Expected Coinbase
756 */
757 for (auto base_value : {ABSENT, SPENT, VALUE1}) {
758 CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY_FRESH, false);
759 CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY, true );
760
762 CheckAddCoin(base_value, SPENT_CLEAN, VALUE3, VALUE3_DIRTY, true );
765 CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, false);
766 CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, true );
769
771 CheckAddCoin(base_value, VALUE2_CLEAN, VALUE3, VALUE3_DIRTY, true );
775 CheckAddCoin(base_value, VALUE2_DIRTY, VALUE3, VALUE3_DIRTY, true );
778 }
779}
780
781static void CheckWriteCoins(const MaybeCoin& parent, const MaybeCoin& child, const CoinOrError& expected)
782{
783 SingleEntryCacheTest test{ABSENT, parent};
784 auto write_coins{[&] { WriteCoinsViewEntry(test.cache, child); }};
785 if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
786 write_coins();
787 test.cache.SelfTest(/*sanity_check=*/false);
788 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
789 } else {
790 BOOST_CHECK_EXCEPTION(write_coins(), std::logic_error, HasReason(std::get<std::string>(expected)));
791 }
792}
793
795{
796 /* Check BatchWrite behavior, flushing one entry from a child cache to a
797 * parent cache, and checking the resulting entry in the parent cache
798 * after the write.
799 * Parent Child Expected
800 */
810
819
828
841
850
851 // The checks above omit cases where the child state is not DIRTY, since
852 // they would be too repetitive (the parent cache is never updated in these
853 // cases). The loop below covers these cases and makes sure the parent cache
854 // is always left unchanged.
855 for (const MaybeCoin& parent : {MISSING,
858 for (const MaybeCoin& child : {MISSING,
861 auto expected{CoinOrError{parent}}; // TODO test failure cases as well
862 CheckWriteCoins(parent, child, expected);
863 }
864 }
865}
866
869{
870 Coin coin;
871 coin.out.nValue = m_rng.rand32();
872 coin.nHeight = m_rng.randrange(4096);
873 coin.fCoinBase = 0;
874 return coin;
875}
876
877
889 CCoinsViewCacheTest* view,
890 CCoinsViewDB& base,
891 std::vector<std::unique_ptr<CCoinsViewCacheTest>>& all_caches,
892 bool do_erasing_flush)
893{
894 size_t cache_usage;
895 size_t cache_size;
896
897 auto flush_all = [this, &all_caches](bool erase) {
898 // Flush in reverse order to ensure that flushes happen from children up.
899 for (auto i = all_caches.rbegin(); i != all_caches.rend(); ++i) {
900 auto& cache = *i;
901 cache->SanityCheck();
902 // hashBlock must be filled before flushing to disk; value is
903 // unimportant here. This is normally done during connect/disconnect block.
904 cache->SetBestBlock(m_rng.rand256());
905 erase ? cache->Flush() : cache->Sync();
906 }
907 };
908
910 COutPoint outp = COutPoint(txid, 0);
911 Coin coin = MakeCoin();
912 // Ensure the coins views haven't seen this coin before.
913 BOOST_CHECK(!base.HaveCoin(outp));
914 BOOST_CHECK(!view->HaveCoin(outp));
915
916 // --- 1. Adding a random coin to the child cache
917 //
918 view->AddCoin(outp, Coin(coin), false);
919
920 cache_usage = view->DynamicMemoryUsage();
921 cache_size = view->map().size();
922
923 // `base` shouldn't have coin (no flush yet) but `view` should have cached it.
924 BOOST_CHECK(!base.HaveCoin(outp));
925 BOOST_CHECK(view->HaveCoin(outp));
926
927 BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::DIRTY_FRESH));
928
929 // --- 2. Flushing all caches (without erasing)
930 //
931 flush_all(/*erase=*/ false);
932
933 // CoinsMap usage should be unchanged since we didn't erase anything.
934 BOOST_CHECK_EQUAL(cache_usage, view->DynamicMemoryUsage());
935 BOOST_CHECK_EQUAL(cache_size, view->map().size());
936
937 // --- 3. Ensuring the entry still exists in the cache and has been written to parent
938 //
939 BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN)); // State should have been wiped.
940
941 // Both views should now have the coin.
942 BOOST_CHECK(base.HaveCoin(outp));
943 BOOST_CHECK(view->HaveCoin(outp));
944
945 if (do_erasing_flush) {
946 // --- 4. Flushing the caches again (with erasing)
947 //
948 flush_all(/*erase=*/ true);
949
950 // Memory does not necessarily go down due to the map using a memory pool
951 BOOST_TEST(view->DynamicMemoryUsage() <= cache_usage);
952 // Size of the cache must go down though
953 BOOST_TEST(view->map().size() < cache_size);
954
955 // --- 5. Ensuring the entry is no longer in the cache
956 //
957 BOOST_CHECK(!GetCoinsMapEntry(view->map(), outp));
958 view->AccessCoin(outp);
959 BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN));
960 }
961
962 // Can't overwrite an entry without specifying that an overwrite is
963 // expected.
965 view->AddCoin(outp, Coin(coin), /*possible_overwrite=*/ false),
966 std::logic_error);
967
968 // --- 6. Spend the coin.
969 //
970 BOOST_CHECK(view->SpendCoin(outp));
971
972 // The coin should be in the cache, but spent and marked dirty.
974 BOOST_CHECK(!view->HaveCoin(outp)); // Coin should be considered spent in `view`.
975 BOOST_CHECK(base.HaveCoin(outp)); // But coin should still be unspent in `base`.
976
977 flush_all(/*erase=*/ false);
978
979 // Coin should be considered spent in both views.
980 BOOST_CHECK(!view->HaveCoin(outp));
981 BOOST_CHECK(!base.HaveCoin(outp));
982
983 // Spent coin should not be spendable.
984 BOOST_CHECK(!view->SpendCoin(outp));
985
986 // --- Bonus check: ensure that a coin added to the base view via one cache
987 // can be spent by another cache which has never seen it.
988 //
990 outp = COutPoint(txid, 0);
991 coin = MakeCoin();
992 BOOST_CHECK(!base.HaveCoin(outp));
993 BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
994 BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
995
996 all_caches[0]->AddCoin(outp, std::move(coin), false);
997 all_caches[0]->Sync();
998 BOOST_CHECK(base.HaveCoin(outp));
999 BOOST_CHECK(all_caches[0]->HaveCoin(outp));
1000 BOOST_CHECK(!all_caches[1]->HaveCoinInCache(outp));
1001
1002 BOOST_CHECK(all_caches[1]->SpendCoin(outp));
1003 flush_all(/*erase=*/ false);
1004 BOOST_CHECK(!base.HaveCoin(outp));
1005 BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
1006 BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
1007
1008 flush_all(/*erase=*/ true); // Erase all cache content.
1009
1010 // --- Bonus check 2: ensure that a FRESH, spent coin is deleted by Sync()
1011 //
1013 outp = COutPoint(txid, 0);
1014 coin = MakeCoin();
1015 CAmount coin_val = coin.out.nValue;
1016 BOOST_CHECK(!base.HaveCoin(outp));
1017 BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
1018 BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
1019
1020 // Add and spend from same cache without flushing.
1021 all_caches[0]->AddCoin(outp, std::move(coin), false);
1022
1023 // Coin should be FRESH in the cache.
1024 BOOST_CHECK_EQUAL(GetCoinsMapEntry(all_caches[0]->map(), outp), CoinEntry(coin_val, CoinEntry::State::DIRTY_FRESH));
1025 // Base shouldn't have seen coin.
1026 BOOST_CHECK(!base.HaveCoin(outp));
1027
1028 BOOST_CHECK(all_caches[0]->SpendCoin(outp));
1029 all_caches[0]->Sync();
1030
1031 // Ensure there is no sign of the coin after spend/flush.
1032 BOOST_CHECK(!GetCoinsMapEntry(all_caches[0]->map(), outp));
1033 BOOST_CHECK(!all_caches[0]->HaveCoinInCache(outp));
1034 BOOST_CHECK(!base.HaveCoin(outp));
1035}
1036}; // struct FlushTest
1037
1038BOOST_FIXTURE_TEST_CASE(ccoins_flush_behavior, FlushTest)
1039{
1040 // Create two in-memory caches atop a leveldb view.
1041 CCoinsViewDB base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
1042 std::vector<std::unique_ptr<CCoinsViewCacheTest>> caches;
1043 caches.push_back(std::make_unique<CCoinsViewCacheTest>(&base));
1044 caches.push_back(std::make_unique<CCoinsViewCacheTest>(caches.back().get()));
1045
1046 for (const auto& view : caches) {
1047 TestFlushBehavior(view.get(), base, caches, /*do_erasing_flush=*/false);
1048 TestFlushBehavior(view.get(), base, caches, /*do_erasing_flush=*/true);
1049 }
1050}
1051
1052BOOST_AUTO_TEST_CASE(coins_resource_is_used)
1053{
1054 CCoinsMapMemoryResource resource;
1056
1057 {
1058 CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
1059 BOOST_TEST(memusage::DynamicUsage(map) >= resource.ChunkSizeBytes());
1060
1061 map.reserve(1000);
1062
1063 // The resource has preallocated a chunk, so we should have space for at several nodes without the need to allocate anything else.
1064 const auto usage_before = memusage::DynamicUsage(map);
1065
1066 COutPoint out_point{};
1067 for (size_t i = 0; i < 1000; ++i) {
1068 out_point.n = i;
1069 map[out_point];
1070 }
1071 BOOST_TEST(usage_before == memusage::DynamicUsage(map));
1072 }
1073
1075}
1076
CScript GetScriptForDestination(const CTxDestination &dest)
Generate a Bitcoin scriptPubKey for the given CTxDestination.
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
CCoinsView that adds a memory cache for transactions to another CCoinsView.
Definition: coins.h:363
unsigned int GetCacheSize() const
Calculate the size of the cache (in number of transaction outputs)
Definition: coins.cpp:289
size_t cachedCoinsUsage
Definition: coins.h:379
CoinsCachePair m_sentinel
Definition: coins.h:375
size_t DynamicMemoryUsage() const
Calculate the size of the cache (in bytes)
Definition: coins.cpp:44
void SanityCheck() const
Run an internal sanity check on the cache data structure. *‍/.
Definition: coins.cpp:315
CCoinsMap cacheCoins
Definition: coins.h:376
CCoinsView backed by the coin database (chainstate/)
Definition: txdb.h:52
bool HaveCoin(const COutPoint &outpoint) const override
Just check whether a given outpoint is unspent.
Definition: txdb.cpp:74
Abstract view on the open txout dataset.
Definition: coins.h:310
virtual std::optional< Coin > GetCoin(const COutPoint &outpoint) const
Retrieve the Coin (unspent transaction output) for a given outpoint.
Definition: coins.cpp:16
virtual bool BatchWrite(CoinsViewCacheCursor &cursor, const uint256 &hashBlock)
Do a bulk modification (multiple Coin changes + BestBlock change).
Definition: coins.cpp:19
virtual uint256 GetBestBlock() const
Retrieve the block hash whose state this CCoinsView currently represents.
Definition: coins.cpp:17
An outpoint - a combination of a transaction hash and an index n into its vout.
Definition: transaction.h:29
uint32_t n
Definition: transaction.h:32
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:415
bool IsUnspendable() const
Returns whether the script is guaranteed to fail at execution, regardless of the initial stack.
Definition: script.h:571
The basic transaction that is broadcasted on the network and contained in blocks.
Definition: transaction.h:296
bool IsCoinBase() const
Definition: transaction.h:356
const std::vector< CTxIn > vin
Definition: transaction.h:306
An output of a transaction.
Definition: transaction.h:150
CScript scriptPubKey
Definition: transaction.h:153
CAmount nValue
Definition: transaction.h:152
Undo information for a CTransaction.
Definition: undo.h:53
std::vector< Coin > vprevout
Definition: undo.h:56
A UTXO entry.
Definition: coins.h:33
void Clear()
Definition: coins.h:48
CTxOut out
unspent transaction output
Definition: coins.h:36
bool IsSpent() const
Either this coin never existed (see e.g.
Definition: coins.h:81
uint32_t nHeight
at which height this containing transaction was included in the active block chain
Definition: coins.h:42
unsigned int fCoinBase
whether containing transaction was a coinbase
Definition: coins.h:39
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
Fast randomness source.
Definition: random.h:377
BOOST_CHECK_EXCEPTION predicates to check the specific validation error.
Definition: setup_common.h:295
static void CheckAllDataAccountedFor(const PoolResource< MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES > &resource)
Once all blocks are given back to the resource, tests that the freelists are consistent:
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
uint256 rand256() noexcept
generate a random uint256.
Definition: random.h:308
bool randbool() noexcept
Generate a random boolean.
Definition: random.h:316
uint32_t rand32() noexcept
Generate a random 32-bit integer.
Definition: random.h:305
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
CCoinsViewCacheTest cache
CCoinsViewCacheTest base
CCoinsView root
SingleEntryCacheTest(const CAmount base_value, const MaybeCoin &cache_coin)
constexpr bool IsNull() const
Definition: uint256.h:48
size_type size() const
Definition: prevector.h:294
void assign(size_type n, const T &val)
Definition: prevector.h:223
static transaction_identifier FromUint256(const uint256 &id)
160-bit opaque blob.
Definition: uint256.h:178
256-bit opaque blob.
Definition: uint256.h:190
static void add_coin(const CAmount &nValue, int nInput, std::vector< OutputGroup > &set)
const Coin & AccessByTxid(const CCoinsViewCache &view, const Txid &txid)
Utility function to find any unspent output with a given txid.
Definition: coins.cpp:351
std::pair< const COutPoint, CCoinsCacheEntry > CoinsCachePair
Definition: coins.h:91
std::unordered_map< COutPoint, CCoinsCacheEntry, SaltedOutpointHasher, std::equal_to< COutPoint >, PoolAllocator< CoinsCachePair, sizeof(CoinsCachePair)+sizeof(void *) *4 > > CCoinsMap
PoolAllocator's MAX_BLOCK_SIZE_BYTES parameter here uses sizeof the data, and adds the size of 4 poin...
Definition: coins.h:229
CCoinsMap::allocator_type::ResourceType CCoinsMapMemoryResource
Definition: coins.h:231
constexpr CAmount VALUE2
BOOST_AUTO_TEST_CASE(ccoins_serialization)
constexpr MaybeCoin VALUE2_DIRTY
constexpr CAmount ABSENT
std::optional< CoinEntry > MaybeCoin
constexpr MaybeCoin VALUE2_CLEAN
constexpr MaybeCoin MISSING
static MaybeCoin GetCoinsMapEntry(const CCoinsMap &map, const COutPoint &outp=OUTPOINT)
static const COutPoint OUTPOINT
constexpr MaybeCoin VALUE2_DIRTY_FRESH
static void WriteCoinsViewEntry(CCoinsView &view, const MaybeCoin &cache_coin)
static void CheckWriteCoins(const MaybeCoin &parent, const MaybeCoin &child, const CoinOrError &expected)
int ApplyTxInUndo(Coin &&undo, CCoinsViewCache &view, const COutPoint &out)
Restore the UTXO in a Coin at a given COutPoint.
static const unsigned int NUM_SIMULATION_ITERATIONS
constexpr MaybeCoin VALUE1_CLEAN
constexpr CAmount VALUE1
constexpr MaybeCoin SPENT_DIRTY_FRESH
constexpr MaybeCoin SPENT_CLEAN
constexpr auto EX_OVERWRITE_UNSPENT
constexpr MaybeCoin VALUE1_DIRTY
constexpr MaybeCoin VALUE1_FRESH
static size_t InsertCoinsMapEntry(CCoinsMap &map, CoinsCachePair &sentinel, const CoinEntry &cache_coin)
static void CheckSpendCoins(const CAmount base_value, const MaybeCoin &cache_coin, const MaybeCoin &expected)
void UpdateCoins(const CTransaction &tx, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight)
constexpr CAmount VALUE3
constexpr MaybeCoin VALUE2_FRESH
constexpr MaybeCoin VALUE3_DIRTY_FRESH
static void CheckAccessCoin(const CAmount base_value, const MaybeCoin &cache_coin, const MaybeCoin &expected)
constexpr MaybeCoin VALUE3_DIRTY
constexpr MaybeCoin VALUE1_DIRTY_FRESH
constexpr MaybeCoin SPENT_DIRTY
constexpr auto EX_FRESH_MISAPPLIED
std::variant< MaybeCoin, std::string > CoinOrError
static void SetCoinsValue(const CAmount value, Coin &coin)
constexpr MaybeCoin SPENT_FRESH
BOOST_FIXTURE_TEST_CASE(coins_cache_simulation_test, CacheTest)
constexpr CAmount SPENT
static void CheckAddCoin(const CAmount base_value, const MaybeCoin &cache_coin, const CAmount modify_value, const CoinOrError &expected, const bool coinbase)
BOOST_FIXTURE_TEST_SUITE(cuckoocache_tests, BasicTestingSetup)
Test Suite for CuckooCache.
BOOST_AUTO_TEST_SUITE_END()
std::string HexStr(const Span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
unsigned int nHeight
static bool sanity_check(const std::vector< CTransactionRef > &transactions, const std::map< COutPoint, CAmount > &bumpfees)
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:427
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:607
#define BOOST_CHECK_THROW(stmt, excMatch)
Definition: object.cpp:19
#define BOOST_CHECK_EQUAL(v1, v2)
Definition: object.cpp:18
#define BOOST_CHECK(expr)
Definition: object.cpp:17
@ OP_RETURN
Definition: script.h:111
#define VARINT(obj)
Definition: serialize.h:498
Basic testing setup.
Definition: setup_common.h:63
FastRandomContext m_rng
Definition: setup_common.h:67
A Coin in one level of the coins database caching hierarchy.
Definition: coins.h:109
Coin coin
Definition: coins.h:147
static void SetFresh(CoinsCachePair &pair, CoinsCachePair &sentinel) noexcept
Definition: coins.h:178
static void SetDirty(CoinsCachePair &pair, CoinsCachePair &sentinel) noexcept
Definition: coins.h:177
A mutable version of CTransaction.
Definition: transaction.h:378
std::vector< CTxOut > vout
Definition: transaction.h:380
Txid GetHash() const
Compute the hash of this CMutableTransaction.
Definition: transaction.cpp:69
std::vector< CTxIn > vin
Definition: transaction.h:379
void SimulationTest(CCoinsView *base, bool fake_best_block)
const CAmount value
constexpr bool IsDirty() const
friend std::ostream & operator<<(std::ostream &os, const CoinEntry &e)
bool operator==(const CoinEntry &o) const =default
constexpr bool IsDirtyFresh() const
State
@ DIRTY
@ FRESH
@ CLEAN
@ DIRTY_FRESH
static constexpr State ToState(const bool is_dirty, const bool is_fresh)
constexpr bool IsFresh() const
const State state
constexpr CoinEntry(const CAmount v, const State s)
Cursor for iterating over the linked list of flagged entries in CCoinsViewCache.
Definition: coins.h:266
CoinsCachePair * NextAndMaybeErase(CoinsCachePair &current) noexcept
Return the next entry after current, possibly erasing current.
Definition: coins.h:284
CoinsCachePair * Begin() const noexcept
Definition: coins.h:280
CoinsCachePair * End() const noexcept
Definition: coins.h:281
void TestFlushBehavior(CCoinsViewCacheTest *view, CCoinsViewDB &base, std::vector< std::unique_ptr< CCoinsViewCacheTest > > &all_caches, bool do_erasing_flush)
For CCoinsViewCache instances backed by either another cache instance or leveldb, test cache behavior...
Coin MakeCoin()
std::map< COutPoint, std::tuple< CTransaction, CTxUndo, Coin > > UtxoData
UtxoData::iterator FindRandomFrom(const std::set< COutPoint > &utxoSet)
UtxoData utxoData
@ ZEROS
Seed with a compile time constant of zeros.
CAmount RandMoney(Rng &&rng)
Definition: random.h:35
static int count
assert(!tx.IsCoinBase())