Bitcoin Core 29.99.0
P2P Digital Currency
coins_tests.cpp
Go to the documentation of this file.
1// Copyright (c) 2014-2022 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <addresstype.h>
6#include <clientversion.h>
7#include <coins.h>
8#include <streams.h>
10#include <test/util/random.h>
12#include <txdb.h>
13#include <uint256.h>
14#include <undo.h>
15#include <util/strencodings.h>
16
17#include <map>
18#include <string>
19#include <variant>
20#include <vector>
21
22#include <boost/test/unit_test.hpp>
23
24using namespace util::hex_literals;
25
26int ApplyTxInUndo(Coin&& undo, CCoinsViewCache& view, const COutPoint& out);
27void UpdateCoins(const CTransaction& tx, CCoinsViewCache& inputs, CTxUndo &txundo, int nHeight);
28
29namespace
30{
32bool operator==(const Coin &a, const Coin &b) {
33 // Empty Coin objects are always equal.
34 if (a.IsSpent() && b.IsSpent()) return true;
35 return a.fCoinBase == b.fCoinBase &&
36 a.nHeight == b.nHeight &&
37 a.out == b.out;
38}
39
40class CCoinsViewTest : public CCoinsView
41{
42 FastRandomContext& m_rng;
43 uint256 hashBestBlock_;
44 std::map<COutPoint, Coin> map_;
45
46public:
47 CCoinsViewTest(FastRandomContext& rng) : m_rng{rng} {}
48
49 std::optional<Coin> GetCoin(const COutPoint& outpoint) const override
50 {
51 if (auto it{map_.find(outpoint)}; it != map_.end()) {
52 if (!it->second.IsSpent() || m_rng.randbool()) {
53 return it->second; // TODO spent coins shouldn't be returned
54 }
55 }
56 return std::nullopt;
57 }
58
59 uint256 GetBestBlock() const override { return hashBestBlock_; }
60
61 bool BatchWrite(CoinsViewCacheCursor& cursor, const uint256& hashBlock) override
62 {
63 for (auto it{cursor.Begin()}; it != cursor.End(); it = cursor.NextAndMaybeErase(*it)){
64 if (it->second.IsDirty()) {
65 // Same optimization used in CCoinsViewDB is to only write dirty entries.
66 map_[it->first] = it->second.coin;
67 if (it->second.coin.IsSpent() && m_rng.randrange(3) == 0) {
68 // Randomly delete empty entries on write.
69 map_.erase(it->first);
70 }
71 }
72 }
73 if (!hashBlock.IsNull())
74 hashBestBlock_ = hashBlock;
75 return true;
76 }
77};
78
79class CCoinsViewCacheTest : public CCoinsViewCache
80{
81public:
82 explicit CCoinsViewCacheTest(CCoinsView* _base) : CCoinsViewCache(_base) {}
83
84 void SelfTest(bool sanity_check = true) const
85 {
86 // Manually recompute the dynamic usage of the whole data, and compare it.
87 size_t ret = memusage::DynamicUsage(cacheCoins);
88 size_t count = 0;
89 for (const auto& entry : cacheCoins) {
90 ret += entry.second.coin.DynamicMemoryUsage();
91 ++count;
92 }
95 if (sanity_check) {
97 }
98 }
99
100 CCoinsMap& map() const { return cacheCoins; }
101 CoinsCachePair& sentinel() const { return m_sentinel; }
102 size_t& usage() const { return cachedCoinsUsage; }
103};
104
105} // namespace
106
107static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;
108
110// This is a large randomized insert/remove simulation test on a variable-size
111// stack of caches on top of CCoinsViewTest.
112//
113// It will randomly create/update/delete Coin entries to a tip of caches, with
114// txids picked from a limited list of random 256-bit hashes. Occasionally, a
115// new tip is added to the stack of caches, or the tip is flushed and removed.
116//
117// During the process, booleans are kept to make sure that the randomized
118// operation hits all branches.
119//
120// If fake_best_block is true, assign a random uint256 to mock the recording
121// of best block on flush. This is necessary when using CCoinsViewDB as the base,
122// otherwise we'll hit an assertion in BatchWrite.
123//
124void SimulationTest(CCoinsView* base, bool fake_best_block)
125{
126 // Various coverage trackers.
127 bool removed_all_caches = false;
128 bool reached_4_caches = false;
129 bool added_an_entry = false;
130 bool added_an_unspendable_entry = false;
131 bool removed_an_entry = false;
132 bool updated_an_entry = false;
133 bool found_an_entry = false;
134 bool missed_an_entry = false;
135 bool uncached_an_entry = false;
136 bool flushed_without_erase = false;
137
138 // A simple map to track what we expect the cache stack to represent.
139 std::map<COutPoint, Coin> result;
140
141 // The cache stack.
142 std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
143 stack.push_back(std::make_unique<CCoinsViewCacheTest>(base)); // Start with one cache.
144
145 // Use a limited set of random transaction ids, so we do test overwriting entries.
146 std::vector<Txid> txids;
147 txids.resize(NUM_SIMULATION_ITERATIONS / 8);
148 for (unsigned int i = 0; i < txids.size(); i++) {
149 txids[i] = Txid::FromUint256(m_rng.rand256());
150 }
151
152 for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
153 // Do a random modification.
154 {
155 auto txid = txids[m_rng.randrange(txids.size())]; // txid we're going to modify in this iteration.
156 Coin& coin = result[COutPoint(txid, 0)];
157
158 // Determine whether to test HaveCoin before or after Access* (or both). As these functions
159 // can influence each other's behaviour by pulling things into the cache, all combinations
160 // are tested.
161 bool test_havecoin_before = m_rng.randbits(2) == 0;
162 bool test_havecoin_after = m_rng.randbits(2) == 0;
163
164 bool result_havecoin = test_havecoin_before ? stack.back()->HaveCoin(COutPoint(txid, 0)) : false;
165
166 // Infrequently, test usage of AccessByTxid instead of AccessCoin - the
167 // former just delegates to the latter and returns the first unspent in a txn.
168 const Coin& entry = (m_rng.randrange(500) == 0) ?
169 AccessByTxid(*stack.back(), txid) : stack.back()->AccessCoin(COutPoint(txid, 0));
170 BOOST_CHECK(coin == entry);
171
172 if (test_havecoin_before) {
173 BOOST_CHECK(result_havecoin == !entry.IsSpent());
174 }
175
176 if (test_havecoin_after) {
177 bool ret = stack.back()->HaveCoin(COutPoint(txid, 0));
178 BOOST_CHECK(ret == !entry.IsSpent());
179 }
180
181 if (m_rng.randrange(5) == 0 || coin.IsSpent()) {
182 Coin newcoin;
183 newcoin.out.nValue = RandMoney(m_rng);
184 newcoin.nHeight = 1;
185
186 // Infrequently test adding unspendable coins.
187 if (m_rng.randrange(16) == 0 && coin.IsSpent()) {
190 added_an_unspendable_entry = true;
191 } else {
192 // Random sizes so we can test memory usage accounting
193 newcoin.out.scriptPubKey.assign(m_rng.randbits(6), 0);
194 (coin.IsSpent() ? added_an_entry : updated_an_entry) = true;
195 coin = newcoin;
196 }
197 bool is_overwrite = !coin.IsSpent() || m_rng.rand32() & 1;
198 stack.back()->AddCoin(COutPoint(txid, 0), std::move(newcoin), is_overwrite);
199 } else {
200 // Spend the coin.
201 removed_an_entry = true;
202 coin.Clear();
203 BOOST_CHECK(stack.back()->SpendCoin(COutPoint(txid, 0)));
204 }
205 }
206
207 // Once every 10 iterations, remove a random entry from the cache
208 if (m_rng.randrange(10) == 0) {
209 COutPoint out(txids[m_rng.rand32() % txids.size()], 0);
210 int cacheid = m_rng.rand32() % stack.size();
211 stack[cacheid]->Uncache(out);
212 uncached_an_entry |= !stack[cacheid]->HaveCoinInCache(out);
213 }
214
215 // Once every 1000 iterations and at the end, verify the full cache.
216 if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
217 for (const auto& entry : result) {
218 bool have = stack.back()->HaveCoin(entry.first);
219 const Coin& coin = stack.back()->AccessCoin(entry.first);
220 BOOST_CHECK(have == !coin.IsSpent());
221 BOOST_CHECK(coin == entry.second);
222 if (coin.IsSpent()) {
223 missed_an_entry = true;
224 } else {
225 BOOST_CHECK(stack.back()->HaveCoinInCache(entry.first));
226 found_an_entry = true;
227 }
228 }
229 for (const auto& test : stack) {
230 test->SelfTest();
231 }
232 }
233
234 if (m_rng.randrange(100) == 0) {
235 // Every 100 iterations, flush an intermediate cache
236 if (stack.size() > 1 && m_rng.randbool() == 0) {
237 unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
238 if (fake_best_block) stack[flushIndex]->SetBestBlock(m_rng.rand256());
239 bool should_erase = m_rng.randrange(4) < 3;
240 BOOST_CHECK(should_erase ? stack[flushIndex]->Flush() : stack[flushIndex]->Sync());
241 flushed_without_erase |= !should_erase;
242 }
243 }
244 if (m_rng.randrange(100) == 0) {
245 // Every 100 iterations, change the cache stack.
246 if (stack.size() > 0 && m_rng.randbool() == 0) {
247 //Remove the top cache
248 if (fake_best_block) stack.back()->SetBestBlock(m_rng.rand256());
249 bool should_erase = m_rng.randrange(4) < 3;
250 BOOST_CHECK(should_erase ? stack.back()->Flush() : stack.back()->Sync());
251 flushed_without_erase |= !should_erase;
252 stack.pop_back();
253 }
254 if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
255 //Add a new cache
256 CCoinsView* tip = base;
257 if (stack.size() > 0) {
258 tip = stack.back().get();
259 } else {
260 removed_all_caches = true;
261 }
262 stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
263 if (stack.size() == 4) {
264 reached_4_caches = true;
265 }
266 }
267 }
268 }
269
270 // Verify coverage.
271 BOOST_CHECK(removed_all_caches);
272 BOOST_CHECK(reached_4_caches);
273 BOOST_CHECK(added_an_entry);
274 BOOST_CHECK(added_an_unspendable_entry);
275 BOOST_CHECK(removed_an_entry);
276 BOOST_CHECK(updated_an_entry);
277 BOOST_CHECK(found_an_entry);
278 BOOST_CHECK(missed_an_entry);
279 BOOST_CHECK(uncached_an_entry);
280 BOOST_CHECK(flushed_without_erase);
281}
282}; // struct CacheTest
283
285
286// Run the above simulation for multiple base types.
287BOOST_FIXTURE_TEST_CASE(coins_cache_base_simulation_test, CacheTest)
288{
289 CCoinsViewTest base{m_rng};
290 SimulationTest(&base, false);
291}
292
294
296
297BOOST_FIXTURE_TEST_CASE(coins_cache_dbbase_simulation_test, CacheTest)
298{
299 CCoinsViewDB db_base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
300 SimulationTest(&db_base, true);
301}
302
304
306
308// Store of all necessary tx and undo data for next test
309typedef std::map<COutPoint, std::tuple<CTransaction,CTxUndo,Coin>> UtxoData;
311
312UtxoData::iterator FindRandomFrom(const std::set<COutPoint> &utxoSet) {
313 assert(utxoSet.size());
314 auto utxoSetIt = utxoSet.lower_bound(COutPoint(Txid::FromUint256(m_rng.rand256()), 0));
315 if (utxoSetIt == utxoSet.end()) {
316 utxoSetIt = utxoSet.begin();
317 }
318 auto utxoDataIt = utxoData.find(*utxoSetIt);
319 assert(utxoDataIt != utxoData.end());
320 return utxoDataIt;
321}
322}; // struct UpdateTest
323
324
325// This test is similar to the previous test
326// except the emphasis is on testing the functionality of UpdateCoins
327// random txs are created and UpdateCoins is used to update the cache stack
328// In particular it is tested that spending a duplicate coinbase tx
329// has the expected effect (the other duplicate is overwritten at all cache levels)
330BOOST_FIXTURE_TEST_CASE(updatecoins_simulation_test, UpdateTest)
331{
332 SeedRandomForTest(SeedRand::ZEROS);
333
334 bool spent_a_duplicate_coinbase = false;
335 // A simple map to track what we expect the cache stack to represent.
336 std::map<COutPoint, Coin> result;
337
338 // The cache stack.
339 CCoinsViewTest base{m_rng}; // A CCoinsViewTest at the bottom.
340 std::vector<std::unique_ptr<CCoinsViewCacheTest>> stack; // A stack of CCoinsViewCaches on top.
341 stack.push_back(std::make_unique<CCoinsViewCacheTest>(&base)); // Start with one cache.
342
343 // Track the txids we've used in various sets
344 std::set<COutPoint> coinbase_coins;
345 std::set<COutPoint> disconnected_coins;
346 std::set<COutPoint> duplicate_coins;
347 std::set<COutPoint> utxoset;
348
349 for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
350 uint32_t randiter = m_rng.rand32();
351
352 // 19/20 txs add a new transaction
353 if (randiter % 20 < 19) {
355 tx.vin.resize(1);
356 tx.vout.resize(1);
357 tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
358 tx.vout[0].scriptPubKey.assign(m_rng.rand32() & 0x3F, 0); // Random sizes so we can test memory usage accounting
359 const int height{int(m_rng.rand32() >> 1)};
360 Coin old_coin;
361
362 // 2/20 times create a new coinbase
363 if (randiter % 20 < 2 || coinbase_coins.size() < 10) {
364 // 1/10 of those times create a duplicate coinbase
365 if (m_rng.randrange(10) == 0 && coinbase_coins.size()) {
366 auto utxod = FindRandomFrom(coinbase_coins);
367 // Reuse the exact same coinbase
368 tx = CMutableTransaction{std::get<0>(utxod->second)};
369 // shouldn't be available for reconnection if it's been duplicated
370 disconnected_coins.erase(utxod->first);
371
372 duplicate_coins.insert(utxod->first);
373 }
374 else {
375 coinbase_coins.insert(COutPoint(tx.GetHash(), 0));
376 }
377 assert(CTransaction(tx).IsCoinBase());
378 }
379
380 // 17/20 times reconnect previous or add a regular tx
381 else {
382
383 COutPoint prevout;
384 // 1/20 times reconnect a previously disconnected tx
385 if (randiter % 20 == 2 && disconnected_coins.size()) {
386 auto utxod = FindRandomFrom(disconnected_coins);
387 tx = CMutableTransaction{std::get<0>(utxod->second)};
388 prevout = tx.vin[0].prevout;
389 if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevout)) {
390 disconnected_coins.erase(utxod->first);
391 continue;
392 }
393
394 // If this tx is already IN the UTXO, then it must be a coinbase, and it must be a duplicate
395 if (utxoset.count(utxod->first)) {
396 assert(CTransaction(tx).IsCoinBase());
397 assert(duplicate_coins.count(utxod->first));
398 }
399 disconnected_coins.erase(utxod->first);
400 }
401
402 // 16/20 times create a regular tx
403 else {
404 auto utxod = FindRandomFrom(utxoset);
405 prevout = utxod->first;
406
407 // Construct the tx to spend the coins of prevouthash
408 tx.vin[0].prevout = prevout;
409 assert(!CTransaction(tx).IsCoinBase());
410 }
411 // In this simple test coins only have two states, spent or unspent, save the unspent state to restore
412 old_coin = result[prevout];
413 // Update the expected result of prevouthash to know these coins are spent
414 result[prevout].Clear();
415
416 utxoset.erase(prevout);
417
418 // The test is designed to ensure spending a duplicate coinbase will work properly
419 // if that ever happens and not resurrect the previously overwritten coinbase
420 if (duplicate_coins.count(prevout)) {
421 spent_a_duplicate_coinbase = true;
422 }
423
424 }
425 // Update the expected result to know about the new output coins
426 assert(tx.vout.size() == 1);
427 const COutPoint outpoint(tx.GetHash(), 0);
428 result[outpoint] = Coin{tx.vout[0], height, CTransaction{tx}.IsCoinBase()};
429
430 // Call UpdateCoins on the top cache
431 CTxUndo undo;
432 UpdateCoins(CTransaction{tx}, *(stack.back()), undo, height);
433
434 // Update the utxo set for future spends
435 utxoset.insert(outpoint);
436
437 // Track this tx and undo info to use later
438 utxoData.emplace(outpoint, std::make_tuple(tx,undo,old_coin));
439 } else if (utxoset.size()) {
440 //1/20 times undo a previous transaction
441 auto utxod = FindRandomFrom(utxoset);
442
443 CTransaction &tx = std::get<0>(utxod->second);
444 CTxUndo &undo = std::get<1>(utxod->second);
445 Coin &orig_coin = std::get<2>(utxod->second);
446
447 // Update the expected result
448 // Remove new outputs
449 result[utxod->first].Clear();
450 // If not coinbase restore prevout
451 if (!tx.IsCoinBase()) {
452 result[tx.vin[0].prevout] = orig_coin;
453 }
454
455 // Disconnect the tx from the current UTXO
456 // See code in DisconnectBlock
457 // remove outputs
458 BOOST_CHECK(stack.back()->SpendCoin(utxod->first));
459 // restore inputs
460 if (!tx.IsCoinBase()) {
461 const COutPoint &out = tx.vin[0].prevout;
462 Coin coin = undo.vprevout[0];
463 ApplyTxInUndo(std::move(coin), *(stack.back()), out);
464 }
465 // Store as a candidate for reconnection
466 disconnected_coins.insert(utxod->first);
467
468 // Update the utxoset
469 utxoset.erase(utxod->first);
470 if (!tx.IsCoinBase())
471 utxoset.insert(tx.vin[0].prevout);
472 }
473
474 // Once every 1000 iterations and at the end, verify the full cache.
475 if (m_rng.randrange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
476 for (const auto& entry : result) {
477 bool have = stack.back()->HaveCoin(entry.first);
478 const Coin& coin = stack.back()->AccessCoin(entry.first);
479 BOOST_CHECK(have == !coin.IsSpent());
480 BOOST_CHECK(coin == entry.second);
481 }
482 }
483
484 // One every 10 iterations, remove a random entry from the cache
485 if (utxoset.size() > 1 && m_rng.randrange(30) == 0) {
486 stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(utxoset)->first);
487 }
488 if (disconnected_coins.size() > 1 && m_rng.randrange(30) == 0) {
489 stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(disconnected_coins)->first);
490 }
491 if (duplicate_coins.size() > 1 && m_rng.randrange(30) == 0) {
492 stack[m_rng.rand32() % stack.size()]->Uncache(FindRandomFrom(duplicate_coins)->first);
493 }
494
495 if (m_rng.randrange(100) == 0) {
496 // Every 100 iterations, flush an intermediate cache
497 if (stack.size() > 1 && m_rng.randbool() == 0) {
498 unsigned int flushIndex = m_rng.randrange(stack.size() - 1);
499 BOOST_CHECK(stack[flushIndex]->Flush());
500 }
501 }
502 if (m_rng.randrange(100) == 0) {
503 // Every 100 iterations, change the cache stack.
504 if (stack.size() > 0 && m_rng.randbool() == 0) {
505 BOOST_CHECK(stack.back()->Flush());
506 stack.pop_back();
507 }
508 if (stack.size() == 0 || (stack.size() < 4 && m_rng.randbool())) {
509 CCoinsView* tip = &base;
510 if (stack.size() > 0) {
511 tip = stack.back().get();
512 }
513 stack.push_back(std::make_unique<CCoinsViewCacheTest>(tip));
514 }
515 }
516 }
517
518 // Verify coverage.
519 BOOST_CHECK(spent_a_duplicate_coinbase);
520}
521
522BOOST_AUTO_TEST_CASE(ccoins_serialization)
523{
524 // Good example
525 DataStream ss1{"97f23c835800816115944e077fe7c803cfa57f29b36bf87c1d35"_hex};
526 Coin cc1;
527 ss1 >> cc1;
528 BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
529 BOOST_CHECK_EQUAL(cc1.nHeight, 203998U);
530 BOOST_CHECK_EQUAL(cc1.out.nValue, CAmount{60000000000});
531 BOOST_CHECK_EQUAL(HexStr(cc1.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("816115944e077fe7c803cfa57f29b36bf87c1d35"_hex_u8)))));
532
533 // Good example
534 DataStream ss2{"8ddf77bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex};
535 Coin cc2;
536 ss2 >> cc2;
537 BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
538 BOOST_CHECK_EQUAL(cc2.nHeight, 120891U);
539 BOOST_CHECK_EQUAL(cc2.out.nValue, 110397);
540 BOOST_CHECK_EQUAL(HexStr(cc2.out.scriptPubKey), HexStr(GetScriptForDestination(PKHash(uint160("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"_hex_u8)))));
541
542 // Smallest possible example
543 DataStream ss3{"000006"_hex};
544 Coin cc3;
545 ss3 >> cc3;
546 BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
547 BOOST_CHECK_EQUAL(cc3.nHeight, 0U);
550
551 // scriptPubKey that ends beyond the end of the stream
552 DataStream ss4{"000007"_hex};
553 try {
554 Coin cc4;
555 ss4 >> cc4;
556 BOOST_CHECK_MESSAGE(false, "We should have thrown");
557 } catch (const std::ios_base::failure&) {
558 }
559
560 // Very large scriptPubKey (3*10^9 bytes) past the end of the stream
561 DataStream tmp{};
562 uint64_t x = 3000000000ULL;
563 tmp << VARINT(x);
564 BOOST_CHECK_EQUAL(HexStr(tmp), "8a95c0bb00");
565 DataStream ss5{"00008a95c0bb00"_hex};
566 try {
567 Coin cc5;
568 ss5 >> cc5;
569 BOOST_CHECK_MESSAGE(false, "We should have thrown");
570 } catch (const std::ios_base::failure&) {
571 }
572}
573
574const static COutPoint OUTPOINT;
575constexpr CAmount SPENT {-1};
576constexpr CAmount ABSENT{-2};
577constexpr CAmount VALUE1{100};
578constexpr CAmount VALUE2{200};
579constexpr CAmount VALUE3{300};
580
581struct CoinEntry {
582 enum class State { CLEAN, DIRTY, FRESH, DIRTY_FRESH };
583
586
587 constexpr CoinEntry(const CAmount v, const State s) : value{v}, state{s} {}
588
589 bool operator==(const CoinEntry& o) const = default;
590 friend std::ostream& operator<<(std::ostream& os, const CoinEntry& e) { return os << e.value << ", " << e.state; }
591
592 constexpr bool IsDirtyFresh() const { return state == State::DIRTY_FRESH; }
593 constexpr bool IsDirty() const { return state == State::DIRTY || IsDirtyFresh(); }
594 constexpr bool IsFresh() const { return state == State::FRESH || IsDirtyFresh(); }
595
596 static constexpr State ToState(const bool is_dirty, const bool is_fresh) {
597 if (is_dirty && is_fresh) return State::DIRTY_FRESH;
598 if (is_dirty) return State::DIRTY;
599 if (is_fresh) return State::FRESH;
600 return State::CLEAN;
601 }
602};
603
604using MaybeCoin = std::optional<CoinEntry>;
605using CoinOrError = std::variant<MaybeCoin, std::string>;
606
607constexpr MaybeCoin MISSING {std::nullopt};
622
623constexpr auto EX_OVERWRITE_UNSPENT{"Attempted to overwrite an unspent coin (when possible_overwrite is false)"};
624constexpr auto EX_FRESH_MISAPPLIED {"FRESH flag misapplied to coin that exists in parent cache"};
625
626static void SetCoinsValue(const CAmount value, Coin& coin)
627{
628 assert(value != ABSENT);
629 coin.Clear();
630 assert(coin.IsSpent());
631 if (value != SPENT) {
632 coin.out.nValue = value;
633 coin.nHeight = 1;
634 assert(!coin.IsSpent());
635 }
636}
637
638static size_t InsertCoinsMapEntry(CCoinsMap& map, CoinsCachePair& sentinel, const CoinEntry& cache_coin)
639{
640 CCoinsCacheEntry entry;
641 SetCoinsValue(cache_coin.value, entry.coin);
642 auto [iter, inserted] = map.emplace(OUTPOINT, std::move(entry));
643 assert(inserted);
644 if (cache_coin.IsDirty()) CCoinsCacheEntry::SetDirty(*iter, sentinel);
645 if (cache_coin.IsFresh()) CCoinsCacheEntry::SetFresh(*iter, sentinel);
646 return iter->second.coin.DynamicMemoryUsage();
647}
648
649static MaybeCoin GetCoinsMapEntry(const CCoinsMap& map, const COutPoint& outp = OUTPOINT)
650{
651 if (auto it{map.find(outp)}; it != map.end()) {
652 return CoinEntry{
653 it->second.coin.IsSpent() ? SPENT : it->second.coin.out.nValue,
654 CoinEntry::ToState(it->second.IsDirty(), it->second.IsFresh())};
655 }
656 return MISSING;
657}
658
659static void WriteCoinsViewEntry(CCoinsView& view, const MaybeCoin& cache_coin)
660{
661 CoinsCachePair sentinel{};
662 sentinel.second.SelfRef(sentinel);
664 CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
665 auto usage{cache_coin ? InsertCoinsMapEntry(map, sentinel, *cache_coin) : 0};
666 auto cursor{CoinsViewCacheCursor(usage, sentinel, map, /*will_erase=*/true)};
667 BOOST_CHECK(view.BatchWrite(cursor, {}));
668}
669
671{
672public:
673 SingleEntryCacheTest(const CAmount base_value, const MaybeCoin& cache_coin)
674 {
675 auto base_cache_coin{base_value == ABSENT ? MISSING : CoinEntry{base_value, CoinEntry::State::DIRTY}};
676 WriteCoinsViewEntry(base, base_cache_coin);
677 if (cache_coin) cache.usage() += InsertCoinsMapEntry(cache.map(), cache.sentinel(), *cache_coin);
678 }
679
681 CCoinsViewCacheTest base{&root};
682 CCoinsViewCacheTest cache{&base};
683};
684
685static void CheckAccessCoin(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
686{
687 SingleEntryCacheTest test{base_value, cache_coin};
688 auto& coin = test.cache.AccessCoin(OUTPOINT);
689 BOOST_CHECK_EQUAL(coin.IsSpent(), !test.cache.GetCoin(OUTPOINT));
690 test.cache.SelfTest(/*sanity_check=*/false);
691 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
692}
693
695{
696 /* Check AccessCoin behavior, requesting a coin from a cache view layered on
697 * top of a base view, and checking the resulting entry in the cache after
698 * the access.
699 * Base Cache Expected
700 */
701 for (auto base_value : {ABSENT, SPENT, VALUE1}) {
702 CheckAccessCoin(base_value, MISSING, base_value == VALUE1 ? VALUE1_CLEAN : MISSING);
703
708
713 }
714}
715
716static void CheckSpendCoins(const CAmount base_value, const MaybeCoin& cache_coin, const MaybeCoin& expected)
717{
718 SingleEntryCacheTest test{base_value, cache_coin};
719 test.cache.SpendCoin(OUTPOINT);
720 test.cache.SelfTest();
721 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), expected);
722}
723
725{
726 /* Check SpendCoin behavior, requesting a coin from a cache view layered on
727 * top of a base view, spending, and then checking
728 * the resulting entry in the cache after the modification.
729 * Base Cache Expected
730 */
731 for (auto base_value : {ABSENT, SPENT, VALUE1}) {
732 CheckSpendCoins(base_value, MISSING, base_value == VALUE1 ? SPENT_DIRTY : MISSING);
733
735 CheckSpendCoins(base_value, SPENT_FRESH, MISSING );
738
740 CheckSpendCoins(base_value, VALUE2_FRESH, MISSING );
743 }
744}
745
746static void CheckAddCoin(const CAmount base_value, const MaybeCoin& cache_coin, const CAmount modify_value, const CoinOrError& expected, const bool coinbase)
747{
748 SingleEntryCacheTest test{base_value, cache_coin};
749 bool possible_overwrite{coinbase};
750 auto add_coin{[&] { test.cache.AddCoin(OUTPOINT, Coin{CTxOut{modify_value, CScript{}}, 1, coinbase}, possible_overwrite); }};
751 if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
752 add_coin();
753 test.cache.SelfTest();
754 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
755 } else {
756 BOOST_CHECK_EXCEPTION(add_coin(), std::logic_error, HasReason(std::get<std::string>(expected)));
757 }
758}
759
761{
762 /* Check AddCoin behavior, requesting a new coin from a cache view,
763 * writing a modification to the coin, and then checking the resulting
764 * entry in the cache after the modification. Verify behavior with the
765 * AddCoin coinbase argument set to false, and to true.
766 * Base Cache Write Expected Coinbase
767 */
768 for (auto base_value : {ABSENT, SPENT, VALUE1}) {
769 CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY_FRESH, false);
770 CheckAddCoin(base_value, MISSING, VALUE3, VALUE3_DIRTY, true );
771
773 CheckAddCoin(base_value, SPENT_CLEAN, VALUE3, VALUE3_DIRTY, true );
776 CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, false);
777 CheckAddCoin(base_value, SPENT_DIRTY, VALUE3, VALUE3_DIRTY, true );
780
782 CheckAddCoin(base_value, VALUE2_CLEAN, VALUE3, VALUE3_DIRTY, true );
786 CheckAddCoin(base_value, VALUE2_DIRTY, VALUE3, VALUE3_DIRTY, true );
789 }
790}
791
792static void CheckWriteCoins(const MaybeCoin& parent, const MaybeCoin& child, const CoinOrError& expected)
793{
794 SingleEntryCacheTest test{ABSENT, parent};
795 auto write_coins{[&] { WriteCoinsViewEntry(test.cache, child); }};
796 if (auto* expected_coin{std::get_if<MaybeCoin>(&expected)}) {
797 write_coins();
798 test.cache.SelfTest(/*sanity_check=*/false);
799 BOOST_CHECK_EQUAL(GetCoinsMapEntry(test.cache.map()), *expected_coin);
800 } else {
801 BOOST_CHECK_EXCEPTION(write_coins(), std::logic_error, HasReason(std::get<std::string>(expected)));
802 }
803}
804
806{
807 /* Check BatchWrite behavior, flushing one entry from a child cache to a
808 * parent cache, and checking the resulting entry in the parent cache
809 * after the write.
810 * Parent Child Expected
811 */
821
830
839
852
861
862 // The checks above omit cases where the child state is not DIRTY, since
863 // they would be too repetitive (the parent cache is never updated in these
864 // cases). The loop below covers these cases and makes sure the parent cache
865 // is always left unchanged.
866 for (const MaybeCoin& parent : {MISSING,
869 for (const MaybeCoin& child : {MISSING,
872 auto expected{CoinOrError{parent}}; // TODO test failure cases as well
873 CheckWriteCoins(parent, child, expected);
874 }
875 }
876}
877
880{
881 Coin coin;
882 coin.out.nValue = m_rng.rand32();
883 coin.nHeight = m_rng.randrange(4096);
884 coin.fCoinBase = 0;
885 return coin;
886}
887
888
900 CCoinsViewCacheTest* view,
901 CCoinsViewDB& base,
902 std::vector<std::unique_ptr<CCoinsViewCacheTest>>& all_caches,
903 bool do_erasing_flush)
904{
905 size_t cache_usage;
906 size_t cache_size;
907
908 auto flush_all = [this, &all_caches](bool erase) {
909 // Flush in reverse order to ensure that flushes happen from children up.
910 for (auto i = all_caches.rbegin(); i != all_caches.rend(); ++i) {
911 auto& cache = *i;
912 cache->SanityCheck();
913 // hashBlock must be filled before flushing to disk; value is
914 // unimportant here. This is normally done during connect/disconnect block.
915 cache->SetBestBlock(m_rng.rand256());
916 erase ? cache->Flush() : cache->Sync();
917 }
918 };
919
921 COutPoint outp = COutPoint(txid, 0);
922 Coin coin = MakeCoin();
923 // Ensure the coins views haven't seen this coin before.
924 BOOST_CHECK(!base.HaveCoin(outp));
925 BOOST_CHECK(!view->HaveCoin(outp));
926
927 // --- 1. Adding a random coin to the child cache
928 //
929 view->AddCoin(outp, Coin(coin), false);
930
931 cache_usage = view->DynamicMemoryUsage();
932 cache_size = view->map().size();
933
934 // `base` shouldn't have coin (no flush yet) but `view` should have cached it.
935 BOOST_CHECK(!base.HaveCoin(outp));
936 BOOST_CHECK(view->HaveCoin(outp));
937
938 BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::DIRTY_FRESH));
939
940 // --- 2. Flushing all caches (without erasing)
941 //
942 flush_all(/*erase=*/ false);
943
944 // CoinsMap usage should be unchanged since we didn't erase anything.
945 BOOST_CHECK_EQUAL(cache_usage, view->DynamicMemoryUsage());
946 BOOST_CHECK_EQUAL(cache_size, view->map().size());
947
948 // --- 3. Ensuring the entry still exists in the cache and has been written to parent
949 //
950 BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN)); // State should have been wiped.
951
952 // Both views should now have the coin.
953 BOOST_CHECK(base.HaveCoin(outp));
954 BOOST_CHECK(view->HaveCoin(outp));
955
956 if (do_erasing_flush) {
957 // --- 4. Flushing the caches again (with erasing)
958 //
959 flush_all(/*erase=*/ true);
960
961 // Memory does not necessarily go down due to the map using a memory pool
962 BOOST_TEST(view->DynamicMemoryUsage() <= cache_usage);
963 // Size of the cache must go down though
964 BOOST_TEST(view->map().size() < cache_size);
965
966 // --- 5. Ensuring the entry is no longer in the cache
967 //
968 BOOST_CHECK(!GetCoinsMapEntry(view->map(), outp));
969 view->AccessCoin(outp);
970 BOOST_CHECK_EQUAL(GetCoinsMapEntry(view->map(), outp), CoinEntry(coin.out.nValue, CoinEntry::State::CLEAN));
971 }
972
973 // Can't overwrite an entry without specifying that an overwrite is
974 // expected.
976 view->AddCoin(outp, Coin(coin), /*possible_overwrite=*/ false),
977 std::logic_error);
978
979 // --- 6. Spend the coin.
980 //
981 BOOST_CHECK(view->SpendCoin(outp));
982
983 // The coin should be in the cache, but spent and marked dirty.
985 BOOST_CHECK(!view->HaveCoin(outp)); // Coin should be considered spent in `view`.
986 BOOST_CHECK(base.HaveCoin(outp)); // But coin should still be unspent in `base`.
987
988 flush_all(/*erase=*/ false);
989
990 // Coin should be considered spent in both views.
991 BOOST_CHECK(!view->HaveCoin(outp));
992 BOOST_CHECK(!base.HaveCoin(outp));
993
994 // Spent coin should not be spendable.
995 BOOST_CHECK(!view->SpendCoin(outp));
996
997 // --- Bonus check: ensure that a coin added to the base view via one cache
998 // can be spent by another cache which has never seen it.
999 //
1001 outp = COutPoint(txid, 0);
1002 coin = MakeCoin();
1003 BOOST_CHECK(!base.HaveCoin(outp));
1004 BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
1005 BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
1006
1007 all_caches[0]->AddCoin(outp, std::move(coin), false);
1008 all_caches[0]->Sync();
1009 BOOST_CHECK(base.HaveCoin(outp));
1010 BOOST_CHECK(all_caches[0]->HaveCoin(outp));
1011 BOOST_CHECK(!all_caches[1]->HaveCoinInCache(outp));
1012
1013 BOOST_CHECK(all_caches[1]->SpendCoin(outp));
1014 flush_all(/*erase=*/ false);
1015 BOOST_CHECK(!base.HaveCoin(outp));
1016 BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
1017 BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
1018
1019 flush_all(/*erase=*/ true); // Erase all cache content.
1020
1021 // --- Bonus check 2: ensure that a FRESH, spent coin is deleted by Sync()
1022 //
1024 outp = COutPoint(txid, 0);
1025 coin = MakeCoin();
1026 CAmount coin_val = coin.out.nValue;
1027 BOOST_CHECK(!base.HaveCoin(outp));
1028 BOOST_CHECK(!all_caches[0]->HaveCoin(outp));
1029 BOOST_CHECK(!all_caches[1]->HaveCoin(outp));
1030
1031 // Add and spend from same cache without flushing.
1032 all_caches[0]->AddCoin(outp, std::move(coin), false);
1033
1034 // Coin should be FRESH in the cache.
1035 BOOST_CHECK_EQUAL(GetCoinsMapEntry(all_caches[0]->map(), outp), CoinEntry(coin_val, CoinEntry::State::DIRTY_FRESH));
1036 // Base shouldn't have seen coin.
1037 BOOST_CHECK(!base.HaveCoin(outp));
1038
1039 BOOST_CHECK(all_caches[0]->SpendCoin(outp));
1040 all_caches[0]->Sync();
1041
1042 // Ensure there is no sign of the coin after spend/flush.
1043 BOOST_CHECK(!GetCoinsMapEntry(all_caches[0]->map(), outp));
1044 BOOST_CHECK(!all_caches[0]->HaveCoinInCache(outp));
1045 BOOST_CHECK(!base.HaveCoin(outp));
1046}
1047}; // struct FlushTest
1048
1049BOOST_FIXTURE_TEST_CASE(ccoins_flush_behavior, FlushTest)
1050{
1051 // Create two in-memory caches atop a leveldb view.
1052 CCoinsViewDB base{{.path = "test", .cache_bytes = 1 << 23, .memory_only = true}, {}};
1053 std::vector<std::unique_ptr<CCoinsViewCacheTest>> caches;
1054 caches.push_back(std::make_unique<CCoinsViewCacheTest>(&base));
1055 caches.push_back(std::make_unique<CCoinsViewCacheTest>(caches.back().get()));
1056
1057 for (const auto& view : caches) {
1058 TestFlushBehavior(view.get(), base, caches, /*do_erasing_flush=*/false);
1059 TestFlushBehavior(view.get(), base, caches, /*do_erasing_flush=*/true);
1060 }
1061}
1062
1063BOOST_AUTO_TEST_CASE(coins_resource_is_used)
1064{
1065 CCoinsMapMemoryResource resource;
1067
1068 {
1069 CCoinsMap map{0, CCoinsMap::hasher{}, CCoinsMap::key_equal{}, &resource};
1070 BOOST_TEST(memusage::DynamicUsage(map) >= resource.ChunkSizeBytes());
1071
1072 map.reserve(1000);
1073
1074 // The resource has preallocated a chunk, so we should have space for at several nodes without the need to allocate anything else.
1075 const auto usage_before = memusage::DynamicUsage(map);
1076
1077 COutPoint out_point{};
1078 for (size_t i = 0; i < 1000; ++i) {
1079 out_point.n = i;
1080 map[out_point];
1081 }
1082 BOOST_TEST(usage_before == memusage::DynamicUsage(map));
1083 }
1084
1086}
1087
CScript GetScriptForDestination(const CTxDestination &dest)
Generate a Bitcoin scriptPubKey for the given CTxDestination.
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
CCoinsView that adds a memory cache for transactions to another CCoinsView.
Definition: coins.h:363
unsigned int GetCacheSize() const
Calculate the size of the cache (in number of transaction outputs)
Definition: coins.cpp:289
size_t cachedCoinsUsage
Definition: coins.h:379
CoinsCachePair m_sentinel
Definition: coins.h:375
size_t DynamicMemoryUsage() const
Calculate the size of the cache (in bytes)
Definition: coins.cpp:44
void SanityCheck() const
Run an internal sanity check on the cache data structure. *‍/.
Definition: coins.cpp:315
CCoinsMap cacheCoins
Definition: coins.h:376
CCoinsView backed by the coin database (chainstate/)
Definition: txdb.h:38
bool HaveCoin(const COutPoint &outpoint) const override
Just check whether a given outpoint is unspent.
Definition: txdb.cpp:74
Abstract view on the open txout dataset.
Definition: coins.h:310
virtual std::optional< Coin > GetCoin(const COutPoint &outpoint) const
Retrieve the Coin (unspent transaction output) for a given outpoint.
Definition: coins.cpp:16
virtual bool BatchWrite(CoinsViewCacheCursor &cursor, const uint256 &hashBlock)
Do a bulk modification (multiple Coin changes + BestBlock change).
Definition: coins.cpp:19
virtual uint256 GetBestBlock() const
Retrieve the block hash whose state this CCoinsView currently represents.
Definition: coins.cpp:17
An outpoint - a combination of a transaction hash and an index n into its vout.
Definition: transaction.h:29
uint32_t n
Definition: transaction.h:32
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:413
bool IsUnspendable() const
Returns whether the script is guaranteed to fail at execution, regardless of the initial stack.
Definition: script.h:571
The basic transaction that is broadcasted on the network and contained in blocks.
Definition: transaction.h:296
bool IsCoinBase() const
Definition: transaction.h:356
const std::vector< CTxIn > vin
Definition: transaction.h:306
An output of a transaction.
Definition: transaction.h:150
CScript scriptPubKey
Definition: transaction.h:153
CAmount nValue
Definition: transaction.h:152
Undo information for a CTransaction.
Definition: undo.h:53
std::vector< Coin > vprevout
Definition: undo.h:56
A UTXO entry.
Definition: coins.h:33
void Clear()
Definition: coins.h:48
CTxOut out
unspent transaction output
Definition: coins.h:36
bool IsSpent() const
Either this coin never existed (see e.g.
Definition: coins.h:81
uint32_t nHeight
at which height this containing transaction was included in the active block chain
Definition: coins.h:42
unsigned int fCoinBase
whether containing transaction was a coinbase
Definition: coins.h:39
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
Fast randomness source.
Definition: random.h:386
BOOST_CHECK_EXCEPTION predicates to check the specific validation error.
Definition: setup_common.h:304
static void CheckAllDataAccountedFor(const PoolResource< MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES > &resource)
Once all blocks are given back to the resource, tests that the freelists are consistent:
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
uint256 rand256() noexcept
generate a random uint256.
Definition: random.h:317
bool randbool() noexcept
Generate a random boolean.
Definition: random.h:325
uint32_t rand32() noexcept
Generate a random 32-bit integer.
Definition: random.h:314
uint64_t randbits(int bits) noexcept
Generate a random (bits)-bit integer.
Definition: random.h:204
CCoinsViewCacheTest cache
CCoinsViewCacheTest base
CCoinsView root
SingleEntryCacheTest(const CAmount base_value, const MaybeCoin &cache_coin)
constexpr bool IsNull() const
Definition: uint256.h:48
size_type size() const
Definition: prevector.h:255
void assign(size_type n, const T &val)
Definition: prevector.h:184
static transaction_identifier FromUint256(const uint256 &id)
160-bit opaque blob.
Definition: uint256.h:184
256-bit opaque blob.
Definition: uint256.h:196
static void add_coin(const CAmount &nValue, int nInput, std::vector< OutputGroup > &set)
const Coin & AccessByTxid(const CCoinsViewCache &view, const Txid &txid)
Utility function to find any unspent output with a given txid.
Definition: coins.cpp:351
std::pair< const COutPoint, CCoinsCacheEntry > CoinsCachePair
Definition: coins.h:91
std::unordered_map< COutPoint, CCoinsCacheEntry, SaltedOutpointHasher, std::equal_to< COutPoint >, PoolAllocator< CoinsCachePair, sizeof(CoinsCachePair)+sizeof(void *) *4 > > CCoinsMap
PoolAllocator's MAX_BLOCK_SIZE_BYTES parameter here uses sizeof the data, and adds the size of 4 poin...
Definition: coins.h:229
CCoinsMap::allocator_type::ResourceType CCoinsMapMemoryResource
Definition: coins.h:231
constexpr CAmount VALUE2
BOOST_AUTO_TEST_CASE(ccoins_serialization)
constexpr MaybeCoin VALUE2_DIRTY
constexpr CAmount ABSENT
std::optional< CoinEntry > MaybeCoin
constexpr MaybeCoin VALUE2_CLEAN
constexpr MaybeCoin MISSING
static MaybeCoin GetCoinsMapEntry(const CCoinsMap &map, const COutPoint &outp=OUTPOINT)
static const COutPoint OUTPOINT
constexpr MaybeCoin VALUE2_DIRTY_FRESH
static void WriteCoinsViewEntry(CCoinsView &view, const MaybeCoin &cache_coin)
static void CheckWriteCoins(const MaybeCoin &parent, const MaybeCoin &child, const CoinOrError &expected)
int ApplyTxInUndo(Coin &&undo, CCoinsViewCache &view, const COutPoint &out)
Restore the UTXO in a Coin at a given COutPoint.
static const unsigned int NUM_SIMULATION_ITERATIONS
constexpr MaybeCoin VALUE1_CLEAN
constexpr CAmount VALUE1
constexpr MaybeCoin SPENT_DIRTY_FRESH
constexpr MaybeCoin SPENT_CLEAN
constexpr auto EX_OVERWRITE_UNSPENT
constexpr MaybeCoin VALUE1_DIRTY
constexpr MaybeCoin VALUE1_FRESH
static size_t InsertCoinsMapEntry(CCoinsMap &map, CoinsCachePair &sentinel, const CoinEntry &cache_coin)
static void CheckSpendCoins(const CAmount base_value, const MaybeCoin &cache_coin, const MaybeCoin &expected)
void UpdateCoins(const CTransaction &tx, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight)
constexpr CAmount VALUE3
constexpr MaybeCoin VALUE2_FRESH
constexpr MaybeCoin VALUE3_DIRTY_FRESH
static void CheckAccessCoin(const CAmount base_value, const MaybeCoin &cache_coin, const MaybeCoin &expected)
constexpr MaybeCoin VALUE3_DIRTY
constexpr MaybeCoin VALUE1_DIRTY_FRESH
constexpr MaybeCoin SPENT_DIRTY
constexpr auto EX_FRESH_MISAPPLIED
std::variant< MaybeCoin, std::string > CoinOrError
static void SetCoinsValue(const CAmount value, Coin &coin)
BOOST_FIXTURE_TEST_CASE(coins_cache_base_simulation_test, CacheTest)
constexpr MaybeCoin SPENT_FRESH
constexpr CAmount SPENT
static void CheckAddCoin(const CAmount base_value, const MaybeCoin &cache_coin, const CAmount modify_value, const CoinOrError &expected, const bool coinbase)
BOOST_FIXTURE_TEST_SUITE(cuckoocache_tests, BasicTestingSetup)
Test Suite for CuckooCache.
BOOST_AUTO_TEST_SUITE_END()
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
unsigned int nHeight
static bool sanity_check(const std::vector< CTransactionRef > &transactions, const std::map< COutPoint, CAmount > &bumpfees)
static size_t DynamicUsage(const int8_t &v)
Dynamic memory usage for built-in types is zero.
Definition: memusage.h:31
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:384
bool operator==(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:607
#define BOOST_CHECK_THROW(stmt, excMatch)
Definition: object.cpp:19
#define BOOST_CHECK_EQUAL(v1, v2)
Definition: object.cpp:18
#define BOOST_CHECK(expr)
Definition: object.cpp:17
@ OP_RETURN
Definition: script.h:111
#define VARINT(obj)
Definition: serialize.h:491
Basic testing setup.
Definition: setup_common.h:64
FastRandomContext m_rng
Definition: setup_common.h:68
A Coin in one level of the coins database caching hierarchy.
Definition: coins.h:109
Coin coin
Definition: coins.h:147
static void SetFresh(CoinsCachePair &pair, CoinsCachePair &sentinel) noexcept
Definition: coins.h:178
static void SetDirty(CoinsCachePair &pair, CoinsCachePair &sentinel) noexcept
Definition: coins.h:177
A mutable version of CTransaction.
Definition: transaction.h:378
std::vector< CTxOut > vout
Definition: transaction.h:380
Txid GetHash() const
Compute the hash of this CMutableTransaction.
Definition: transaction.cpp:69
std::vector< CTxIn > vin
Definition: transaction.h:379
void SimulationTest(CCoinsView *base, bool fake_best_block)
const CAmount value
constexpr bool IsDirty() const
friend std::ostream & operator<<(std::ostream &os, const CoinEntry &e)
bool operator==(const CoinEntry &o) const =default
constexpr bool IsDirtyFresh() const
State
@ DIRTY
@ FRESH
@ CLEAN
@ DIRTY_FRESH
static constexpr State ToState(const bool is_dirty, const bool is_fresh)
constexpr bool IsFresh() const
const State state
constexpr CoinEntry(const CAmount v, const State s)
Cursor for iterating over the linked list of flagged entries in CCoinsViewCache.
Definition: coins.h:266
CoinsCachePair * NextAndMaybeErase(CoinsCachePair &current) noexcept
Return the next entry after current, possibly erasing current.
Definition: coins.h:284
CoinsCachePair * Begin() const noexcept
Definition: coins.h:280
CoinsCachePair * End() const noexcept
Definition: coins.h:281
void TestFlushBehavior(CCoinsViewCacheTest *view, CCoinsViewDB &base, std::vector< std::unique_ptr< CCoinsViewCacheTest > > &all_caches, bool do_erasing_flush)
For CCoinsViewCache instances backed by either another cache instance or leveldb, test cache behavior...
Coin MakeCoin()
std::map< COutPoint, std::tuple< CTransaction, CTxUndo, Coin > > UtxoData
UtxoData::iterator FindRandomFrom(const std::set< COutPoint > &utxoSet)
UtxoData utxoData
@ ZEROS
Seed with a compile time constant of zeros.
CAmount RandMoney(Rng &&rng)
Definition: random.h:35
static int count
assert(!tx.IsCoinBase())