Bitcoin Core 28.99.0
P2P Digital Currency
miniscript.h
Go to the documentation of this file.
1// Copyright (c) 2019-present The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#ifndef BITCOIN_SCRIPT_MINISCRIPT_H
6#define BITCOIN_SCRIPT_MINISCRIPT_H
7
8#include <algorithm>
9#include <compare>
10#include <cstdint>
11#include <cstdlib>
12#include <iterator>
13#include <memory>
14#include <optional>
15#include <set>
16#include <stdexcept>
17#include <tuple>
18#include <utility>
19#include <vector>
20
21#include <consensus/consensus.h>
22#include <policy/policy.h>
23#include <script/interpreter.h>
24#include <script/parsing.h>
25#include <script/script.h>
26#include <serialize.h>
27#include <span.h>
28#include <util/check.h>
29#include <util/strencodings.h>
30#include <util/string.h>
31#include <util/vector.h>
32
33namespace miniscript {
34
126class Type {
128 uint32_t m_flags;
129
131 explicit constexpr Type(uint32_t flags) noexcept : m_flags(flags) {}
132
133public:
135 static consteval Type Make(uint32_t flags) noexcept { return Type(flags); }
136
138 constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
139
141 constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
142
144 constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
145
147 constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
148
150 constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
151
153 constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
154};
155
157inline consteval Type operator""_mst(const char* c, size_t l)
158{
159 Type typ{Type::Make(0)};
160
161 for (const char *p = c; p < c + l; p++) {
162 typ = typ | Type::Make(
163 *p == 'B' ? 1 << 0 : // Base type
164 *p == 'V' ? 1 << 1 : // Verify type
165 *p == 'K' ? 1 << 2 : // Key type
166 *p == 'W' ? 1 << 3 : // Wrapped type
167 *p == 'z' ? 1 << 4 : // Zero-arg property
168 *p == 'o' ? 1 << 5 : // One-arg property
169 *p == 'n' ? 1 << 6 : // Nonzero arg property
170 *p == 'd' ? 1 << 7 : // Dissatisfiable property
171 *p == 'u' ? 1 << 8 : // Unit property
172 *p == 'e' ? 1 << 9 : // Expression property
173 *p == 'f' ? 1 << 10 : // Forced property
174 *p == 's' ? 1 << 11 : // Safe property
175 *p == 'm' ? 1 << 12 : // Nonmalleable property
176 *p == 'x' ? 1 << 13 : // Expensive verify
177 *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
178 *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
179 *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
180 *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
181 *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
182 (throw std::logic_error("Unknown character in _mst literal"), 0)
183 );
184 }
185
186 return typ;
187}
188
189using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
190
191template<typename Key> struct Node;
192template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>;
193
195template<typename Key, typename... Args>
196NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); }
197
199enum class Fragment {
200 JUST_0,
201 JUST_1,
202 PK_K,
203 PK_H,
204 OLDER,
205 AFTER,
206 SHA256,
207 HASH256,
208 RIPEMD160,
209 HASH160,
210 WRAP_A,
211 WRAP_S,
212 WRAP_C,
213 WRAP_D,
214 WRAP_V,
215 WRAP_J,
216 WRAP_N,
217 AND_V,
218 AND_B,
219 OR_B,
220 OR_C,
221 OR_D,
222 OR_I,
223 ANDOR,
224 THRESH,
225 MULTI,
226 MULTI_A,
227 // AND_N(X,Y) is represented as ANDOR(X,Y,0)
228 // WRAP_T(X) is represented as AND_V(X,1)
229 // WRAP_L(X) is represented as OR_I(0,X)
230 // WRAP_U(X) is represented as OR_I(X,0)
231};
232
233enum class Availability {
234 NO,
235 YES,
236 MAYBE,
237};
238
240 P2WSH,
241 TAPSCRIPT,
242};
243
245constexpr bool IsTapscript(MiniscriptContext ms_ctx)
246{
247 switch (ms_ctx) {
248 case MiniscriptContext::P2WSH: return false;
249 case MiniscriptContext::TAPSCRIPT: return true;
250 }
251 assert(false);
252}
253
254namespace internal {
255
257static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
258
260constexpr uint32_t TX_OVERHEAD{4 + 4};
262constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
264constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
270constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
271{
272 if (IsTapscript(ms_ctx)) {
273 // Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
274 // bounded by the maximum standard size of a spending transaction. Let the maximum script
275 // size conservatively be small enough such that even a maximum sized witness and a reasonably
276 // sized spending transaction can spend an output paying to this script without running into
277 // the maximum standard tx size limit.
279 return max_size - GetSizeOfCompactSize(max_size);
280 }
282}
283
285Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
286
288size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
289
292
302 bool has_sig = false;
304 bool malleable = false;
307 bool non_canon = false;
309 size_t size = 0;
311 std::vector<std::vector<unsigned char>> stack;
313 InputStack() = default;
315 InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
323 InputStack& SetMalleable(bool x = true);
328};
329
331static const auto ZERO = InputStack(std::vector<unsigned char>());
333static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
335static const auto ONE = InputStack(Vector((unsigned char)1));
337static const auto EMPTY = InputStack();
340
344
345 template<typename A, typename B>
346 InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
347};
348
350template<typename I>
351struct MaxInt {
352 const bool valid;
353 const I value;
354
355 MaxInt() : valid(false), value(0) {}
356 MaxInt(I val) : valid(true), value(val) {}
357
358 friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
359 if (!a.valid || !b.valid) return {};
360 return a.value + b.value;
361 }
362
363 friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
364 if (!a.valid) return b;
365 if (!b.valid) return a;
366 return std::max(a.value, b.value);
367 }
368};
369
370struct Ops {
372 uint32_t count;
377
378 Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
379};
380
422struct SatInfo {
424 const bool valid;
426 const int32_t netdiff;
428 const int32_t exec;
429
431 constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
432
434 constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
435 valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
436
438 constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
439 {
440 // Union with an empty set is itself.
441 if (!a.valid) return b;
442 if (!b.valid) return a;
443 // Otherwise the netdiff and exec of the union is the maximum of the individual values.
444 return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
445 }
446
448 constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
449 {
450 // Concatenation with an empty set yields an empty set.
451 if (!a.valid || !b.valid) return {};
452 // Otherwise, the maximum stack size difference for the combined scripts is the sum of the
453 // netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
454 // maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
455 return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
456 }
457
459 static constexpr SatInfo Empty() noexcept { return {0, 0}; }
461 static constexpr SatInfo Push() noexcept { return {-1, 0}; }
463 static constexpr SatInfo Hash() noexcept { return {0, 0}; }
465 static constexpr SatInfo Nop() noexcept { return {0, 0}; }
467 static constexpr SatInfo If() noexcept { return {1, 1}; }
469 static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
470
471 // Scripts for specific individual opcodes.
472 static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
473 static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
474 static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
475 static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
476 static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
477 static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
478 static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
479 static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
480};
481
482struct StackSize {
484
485 constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
486 constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
487};
488
494
495 WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
496};
497
498struct NoDupCheck {};
499
500} // namespace internal
501
503template<typename Key>
504struct Node {
508 const uint32_t k = 0;
510 const std::vector<Key> keys;
512 const std::vector<unsigned char> data;
514 mutable std::vector<NodeRef<Key>> subs;
517
518 /* Destroy the shared pointers iteratively to avoid a stack-overflow due to recursive calls
519 * to the subs' destructors. */
521 while (!subs.empty()) {
522 auto node = std::move(subs.back());
523 subs.pop_back();
524 while (!node->subs.empty()) {
525 subs.push_back(std::move(node->subs.back()));
526 node->subs.pop_back();
527 }
528 }
529 }
530
531private:
539 const Type typ;
541 const size_t scriptlen;
547 mutable std::optional<bool> has_duplicate_keys;
548
549
551 size_t CalcScriptLen() const {
552 size_t subsize = 0;
553 for (const auto& sub : subs) {
554 subsize += sub->ScriptSize();
555 }
556 static constexpr auto NONE_MST{""_mst};
557 Type sub0type = subs.size() > 0 ? subs[0]->GetType() : NONE_MST;
558 return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
559 }
560
561 /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
562 *
563 * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
564 * result can be thought of as first using downfn to compute a "state" for each node,
565 * from the root down to the leaves. Then upfn is used to compute a "result" for each
566 * node, from the leaves back up to the root, which is then returned. In the actual
567 * implementation, both functions are invoked in an interleaved fashion, performing a
568 * depth-first traversal of the tree.
569 *
570 * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
571 * - root is the state of the root node, of type State.
572 * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
573 * node, its state, and an index of one of its children, computes the state of that
574 * child. It can modify the state. Children of a given node will have downfn()
575 * called in order.
576 * - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>,
577 * which given a node, its state, and a Span of the results of its children,
578 * computes the result of the node. If std::nullopt is returned by upfn,
579 * TreeEvalMaybe() immediately returns std::nullopt.
580 * The return value of TreeEvalMaybe is the result of the root node.
581 *
582 * Result type cannot be bool due to the std::vector<bool> specialization.
583 */
584 template<typename Result, typename State, typename DownFn, typename UpFn>
585 std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
586 {
588 struct StackElem
589 {
590 const Node& node;
591 size_t expanded;
592 State state;
593
594 StackElem(const Node& node_, size_t exp_, State&& state_) :
595 node(node_), expanded(exp_), state(std::move(state_)) {}
596 };
597 /* Stack of tree nodes being explored. */
598 std::vector<StackElem> stack;
599 /* Results of subtrees so far. Their order and mapping to tree nodes
600 * is implicitly defined by stack. */
601 std::vector<Result> results;
602 stack.emplace_back(*this, 0, std::move(root_state));
603
604 /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
605 * State variables are omitted for simplicity.
606 *
607 * First: stack=[(A,0)] results=[]
608 * stack=[(A,1),(B,0)] results=[]
609 * stack=[(A,1)] results=[B]
610 * stack=[(A,2),(C,0)] results=[B]
611 * stack=[(A,2),(C,1),(D,0)] results=[B]
612 * stack=[(A,2),(C,1)] results=[B,D]
613 * stack=[(A,2),(C,2),(E,0)] results=[B,D]
614 * stack=[(A,2),(C,2)] results=[B,D,E]
615 * stack=[(A,2)] results=[B,C]
616 * stack=[(A,3),(F,0)] results=[B,C]
617 * stack=[(A,3)] results=[B,C,F]
618 * Final: stack=[] results=[A]
619 */
620 while (stack.size()) {
621 const Node& node = stack.back().node;
622 if (stack.back().expanded < node.subs.size()) {
623 /* We encounter a tree node with at least one unexpanded child.
624 * Expand it. By the time we hit this node again, the result of
625 * that child (and all earlier children) will be at the end of `results`. */
626 size_t child_index = stack.back().expanded++;
627 State child_state = downfn(stack.back().state, node, child_index);
628 stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
629 continue;
630 }
631 // Invoke upfn with the last node.subs.size() elements of results as input.
632 assert(results.size() >= node.subs.size());
633 std::optional<Result> result{upfn(std::move(stack.back().state), node,
634 Span<Result>{results}.last(node.subs.size()))};
635 // If evaluation returns std::nullopt, abort immediately.
636 if (!result) return {};
637 // Replace the last node.subs.size() elements of results with the new result.
638 results.erase(results.end() - node.subs.size(), results.end());
639 results.push_back(std::move(*result));
640 stack.pop_back();
641 }
642 // The final remaining results element is the root result, return it.
643 assert(results.size() == 1);
644 return std::move(results[0]);
645 }
646
649 template<typename Result, typename UpFn>
650 std::optional<Result> TreeEvalMaybe(UpFn upfn) const
651 {
652 struct DummyState {};
653 return TreeEvalMaybe<Result>(DummyState{},
654 [](DummyState, const Node&, size_t) { return DummyState{}; },
655 [&upfn](DummyState, const Node& node, Span<Result> subs) {
656 return upfn(node, subs);
657 }
658 );
659 }
660
662 template<typename Result, typename State, typename DownFn, typename UpFn>
663 Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
664 {
665 // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
666 // unconditionally dereference the result (it cannot be std::nullopt).
667 return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
668 std::forward<DownFn>(downfn),
669 [&upfn](State&& state, const Node& node, Span<Result> subs) {
670 Result res{upfn(std::move(state), node, subs)};
671 return std::optional<Result>(std::move(res));
672 }
673 ));
674 }
675
678 template<typename Result, typename UpFn>
679 Result TreeEval(UpFn upfn) const
680 {
681 struct DummyState {};
682 return std::move(*TreeEvalMaybe<Result>(DummyState{},
683 [](DummyState, const Node&, size_t) { return DummyState{}; },
684 [&upfn](DummyState, const Node& node, Span<Result> subs) {
685 Result res{upfn(node, subs)};
686 return std::optional<Result>(std::move(res));
687 }
688 ));
689 }
690
692 friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
693 {
694 std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
695 queue.emplace_back(node1, node2);
696 while (!queue.empty()) {
697 const auto& [a, b] = queue.back();
698 queue.pop_back();
699 if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
700 if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
701 if (a.subs.size() < b.subs.size()) return -1;
702 if (b.subs.size() < a.subs.size()) return 1;
703 size_t n = a.subs.size();
704 for (size_t i = 0; i < n; ++i) {
705 queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]);
706 }
707 }
708 return 0;
709 }
710
712 Type CalcType() const {
713 using namespace internal;
714
715 // THRESH has a variable number of subexpressions
716 std::vector<Type> sub_types;
717 if (fragment == Fragment::THRESH) {
718 for (const auto& sub : subs) sub_types.push_back(sub->GetType());
719 }
720 // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
721 static constexpr auto NONE_MST{""_mst};
722 Type x = subs.size() > 0 ? subs[0]->GetType() : NONE_MST;
723 Type y = subs.size() > 1 ? subs[1]->GetType() : NONE_MST;
724 Type z = subs.size() > 2 ? subs[2]->GetType() : NONE_MST;
725
726 return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
727 }
728
729public:
730 template<typename Ctx>
731 CScript ToScript(const Ctx& ctx) const
732 {
733 // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
734 // The State is a boolean: whether or not the node's script expansion is followed
735 // by an OP_VERIFY (which may need to be combined with the last script opcode).
736 auto downfn = [](bool verify, const Node& node, size_t index) {
737 // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
738 if (node.fragment == Fragment::WRAP_V) return true;
739 // The subexpression of WRAP_S, and the last subexpression of AND_V
740 // inherit the followed-by-OP_VERIFY property from the parent.
741 if (node.fragment == Fragment::WRAP_S ||
742 (node.fragment == Fragment::AND_V && index == 1)) return verify;
743 return false;
744 };
745 // The upward function computes for a node, given its followed-by-OP_VERIFY status
746 // and the CScripts of its child nodes, the CScript of the node.
747 const bool is_tapscript{IsTapscript(m_script_ctx)};
748 auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, Span<CScript> subs) -> CScript {
749 switch (node.fragment) {
750 case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
751 case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
759 case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
760 case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
762 case Fragment::WRAP_V: {
763 if (node.subs[0]->GetType() << "x"_mst) {
764 return BuildScript(std::move(subs[0]), OP_VERIFY);
765 } else {
766 return std::move(subs[0]);
767 }
768 }
770 case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
771 case Fragment::JUST_1: return BuildScript(OP_1);
772 case Fragment::JUST_0: return BuildScript(OP_0);
773 case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
774 case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
775 case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
776 case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
777 case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
778 case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
779 case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
780 case Fragment::MULTI: {
781 CHECK_NONFATAL(!is_tapscript);
783 for (const auto& key : node.keys) {
784 script = BuildScript(std::move(script), ctx.ToPKBytes(key));
785 }
786 return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
787 }
788 case Fragment::MULTI_A: {
789 CHECK_NONFATAL(is_tapscript);
790 CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
791 for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
792 script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
793 }
794 return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
795 }
796 case Fragment::THRESH: {
797 CScript script = std::move(subs[0]);
798 for (size_t i = 1; i < subs.size(); ++i) {
799 script = BuildScript(std::move(script), subs[i], OP_ADD);
800 }
801 return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
802 }
803 }
804 assert(false);
805 };
806 return TreeEval<CScript>(false, downfn, upfn);
807 }
808
809 template<typename CTx>
810 std::optional<std::string> ToString(const CTx& ctx) const {
811 // To construct the std::string representation for a Miniscript object, we use
812 // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
813 // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
814 auto downfn = [](bool, const Node& node, size_t) {
815 return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
816 node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
817 node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
818 node.fragment == Fragment::WRAP_C ||
819 (node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) ||
820 (node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) ||
821 (node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0));
822 };
823 // The upward function computes for a node, given whether its parent is a wrapper,
824 // and the string representations of its child nodes, the string representation of the node.
825 const bool is_tapscript{IsTapscript(m_script_ctx)};
826 auto upfn = [&ctx, is_tapscript](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> {
827 std::string ret = wrapped ? ":" : "";
828
829 switch (node.fragment) {
830 case Fragment::WRAP_A: return "a" + std::move(subs[0]);
831 case Fragment::WRAP_S: return "s" + std::move(subs[0]);
832 case Fragment::WRAP_C:
833 if (node.subs[0]->fragment == Fragment::PK_K) {
834 // pk(K) is syntactic sugar for c:pk_k(K)
835 auto key_str = ctx.ToString(node.subs[0]->keys[0]);
836 if (!key_str) return {};
837 return std::move(ret) + "pk(" + std::move(*key_str) + ")";
838 }
839 if (node.subs[0]->fragment == Fragment::PK_H) {
840 // pkh(K) is syntactic sugar for c:pk_h(K)
841 auto key_str = ctx.ToString(node.subs[0]->keys[0]);
842 if (!key_str) return {};
843 return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
844 }
845 return "c" + std::move(subs[0]);
846 case Fragment::WRAP_D: return "d" + std::move(subs[0]);
847 case Fragment::WRAP_V: return "v" + std::move(subs[0]);
848 case Fragment::WRAP_J: return "j" + std::move(subs[0]);
849 case Fragment::WRAP_N: return "n" + std::move(subs[0]);
850 case Fragment::AND_V:
851 // t:X is syntactic sugar for and_v(X,1).
852 if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
853 break;
854 case Fragment::OR_I:
855 if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
856 if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
857 break;
858 default: break;
859 }
860 switch (node.fragment) {
861 case Fragment::PK_K: {
862 auto key_str = ctx.ToString(node.keys[0]);
863 if (!key_str) return {};
864 return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
865 }
866 case Fragment::PK_H: {
867 auto key_str = ctx.ToString(node.keys[0]);
868 if (!key_str) return {};
869 return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
870 }
871 case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")";
872 case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")";
873 case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
874 case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
875 case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
876 case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
877 case Fragment::JUST_1: return std::move(ret) + "1";
878 case Fragment::JUST_0: return std::move(ret) + "0";
879 case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
880 case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
881 case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
882 case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
883 case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
884 case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
885 case Fragment::ANDOR:
886 // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
887 if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
888 return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
889 case Fragment::MULTI: {
890 CHECK_NONFATAL(!is_tapscript);
891 auto str = std::move(ret) + "multi(" + util::ToString(node.k);
892 for (const auto& key : node.keys) {
893 auto key_str = ctx.ToString(key);
894 if (!key_str) return {};
895 str += "," + std::move(*key_str);
896 }
897 return std::move(str) + ")";
898 }
899 case Fragment::MULTI_A: {
900 CHECK_NONFATAL(is_tapscript);
901 auto str = std::move(ret) + "multi_a(" + util::ToString(node.k);
902 for (const auto& key : node.keys) {
903 auto key_str = ctx.ToString(key);
904 if (!key_str) return {};
905 str += "," + std::move(*key_str);
906 }
907 return std::move(str) + ")";
908 }
909 case Fragment::THRESH: {
910 auto str = std::move(ret) + "thresh(" + util::ToString(node.k);
911 for (auto& sub : subs) {
912 str += "," + std::move(sub);
913 }
914 return std::move(str) + ")";
915 }
916 default: break;
917 }
918 assert(false);
919 };
920
921 return TreeEvalMaybe<std::string>(false, downfn, upfn);
922 }
923
924private:
926 switch (fragment) {
927 case Fragment::JUST_1: return {0, 0, {}};
928 case Fragment::JUST_0: return {0, {}, 0};
929 case Fragment::PK_K: return {0, 0, 0};
930 case Fragment::PK_H: return {3, 0, 0};
931 case Fragment::OLDER:
932 case Fragment::AFTER: return {1, 0, {}};
933 case Fragment::SHA256:
936 case Fragment::HASH160: return {4, 0, {}};
937 case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
938 case Fragment::AND_B: {
939 const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
940 const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
941 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
942 return {count, sat, dsat};
943 }
944 case Fragment::OR_B: {
945 const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
946 const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
947 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
948 return {count, sat, dsat};
949 }
950 case Fragment::OR_D: {
951 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
952 const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
953 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
954 return {count, sat, dsat};
955 }
956 case Fragment::OR_C: {
957 const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
958 const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
959 return {count, sat, {}};
960 }
961 case Fragment::OR_I: {
962 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
963 const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
964 const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
965 return {count, sat, dsat};
966 }
967 case Fragment::ANDOR: {
968 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
969 const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
970 const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
971 return {count, sat, dsat};
972 }
973 case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
974 case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
975 case Fragment::WRAP_S:
976 case Fragment::WRAP_C:
977 case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
978 case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
979 case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
980 case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
981 case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
982 case Fragment::THRESH: {
983 uint32_t count = 0;
984 auto sats = Vector(internal::MaxInt<uint32_t>(0));
985 for (const auto& sub : subs) {
986 count += sub->ops.count + 1;
987 auto next_sats = Vector(sats[0] + sub->ops.dsat);
988 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
989 next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
990 sats = std::move(next_sats);
991 }
992 assert(k <= sats.size());
993 return {count, sats[k], sats[0]};
994 }
995 }
996 assert(false);
997 }
998
1000 using namespace internal;
1001 switch (fragment) {
1002 case Fragment::JUST_0: return {{}, SatInfo::Push()};
1003 case Fragment::JUST_1: return {SatInfo::Push(), {}};
1004 case Fragment::OLDER:
1005 case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
1006 case Fragment::PK_K: return {SatInfo::Push()};
1007 case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
1008 case Fragment::SHA256:
1010 case Fragment::HASH256:
1011 case Fragment::HASH160: return {
1012 SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
1013 {}
1014 };
1015 case Fragment::ANDOR: {
1016 const auto& x{subs[0]->ss};
1017 const auto& y{subs[1]->ss};
1018 const auto& z{subs[2]->ss};
1019 return {
1020 (x.sat + SatInfo::If() + y.sat) | (x.dsat + SatInfo::If() + z.sat),
1021 x.dsat + SatInfo::If() + z.dsat
1022 };
1023 }
1024 case Fragment::AND_V: {
1025 const auto& x{subs[0]->ss};
1026 const auto& y{subs[1]->ss};
1027 return {x.sat + y.sat, {}};
1028 }
1029 case Fragment::AND_B: {
1030 const auto& x{subs[0]->ss};
1031 const auto& y{subs[1]->ss};
1032 return {x.sat + y.sat + SatInfo::BinaryOp(), x.dsat + y.dsat + SatInfo::BinaryOp()};
1033 }
1034 case Fragment::OR_B: {
1035 const auto& x{subs[0]->ss};
1036 const auto& y{subs[1]->ss};
1037 return {
1038 ((x.sat + y.dsat) | (x.dsat + y.sat)) + SatInfo::BinaryOp(),
1039 x.dsat + y.dsat + SatInfo::BinaryOp()
1040 };
1041 }
1042 case Fragment::OR_C: {
1043 const auto& x{subs[0]->ss};
1044 const auto& y{subs[1]->ss};
1045 return {(x.sat + SatInfo::If()) | (x.dsat + SatInfo::If() + y.sat), {}};
1046 }
1047 case Fragment::OR_D: {
1048 const auto& x{subs[0]->ss};
1049 const auto& y{subs[1]->ss};
1050 return {
1051 (x.sat + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.sat),
1052 x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.dsat
1053 };
1054 }
1055 case Fragment::OR_I: {
1056 const auto& x{subs[0]->ss};
1057 const auto& y{subs[1]->ss};
1058 return {SatInfo::If() + (x.sat | y.sat), SatInfo::If() + (x.dsat | y.dsat)};
1059 }
1060 // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
1061 // signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
1062 // n itself, and ends with 1 stack element (success or failure). Thus, it net removes
1063 // k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
1064 case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
1065 // multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
1066 // signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
1067 // removes n-1 elements (from n to 1) while reaching n more than it ends with.
1068 case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
1069 case Fragment::WRAP_A:
1070 case Fragment::WRAP_N:
1071 case Fragment::WRAP_S: return subs[0]->ss;
1072 case Fragment::WRAP_C: return {
1073 subs[0]->ss.sat + SatInfo::OP_CHECKSIG(),
1074 subs[0]->ss.dsat + SatInfo::OP_CHECKSIG()
1075 };
1076 case Fragment::WRAP_D: return {
1077 SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.sat,
1078 SatInfo::OP_DUP() + SatInfo::If()
1079 };
1080 case Fragment::WRAP_V: return {subs[0]->ss.sat + SatInfo::OP_VERIFY(), {}};
1081 case Fragment::WRAP_J: return {
1082 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.sat,
1083 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
1084 };
1085 case Fragment::THRESH: {
1086 // sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
1087 auto sats = Vector(SatInfo::Empty());
1088 for (size_t i = 0; i < subs.size(); ++i) {
1089 // Loop over the subexpressions, processing them one by one. After adding
1090 // element i we need to add OP_ADD (if i>0).
1091 auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
1092 // Construct a variable that will become the next sats, starting with index 0.
1093 auto next_sats = Vector(sats[0] + subs[i]->ss.dsat + add);
1094 // Then loop to construct next_sats[1..i].
1095 for (size_t j = 1; j < sats.size(); ++j) {
1096 next_sats.push_back(((sats[j] + subs[i]->ss.dsat) | (sats[j - 1] + subs[i]->ss.sat)) + add);
1097 }
1098 // Finally construct next_sats[i+1].
1099 next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.sat + add);
1100 // Switch over.
1101 sats = std::move(next_sats);
1102 }
1103 // To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
1104 // cases a push of k and an OP_EQUAL follow.
1105 return {
1106 sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
1107 sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
1108 };
1109 }
1110 }
1111 assert(false);
1112 }
1113
1115 const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
1116 const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
1117 switch (fragment) {
1118 case Fragment::JUST_0: return {{}, 0};
1119 case Fragment::JUST_1:
1120 case Fragment::OLDER:
1121 case Fragment::AFTER: return {0, {}};
1122 case Fragment::PK_K: return {sig_size, 1};
1123 case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
1124 case Fragment::SHA256:
1126 case Fragment::HASH256:
1127 case Fragment::HASH160: return {1 + 32, {}};
1128 case Fragment::ANDOR: {
1129 const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)};
1130 const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat};
1131 return {sat, dsat};
1132 }
1133 case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}};
1134 case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat};
1135 case Fragment::OR_B: {
1136 const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)};
1137 const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat};
1138 return {sat, dsat};
1139 }
1140 case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}};
1141 case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat};
1142 case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)};
1143 case Fragment::MULTI: return {k * sig_size + 1, k + 1};
1144 case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
1145 case Fragment::WRAP_A:
1146 case Fragment::WRAP_N:
1147 case Fragment::WRAP_S:
1148 case Fragment::WRAP_C: return subs[0]->ws;
1149 case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1};
1150 case Fragment::WRAP_V: return {subs[0]->ws.sat, {}};
1151 case Fragment::WRAP_J: return {subs[0]->ws.sat, 1};
1152 case Fragment::THRESH: {
1153 auto sats = Vector(internal::MaxInt<uint32_t>(0));
1154 for (const auto& sub : subs) {
1155 auto next_sats = Vector(sats[0] + sub->ws.dsat);
1156 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat));
1157 next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat);
1158 sats = std::move(next_sats);
1159 }
1160 assert(k <= sats.size());
1161 return {sats[k], sats[0]};
1162 }
1163 }
1164 assert(false);
1165 }
1166
1167 template<typename Ctx>
1168 internal::InputResult ProduceInput(const Ctx& ctx) const {
1169 using namespace internal;
1170
1171 // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
1172 // given those of its subnodes.
1173 auto helper = [&ctx](const Node& node, Span<InputResult> subres) -> InputResult {
1174 switch (node.fragment) {
1175 case Fragment::PK_K: {
1176 std::vector<unsigned char> sig;
1177 Availability avail = ctx.Sign(node.keys[0], sig);
1178 return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
1179 }
1180 case Fragment::PK_H: {
1181 std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
1182 Availability avail = ctx.Sign(node.keys[0], sig);
1183 return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
1184 }
1185 case Fragment::MULTI_A: {
1186 // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1187 // In the loop below, these stacks are built up using a dynamic programming approach.
1188 std::vector<InputStack> sats = Vector(EMPTY);
1189 for (size_t i = 0; i < node.keys.size(); ++i) {
1190 // Get the signature for the i'th key in reverse order (the signature for the first key needs to
1191 // be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
1192 std::vector<unsigned char> sig;
1193 Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
1194 // Compute signature stack for just this key.
1195 auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
1196 // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1197 // next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
1198 // for the current (i'th) key. The very last element needs all signatures filled.
1199 std::vector<InputStack> next_sats;
1200 next_sats.push_back(sats[0] + ZERO);
1201 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
1202 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
1203 // Switch over.
1204 sats = std::move(next_sats);
1205 }
1206 // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
1207 // satisfying 0 keys.
1208 auto& nsat{sats[0]};
1209 assert(node.k != 0);
1210 assert(node.k <= sats.size());
1211 return {std::move(nsat), std::move(sats[node.k])};
1212 }
1213 case Fragment::MULTI: {
1214 // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1215 // In the loop below, these stacks are built up using a dynamic programming approach.
1216 // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
1217 std::vector<InputStack> sats = Vector(ZERO);
1218 for (size_t i = 0; i < node.keys.size(); ++i) {
1219 std::vector<unsigned char> sig;
1220 Availability avail = ctx.Sign(node.keys[i], sig);
1221 // Compute signature stack for just the i'th key.
1222 auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
1223 // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1224 // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
1225 // current (i'th) key. The very last element needs all signatures filled.
1226 std::vector<InputStack> next_sats;
1227 next_sats.push_back(sats[0]);
1228 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
1229 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
1230 // Switch over.
1231 sats = std::move(next_sats);
1232 }
1233 // The dissatisfaction consists of k+1 stack elements all equal to 0.
1234 InputStack nsat = ZERO;
1235 for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
1236 assert(node.k <= sats.size());
1237 return {std::move(nsat), std::move(sats[node.k])};
1238 }
1239 case Fragment::THRESH: {
1240 // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
1241 // In the loop below, these stacks are built up using a dynamic programming approach.
1242 // sats[0] starts off empty.
1243 std::vector<InputStack> sats = Vector(EMPTY);
1244 for (size_t i = 0; i < subres.size(); ++i) {
1245 // Introduce an alias for the i'th last satisfaction/dissatisfaction.
1246 auto& res = subres[subres.size() - i - 1];
1247 // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
1248 // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
1249 // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
1250 std::vector<InputStack> next_sats;
1251 next_sats.push_back(sats[0] + res.nsat);
1252 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
1253 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
1254 // Switch over.
1255 sats = std::move(next_sats);
1256 }
1257 // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
1258 // is computed by gathering all sats[i].nsat for i != k.
1259 InputStack nsat = INVALID;
1260 for (size_t i = 0; i < sats.size(); ++i) {
1261 // i==k is the satisfaction; i==0 is the canonical dissatisfaction;
1262 // the rest are non-canonical (a no-signature dissatisfaction - the i=0
1263 // form - is always available) and malleable (due to overcompleteness).
1264 // Marking the solutions malleable here is not strictly necessary, as they
1265 // should already never be picked in non-malleable solutions due to the
1266 // availability of the i=0 form.
1267 if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
1268 // Include all dissatisfactions (even these non-canonical ones) in nsat.
1269 if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
1270 }
1271 assert(node.k <= sats.size());
1272 return {std::move(nsat), std::move(sats[node.k])};
1273 }
1274 case Fragment::OLDER: {
1275 return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
1276 }
1277 case Fragment::AFTER: {
1278 return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
1279 }
1280 case Fragment::SHA256: {
1281 std::vector<unsigned char> preimage;
1282 Availability avail = ctx.SatSHA256(node.data, preimage);
1283 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1284 }
1285 case Fragment::RIPEMD160: {
1286 std::vector<unsigned char> preimage;
1287 Availability avail = ctx.SatRIPEMD160(node.data, preimage);
1288 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1289 }
1290 case Fragment::HASH256: {
1291 std::vector<unsigned char> preimage;
1292 Availability avail = ctx.SatHASH256(node.data, preimage);
1293 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1294 }
1295 case Fragment::HASH160: {
1296 std::vector<unsigned char> preimage;
1297 Availability avail = ctx.SatHASH160(node.data, preimage);
1298 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1299 }
1300 case Fragment::AND_V: {
1301 auto& x = subres[0], &y = subres[1];
1302 // As the dissatisfaction here only consist of a single option, it doesn't
1303 // actually need to be listed (it's not required for reasoning about malleability of
1304 // other options), and is never required (no valid miniscript relies on the ability
1305 // to satisfy the type V left subexpression). It's still listed here for
1306 // completeness, as a hypothetical (not currently implemented) satisfier that doesn't
1307 // care about malleability might in some cases prefer it still.
1308 return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
1309 }
1310 case Fragment::AND_B: {
1311 auto& x = subres[0], &y = subres[1];
1312 // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
1313 // as malleable. While they are definitely malleable, they are also non-canonical due
1314 // to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
1315 // option. Because of that, the 2nd and 3rd option will never be chosen, even if they
1316 // weren't marked as malleable.
1317 return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
1318 }
1319 case Fragment::OR_B: {
1320 auto& x = subres[0], &z = subres[1];
1321 // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
1322 return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
1323 }
1324 case Fragment::OR_C: {
1325 auto& x = subres[0], &z = subres[1];
1326 return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
1327 }
1328 case Fragment::OR_D: {
1329 auto& x = subres[0], &z = subres[1];
1330 return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
1331 }
1332 case Fragment::OR_I: {
1333 auto& x = subres[0], &z = subres[1];
1334 return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
1335 }
1336 case Fragment::ANDOR: {
1337 auto& x = subres[0], &y = subres[1], &z = subres[2];
1338 return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
1339 }
1340 case Fragment::WRAP_A:
1341 case Fragment::WRAP_S:
1342 case Fragment::WRAP_C:
1343 case Fragment::WRAP_N:
1344 return std::move(subres[0]);
1345 case Fragment::WRAP_D: {
1346 auto &x = subres[0];
1347 return {ZERO, x.sat + ONE};
1348 }
1349 case Fragment::WRAP_J: {
1350 auto &x = subres[0];
1351 // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
1352 // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
1353 // if a dissatisfaction with a top zero element is found, we don't know whether another one with a
1354 // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
1355 // dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
1356 return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
1357 }
1358 case Fragment::WRAP_V: {
1359 auto &x = subres[0];
1360 return {INVALID, std::move(x.sat)};
1361 }
1362 case Fragment::JUST_0: return {EMPTY, INVALID};
1363 case Fragment::JUST_1: return {INVALID, EMPTY};
1364 }
1365 assert(false);
1366 return {INVALID, INVALID};
1367 };
1368
1369 auto tester = [&helper](const Node& node, Span<InputResult> subres) -> InputResult {
1370 auto ret = helper(node, subres);
1371
1372 // Do a consistency check between the satisfaction code and the type checker
1373 // (the actual satisfaction code in ProduceInputHelper does not use GetType)
1374
1375 // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
1376 if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 0);
1377 if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 0);
1378
1379 // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
1380 if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() == 1);
1381 if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() == 1);
1382
1383 // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
1384 // the top element cannot be 0.
1385 if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(ret.sat.stack.size() >= 1);
1386 if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.stack.size() >= 1);
1387 if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.stack.back().empty());
1388
1389 // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
1390 // it must be canonical.
1391 if (node.GetType() << "d"_mst) assert(ret.nsat.available != Availability::NO);
1392 if (node.GetType() << "d"_mst) assert(!ret.nsat.has_sig);
1393 if (node.GetType() << "d"_mst && !ret.nsat.malleable) assert(!ret.nsat.non_canon);
1394
1395 // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
1396 if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) assert(ret.nsat.has_sig);
1397 if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) assert(ret.sat.has_sig);
1398
1399 // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
1400 if (node.GetType() << "me"_mst) assert(ret.nsat.available != Availability::NO);
1401 if (node.GetType() << "me"_mst) assert(!ret.nsat.malleable);
1402
1403 // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
1404 if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) assert(!ret.sat.malleable);
1405
1406 // If a non-malleable satisfaction exists, it must be canonical.
1407 if (ret.sat.available != Availability::NO && !ret.sat.malleable) assert(!ret.sat.non_canon);
1408
1409 return ret;
1410 };
1411
1412 return TreeEval<InputResult>(tester);
1413 }
1414
1415public:
1421 template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
1422 {
1423 // We cannot use a lambda here, as lambdas are non assignable, and the set operations
1424 // below require moving the comparators around.
1425 struct Comp {
1426 const Ctx* ctx_ptr;
1427 Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
1428 bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
1429 };
1430
1431 // state in the recursive computation:
1432 // - std::nullopt means "this node has duplicates"
1433 // - an std::set means "this node has no duplicate keys, and they are: ...".
1434 using keyset = std::set<Key, Comp>;
1435 using state = std::optional<keyset>;
1436
1437 auto upfn = [&ctx](const Node& node, Span<state> subs) -> state {
1438 // If this node is already known to have duplicates, nothing left to do.
1439 if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
1440
1441 // Check if one of the children is already known to have duplicates.
1442 for (auto& sub : subs) {
1443 if (!sub.has_value()) {
1444 node.has_duplicate_keys = true;
1445 return {};
1446 }
1447 }
1448
1449 // Start building the set of keys involved in this node and children.
1450 // Start by keys in this node directly.
1451 size_t keys_count = node.keys.size();
1452 keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
1453 if (key_set.size() != keys_count) {
1454 // It already has duplicates; bail out.
1455 node.has_duplicate_keys = true;
1456 return {};
1457 }
1458
1459 // Merge the keys from the children into this set.
1460 for (auto& sub : subs) {
1461 keys_count += sub->size();
1462 // Small optimization: std::set::merge is linear in the size of the second arg but
1463 // logarithmic in the size of the first.
1464 if (key_set.size() < sub->size()) std::swap(key_set, *sub);
1465 key_set.merge(*sub);
1466 if (key_set.size() != keys_count) {
1467 node.has_duplicate_keys = true;
1468 return {};
1469 }
1470 }
1471
1472 node.has_duplicate_keys = false;
1473 return key_set;
1474 };
1475
1476 TreeEval<state>(upfn);
1477 }
1478
1480 size_t ScriptSize() const { return scriptlen; }
1481
1483 std::optional<uint32_t> GetOps() const {
1484 if (!ops.sat.valid) return {};
1485 return ops.count + ops.sat.value;
1486 }
1487
1489 uint32_t GetStaticOps() const { return ops.count; }
1490
1492 bool CheckOpsLimit() const {
1493 if (IsTapscript(m_script_ctx)) return true;
1494 if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
1495 return true;
1496 }
1497
1499 bool IsBKW() const {
1500 return !((GetType() & "BKW"_mst) == ""_mst);
1501 }
1502
1504 std::optional<uint32_t> GetStackSize() const {
1505 if (!ss.sat.valid) return {};
1506 return ss.sat.netdiff + static_cast<int32_t>(IsBKW());
1507 }
1508
1510 std::optional<uint32_t> GetExecStackSize() const {
1511 if (!ss.sat.valid) return {};
1512 return ss.sat.exec + static_cast<int32_t>(IsBKW());
1513 }
1514
1516 bool CheckStackSize() const {
1517 // Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
1518 // into the maximum stack size while executing the script. Make sure it doesn't happen.
1519 if (IsTapscript(m_script_ctx)) {
1520 if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
1521 return true;
1522 }
1523 if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
1524 return true;
1525 }
1526
1528 bool IsNotSatisfiable() const { return !GetStackSize(); }
1529
1532 std::optional<uint32_t> GetWitnessSize() const {
1533 if (!ws.sat.valid) return {};
1534 return ws.sat.value;
1535 }
1536
1538 Type GetType() const { return typ; }
1539
1541 MiniscriptContext GetMsCtx() const { return m_script_ctx; }
1542
1544 const Node* FindInsaneSub() const {
1545 return TreeEval<const Node*>([](const Node& node, Span<const Node*> subs) -> const Node* {
1546 for (auto& sub: subs) if (sub) return sub;
1547 if (!node.IsSaneSubexpression()) return &node;
1548 return nullptr;
1549 });
1550 }
1551
1554 template<typename F>
1555 bool IsSatisfiable(F fn) const
1556 {
1557 // TreeEval() doesn't support bool as NodeType, so use int instead.
1558 return TreeEval<int>([&fn](const Node& node, Span<int> subs) -> bool {
1559 switch (node.fragment) {
1560 case Fragment::JUST_0:
1561 return false;
1562 case Fragment::JUST_1:
1563 return true;
1564 case Fragment::PK_K:
1565 case Fragment::PK_H:
1566 case Fragment::MULTI:
1567 case Fragment::MULTI_A:
1568 case Fragment::AFTER:
1569 case Fragment::OLDER:
1570 case Fragment::HASH256:
1571 case Fragment::HASH160:
1572 case Fragment::SHA256:
1573 case Fragment::RIPEMD160:
1574 return bool{fn(node)};
1575 case Fragment::ANDOR:
1576 return (subs[0] && subs[1]) || subs[2];
1577 case Fragment::AND_V:
1578 case Fragment::AND_B:
1579 return subs[0] && subs[1];
1580 case Fragment::OR_B:
1581 case Fragment::OR_C:
1582 case Fragment::OR_D:
1583 case Fragment::OR_I:
1584 return subs[0] || subs[1];
1585 case Fragment::THRESH:
1586 return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
1587 default: // wrappers
1588 assert(subs.size() == 1);
1589 return subs[0];
1590 }
1591 });
1592 }
1593
1595 bool IsValid() const {
1596 if (GetType() == ""_mst) return false;
1597 return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
1598 }
1599
1601 bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
1602
1604 bool IsNonMalleable() const { return GetType() << "m"_mst; }
1605
1607 bool NeedsSignature() const { return GetType() << "s"_mst; }
1608
1610 bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
1611
1613 bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
1614
1616 bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
1617
1619 bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
1620
1622 bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
1623
1628 template<typename Ctx>
1629 Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
1630 auto ret = ProduceInput(ctx);
1631 if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
1632 stack = std::move(ret.sat.stack);
1633 return ret.sat.available;
1634 }
1635
1637 bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
1638
1639 // Constructors with various argument combinations, which bypass the duplicate key check.
1640 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1641 : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1642 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1643 : fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1644 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
1645 : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1646 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
1647 : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1648 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
1649 : fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1650 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val = 0)
1651 : fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1652
1653 // Constructors with various argument combinations, which do perform the duplicate key check.
1654 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1655 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
1656 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1657 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
1658 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
1659 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
1660 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
1661 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
1662 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
1663 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
1664 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0)
1665 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
1666};
1667
1668namespace internal {
1669
1670enum class ParseContext {
1674 EXPR,
1675
1677 SWAP,
1679 ALT,
1681 CHECK,
1683 DUP_IF,
1685 VERIFY,
1687 NON_ZERO,
1691 WRAP_U,
1693 WRAP_T,
1694
1696 AND_N,
1698 AND_V,
1700 AND_B,
1702 ANDOR,
1704 OR_B,
1706 OR_C,
1708 OR_D,
1710 OR_I,
1711
1716 THRESH,
1717
1719 COMMA,
1722};
1723
1724int FindNextChar(Span<const char> in, const char m);
1725
1727template<typename Key, typename Ctx>
1728std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx)
1729{
1730 int key_size = FindNextChar(in, ')');
1731 if (key_size < 1) return {};
1732 auto key = ctx.FromString(in.begin(), in.begin() + key_size);
1733 if (!key) return {};
1734 return {{std::move(*key), key_size}};
1735}
1736
1738template<typename Ctx>
1739std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size,
1740 const Ctx& ctx)
1741{
1742 int hash_size = FindNextChar(in, ')');
1743 if (hash_size < 1) return {};
1744 std::string val = std::string(in.begin(), in.begin() + hash_size);
1745 if (!IsHex(val)) return {};
1746 auto hash = ParseHex(val);
1747 if (hash.size() != expected_size) return {};
1748 return {{std::move(hash), hash_size}};
1749}
1750
1752template<typename Key>
1753void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
1754{
1755 NodeRef<Key> child = std::move(constructed.back());
1756 constructed.pop_back();
1757 if (reverse) {
1758 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back())));
1759 } else {
1760 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child)));
1761 }
1762}
1763
1769template<typename Key, typename Ctx>
1770inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
1771{
1772 using namespace script;
1773
1774 // Account for the minimum script size for all parsed fragments so far. It "borrows" 1
1775 // script byte from all leaf nodes, counting it instead whenever a space for a recursive
1776 // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
1777 // increment the script_size by at least one, except for:
1778 // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
1779 // This is not an issue however, as "space" for them has to be created by combinators,
1780 // which do increment script_size.
1781 // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
1782 // (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
1783 // to be interleaved with other fragments to be valid, so this is not a concern.
1784 size_t script_size{1};
1785 size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
1786
1787 // The two integers are used to hold state for thresh()
1788 std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
1789 std::vector<NodeRef<Key>> constructed;
1790
1791 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1792
1793 // Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
1794 const auto parse_multi_exp = [&](Span<const char>& in, const bool is_multi_a) -> bool {
1795 const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
1796 const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
1797 if (ctx.MsContext() != required_ctx) return false;
1798 // Get threshold
1799 int next_comma = FindNextChar(in, ',');
1800 if (next_comma < 1) return false;
1801 const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.begin(), next_comma))};
1802 if (!k_to_integral.has_value()) return false;
1803 const int64_t k{k_to_integral.value()};
1804 in = in.subspan(next_comma + 1);
1805 // Get keys. It is compatible for both compressed and x-only keys.
1806 std::vector<Key> keys;
1807 while (next_comma != -1) {
1808 next_comma = FindNextChar(in, ',');
1809 int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
1810 if (key_length < 1) return false;
1811 auto key = ctx.FromString(in.begin(), in.begin() + key_length);
1812 if (!key) return false;
1813 keys.push_back(std::move(*key));
1814 in = in.subspan(key_length + 1);
1815 }
1816 if (keys.size() < 1 || keys.size() > max_keys) return false;
1817 if (k < 1 || k > (int64_t)keys.size()) return false;
1818 if (is_multi_a) {
1819 // (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
1820 script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
1821 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k));
1822 } else {
1823 script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
1824 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k));
1825 }
1826 return true;
1827 };
1828
1829 while (!to_parse.empty()) {
1830 if (script_size > max_size) return {};
1831
1832 // Get the current context we are decoding within
1833 auto [cur_context, n, k] = to_parse.back();
1834 to_parse.pop_back();
1835
1836 switch (cur_context) {
1837 case ParseContext::WRAPPED_EXPR: {
1838 std::optional<size_t> colon_index{};
1839 for (size_t i = 1; i < in.size(); ++i) {
1840 if (in[i] == ':') {
1841 colon_index = i;
1842 break;
1843 }
1844 if (in[i] < 'a' || in[i] > 'z') break;
1845 }
1846 // If there is no colon, this loop won't execute
1847 bool last_was_v{false};
1848 for (size_t j = 0; colon_index && j < *colon_index; ++j) {
1849 if (script_size > max_size) return {};
1850 if (in[j] == 'a') {
1851 script_size += 2;
1852 to_parse.emplace_back(ParseContext::ALT, -1, -1);
1853 } else if (in[j] == 's') {
1854 script_size += 1;
1855 to_parse.emplace_back(ParseContext::SWAP, -1, -1);
1856 } else if (in[j] == 'c') {
1857 script_size += 1;
1858 to_parse.emplace_back(ParseContext::CHECK, -1, -1);
1859 } else if (in[j] == 'd') {
1860 script_size += 3;
1861 to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
1862 } else if (in[j] == 'j') {
1863 script_size += 4;
1864 to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
1865 } else if (in[j] == 'n') {
1866 script_size += 1;
1867 to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
1868 } else if (in[j] == 'v') {
1869 // do not permit "...vv...:"; it's not valid, and also doesn't trigger early
1870 // failure as script_size isn't incremented.
1871 if (last_was_v) return {};
1872 to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
1873 } else if (in[j] == 'u') {
1874 script_size += 4;
1875 to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
1876 } else if (in[j] == 't') {
1877 script_size += 1;
1878 to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
1879 } else if (in[j] == 'l') {
1880 // The l: wrapper is equivalent to or_i(0,X)
1881 script_size += 4;
1882 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
1883 to_parse.emplace_back(ParseContext::OR_I, -1, -1);
1884 } else {
1885 return {};
1886 }
1887 last_was_v = (in[j] == 'v');
1888 }
1889 to_parse.emplace_back(ParseContext::EXPR, -1, -1);
1890 if (colon_index) in = in.subspan(*colon_index + 1);
1891 break;
1892 }
1893 case ParseContext::EXPR: {
1894 if (Const("0", in)) {
1895 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
1896 } else if (Const("1", in)) {
1897 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
1898 } else if (Const("pk(", in)) {
1899 auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
1900 if (!res) return {};
1901 auto& [key, key_size] = *res;
1902 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))))));
1903 in = in.subspan(key_size + 1);
1904 script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
1905 } else if (Const("pkh(", in)) {
1906 auto res = ParseKeyEnd<Key>(in, ctx);
1907 if (!res) return {};
1908 auto& [key, key_size] = *res;
1909 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))))));
1910 in = in.subspan(key_size + 1);
1911 script_size += 24;
1912 } else if (Const("pk_k(", in)) {
1913 auto res = ParseKeyEnd<Key>(in, ctx);
1914 if (!res) return {};
1915 auto& [key, key_size] = *res;
1916 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))));
1917 in = in.subspan(key_size + 1);
1918 script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
1919 } else if (Const("pk_h(", in)) {
1920 auto res = ParseKeyEnd<Key>(in, ctx);
1921 if (!res) return {};
1922 auto& [key, key_size] = *res;
1923 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))));
1924 in = in.subspan(key_size + 1);
1925 script_size += 23;
1926 } else if (Const("sha256(", in)) {
1927 auto res = ParseHexStrEnd(in, 32, ctx);
1928 if (!res) return {};
1929 auto& [hash, hash_size] = *res;
1930 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash)));
1931 in = in.subspan(hash_size + 1);
1932 script_size += 38;
1933 } else if (Const("ripemd160(", in)) {
1934 auto res = ParseHexStrEnd(in, 20, ctx);
1935 if (!res) return {};
1936 auto& [hash, hash_size] = *res;
1937 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash)));
1938 in = in.subspan(hash_size + 1);
1939 script_size += 26;
1940 } else if (Const("hash256(", in)) {
1941 auto res = ParseHexStrEnd(in, 32, ctx);
1942 if (!res) return {};
1943 auto& [hash, hash_size] = *res;
1944 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash)));
1945 in = in.subspan(hash_size + 1);
1946 script_size += 38;
1947 } else if (Const("hash160(", in)) {
1948 auto res = ParseHexStrEnd(in, 20, ctx);
1949 if (!res) return {};
1950 auto& [hash, hash_size] = *res;
1951 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash)));
1952 in = in.subspan(hash_size + 1);
1953 script_size += 26;
1954 } else if (Const("after(", in)) {
1955 int arg_size = FindNextChar(in, ')');
1956 if (arg_size < 1) return {};
1957 const auto num{ToIntegral<int64_t>(std::string_view(in.begin(), arg_size))};
1958 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
1959 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
1960 in = in.subspan(arg_size + 1);
1961 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
1962 } else if (Const("older(", in)) {
1963 int arg_size = FindNextChar(in, ')');
1964 if (arg_size < 1) return {};
1965 const auto num{ToIntegral<int64_t>(std::string_view(in.begin(), arg_size))};
1966 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
1967 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
1968 in = in.subspan(arg_size + 1);
1969 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
1970 } else if (Const("multi(", in)) {
1971 if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
1972 } else if (Const("multi_a(", in)) {
1973 if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
1974 } else if (Const("thresh(", in)) {
1975 int next_comma = FindNextChar(in, ',');
1976 if (next_comma < 1) return {};
1977 const auto k{ToIntegral<int64_t>(std::string_view(in.begin(), next_comma))};
1978 if (!k.has_value() || *k < 1) return {};
1979 in = in.subspan(next_comma + 1);
1980 // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
1981 to_parse.emplace_back(ParseContext::THRESH, 1, *k);
1982 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1983 script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff);
1984 } else if (Const("andor(", in)) {
1985 to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
1986 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
1987 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1988 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
1989 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1990 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
1991 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1992 script_size += 5;
1993 } else {
1994 if (Const("and_n(", in)) {
1995 to_parse.emplace_back(ParseContext::AND_N, -1, -1);
1996 script_size += 5;
1997 } else if (Const("and_b(", in)) {
1998 to_parse.emplace_back(ParseContext::AND_B, -1, -1);
1999 script_size += 2;
2000 } else if (Const("and_v(", in)) {
2001 to_parse.emplace_back(ParseContext::AND_V, -1, -1);
2002 script_size += 1;
2003 } else if (Const("or_b(", in)) {
2004 to_parse.emplace_back(ParseContext::OR_B, -1, -1);
2005 script_size += 2;
2006 } else if (Const("or_c(", in)) {
2007 to_parse.emplace_back(ParseContext::OR_C, -1, -1);
2008 script_size += 3;
2009 } else if (Const("or_d(", in)) {
2010 to_parse.emplace_back(ParseContext::OR_D, -1, -1);
2011 script_size += 4;
2012 } else if (Const("or_i(", in)) {
2013 to_parse.emplace_back(ParseContext::OR_I, -1, -1);
2014 script_size += 4;
2015 } else {
2016 return {};
2017 }
2018 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2019 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2020 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2021 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2022 }
2023 break;
2024 }
2025 case ParseContext::ALT: {
2026 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
2027 break;
2028 }
2029 case ParseContext::SWAP: {
2030 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
2031 break;
2032 }
2033 case ParseContext::CHECK: {
2034 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
2035 break;
2036 }
2037 case ParseContext::DUP_IF: {
2038 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
2039 break;
2040 }
2041 case ParseContext::NON_ZERO: {
2042 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
2043 break;
2044 }
2045 case ParseContext::ZERO_NOTEQUAL: {
2046 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
2047 break;
2048 }
2049 case ParseContext::VERIFY: {
2050 script_size += (constructed.back()->GetType() << "x"_mst);
2051 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
2052 break;
2053 }
2054 case ParseContext::WRAP_U: {
2055 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
2056 break;
2057 }
2058 case ParseContext::WRAP_T: {
2059 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)));
2060 break;
2061 }
2062 case ParseContext::AND_B: {
2063 BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
2064 break;
2065 }
2066 case ParseContext::AND_N: {
2067 auto mid = std::move(constructed.back());
2068 constructed.pop_back();
2069 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
2070 break;
2071 }
2072 case ParseContext::AND_V: {
2073 BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
2074 break;
2075 }
2076 case ParseContext::OR_B: {
2077 BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
2078 break;
2079 }
2080 case ParseContext::OR_C: {
2081 BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
2082 break;
2083 }
2084 case ParseContext::OR_D: {
2085 BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
2086 break;
2087 }
2088 case ParseContext::OR_I: {
2089 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
2090 break;
2091 }
2092 case ParseContext::ANDOR: {
2093 auto right = std::move(constructed.back());
2094 constructed.pop_back();
2095 auto mid = std::move(constructed.back());
2096 constructed.pop_back();
2097 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
2098 break;
2099 }
2100 case ParseContext::THRESH: {
2101 if (in.size() < 1) return {};
2102 if (in[0] == ',') {
2103 in = in.subspan(1);
2104 to_parse.emplace_back(ParseContext::THRESH, n+1, k);
2105 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2106 script_size += 2;
2107 } else if (in[0] == ')') {
2108 if (k > n) return {};
2109 in = in.subspan(1);
2110 // Children are constructed in reverse order, so iterate from end to beginning
2111 std::vector<NodeRef<Key>> subs;
2112 for (int i = 0; i < n; ++i) {
2113 subs.push_back(std::move(constructed.back()));
2114 constructed.pop_back();
2115 }
2116 std::reverse(subs.begin(), subs.end());
2117 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
2118 } else {
2119 return {};
2120 }
2121 break;
2122 }
2123 case ParseContext::COMMA: {
2124 if (in.size() < 1 || in[0] != ',') return {};
2125 in = in.subspan(1);
2126 break;
2127 }
2128 case ParseContext::CLOSE_BRACKET: {
2129 if (in.size() < 1 || in[0] != ')') return {};
2130 in = in.subspan(1);
2131 break;
2132 }
2133 }
2134 }
2135
2136 // Sanity checks on the produced miniscript
2137 assert(constructed.size() == 1);
2138 assert(constructed[0]->ScriptSize() == script_size);
2139 if (in.size() > 0) return {};
2140 NodeRef<Key> tl_node = std::move(constructed.front());
2141 tl_node->DuplicateKeyCheck(ctx);
2142 return tl_node;
2143}
2144
2153std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
2154
2156std::optional<int64_t> ParseScriptNumber(const Opcode& in);
2157
2158enum class DecodeContext {
2164 BKV_EXPR,
2166 W_EXPR,
2167
2171 SWAP,
2174 ALT,
2176 CHECK,
2178 DUP_IF,
2180 VERIFY,
2182 NON_ZERO,
2185
2192 AND_V,
2194 AND_B,
2196 ANDOR,
2198 OR_B,
2200 OR_C,
2202 OR_D,
2203
2207 THRESH_W,
2210 THRESH_E,
2211
2215 ENDIF,
2223 ENDIF_ELSE,
2224};
2225
2227template<typename Key, typename Ctx, typename I>
2228inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
2229{
2230 // The two integers are used to hold state for thresh()
2231 std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
2232 std::vector<NodeRef<Key>> constructed;
2233
2234 // This is the top level, so we assume the type is B
2235 // (in particular, disallowing top level W expressions)
2236 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2237
2238 while (!to_parse.empty()) {
2239 // Exit early if the Miniscript is not going to be valid.
2240 if (!constructed.empty() && !constructed.back()->IsValid()) return {};
2241
2242 // Get the current context we are decoding within
2243 auto [cur_context, n, k] = to_parse.back();
2244 to_parse.pop_back();
2245
2246 switch(cur_context) {
2247 case DecodeContext::SINGLE_BKV_EXPR: {
2248 if (in >= last) return {};
2249
2250 // Constants
2251 if (in[0].first == OP_1) {
2252 ++in;
2253 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
2254 break;
2255 }
2256 if (in[0].first == OP_0) {
2257 ++in;
2258 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
2259 break;
2260 }
2261 // Public keys
2262 if (in[0].second.size() == 33 || in[0].second.size() == 32) {
2263 auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
2264 if (!key) return {};
2265 ++in;
2266 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key))));
2267 break;
2268 }
2269 if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
2270 auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
2271 if (!key) return {};
2272 in += 5;
2273 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key))));
2274 break;
2275 }
2276 // Time locks
2277 std::optional<int64_t> num;
2278 if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
2279 in += 2;
2280 if (*num < 1 || *num > 0x7FFFFFFFL) return {};
2281 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
2282 break;
2283 }
2284 if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
2285 in += 2;
2286 if (num < 1 || num > 0x7FFFFFFFL) return {};
2287 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
2288 break;
2289 }
2290 // Hashes
2291 if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
2292 if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
2293 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second));
2294 in += 7;
2295 break;
2296 } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
2297 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second));
2298 in += 7;
2299 break;
2300 } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
2301 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second));
2302 in += 7;
2303 break;
2304 } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
2305 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second));
2306 in += 7;
2307 break;
2308 }
2309 }
2310 // Multi
2311 if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
2312 if (IsTapscript(ctx.MsContext())) return {};
2313 std::vector<Key> keys;
2314 const auto n = ParseScriptNumber(in[1]);
2315 if (!n || last - in < 3 + *n) return {};
2316 if (*n < 1 || *n > 20) return {};
2317 for (int i = 0; i < *n; ++i) {
2318 if (in[2 + i].second.size() != 33) return {};
2319 auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
2320 if (!key) return {};
2321 keys.push_back(std::move(*key));
2322 }
2323 const auto k = ParseScriptNumber(in[2 + *n]);
2324 if (!k || *k < 1 || *k > *n) return {};
2325 in += 3 + *n;
2326 std::reverse(keys.begin(), keys.end());
2327 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k));
2328 break;
2329 }
2330 // Tapscript's equivalent of multi
2331 if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
2332 if (!IsTapscript(ctx.MsContext())) return {};
2333 // The necessary threshold of signatures.
2334 const auto k = ParseScriptNumber(in[1]);
2335 if (!k) return {};
2336 if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
2337 if (last - in < 2 + *k * 2) return {};
2338 std::vector<Key> keys;
2339 keys.reserve(*k);
2340 // Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
2341 for (int pos = 2;; pos += 2) {
2342 if (last - in < pos + 2) return {};
2343 // Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
2344 if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
2345 if (in[pos + 1].second.size() != 32) return {};
2346 auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
2347 if (!key) return {};
2348 keys.push_back(std::move(*key));
2349 // Make sure early we don't parse an arbitrary large expression.
2350 if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
2351 // OP_CHECKSIG means it was the last one to parse.
2352 if (in[pos].first == OP_CHECKSIG) break;
2353 }
2354 if (keys.size() < (size_t)*k) return {};
2355 in += 2 + keys.size() * 2;
2356 std::reverse(keys.begin(), keys.end());
2357 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k));
2358 break;
2359 }
2363 // c: wrapper
2364 if (in[0].first == OP_CHECKSIG) {
2365 ++in;
2366 to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
2367 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2368 break;
2369 }
2370 // v: wrapper
2371 if (in[0].first == OP_VERIFY) {
2372 ++in;
2373 to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
2374 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2375 break;
2376 }
2377 // n: wrapper
2378 if (in[0].first == OP_0NOTEQUAL) {
2379 ++in;
2380 to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
2381 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2382 break;
2383 }
2384 // Thresh
2385 if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
2386 if (*num < 1) return {};
2387 in += 2;
2388 to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
2389 break;
2390 }
2391 // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
2392 if (in[0].first == OP_ENDIF) {
2393 ++in;
2394 to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
2395 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2396 break;
2397 }
2403 // and_b
2404 if (in[0].first == OP_BOOLAND) {
2405 ++in;
2406 to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
2407 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2408 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2409 break;
2410 }
2411 // or_b
2412 if (in[0].first == OP_BOOLOR) {
2413 ++in;
2414 to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
2415 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2416 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2417 break;
2418 }
2419 // Unrecognised expression
2420 return {};
2421 }
2422 case DecodeContext::BKV_EXPR: {
2423 to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
2424 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2425 break;
2426 }
2427 case DecodeContext::W_EXPR: {
2428 // a: wrapper
2429 if (in >= last) return {};
2430 if (in[0].first == OP_FROMALTSTACK) {
2431 ++in;
2432 to_parse.emplace_back(DecodeContext::ALT, -1, -1);
2433 } else {
2434 to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
2435 }
2436 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2437 break;
2438 }
2439 case DecodeContext::MAYBE_AND_V: {
2440 // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
2441 // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
2442 if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
2443 to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
2444 // BKV_EXPR can contain more AND_V nodes
2445 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2446 }
2447 break;
2448 }
2449 case DecodeContext::SWAP: {
2450 if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
2451 ++in;
2452 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
2453 break;
2454 }
2455 case DecodeContext::ALT: {
2456 if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
2457 ++in;
2458 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
2459 break;
2460 }
2461 case DecodeContext::CHECK: {
2462 if (constructed.empty()) return {};
2463 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
2464 break;
2465 }
2466 case DecodeContext::DUP_IF: {
2467 if (constructed.empty()) return {};
2468 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
2469 break;
2470 }
2471 case DecodeContext::VERIFY: {
2472 if (constructed.empty()) return {};
2473 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
2474 break;
2475 }
2476 case DecodeContext::NON_ZERO: {
2477 if (constructed.empty()) return {};
2478 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
2479 break;
2480 }
2481 case DecodeContext::ZERO_NOTEQUAL: {
2482 if (constructed.empty()) return {};
2483 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
2484 break;
2485 }
2486 case DecodeContext::AND_V: {
2487 if (constructed.size() < 2) return {};
2488 BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
2489 break;
2490 }
2491 case DecodeContext::AND_B: {
2492 if (constructed.size() < 2) return {};
2493 BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
2494 break;
2495 }
2496 case DecodeContext::OR_B: {
2497 if (constructed.size() < 2) return {};
2498 BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
2499 break;
2500 }
2501 case DecodeContext::OR_C: {
2502 if (constructed.size() < 2) return {};
2503 BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
2504 break;
2505 }
2506 case DecodeContext::OR_D: {
2507 if (constructed.size() < 2) return {};
2508 BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
2509 break;
2510 }
2511 case DecodeContext::ANDOR: {
2512 if (constructed.size() < 3) return {};
2513 NodeRef<Key> left = std::move(constructed.back());
2514 constructed.pop_back();
2515 NodeRef<Key> right = std::move(constructed.back());
2516 constructed.pop_back();
2517 NodeRef<Key> mid = std::move(constructed.back());
2518 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
2519 break;
2520 }
2521 case DecodeContext::THRESH_W: {
2522 if (in >= last) return {};
2523 if (in[0].first == OP_ADD) {
2524 ++in;
2525 to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
2526 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2527 } else {
2528 to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
2529 // All children of thresh have type modifier d, so cannot be and_v
2530 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2531 }
2532 break;
2533 }
2534 case DecodeContext::THRESH_E: {
2535 if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
2536 std::vector<NodeRef<Key>> subs;
2537 for (int i = 0; i < n; ++i) {
2538 NodeRef<Key> sub = std::move(constructed.back());
2539 constructed.pop_back();
2540 subs.push_back(std::move(sub));
2541 }
2542 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
2543 break;
2544 }
2545 case DecodeContext::ENDIF: {
2546 if (in >= last) return {};
2547
2548 // could be andor or or_i
2549 if (in[0].first == OP_ELSE) {
2550 ++in;
2551 to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
2552 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2553 }
2554 // could be j: or d: wrapper
2555 else if (in[0].first == OP_IF) {
2556 if (last - in >= 2 && in[1].first == OP_DUP) {
2557 in += 2;
2558 to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
2559 } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
2560 in += 3;
2561 to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
2562 }
2563 else {
2564 return {};
2565 }
2566 // could be or_c or or_d
2567 } else if (in[0].first == OP_NOTIF) {
2568 ++in;
2569 to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
2570 }
2571 else {
2572 return {};
2573 }
2574 break;
2575 }
2576 case DecodeContext::ENDIF_NOTIF: {
2577 if (in >= last) return {};
2578 if (in[0].first == OP_IFDUP) {
2579 ++in;
2580 to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
2581 } else {
2582 to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
2583 }
2584 // or_c and or_d both require X to have type modifier d so, can't contain and_v
2585 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2586 break;
2587 }
2588 case DecodeContext::ENDIF_ELSE: {
2589 if (in >= last) return {};
2590 if (in[0].first == OP_IF) {
2591 ++in;
2592 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
2593 } else if (in[0].first == OP_NOTIF) {
2594 ++in;
2595 to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
2596 // andor requires X to have type modifier d, so it can't be and_v
2597 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2598 } else {
2599 return {};
2600 }
2601 break;
2602 }
2603 }
2604 }
2605 if (constructed.size() != 1) return {};
2606 NodeRef<Key> tl_node = std::move(constructed.front());
2607 tl_node->DuplicateKeyCheck(ctx);
2608 // Note that due to how ComputeType works (only assign the type to the node if the
2609 // subs' types are valid) this would fail if any node of tree is badly typed.
2610 if (!tl_node->IsValidTopLevel()) return {};
2611 return tl_node;
2612}
2613
2614} // namespace internal
2615
2616template<typename Ctx>
2617inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
2618 return internal::Parse<typename Ctx::Key>(str, ctx);
2619}
2620
2621template<typename Ctx>
2622inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
2623 using namespace internal;
2624 // A too large Script is necessarily invalid, don't bother parsing it.
2625 if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
2626 auto decomposed = DecomposeScript(script);
2627 if (!decomposed) return {};
2628 auto it = decomposed->begin();
2629 auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
2630 if (!ret) return {};
2631 if (it != decomposed->end()) return {};
2632 return ret;
2633}
2634
2635} // namespace miniscript
2636
2637#endif // BITCOIN_SCRIPT_MINISCRIPT_H
int ret
int flags
Definition: bitcoin-tx.cpp:536
ArgsManager & args
Definition: bitcoind.cpp:277
#define CHECK_NONFATAL(condition)
Identity function.
Definition: check.h:81
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:415
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
CONSTEXPR_IF_NOT_DEBUG Span< C > last(std::size_t count) const noexcept
Definition: span.h:210
constexpr std::size_t size() const noexcept
Definition: span.h:187
CONSTEXPR_IF_NOT_DEBUG Span< C > subspan(std::size_t offset) const noexcept
Definition: span.h:195
constexpr C * begin() const noexcept
Definition: span.h:175
This type encapsulates the miniscript type system properties.
Definition: miniscript.h:126
static consteval Type Make(uint32_t flags) noexcept
Construction function used by the ""_mst operator.
Definition: miniscript.h:135
constexpr bool operator<<(Type x) const
Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
Definition: miniscript.h:144
uint32_t m_flags
Internal bitmap of properties (see ""_mst operator for details).
Definition: miniscript.h:128
constexpr Type If(bool x) const
The empty type if x is false, itself otherwise.
Definition: miniscript.h:153
constexpr Type operator&(Type x) const
Compute the type with the intersection of properties.
Definition: miniscript.h:141
constexpr bool operator<(Type x) const
Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
Definition: miniscript.h:147
constexpr Type operator|(Type x) const
Compute the type with the union of properties.
Definition: miniscript.h:138
constexpr bool operator==(Type x) const
Equality operator.
Definition: miniscript.h:150
constexpr Type(uint32_t flags) noexcept
Internal constructor.
Definition: miniscript.h:131
size_type size() const
Definition: prevector.h:294
static const int WITNESS_SCALE_FACTOR
Definition: consensus.h:21
uint160 RIPEMD160(Span< const unsigned char > data)
Compute the 160-bit RIPEMD-160 hash of an array.
Definition: hash.h:222
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const Span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
@ TAPSCRIPT
Witness v1 with 32-byte program, not BIP16 P2SH-wrapped, script path spending, leaf version 0xc0; see...
static constexpr size_t TAPROOT_CONTROL_MAX_SIZE
Definition: interpreter.h:236
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx)
Helper function for Node::CalcScriptLen.
Definition: miniscript.cpp:265
int FindNextChar(Span< const char > sp, const char m)
Definition: miniscript.cpp:422
std::optional< int64_t > ParseScriptNumber(const Opcode &in)
Determine whether the passed pair (created by DecomposeScript) is pushing a number.
Definition: miniscript.cpp:409
Type SanitizeType(Type e)
A helper sanitizer/checker for the output of CalcType.
Definition: miniscript.cpp:19
std::optional< std::vector< Opcode > > DecomposeScript(const CScript &script)
Decode a script into opcode/push pairs.
Definition: miniscript.cpp:369
NodeRef< Key > DecodeScript(I &in, I last, const Ctx &ctx)
Parse a miniscript from a bitcoin script.
Definition: miniscript.h:2228
NodeRef< Key > Parse(Span< const char > in, const Ctx &ctx)
Parse a miniscript from its textual descriptor form.
Definition: miniscript.h:1770
constexpr uint32_t TX_BODY_LEEWAY_WEIGHT
Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout ...
Definition: miniscript.h:266
constexpr uint32_t TXIN_BYTES_NO_WITNESS
prevout + nSequence + scriptSig
Definition: miniscript.h:262
static const auto ONE
A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric co...
Definition: miniscript.h:335
static const auto ZERO32
A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challe...
Definition: miniscript.h:333
std::optional< std::pair< std::vector< unsigned char >, int > > ParseHexStrEnd(Span< const char > in, const size_t expected_size, const Ctx &ctx)
Parse a hex string ending at the end of the fragment's text representation.
Definition: miniscript.h:1739
constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
The maximum size of a script depending on the context.
Definition: miniscript.h:270
constexpr uint32_t TX_OVERHEAD
version + nLockTime
Definition: miniscript.h:260
static const auto ZERO
A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in num...
Definition: miniscript.h:331
std::optional< std::pair< Key, int > > ParseKeyEnd(Span< const char > in, const Ctx &ctx)
Parse a key string ending at the end of the fragment's text representation.
Definition: miniscript.h:1728
constexpr uint32_t P2WSH_TXOUT_BYTES
nValue + script len + OP_0 + pushdata 32.
Definition: miniscript.h:264
@ VERIFY
VERIFY wraps the top constructed node with v:
@ CLOSE_BRACKET
CLOSE_BRACKET expects the next element to be ')' and fails if not.
@ AND_N
AND_N will construct an andor(X,Y,0) node from the last two constructed nodes.
@ SWAP
SWAP wraps the top constructed node with s:
@ COMMA
COMMA expects the next element to be ',' and fails if not.
@ DUP_IF
DUP_IF wraps the top constructed node with d:
@ EXPR
A miniscript expression which does not begin with wrappers.
@ ZERO_NOTEQUAL
ZERO_NOTEQUAL wraps the top constructed node with n:
@ NON_ZERO
NON_ZERO wraps the top constructed node with j:
@ WRAP_T
WRAP_T will construct an and_v(X,1) node from the top constructed node.
@ ALT
ALT wraps the top constructed node with a:
@ WRAP_U
WRAP_U will construct an or_i(X,0) node from the top constructed node.
@ WRAPPED_EXPR
An expression which may be begin with wrappers followed by a colon.
static const auto INVALID
A stack representing the lack of any (dis)satisfactions.
Definition: miniscript.h:339
@ SINGLE_BKV_EXPR
A single expression of type B, K, or V.
@ ENDIF_NOTIF
If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE, we could either be in an ...
@ BKV_EXPR
Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple) and_v expressions.
@ ENDIF_ELSE
If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an or_i or an andor node.
@ MAYBE_AND_V
MAYBE_AND_V will check if the next part of the script could be a valid miniscript sub-expression,...
@ W_EXPR
An expression of type W (a: or s: wrappers).
@ THRESH_E
THRESH_E constructs a thresh node from the appropriate number of constructed children.
@ ENDIF
ENDIF signals that we are inside some sort of OP_IF structure, which could be or_d,...
@ THRESH_W
In a thresh expression, all sub-expressions other than the first are W-type, and end in OP_ADD.
constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE
Maximum possible stack size to spend a Taproot output (excluding the script itself).
Definition: miniscript.h:268
static const auto EMPTY
The empty stack.
Definition: miniscript.h:337
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector< Type > &sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx)
Helper function for Node::CalcType.
Definition: miniscript.cpp:39
void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > &constructed, const bool reverse=false)
BuildBack pops the last two elements off constructed and wraps them in the specified Fragment.
Definition: miniscript.h:1753
static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE
The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with...
Definition: miniscript.h:257
NodeRef< typename Ctx::Key > FromString(const std::string &str, const Ctx &ctx)
Definition: miniscript.h:2617
std::shared_ptr< const Node< Key > > NodeRef
Definition: miniscript.h:192
constexpr bool IsTapscript(MiniscriptContext ms_ctx)
Whether the context Tapscript, ensuring the only other possibility is P2WSH.
Definition: miniscript.h:245
NodeRef< typename Ctx::Key > FromScript(const CScript &script, const Ctx &ctx)
Definition: miniscript.h:2622
NodeRef< Key > MakeNodeRef(Args &&... args)
Construct a miniscript node as a shared_ptr.
Definition: miniscript.h:196
std::pair< opcodetype, std::vector< unsigned char > > Opcode
Definition: miniscript.h:189
Fragment
The different node types in miniscript.
Definition: miniscript.h:199
@ OR_I
OP_IF [X] OP_ELSE [Y] OP_ENDIF.
@ MULTI_A
[key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
@ RIPEMD160
OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL.
@ HASH160
OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL.
@ OR_B
[X] [Y] OP_BOOLOR
@ WRAP_A
OP_TOALTSTACK [X] OP_FROMALTSTACK.
@ WRAP_V
[X] OP_VERIFY (or -VERIFY version of last opcode in X)
@ ANDOR
[X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
@ THRESH
[X1] ([Xn] OP_ADD)* [k] OP_EQUAL
@ WRAP_N
[X] OP_0NOTEQUAL
@ WRAP_S
OP_SWAP [X].
@ OR_C
[X] OP_NOTIF [Y] OP_ENDIF
@ HASH256
OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL.
@ OLDER
[n] OP_CHECKSEQUENCEVERIFY
@ SHA256
OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL.
@ WRAP_J
OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF.
@ AFTER
[n] OP_CHECKLOCKTIMEVERIFY
@ OR_D
[X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
@ WRAP_D
OP_DUP OP_IF [X] OP_ENDIF.
@ AND_B
[X] [Y] OP_BOOLAND
@ PK_H
OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY.
@ WRAP_C
[X] OP_CHECKSIG
@ MULTI
[k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
Definition: messages.h:20
bool Const(const std::string &str, Span< const char > &sp)
Parse a constant.
Definition: parsing.cpp:15
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:233
static constexpr unsigned int MAX_STANDARD_P2WSH_STACK_ITEMS
The maximum number of witness stack items in a standard P2WSH script.
Definition: policy.h:41
static constexpr int32_t MAX_STANDARD_TX_WEIGHT
The maximum weight for transactions we're willing to relay/mine.
Definition: policy.h:27
static constexpr unsigned int MAX_STANDARD_P2WSH_SCRIPT_SIZE
The maximum size in bytes of a standard witnessScript.
Definition: policy.h:47
@ OP_SHA256
Definition: script.h:186
@ OP_BOOLAND
Definition: script.h:169
@ OP_CHECKMULTISIG
Definition: script.h:192
@ OP_IF
Definition: script.h:104
@ OP_SWAP
Definition: script.h:131
@ OP_CHECKSIG
Definition: script.h:190
@ OP_CHECKLOCKTIMEVERIFY
Definition: script.h:197
@ OP_EQUAL
Definition: script.h:146
@ OP_NUMEQUAL
Definition: script.h:171
@ OP_NOTIF
Definition: script.h:105
@ OP_SIZE
Definition: script.h:139
@ OP_ENDIF
Definition: script.h:109
@ OP_DUP
Definition: script.h:125
@ OP_TOALTSTACK
Definition: script.h:114
@ OP_RIPEMD160
Definition: script.h:184
@ OP_HASH256
Definition: script.h:188
@ OP_FROMALTSTACK
Definition: script.h:115
@ OP_NUMEQUALVERIFY
Definition: script.h:172
@ OP_HASH160
Definition: script.h:187
@ OP_1
Definition: script.h:83
@ OP_VERIFY
Definition: script.h:110
@ OP_ADD
Definition: script.h:161
@ OP_CHECKMULTISIGVERIFY
Definition: script.h:193
@ OP_BOOLOR
Definition: script.h:170
@ OP_CHECKSIGADD
Definition: script.h:210
@ OP_ELSE
Definition: script.h:108
@ OP_CHECKSIGVERIFY
Definition: script.h:191
@ OP_0NOTEQUAL
Definition: script.h:159
@ OP_0
Definition: script.h:76
@ OP_IFDUP
Definition: script.h:122
@ OP_EQUALVERIFY
Definition: script.h:147
@ OP_CHECKSEQUENCEVERIFY
Definition: script.h:199
static constexpr unsigned int MAX_PUBKEYS_PER_MULTI_A
The limit of keys in OP_CHECKSIGADD-based scripts.
Definition: script.h:37
static const int MAX_STACK_SIZE
Definition: script.h:43
static const int MAX_OPS_PER_SCRIPT
Definition: script.h:31
CScript BuildScript(Ts &&... inputs)
Build a script by concatenating other scripts, or any argument accepted by CScript::operator<<.
Definition: script.h:616
static const int MAX_PUBKEYS_PER_MULTISIG
Definition: script.h:34
static bool verify(const CScriptNum10 &bignum, const CScriptNum &scriptnum)
constexpr unsigned int GetSizeOfCompactSize(uint64_t nSize)
Compact Size size < 253 – 1 byte size <= USHRT_MAX – 3 bytes (253 + 2 bytes) size <= UINT_MAX – 5 byt...
Definition: serialize.h:295
std::vector< Byte > ParseHex(std::string_view hex_str)
Like TryParseHex, but returns an empty vector on invalid input.
Definition: strencodings.h:68
A node in a miniscript expression.
Definition: miniscript.h:504
const Type typ
Cached expression type (computed by CalcType and fed through SanitizeType).
Definition: miniscript.h:539
uint32_t GetStaticOps() const
Return the number of ops in the script (not counting the dynamic ones that depend on execution).
Definition: miniscript.h:1489
Result TreeEval(UpFn upfn) const
Like TreeEval, but without downfn or State type.
Definition: miniscript.h:679
const Node * FindInsaneSub() const
Find an insane subnode which has no insane children. Nullptr if there is none.
Definition: miniscript.h:1544
bool IsBKW() const
Whether this node is of type B, K or W.
Definition: miniscript.h:1499
internal::InputResult ProduceInput(const Ctx &ctx) const
Definition: miniscript.h:1168
CScript ToScript(const Ctx &ctx) const
Definition: miniscript.h:731
bool CheckStackSize() const
Check the maximum stack size for this script against the policy limit.
Definition: miniscript.h:1516
internal::StackSize CalcStackSize() const
Definition: miniscript.h:999
bool IsSaneSubexpression() const
Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe...
Definition: miniscript.h:1619
Type GetType() const
Return the expression type.
Definition: miniscript.h:1538
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, uint32_t val=0)
Definition: miniscript.h:1648
friend int Compare(const Node< Key > &node1, const Node< Key > &node2)
Compare two miniscript subtrees, using a non-recursive algorithm.
Definition: miniscript.h:692
const size_t scriptlen
Cached script length (computed by CalcScriptLen).
Definition: miniscript.h:541
std::optional< uint32_t > GetStackSize() const
Return the maximum number of stack elements needed to satisfy this script non-malleably.
Definition: miniscript.h:1504
std::optional< bool > has_duplicate_keys
Whether a public key appears more than once in this node.
Definition: miniscript.h:547
const uint32_t k
The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
Definition: miniscript.h:508
std::optional< uint32_t > GetExecStackSize() const
Return the maximum size of the stack during execution of this script.
Definition: miniscript.h:1510
bool NeedsSignature() const
Check whether this script always needs a signature.
Definition: miniscript.h:1607
bool CheckOpsLimit() const
Check the ops limit of this script against the consensus limit.
Definition: miniscript.h:1492
std::vector< NodeRef< Key > > subs
Subexpressions (for WRAP_*‍/AND_*‍/OR_*‍/ANDOR/THRESH)
Definition: miniscript.h:514
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1642
const Fragment fragment
What node type this node is.
Definition: miniscript.h:506
std::optional< uint32_t > GetWitnessSize() const
Return the maximum size in bytes of a witness to satisfy this script non-malleably.
Definition: miniscript.h:1532
Node(const Ctx &ctx, Fragment nt, std::vector< NodeRef< Key > > sub, uint32_t val=0)
Definition: miniscript.h:1662
Node(const Ctx &ctx, Fragment nt, uint32_t val=0)
Definition: miniscript.h:1664
Node(const Ctx &ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1658
std::optional< Result > TreeEvalMaybe(UpFn upfn) const
Like TreeEvalMaybe, but without downfn or State type.
Definition: miniscript.h:650
internal::WitnessSize CalcWitnessSize() const
Definition: miniscript.h:1114
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val=0)
Definition: miniscript.h:1650
Result TreeEval(State root_state, DownFn &&downfn, UpFn upfn) const
Like TreeEvalMaybe, but always produces a result.
Definition: miniscript.h:663
internal::Ops CalcOps() const
Definition: miniscript.h:925
std::optional< std::string > ToString(const CTx &ctx) const
Definition: miniscript.h:810
const MiniscriptContext m_script_ctx
The Script context for this node. Either P2WSH or Tapscript.
Definition: miniscript.h:516
size_t CalcScriptLen() const
Compute the length of the script for this miniscript (including children).
Definition: miniscript.h:551
std::optional< Result > TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
Definition: miniscript.h:585
bool IsSane() const
Check whether this node is safe as a script on its own.
Definition: miniscript.h:1622
bool IsValidTopLevel() const
Check whether this node is valid as a script on its own.
Definition: miniscript.h:1601
bool IsNotSatisfiable() const
Whether no satisfaction exists for this node.
Definition: miniscript.h:1528
const internal::WitnessSize ws
Cached witness size bounds.
Definition: miniscript.h:537
bool IsNonMalleable() const
Check whether this script can always be satisfied in a non-malleable way.
Definition: miniscript.h:1604
Type CalcType() const
Compute the type for this miniscript.
Definition: miniscript.h:712
bool CheckDuplicateKey() const
Check whether there is no duplicate key across this fragment and all its sub-fragments.
Definition: miniscript.h:1613
Node(const Ctx &ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1654
size_t ScriptSize() const
Return the size of the script for this expression (faster than ToScript().size()).
Definition: miniscript.h:1480
bool ValidSatisfactions() const
Whether successful non-malleable satisfactions are guaranteed to be valid.
Definition: miniscript.h:1616
const std::vector< Key > keys
The keys used by this expression (only for PK_K/PK_H/MULTI)
Definition: miniscript.h:510
void DuplicateKeyCheck(const Ctx &ctx) const
Update duplicate key information in this Node.
Definition: miniscript.h:1421
bool operator==(const Node< Key > &arg) const
Equality testing.
Definition: miniscript.h:1637
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1646
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1644
std::optional< uint32_t > GetOps() const
Return the maximum number of ops needed to satisfy this script non-malleably.
Definition: miniscript.h:1483
bool CheckTimeLocksMix() const
Check whether there is no satisfaction path that contains both timelocks and heightlocks.
Definition: miniscript.h:1610
Node(const Ctx &ctx, Fragment nt, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1660
Node(const Ctx &ctx, Fragment nt, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1656
MiniscriptContext GetMsCtx() const
Return the script context for this node.
Definition: miniscript.h:1541
const internal::Ops ops
Cached ops counts.
Definition: miniscript.h:533
bool IsValid() const
Check whether this node is valid at all.
Definition: miniscript.h:1595
const std::vector< unsigned char > data
The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
Definition: miniscript.h:512
const internal::StackSize ss
Cached stack size bounds.
Definition: miniscript.h:535
Availability Satisfy(const Ctx &ctx, std::vector< std::vector< unsigned char > > &stack, bool nonmalleable=true) const
Produce a witness for this script, if possible and given the information available in the context.
Definition: miniscript.h:1629
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1640
bool IsSatisfiable(F fn) const
Determine whether a Miniscript node is satisfiable.
Definition: miniscript.h:1555
A pair of a satisfaction and a dissatisfaction InputStack.
Definition: miniscript.h:342
InputResult(A &&in_nsat, B &&in_sat)
Definition: miniscript.h:346
An object representing a sequence of witness stack elements.
Definition: miniscript.h:294
bool malleable
Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
Definition: miniscript.h:304
friend InputStack operator|(InputStack a, InputStack b)
Choose between two potential input stacks.
Definition: miniscript.cpp:340
friend InputStack operator+(InputStack a, InputStack b)
Concatenate two input stacks.
Definition: miniscript.cpp:326
std::vector< std::vector< unsigned char > > stack
Data elements.
Definition: miniscript.h:311
InputStack()=default
Construct an empty stack (valid).
bool has_sig
Whether this stack contains a digital signature.
Definition: miniscript.h:302
InputStack & SetAvailable(Availability avail)
Change availability.
Definition: miniscript.cpp:299
Availability available
Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
Definition: miniscript.h:300
InputStack & SetMalleable(bool x=true)
Mark this input stack as malleable.
Definition: miniscript.cpp:321
size_t size
Serialized witness size.
Definition: miniscript.h:309
bool non_canon
Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
Definition: miniscript.h:307
InputStack(std::vector< unsigned char > in)
Construct a valid single-element stack (with an element up to 75 bytes).
Definition: miniscript.h:315
InputStack & SetWithSig()
Mark this input stack as having a signature.
Definition: miniscript.cpp:311
InputStack & SetNonCanon()
Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
Definition: miniscript.cpp:316
Class whose objects represent the maximum of a list of integers.
Definition: miniscript.h:351
friend MaxInt< I > operator+(const MaxInt< I > &a, const MaxInt< I > &b)
Definition: miniscript.h:358
friend MaxInt< I > operator|(const MaxInt< I > &a, const MaxInt< I > &b)
Definition: miniscript.h:363
Ops(uint32_t in_count, MaxInt< uint32_t > in_sat, MaxInt< uint32_t > in_dsat)
Definition: miniscript.h:378
MaxInt< uint32_t > sat
Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
Definition: miniscript.h:374
MaxInt< uint32_t > dsat
Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
Definition: miniscript.h:376
uint32_t count
Non-push opcodes.
Definition: miniscript.h:372
A data structure to help the calculation of stack size limits.
Definition: miniscript.h:422
static constexpr SatInfo Nop() noexcept
A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY).
Definition: miniscript.h:465
const int32_t exec
Mow much higher the stack size can be during execution compared to at the end.
Definition: miniscript.h:428
static constexpr SatInfo OP_CHECKSIG() noexcept
Definition: miniscript.h:477
static constexpr SatInfo BinaryOp() noexcept
A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD).
Definition: miniscript.h:469
static constexpr SatInfo OP_VERIFY() noexcept
Definition: miniscript.h:479
static constexpr SatInfo Push() noexcept
A script consisting of a single push opcode.
Definition: miniscript.h:461
static constexpr SatInfo Empty() noexcept
The empty script.
Definition: miniscript.h:459
constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept
Script set with a single script in it, with specified netdiff and exec.
Definition: miniscript.h:434
constexpr friend SatInfo operator|(const SatInfo &a, const SatInfo &b) noexcept
Script set union.
Definition: miniscript.h:438
const int32_t netdiff
How much higher the stack size at start of execution can be compared to at the end.
Definition: miniscript.h:426
constexpr SatInfo() noexcept
Empty script set.
Definition: miniscript.h:431
static constexpr SatInfo OP_EQUALVERIFY() noexcept
Definition: miniscript.h:474
static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept
Definition: miniscript.h:473
const bool valid
Whether a canonical satisfaction/dissatisfaction is possible at all.
Definition: miniscript.h:424
static constexpr SatInfo OP_DUP() noexcept
Definition: miniscript.h:472
static constexpr SatInfo OP_0NOTEQUAL() noexcept
Definition: miniscript.h:478
static constexpr SatInfo If() noexcept
A script consisting of just OP_IF or OP_NOTIF.
Definition: miniscript.h:467
static constexpr SatInfo OP_EQUAL() noexcept
Definition: miniscript.h:475
static constexpr SatInfo OP_SIZE() noexcept
Definition: miniscript.h:476
static constexpr SatInfo Hash() noexcept
A script consisting of a single hash opcode.
Definition: miniscript.h:463
constexpr friend SatInfo operator+(const SatInfo &a, const SatInfo &b) noexcept
Script set concatenation.
Definition: miniscript.h:448
constexpr StackSize(SatInfo in_both) noexcept
Definition: miniscript.h:486
constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept
Definition: miniscript.h:485
MaxInt< uint32_t > sat
Maximum witness size to satisfy;.
Definition: miniscript.h:491
MaxInt< uint32_t > dsat
Maximum witness size to dissatisfy;.
Definition: miniscript.h:493
WitnessSize(MaxInt< uint32_t > in_sat, MaxInt< uint32_t > in_dsat)
Definition: miniscript.h:495
static const std::vector< uint8_t > EMPTY
Definition: script.h:21
static int count
bool IsHex(std::string_view str)
#define B
Definition: util_tests.cpp:544
assert(!tx.IsCoinBase())
std::vector< typename std::common_type< Args... >::type > Vector(Args &&... args)
Construct a vector with the specified elements.
Definition: vector.h:23