Bitcoin Core 30.99.0
P2P Digital Currency
miniscript.h
Go to the documentation of this file.
1// Copyright (c) 2019-present The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#ifndef BITCOIN_SCRIPT_MINISCRIPT_H
6#define BITCOIN_SCRIPT_MINISCRIPT_H
7
8#include <algorithm>
9#include <compare>
10#include <cstdint>
11#include <cstdlib>
12#include <iterator>
13#include <memory>
14#include <optional>
15#include <set>
16#include <stdexcept>
17#include <tuple>
18#include <utility>
19#include <vector>
20
21#include <consensus/consensus.h>
22#include <policy/policy.h>
23#include <script/interpreter.h>
24#include <script/parsing.h>
25#include <script/script.h>
26#include <serialize.h>
27#include <span.h>
28#include <util/check.h>
29#include <util/strencodings.h>
30#include <util/string.h>
31#include <util/vector.h>
32
33namespace miniscript {
34
126class Type {
128 uint32_t m_flags;
129
131 explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
132
133public:
135 friend consteval Type operator""_mst(const char* c, size_t l);
136
138 constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
139
141 constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
142
144 constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
145
147 constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
148
150 constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
151
153 constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
154};
155
157inline consteval Type operator""_mst(const char* c, size_t l)
158{
159 Type typ{0};
160
161 for (const char *p = c; p < c + l; p++) {
162 typ = typ | Type(
163 *p == 'B' ? 1 << 0 : // Base type
164 *p == 'V' ? 1 << 1 : // Verify type
165 *p == 'K' ? 1 << 2 : // Key type
166 *p == 'W' ? 1 << 3 : // Wrapped type
167 *p == 'z' ? 1 << 4 : // Zero-arg property
168 *p == 'o' ? 1 << 5 : // One-arg property
169 *p == 'n' ? 1 << 6 : // Nonzero arg property
170 *p == 'd' ? 1 << 7 : // Dissatisfiable property
171 *p == 'u' ? 1 << 8 : // Unit property
172 *p == 'e' ? 1 << 9 : // Expression property
173 *p == 'f' ? 1 << 10 : // Forced property
174 *p == 's' ? 1 << 11 : // Safe property
175 *p == 'm' ? 1 << 12 : // Nonmalleable property
176 *p == 'x' ? 1 << 13 : // Expensive verify
177 *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
178 *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
179 *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
180 *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
181 *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
182 (throw std::logic_error("Unknown character in _mst literal"), 0)
183 );
184 }
185
186 return typ;
187}
188
189using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
190
191template<typename Key> struct Node;
192template<typename Key> using NodeRef = std::unique_ptr<const Node<Key>>;
193
195template<typename Key, typename... Args>
196NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_unique<const Node<Key>>(std::forward<Args>(args)...); }
197
199enum class Fragment {
200 JUST_0,
201 JUST_1,
202 PK_K,
203 PK_H,
204 OLDER,
205 AFTER,
206 SHA256,
207 HASH256,
208 RIPEMD160,
209 HASH160,
210 WRAP_A,
211 WRAP_S,
212 WRAP_C,
213 WRAP_D,
214 WRAP_V,
215 WRAP_J,
216 WRAP_N,
217 AND_V,
218 AND_B,
219 OR_B,
220 OR_C,
221 OR_D,
222 OR_I,
223 ANDOR,
224 THRESH,
225 MULTI,
226 MULTI_A,
227 // AND_N(X,Y) is represented as ANDOR(X,Y,0)
228 // WRAP_T(X) is represented as AND_V(X,1)
229 // WRAP_L(X) is represented as OR_I(0,X)
230 // WRAP_U(X) is represented as OR_I(X,0)
231};
232
233enum class Availability {
234 NO,
235 YES,
236 MAYBE,
237};
238
240 P2WSH,
241 TAPSCRIPT,
242};
243
245constexpr bool IsTapscript(MiniscriptContext ms_ctx)
246{
247 switch (ms_ctx) {
248 case MiniscriptContext::P2WSH: return false;
249 case MiniscriptContext::TAPSCRIPT: return true;
250 }
251 assert(false);
252}
253
254namespace internal {
255
257static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
258
260constexpr uint32_t TX_OVERHEAD{4 + 4};
262constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
264constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
270constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
271{
272 if (IsTapscript(ms_ctx)) {
273 // Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
274 // bounded by the maximum standard size of a spending transaction. Let the maximum script
275 // size conservatively be small enough such that even a maximum sized witness and a reasonably
276 // sized spending transaction can spend an output paying to this script without running into
277 // the maximum standard tx size limit.
279 return max_size - GetSizeOfCompactSize(max_size);
280 }
282}
283
285Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
286
288size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
289
292
302 bool has_sig = false;
304 bool malleable = false;
307 bool non_canon = false;
309 size_t size = 0;
311 std::vector<std::vector<unsigned char>> stack;
313 InputStack() = default;
315 InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
323 InputStack& SetMalleable(bool x = true);
328};
329
331static const auto ZERO = InputStack(std::vector<unsigned char>());
333static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
335static const auto ONE = InputStack(Vector((unsigned char)1));
337static const auto EMPTY = InputStack();
340
344
345 template<typename A, typename B>
346 InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
347};
348
350template<typename I>
351struct MaxInt {
352 const bool valid;
353 const I value;
354
355 MaxInt() : valid(false), value(0) {}
356 MaxInt(I val) : valid(true), value(val) {}
357
358 friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
359 if (!a.valid || !b.valid) return {};
360 return a.value + b.value;
361 }
362
363 friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
364 if (!a.valid) return b;
365 if (!b.valid) return a;
366 return std::max(a.value, b.value);
367 }
368};
369
370struct Ops {
372 uint32_t count;
377
378 Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
379};
380
422struct SatInfo {
424 const bool valid;
426 const int32_t netdiff;
428 const int32_t exec;
429
431 constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
432
434 constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
435 valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
436
438 constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
439 {
440 // Union with an empty set is itself.
441 if (!a.valid) return b;
442 if (!b.valid) return a;
443 // Otherwise the netdiff and exec of the union is the maximum of the individual values.
444 return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
445 }
446
448 constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
449 {
450 // Concatenation with an empty set yields an empty set.
451 if (!a.valid || !b.valid) return {};
452 // Otherwise, the maximum stack size difference for the combined scripts is the sum of the
453 // netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
454 // maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
455 return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
456 }
457
459 static constexpr SatInfo Empty() noexcept { return {0, 0}; }
461 static constexpr SatInfo Push() noexcept { return {-1, 0}; }
463 static constexpr SatInfo Hash() noexcept { return {0, 0}; }
465 static constexpr SatInfo Nop() noexcept { return {0, 0}; }
467 static constexpr SatInfo If() noexcept { return {1, 1}; }
469 static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
470
471 // Scripts for specific individual opcodes.
472 static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
473 static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
474 static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
475 static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
476 static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
477 static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
478 static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
479 static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
480};
481
482struct StackSize {
484
485 constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
486 constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
487};
488
494
495 WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
496};
497
498struct NoDupCheck {};
499
500} // namespace internal
501
503template<typename Key>
504struct Node {
508 const uint32_t k = 0;
510 const std::vector<Key> keys;
512 const std::vector<unsigned char> data;
514 mutable std::vector<NodeRef<Key>> subs;
517
518 /* Destroy the shared pointers iteratively to avoid a stack-overflow due to recursive calls
519 * to the subs' destructors. */
521 while (!subs.empty()) {
522 auto node = std::move(subs.back());
523 subs.pop_back();
524 while (!node->subs.empty()) {
525 subs.push_back(std::move(node->subs.back()));
526 node->subs.pop_back();
527 }
528 }
529 }
530
532 {
533 // Use TreeEval() to avoid a stack-overflow due to recursion
534 auto upfn = [](const Node& node, std::span<NodeRef<Key>> children) {
535 std::vector<NodeRef<Key>> new_subs;
536 for (auto child = children.begin(); child != children.end(); ++child) {
537 new_subs.emplace_back(std::move(*child));
538 }
539 // std::make_unique (and therefore MakeNodeRef) doesn't work on private constructors
540 return std::unique_ptr<Node>{new Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k}};
541 };
542 return TreeEval<NodeRef<Key>>(upfn);
543 }
544
545private:
553 const Type typ;
555 const size_t scriptlen;
561 mutable std::optional<bool> has_duplicate_keys;
562
563 // Constructor which takes all of the data that a Node could possibly contain.
564 // This is kept private as no valid fragment has all of these arguments.
565 // Only used by Clone()
566 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, std::vector<unsigned char> arg, uint32_t val)
567 : fragment(nt), k(val), keys(key), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
568
570 size_t CalcScriptLen() const {
571 size_t subsize = 0;
572 for (const auto& sub : subs) {
573 subsize += sub->ScriptSize();
574 }
575 Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
576 return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
577 }
578
579 /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
580 *
581 * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
582 * result can be thought of as first using downfn to compute a "state" for each node,
583 * from the root down to the leaves. Then upfn is used to compute a "result" for each
584 * node, from the leaves back up to the root, which is then returned. In the actual
585 * implementation, both functions are invoked in an interleaved fashion, performing a
586 * depth-first traversal of the tree.
587 *
588 * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
589 * - root is the state of the root node, of type State.
590 * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
591 * node, its state, and an index of one of its children, computes the state of that
592 * child. It can modify the state. Children of a given node will have downfn()
593 * called in order.
594 * - upfn is a callable (State&&, const Node&, std::span<Result>) -> std::optional<Result>,
595 * which given a node, its state, and a span of the results of its children,
596 * computes the result of the node. If std::nullopt is returned by upfn,
597 * TreeEvalMaybe() immediately returns std::nullopt.
598 * The return value of TreeEvalMaybe is the result of the root node.
599 *
600 * Result type cannot be bool due to the std::vector<bool> specialization.
601 */
602 template<typename Result, typename State, typename DownFn, typename UpFn>
603 std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
604 {
606 struct StackElem
607 {
608 const Node& node;
609 size_t expanded;
610 State state;
611
612 StackElem(const Node& node_, size_t exp_, State&& state_) :
613 node(node_), expanded(exp_), state(std::move(state_)) {}
614 };
615 /* Stack of tree nodes being explored. */
616 std::vector<StackElem> stack;
617 /* Results of subtrees so far. Their order and mapping to tree nodes
618 * is implicitly defined by stack. */
619 std::vector<Result> results;
620 stack.emplace_back(*this, 0, std::move(root_state));
621
622 /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
623 * State variables are omitted for simplicity.
624 *
625 * First: stack=[(A,0)] results=[]
626 * stack=[(A,1),(B,0)] results=[]
627 * stack=[(A,1)] results=[B]
628 * stack=[(A,2),(C,0)] results=[B]
629 * stack=[(A,2),(C,1),(D,0)] results=[B]
630 * stack=[(A,2),(C,1)] results=[B,D]
631 * stack=[(A,2),(C,2),(E,0)] results=[B,D]
632 * stack=[(A,2),(C,2)] results=[B,D,E]
633 * stack=[(A,2)] results=[B,C]
634 * stack=[(A,3),(F,0)] results=[B,C]
635 * stack=[(A,3)] results=[B,C,F]
636 * Final: stack=[] results=[A]
637 */
638 while (stack.size()) {
639 const Node& node = stack.back().node;
640 if (stack.back().expanded < node.subs.size()) {
641 /* We encounter a tree node with at least one unexpanded child.
642 * Expand it. By the time we hit this node again, the result of
643 * that child (and all earlier children) will be at the end of `results`. */
644 size_t child_index = stack.back().expanded++;
645 State child_state = downfn(stack.back().state, node, child_index);
646 stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
647 continue;
648 }
649 // Invoke upfn with the last node.subs.size() elements of results as input.
650 assert(results.size() >= node.subs.size());
651 std::optional<Result> result{upfn(std::move(stack.back().state), node,
652 std::span<Result>{results}.last(node.subs.size()))};
653 // If evaluation returns std::nullopt, abort immediately.
654 if (!result) return {};
655 // Replace the last node.subs.size() elements of results with the new result.
656 results.erase(results.end() - node.subs.size(), results.end());
657 results.push_back(std::move(*result));
658 stack.pop_back();
659 }
660 // The final remaining results element is the root result, return it.
661 assert(results.size() >= 1);
662 CHECK_NONFATAL(results.size() == 1);
663 return std::move(results[0]);
664 }
665
668 template<typename Result, typename UpFn>
669 std::optional<Result> TreeEvalMaybe(UpFn upfn) const
670 {
671 struct DummyState {};
672 return TreeEvalMaybe<Result>(DummyState{},
673 [](DummyState, const Node&, size_t) { return DummyState{}; },
674 [&upfn](DummyState, const Node& node, std::span<Result> subs) {
675 return upfn(node, subs);
676 }
677 );
678 }
679
681 template<typename Result, typename State, typename DownFn, typename UpFn>
682 Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
683 {
684 // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
685 // unconditionally dereference the result (it cannot be std::nullopt).
686 return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
687 std::forward<DownFn>(downfn),
688 [&upfn](State&& state, const Node& node, std::span<Result> subs) {
689 Result res{upfn(std::move(state), node, subs)};
690 return std::optional<Result>(std::move(res));
691 }
692 ));
693 }
694
697 template<typename Result, typename UpFn>
698 Result TreeEval(UpFn upfn) const
699 {
700 struct DummyState {};
701 return std::move(*TreeEvalMaybe<Result>(DummyState{},
702 [](DummyState, const Node&, size_t) { return DummyState{}; },
703 [&upfn](DummyState, const Node& node, std::span<Result> subs) {
704 Result res{upfn(node, subs)};
705 return std::optional<Result>(std::move(res));
706 }
707 ));
708 }
709
711 friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
712 {
713 std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
714 queue.emplace_back(node1, node2);
715 while (!queue.empty()) {
716 const auto& [a, b] = queue.back();
717 queue.pop_back();
718 if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
719 if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
720 if (a.subs.size() < b.subs.size()) return -1;
721 if (b.subs.size() < a.subs.size()) return 1;
722 size_t n = a.subs.size();
723 for (size_t i = 0; i < n; ++i) {
724 queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]);
725 }
726 }
727 return 0;
728 }
729
731 Type CalcType() const {
732 using namespace internal;
733
734 // THRESH has a variable number of subexpressions
735 std::vector<Type> sub_types;
736 if (fragment == Fragment::THRESH) {
737 for (const auto& sub : subs) sub_types.push_back(sub->GetType());
738 }
739 // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
740 Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
741 Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst;
742 Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst;
743
744 return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
745 }
746
747public:
748 template<typename Ctx>
749 CScript ToScript(const Ctx& ctx) const
750 {
751 // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
752 // The State is a boolean: whether or not the node's script expansion is followed
753 // by an OP_VERIFY (which may need to be combined with the last script opcode).
754 auto downfn = [](bool verify, const Node& node, size_t index) {
755 // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
756 if (node.fragment == Fragment::WRAP_V) return true;
757 // The subexpression of WRAP_S, and the last subexpression of AND_V
758 // inherit the followed-by-OP_VERIFY property from the parent.
759 if (node.fragment == Fragment::WRAP_S ||
760 (node.fragment == Fragment::AND_V && index == 1)) return verify;
761 return false;
762 };
763 // The upward function computes for a node, given its followed-by-OP_VERIFY status
764 // and the CScripts of its child nodes, the CScript of the node.
765 const bool is_tapscript{IsTapscript(m_script_ctx)};
766 auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, std::span<CScript> subs) -> CScript {
767 switch (node.fragment) {
768 case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
769 case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
777 case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
778 case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
780 case Fragment::WRAP_V: {
781 if (node.subs[0]->GetType() << "x"_mst) {
782 return BuildScript(std::move(subs[0]), OP_VERIFY);
783 } else {
784 return std::move(subs[0]);
785 }
786 }
788 case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
789 case Fragment::JUST_1: return BuildScript(OP_1);
790 case Fragment::JUST_0: return BuildScript(OP_0);
791 case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
792 case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
793 case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
794 case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
795 case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
796 case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
797 case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
798 case Fragment::MULTI: {
799 CHECK_NONFATAL(!is_tapscript);
801 for (const auto& key : node.keys) {
802 script = BuildScript(std::move(script), ctx.ToPKBytes(key));
803 }
804 return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
805 }
806 case Fragment::MULTI_A: {
807 CHECK_NONFATAL(is_tapscript);
808 CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
809 for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
810 script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
811 }
812 return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
813 }
814 case Fragment::THRESH: {
815 CScript script = std::move(subs[0]);
816 for (size_t i = 1; i < subs.size(); ++i) {
817 script = BuildScript(std::move(script), subs[i], OP_ADD);
818 }
819 return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
820 }
821 }
822 assert(false);
823 };
824 return TreeEval<CScript>(false, downfn, upfn);
825 }
826
827 template<typename CTx>
828 std::optional<std::string> ToString(const CTx& ctx) const {
829 // To construct the std::string representation for a Miniscript object, we use
830 // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
831 // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
832 auto downfn = [](bool, const Node& node, size_t) {
833 return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
834 node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
835 node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
836 node.fragment == Fragment::WRAP_C ||
837 (node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) ||
838 (node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) ||
839 (node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0));
840 };
841 // The upward function computes for a node, given whether its parent is a wrapper,
842 // and the string representations of its child nodes, the string representation of the node.
843 const bool is_tapscript{IsTapscript(m_script_ctx)};
844 auto upfn = [&ctx, is_tapscript](bool wrapped, const Node& node, std::span<std::string> subs) -> std::optional<std::string> {
845 std::string ret = wrapped ? ":" : "";
846
847 switch (node.fragment) {
848 case Fragment::WRAP_A: return "a" + std::move(subs[0]);
849 case Fragment::WRAP_S: return "s" + std::move(subs[0]);
850 case Fragment::WRAP_C:
851 if (node.subs[0]->fragment == Fragment::PK_K) {
852 // pk(K) is syntactic sugar for c:pk_k(K)
853 auto key_str = ctx.ToString(node.subs[0]->keys[0]);
854 if (!key_str) return {};
855 return std::move(ret) + "pk(" + std::move(*key_str) + ")";
856 }
857 if (node.subs[0]->fragment == Fragment::PK_H) {
858 // pkh(K) is syntactic sugar for c:pk_h(K)
859 auto key_str = ctx.ToString(node.subs[0]->keys[0]);
860 if (!key_str) return {};
861 return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
862 }
863 return "c" + std::move(subs[0]);
864 case Fragment::WRAP_D: return "d" + std::move(subs[0]);
865 case Fragment::WRAP_V: return "v" + std::move(subs[0]);
866 case Fragment::WRAP_J: return "j" + std::move(subs[0]);
867 case Fragment::WRAP_N: return "n" + std::move(subs[0]);
868 case Fragment::AND_V:
869 // t:X is syntactic sugar for and_v(X,1).
870 if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
871 break;
872 case Fragment::OR_I:
873 if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
874 if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
875 break;
876 default: break;
877 }
878 switch (node.fragment) {
879 case Fragment::PK_K: {
880 auto key_str = ctx.ToString(node.keys[0]);
881 if (!key_str) return {};
882 return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
883 }
884 case Fragment::PK_H: {
885 auto key_str = ctx.ToString(node.keys[0]);
886 if (!key_str) return {};
887 return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
888 }
889 case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")";
890 case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")";
891 case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
892 case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
893 case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
894 case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
895 case Fragment::JUST_1: return std::move(ret) + "1";
896 case Fragment::JUST_0: return std::move(ret) + "0";
897 case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
898 case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
899 case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
900 case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
901 case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
902 case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
903 case Fragment::ANDOR:
904 // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
905 if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
906 return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
907 case Fragment::MULTI: {
908 CHECK_NONFATAL(!is_tapscript);
909 auto str = std::move(ret) + "multi(" + util::ToString(node.k);
910 for (const auto& key : node.keys) {
911 auto key_str = ctx.ToString(key);
912 if (!key_str) return {};
913 str += "," + std::move(*key_str);
914 }
915 return std::move(str) + ")";
916 }
917 case Fragment::MULTI_A: {
918 CHECK_NONFATAL(is_tapscript);
919 auto str = std::move(ret) + "multi_a(" + util::ToString(node.k);
920 for (const auto& key : node.keys) {
921 auto key_str = ctx.ToString(key);
922 if (!key_str) return {};
923 str += "," + std::move(*key_str);
924 }
925 return std::move(str) + ")";
926 }
927 case Fragment::THRESH: {
928 auto str = std::move(ret) + "thresh(" + util::ToString(node.k);
929 for (auto& sub : subs) {
930 str += "," + std::move(sub);
931 }
932 return std::move(str) + ")";
933 }
934 default: break;
935 }
936 assert(false);
937 };
938
939 return TreeEvalMaybe<std::string>(false, downfn, upfn);
940 }
941
942private:
944 switch (fragment) {
945 case Fragment::JUST_1: return {0, 0, {}};
946 case Fragment::JUST_0: return {0, {}, 0};
947 case Fragment::PK_K: return {0, 0, 0};
948 case Fragment::PK_H: return {3, 0, 0};
949 case Fragment::OLDER:
950 case Fragment::AFTER: return {1, 0, {}};
951 case Fragment::SHA256:
954 case Fragment::HASH160: return {4, 0, {}};
955 case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
956 case Fragment::AND_B: {
957 const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
958 const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
959 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
960 return {count, sat, dsat};
961 }
962 case Fragment::OR_B: {
963 const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
964 const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
965 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
966 return {count, sat, dsat};
967 }
968 case Fragment::OR_D: {
969 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
970 const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
971 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
972 return {count, sat, dsat};
973 }
974 case Fragment::OR_C: {
975 const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
976 const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
977 return {count, sat, {}};
978 }
979 case Fragment::OR_I: {
980 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
981 const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
982 const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
983 return {count, sat, dsat};
984 }
985 case Fragment::ANDOR: {
986 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
987 const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
988 const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
989 return {count, sat, dsat};
990 }
991 case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
992 case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
993 case Fragment::WRAP_S:
994 case Fragment::WRAP_C:
995 case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
996 case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
997 case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
998 case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
999 case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
1000 case Fragment::THRESH: {
1001 uint32_t count = 0;
1002 auto sats = Vector(internal::MaxInt<uint32_t>(0));
1003 for (const auto& sub : subs) {
1004 count += sub->ops.count + 1;
1005 auto next_sats = Vector(sats[0] + sub->ops.dsat);
1006 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
1007 next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
1008 sats = std::move(next_sats);
1009 }
1010 assert(k < sats.size());
1011 return {count, sats[k], sats[0]};
1012 }
1013 }
1014 assert(false);
1015 }
1016
1018 using namespace internal;
1019 switch (fragment) {
1020 case Fragment::JUST_0: return {{}, SatInfo::Push()};
1021 case Fragment::JUST_1: return {SatInfo::Push(), {}};
1022 case Fragment::OLDER:
1023 case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
1024 case Fragment::PK_K: return {SatInfo::Push()};
1025 case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
1026 case Fragment::SHA256:
1028 case Fragment::HASH256:
1029 case Fragment::HASH160: return {
1030 SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
1031 {}
1032 };
1033 case Fragment::ANDOR: {
1034 const auto& x{subs[0]->ss};
1035 const auto& y{subs[1]->ss};
1036 const auto& z{subs[2]->ss};
1037 return {
1038 (x.sat + SatInfo::If() + y.sat) | (x.dsat + SatInfo::If() + z.sat),
1039 x.dsat + SatInfo::If() + z.dsat
1040 };
1041 }
1042 case Fragment::AND_V: {
1043 const auto& x{subs[0]->ss};
1044 const auto& y{subs[1]->ss};
1045 return {x.sat + y.sat, {}};
1046 }
1047 case Fragment::AND_B: {
1048 const auto& x{subs[0]->ss};
1049 const auto& y{subs[1]->ss};
1050 return {x.sat + y.sat + SatInfo::BinaryOp(), x.dsat + y.dsat + SatInfo::BinaryOp()};
1051 }
1052 case Fragment::OR_B: {
1053 const auto& x{subs[0]->ss};
1054 const auto& y{subs[1]->ss};
1055 return {
1056 ((x.sat + y.dsat) | (x.dsat + y.sat)) + SatInfo::BinaryOp(),
1057 x.dsat + y.dsat + SatInfo::BinaryOp()
1058 };
1059 }
1060 case Fragment::OR_C: {
1061 const auto& x{subs[0]->ss};
1062 const auto& y{subs[1]->ss};
1063 return {(x.sat + SatInfo::If()) | (x.dsat + SatInfo::If() + y.sat), {}};
1064 }
1065 case Fragment::OR_D: {
1066 const auto& x{subs[0]->ss};
1067 const auto& y{subs[1]->ss};
1068 return {
1069 (x.sat + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.sat),
1070 x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.dsat
1071 };
1072 }
1073 case Fragment::OR_I: {
1074 const auto& x{subs[0]->ss};
1075 const auto& y{subs[1]->ss};
1076 return {SatInfo::If() + (x.sat | y.sat), SatInfo::If() + (x.dsat | y.dsat)};
1077 }
1078 // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
1079 // signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
1080 // n itself, and ends with 1 stack element (success or failure). Thus, it net removes
1081 // k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
1082 case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
1083 // multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
1084 // signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
1085 // removes n-1 elements (from n to 1) while reaching n more than it ends with.
1086 case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
1087 case Fragment::WRAP_A:
1088 case Fragment::WRAP_N:
1089 case Fragment::WRAP_S: return subs[0]->ss;
1090 case Fragment::WRAP_C: return {
1091 subs[0]->ss.sat + SatInfo::OP_CHECKSIG(),
1092 subs[0]->ss.dsat + SatInfo::OP_CHECKSIG()
1093 };
1094 case Fragment::WRAP_D: return {
1095 SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.sat,
1096 SatInfo::OP_DUP() + SatInfo::If()
1097 };
1098 case Fragment::WRAP_V: return {subs[0]->ss.sat + SatInfo::OP_VERIFY(), {}};
1099 case Fragment::WRAP_J: return {
1100 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.sat,
1101 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
1102 };
1103 case Fragment::THRESH: {
1104 // sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
1105 auto sats = Vector(SatInfo::Empty());
1106 for (size_t i = 0; i < subs.size(); ++i) {
1107 // Loop over the subexpressions, processing them one by one. After adding
1108 // element i we need to add OP_ADD (if i>0).
1109 auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
1110 // Construct a variable that will become the next sats, starting with index 0.
1111 auto next_sats = Vector(sats[0] + subs[i]->ss.dsat + add);
1112 // Then loop to construct next_sats[1..i].
1113 for (size_t j = 1; j < sats.size(); ++j) {
1114 next_sats.push_back(((sats[j] + subs[i]->ss.dsat) | (sats[j - 1] + subs[i]->ss.sat)) + add);
1115 }
1116 // Finally construct next_sats[i+1].
1117 next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.sat + add);
1118 // Switch over.
1119 sats = std::move(next_sats);
1120 }
1121 // To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
1122 // cases a push of k and an OP_EQUAL follow.
1123 return {
1124 sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
1125 sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
1126 };
1127 }
1128 }
1129 assert(false);
1130 }
1131
1133 const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
1134 const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
1135 switch (fragment) {
1136 case Fragment::JUST_0: return {{}, 0};
1137 case Fragment::JUST_1:
1138 case Fragment::OLDER:
1139 case Fragment::AFTER: return {0, {}};
1140 case Fragment::PK_K: return {sig_size, 1};
1141 case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
1142 case Fragment::SHA256:
1144 case Fragment::HASH256:
1145 case Fragment::HASH160: return {1 + 32, {}};
1146 case Fragment::ANDOR: {
1147 const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)};
1148 const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat};
1149 return {sat, dsat};
1150 }
1151 case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}};
1152 case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat};
1153 case Fragment::OR_B: {
1154 const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)};
1155 const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat};
1156 return {sat, dsat};
1157 }
1158 case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}};
1159 case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat};
1160 case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)};
1161 case Fragment::MULTI: return {k * sig_size + 1, k + 1};
1162 case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
1163 case Fragment::WRAP_A:
1164 case Fragment::WRAP_N:
1165 case Fragment::WRAP_S:
1166 case Fragment::WRAP_C: return subs[0]->ws;
1167 case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1};
1168 case Fragment::WRAP_V: return {subs[0]->ws.sat, {}};
1169 case Fragment::WRAP_J: return {subs[0]->ws.sat, 1};
1170 case Fragment::THRESH: {
1171 auto sats = Vector(internal::MaxInt<uint32_t>(0));
1172 for (const auto& sub : subs) {
1173 auto next_sats = Vector(sats[0] + sub->ws.dsat);
1174 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat));
1175 next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat);
1176 sats = std::move(next_sats);
1177 }
1178 assert(k < sats.size());
1179 return {sats[k], sats[0]};
1180 }
1181 }
1182 assert(false);
1183 }
1184
1185 template<typename Ctx>
1186 internal::InputResult ProduceInput(const Ctx& ctx) const {
1187 using namespace internal;
1188
1189 // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
1190 // given those of its subnodes.
1191 auto helper = [&ctx](const Node& node, std::span<InputResult> subres) -> InputResult {
1192 switch (node.fragment) {
1193 case Fragment::PK_K: {
1194 std::vector<unsigned char> sig;
1195 Availability avail = ctx.Sign(node.keys[0], sig);
1196 return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
1197 }
1198 case Fragment::PK_H: {
1199 std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
1200 Availability avail = ctx.Sign(node.keys[0], sig);
1201 return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
1202 }
1203 case Fragment::MULTI_A: {
1204 // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1205 // In the loop below, these stacks are built up using a dynamic programming approach.
1206 std::vector<InputStack> sats = Vector(EMPTY);
1207 for (size_t i = 0; i < node.keys.size(); ++i) {
1208 // Get the signature for the i'th key in reverse order (the signature for the first key needs to
1209 // be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
1210 std::vector<unsigned char> sig;
1211 Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
1212 // Compute signature stack for just this key.
1213 auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
1214 // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1215 // next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
1216 // for the current (i'th) key. The very last element needs all signatures filled.
1217 std::vector<InputStack> next_sats;
1218 next_sats.push_back(sats[0] + ZERO);
1219 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
1220 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
1221 // Switch over.
1222 sats = std::move(next_sats);
1223 }
1224 // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
1225 // satisfying 0 keys.
1226 auto& nsat{sats[0]};
1227 CHECK_NONFATAL(node.k != 0);
1228 assert(node.k < sats.size());
1229 return {std::move(nsat), std::move(sats[node.k])};
1230 }
1231 case Fragment::MULTI: {
1232 // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1233 // In the loop below, these stacks are built up using a dynamic programming approach.
1234 // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
1235 std::vector<InputStack> sats = Vector(ZERO);
1236 for (size_t i = 0; i < node.keys.size(); ++i) {
1237 std::vector<unsigned char> sig;
1238 Availability avail = ctx.Sign(node.keys[i], sig);
1239 // Compute signature stack for just the i'th key.
1240 auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
1241 // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1242 // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
1243 // current (i'th) key. The very last element needs all signatures filled.
1244 std::vector<InputStack> next_sats;
1245 next_sats.push_back(sats[0]);
1246 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
1247 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
1248 // Switch over.
1249 sats = std::move(next_sats);
1250 }
1251 // The dissatisfaction consists of k+1 stack elements all equal to 0.
1252 InputStack nsat = ZERO;
1253 for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
1254 assert(node.k < sats.size());
1255 return {std::move(nsat), std::move(sats[node.k])};
1256 }
1257 case Fragment::THRESH: {
1258 // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
1259 // In the loop below, these stacks are built up using a dynamic programming approach.
1260 // sats[0] starts off empty.
1261 std::vector<InputStack> sats = Vector(EMPTY);
1262 for (size_t i = 0; i < subres.size(); ++i) {
1263 // Introduce an alias for the i'th last satisfaction/dissatisfaction.
1264 auto& res = subres[subres.size() - i - 1];
1265 // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
1266 // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
1267 // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
1268 std::vector<InputStack> next_sats;
1269 next_sats.push_back(sats[0] + res.nsat);
1270 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
1271 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
1272 // Switch over.
1273 sats = std::move(next_sats);
1274 }
1275 // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
1276 // is computed by gathering all sats[i].nsat for i != k.
1277 InputStack nsat = INVALID;
1278 for (size_t i = 0; i < sats.size(); ++i) {
1279 // i==k is the satisfaction; i==0 is the canonical dissatisfaction;
1280 // the rest are non-canonical (a no-signature dissatisfaction - the i=0
1281 // form - is always available) and malleable (due to overcompleteness).
1282 // Marking the solutions malleable here is not strictly necessary, as they
1283 // should already never be picked in non-malleable solutions due to the
1284 // availability of the i=0 form.
1285 if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
1286 // Include all dissatisfactions (even these non-canonical ones) in nsat.
1287 if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
1288 }
1289 assert(node.k < sats.size());
1290 return {std::move(nsat), std::move(sats[node.k])};
1291 }
1292 case Fragment::OLDER: {
1293 return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
1294 }
1295 case Fragment::AFTER: {
1296 return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
1297 }
1298 case Fragment::SHA256: {
1299 std::vector<unsigned char> preimage;
1300 Availability avail = ctx.SatSHA256(node.data, preimage);
1301 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1302 }
1303 case Fragment::RIPEMD160: {
1304 std::vector<unsigned char> preimage;
1305 Availability avail = ctx.SatRIPEMD160(node.data, preimage);
1306 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1307 }
1308 case Fragment::HASH256: {
1309 std::vector<unsigned char> preimage;
1310 Availability avail = ctx.SatHASH256(node.data, preimage);
1311 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1312 }
1313 case Fragment::HASH160: {
1314 std::vector<unsigned char> preimage;
1315 Availability avail = ctx.SatHASH160(node.data, preimage);
1316 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1317 }
1318 case Fragment::AND_V: {
1319 auto& x = subres[0], &y = subres[1];
1320 // As the dissatisfaction here only consist of a single option, it doesn't
1321 // actually need to be listed (it's not required for reasoning about malleability of
1322 // other options), and is never required (no valid miniscript relies on the ability
1323 // to satisfy the type V left subexpression). It's still listed here for
1324 // completeness, as a hypothetical (not currently implemented) satisfier that doesn't
1325 // care about malleability might in some cases prefer it still.
1326 return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
1327 }
1328 case Fragment::AND_B: {
1329 auto& x = subres[0], &y = subres[1];
1330 // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
1331 // as malleable. While they are definitely malleable, they are also non-canonical due
1332 // to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
1333 // option. Because of that, the 2nd and 3rd option will never be chosen, even if they
1334 // weren't marked as malleable.
1335 return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
1336 }
1337 case Fragment::OR_B: {
1338 auto& x = subres[0], &z = subres[1];
1339 // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
1340 return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
1341 }
1342 case Fragment::OR_C: {
1343 auto& x = subres[0], &z = subres[1];
1344 return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
1345 }
1346 case Fragment::OR_D: {
1347 auto& x = subres[0], &z = subres[1];
1348 return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
1349 }
1350 case Fragment::OR_I: {
1351 auto& x = subres[0], &z = subres[1];
1352 return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
1353 }
1354 case Fragment::ANDOR: {
1355 auto& x = subres[0], &y = subres[1], &z = subres[2];
1356 return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
1357 }
1358 case Fragment::WRAP_A:
1359 case Fragment::WRAP_S:
1360 case Fragment::WRAP_C:
1361 case Fragment::WRAP_N:
1362 return std::move(subres[0]);
1363 case Fragment::WRAP_D: {
1364 auto &x = subres[0];
1365 return {ZERO, x.sat + ONE};
1366 }
1367 case Fragment::WRAP_J: {
1368 auto &x = subres[0];
1369 // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
1370 // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
1371 // if a dissatisfaction with a top zero element is found, we don't know whether another one with a
1372 // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
1373 // dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
1374 return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
1375 }
1376 case Fragment::WRAP_V: {
1377 auto &x = subres[0];
1378 return {INVALID, std::move(x.sat)};
1379 }
1380 case Fragment::JUST_0: return {EMPTY, INVALID};
1381 case Fragment::JUST_1: return {INVALID, EMPTY};
1382 }
1383 assert(false);
1384 return {INVALID, INVALID};
1385 };
1386
1387 auto tester = [&helper](const Node& node, std::span<InputResult> subres) -> InputResult {
1388 auto ret = helper(node, subres);
1389
1390 // Do a consistency check between the satisfaction code and the type checker
1391 // (the actual satisfaction code in ProduceInputHelper does not use GetType)
1392
1393 // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
1394 if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0);
1395 if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0);
1396
1397 // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
1398 if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1);
1399 if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1);
1400
1401 // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
1402 // the top element cannot be 0.
1403 if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1);
1404 if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1);
1405 if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty());
1406
1407 // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
1408 // it must be canonical.
1409 if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
1410 if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig);
1411 if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon);
1412
1413 // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
1414 if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig);
1415 if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig);
1416
1417 // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
1418 if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
1419 if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable);
1420
1421 // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
1422 if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable);
1423
1424 // If a non-malleable satisfaction exists, it must be canonical.
1425 if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon);
1426
1427 return ret;
1428 };
1429
1430 return TreeEval<InputResult>(tester);
1431 }
1432
1433public:
1439 template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
1440 {
1441 // We cannot use a lambda here, as lambdas are non assignable, and the set operations
1442 // below require moving the comparators around.
1443 struct Comp {
1444 const Ctx* ctx_ptr;
1445 Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
1446 bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
1447 };
1448
1449 // state in the recursive computation:
1450 // - std::nullopt means "this node has duplicates"
1451 // - an std::set means "this node has no duplicate keys, and they are: ...".
1452 using keyset = std::set<Key, Comp>;
1453 using state = std::optional<keyset>;
1454
1455 auto upfn = [&ctx](const Node& node, std::span<state> subs) -> state {
1456 // If this node is already known to have duplicates, nothing left to do.
1457 if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
1458
1459 // Check if one of the children is already known to have duplicates.
1460 for (auto& sub : subs) {
1461 if (!sub.has_value()) {
1462 node.has_duplicate_keys = true;
1463 return {};
1464 }
1465 }
1466
1467 // Start building the set of keys involved in this node and children.
1468 // Start by keys in this node directly.
1469 size_t keys_count = node.keys.size();
1470 keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
1471 if (key_set.size() != keys_count) {
1472 // It already has duplicates; bail out.
1473 node.has_duplicate_keys = true;
1474 return {};
1475 }
1476
1477 // Merge the keys from the children into this set.
1478 for (auto& sub : subs) {
1479 keys_count += sub->size();
1480 // Small optimization: std::set::merge is linear in the size of the second arg but
1481 // logarithmic in the size of the first.
1482 if (key_set.size() < sub->size()) std::swap(key_set, *sub);
1483 key_set.merge(*sub);
1484 if (key_set.size() != keys_count) {
1485 node.has_duplicate_keys = true;
1486 return {};
1487 }
1488 }
1489
1490 node.has_duplicate_keys = false;
1491 return key_set;
1492 };
1493
1494 TreeEval<state>(upfn);
1495 }
1496
1498 size_t ScriptSize() const { return scriptlen; }
1499
1501 std::optional<uint32_t> GetOps() const {
1502 if (!ops.sat.valid) return {};
1503 return ops.count + ops.sat.value;
1504 }
1505
1507 uint32_t GetStaticOps() const { return ops.count; }
1508
1510 bool CheckOpsLimit() const {
1511 if (IsTapscript(m_script_ctx)) return true;
1512 if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
1513 return true;
1514 }
1515
1517 bool IsBKW() const {
1518 return !((GetType() & "BKW"_mst) == ""_mst);
1519 }
1520
1522 std::optional<uint32_t> GetStackSize() const {
1523 if (!ss.sat.valid) return {};
1524 return ss.sat.netdiff + static_cast<int32_t>(IsBKW());
1525 }
1526
1528 std::optional<uint32_t> GetExecStackSize() const {
1529 if (!ss.sat.valid) return {};
1530 return ss.sat.exec + static_cast<int32_t>(IsBKW());
1531 }
1532
1534 bool CheckStackSize() const {
1535 // Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
1536 // into the maximum stack size while executing the script. Make sure it doesn't happen.
1537 if (IsTapscript(m_script_ctx)) {
1538 if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
1539 return true;
1540 }
1541 if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
1542 return true;
1543 }
1544
1546 bool IsNotSatisfiable() const { return !GetStackSize(); }
1547
1550 std::optional<uint32_t> GetWitnessSize() const {
1551 if (!ws.sat.valid) return {};
1552 return ws.sat.value;
1553 }
1554
1556 Type GetType() const { return typ; }
1557
1559 MiniscriptContext GetMsCtx() const { return m_script_ctx; }
1560
1562 const Node* FindInsaneSub() const {
1563 return TreeEval<const Node*>([](const Node& node, std::span<const Node*> subs) -> const Node* {
1564 for (auto& sub: subs) if (sub) return sub;
1565 if (!node.IsSaneSubexpression()) return &node;
1566 return nullptr;
1567 });
1568 }
1569
1572 template<typename F>
1573 bool IsSatisfiable(F fn) const
1574 {
1575 // TreeEval() doesn't support bool as NodeType, so use int instead.
1576 return TreeEval<int>([&fn](const Node& node, std::span<int> subs) -> bool {
1577 switch (node.fragment) {
1578 case Fragment::JUST_0:
1579 return false;
1580 case Fragment::JUST_1:
1581 return true;
1582 case Fragment::PK_K:
1583 case Fragment::PK_H:
1584 case Fragment::MULTI:
1585 case Fragment::MULTI_A:
1586 case Fragment::AFTER:
1587 case Fragment::OLDER:
1588 case Fragment::HASH256:
1589 case Fragment::HASH160:
1590 case Fragment::SHA256:
1591 case Fragment::RIPEMD160:
1592 return bool{fn(node)};
1593 case Fragment::ANDOR:
1594 return (subs[0] && subs[1]) || subs[2];
1595 case Fragment::AND_V:
1596 case Fragment::AND_B:
1597 return subs[0] && subs[1];
1598 case Fragment::OR_B:
1599 case Fragment::OR_C:
1600 case Fragment::OR_D:
1601 case Fragment::OR_I:
1602 return subs[0] || subs[1];
1603 case Fragment::THRESH:
1604 return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
1605 default: // wrappers
1606 assert(subs.size() >= 1);
1607 CHECK_NONFATAL(subs.size() == 1);
1608 return subs[0];
1609 }
1610 });
1611 }
1612
1614 bool IsValid() const {
1615 if (GetType() == ""_mst) return false;
1616 return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
1617 }
1618
1620 bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
1621
1623 bool IsNonMalleable() const { return GetType() << "m"_mst; }
1624
1626 bool NeedsSignature() const { return GetType() << "s"_mst; }
1627
1629 bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
1630
1632 bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
1633
1635 bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
1636
1638 bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
1639
1641 bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
1642
1647 template<typename Ctx>
1648 Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
1649 auto ret = ProduceInput(ctx);
1650 if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
1651 stack = std::move(ret.sat.stack);
1652 return ret.sat.available;
1653 }
1654
1656 bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
1657
1658 // Constructors with various argument combinations, which bypass the duplicate key check.
1659 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1660 : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1661 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1662 : fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1663 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
1664 : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1665 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
1666 : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1667 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
1668 : fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1669 Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val = 0)
1670 : fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1671
1672 // Constructors with various argument combinations, which do perform the duplicate key check.
1673 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1674 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
1675 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1676 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
1677 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
1678 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
1679 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
1680 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
1681 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
1682 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
1683 template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0)
1684 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
1685
1686 // Delete copy constructor and assignment operator, use Clone() instead
1687 Node(const Node&) = delete;
1688 Node& operator=(const Node&) = delete;
1689};
1690
1691namespace internal {
1692
1693enum class ParseContext {
1697 EXPR,
1698
1700 SWAP,
1702 ALT,
1704 CHECK,
1706 DUP_IF,
1708 VERIFY,
1710 NON_ZERO,
1714 WRAP_U,
1716 WRAP_T,
1717
1719 AND_N,
1721 AND_V,
1723 AND_B,
1725 ANDOR,
1727 OR_B,
1729 OR_C,
1731 OR_D,
1733 OR_I,
1734
1739 THRESH,
1740
1742 COMMA,
1745};
1746
1747int FindNextChar(std::span<const char> in, const char m);
1748
1750template<typename Key, typename Ctx>
1751std::optional<std::pair<Key, int>> ParseKeyEnd(std::span<const char> in, const Ctx& ctx)
1752{
1753 int key_size = FindNextChar(in, ')');
1754 if (key_size < 1) return {};
1755 auto key = ctx.FromString(in.begin(), in.begin() + key_size);
1756 if (!key) return {};
1757 return {{std::move(*key), key_size}};
1758}
1759
1761template<typename Ctx>
1762std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(std::span<const char> in, const size_t expected_size,
1763 const Ctx& ctx)
1764{
1765 int hash_size = FindNextChar(in, ')');
1766 if (hash_size < 1) return {};
1767 std::string val = std::string(in.begin(), in.begin() + hash_size);
1768 if (!IsHex(val)) return {};
1769 auto hash = ParseHex(val);
1770 if (hash.size() != expected_size) return {};
1771 return {{std::move(hash), hash_size}};
1772}
1773
1775template<typename Key>
1776void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
1777{
1778 NodeRef<Key> child = std::move(constructed.back());
1779 constructed.pop_back();
1780 if (reverse) {
1781 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back())));
1782 } else {
1783 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child)));
1784 }
1785}
1786
1792template<typename Key, typename Ctx>
1793inline NodeRef<Key> Parse(std::span<const char> in, const Ctx& ctx)
1794{
1795 using namespace script;
1796
1797 // Account for the minimum script size for all parsed fragments so far. It "borrows" 1
1798 // script byte from all leaf nodes, counting it instead whenever a space for a recursive
1799 // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
1800 // increment the script_size by at least one, except for:
1801 // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
1802 // This is not an issue however, as "space" for them has to be created by combinators,
1803 // which do increment script_size.
1804 // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
1805 // (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
1806 // to be interleaved with other fragments to be valid, so this is not a concern.
1807 size_t script_size{1};
1808 size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
1809
1810 // The two integers are used to hold state for thresh()
1811 std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
1812 std::vector<NodeRef<Key>> constructed;
1813
1814 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1815
1816 // Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
1817 const auto parse_multi_exp = [&](std::span<const char>& in, const bool is_multi_a) -> bool {
1818 const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
1819 const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
1820 if (ctx.MsContext() != required_ctx) return false;
1821 // Get threshold
1822 int next_comma = FindNextChar(in, ',');
1823 if (next_comma < 1) return false;
1824 const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
1825 if (!k_to_integral.has_value()) return false;
1826 const int64_t k{k_to_integral.value()};
1827 in = in.subspan(next_comma + 1);
1828 // Get keys. It is compatible for both compressed and x-only keys.
1829 std::vector<Key> keys;
1830 while (next_comma != -1) {
1831 next_comma = FindNextChar(in, ',');
1832 int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
1833 if (key_length < 1) return false;
1834 auto key = ctx.FromString(in.begin(), in.begin() + key_length);
1835 if (!key) return false;
1836 keys.push_back(std::move(*key));
1837 in = in.subspan(key_length + 1);
1838 }
1839 if (keys.size() < 1 || keys.size() > max_keys) return false;
1840 if (k < 1 || k > (int64_t)keys.size()) return false;
1841 if (is_multi_a) {
1842 // (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
1843 script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
1844 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k));
1845 } else {
1846 script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
1847 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k));
1848 }
1849 return true;
1850 };
1851
1852 while (!to_parse.empty()) {
1853 if (script_size > max_size) return {};
1854
1855 // Get the current context we are decoding within
1856 auto [cur_context, n, k] = to_parse.back();
1857 to_parse.pop_back();
1858
1859 switch (cur_context) {
1860 case ParseContext::WRAPPED_EXPR: {
1861 std::optional<size_t> colon_index{};
1862 for (size_t i = 1; i < in.size(); ++i) {
1863 if (in[i] == ':') {
1864 colon_index = i;
1865 break;
1866 }
1867 if (in[i] < 'a' || in[i] > 'z') break;
1868 }
1869 // If there is no colon, this loop won't execute
1870 bool last_was_v{false};
1871 for (size_t j = 0; colon_index && j < *colon_index; ++j) {
1872 if (script_size > max_size) return {};
1873 if (in[j] == 'a') {
1874 script_size += 2;
1875 to_parse.emplace_back(ParseContext::ALT, -1, -1);
1876 } else if (in[j] == 's') {
1877 script_size += 1;
1878 to_parse.emplace_back(ParseContext::SWAP, -1, -1);
1879 } else if (in[j] == 'c') {
1880 script_size += 1;
1881 to_parse.emplace_back(ParseContext::CHECK, -1, -1);
1882 } else if (in[j] == 'd') {
1883 script_size += 3;
1884 to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
1885 } else if (in[j] == 'j') {
1886 script_size += 4;
1887 to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
1888 } else if (in[j] == 'n') {
1889 script_size += 1;
1890 to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
1891 } else if (in[j] == 'v') {
1892 // do not permit "...vv...:"; it's not valid, and also doesn't trigger early
1893 // failure as script_size isn't incremented.
1894 if (last_was_v) return {};
1895 to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
1896 } else if (in[j] == 'u') {
1897 script_size += 4;
1898 to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
1899 } else if (in[j] == 't') {
1900 script_size += 1;
1901 to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
1902 } else if (in[j] == 'l') {
1903 // The l: wrapper is equivalent to or_i(0,X)
1904 script_size += 4;
1905 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
1906 to_parse.emplace_back(ParseContext::OR_I, -1, -1);
1907 } else {
1908 return {};
1909 }
1910 last_was_v = (in[j] == 'v');
1911 }
1912 to_parse.emplace_back(ParseContext::EXPR, -1, -1);
1913 if (colon_index) in = in.subspan(*colon_index + 1);
1914 break;
1915 }
1916 case ParseContext::EXPR: {
1917 if (Const("0", in)) {
1918 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
1919 } else if (Const("1", in)) {
1920 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
1921 } else if (Const("pk(", in)) {
1922 auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
1923 if (!res) return {};
1924 auto& [key, key_size] = *res;
1925 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))))));
1926 in = in.subspan(key_size + 1);
1927 script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
1928 } else if (Const("pkh(", in)) {
1929 auto res = ParseKeyEnd<Key>(in, ctx);
1930 if (!res) return {};
1931 auto& [key, key_size] = *res;
1932 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))))));
1933 in = in.subspan(key_size + 1);
1934 script_size += 24;
1935 } else if (Const("pk_k(", in)) {
1936 auto res = ParseKeyEnd<Key>(in, ctx);
1937 if (!res) return {};
1938 auto& [key, key_size] = *res;
1939 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))));
1940 in = in.subspan(key_size + 1);
1941 script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
1942 } else if (Const("pk_h(", in)) {
1943 auto res = ParseKeyEnd<Key>(in, ctx);
1944 if (!res) return {};
1945 auto& [key, key_size] = *res;
1946 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))));
1947 in = in.subspan(key_size + 1);
1948 script_size += 23;
1949 } else if (Const("sha256(", in)) {
1950 auto res = ParseHexStrEnd(in, 32, ctx);
1951 if (!res) return {};
1952 auto& [hash, hash_size] = *res;
1953 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash)));
1954 in = in.subspan(hash_size + 1);
1955 script_size += 38;
1956 } else if (Const("ripemd160(", in)) {
1957 auto res = ParseHexStrEnd(in, 20, ctx);
1958 if (!res) return {};
1959 auto& [hash, hash_size] = *res;
1960 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash)));
1961 in = in.subspan(hash_size + 1);
1962 script_size += 26;
1963 } else if (Const("hash256(", in)) {
1964 auto res = ParseHexStrEnd(in, 32, ctx);
1965 if (!res) return {};
1966 auto& [hash, hash_size] = *res;
1967 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash)));
1968 in = in.subspan(hash_size + 1);
1969 script_size += 38;
1970 } else if (Const("hash160(", in)) {
1971 auto res = ParseHexStrEnd(in, 20, ctx);
1972 if (!res) return {};
1973 auto& [hash, hash_size] = *res;
1974 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash)));
1975 in = in.subspan(hash_size + 1);
1976 script_size += 26;
1977 } else if (Const("after(", in)) {
1978 int arg_size = FindNextChar(in, ')');
1979 if (arg_size < 1) return {};
1980 const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
1981 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
1982 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
1983 in = in.subspan(arg_size + 1);
1984 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
1985 } else if (Const("older(", in)) {
1986 int arg_size = FindNextChar(in, ')');
1987 if (arg_size < 1) return {};
1988 const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
1989 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
1990 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
1991 in = in.subspan(arg_size + 1);
1992 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
1993 } else if (Const("multi(", in)) {
1994 if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
1995 } else if (Const("multi_a(", in)) {
1996 if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
1997 } else if (Const("thresh(", in)) {
1998 int next_comma = FindNextChar(in, ',');
1999 if (next_comma < 1) return {};
2000 const auto k{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
2001 if (!k.has_value() || *k < 1) return {};
2002 in = in.subspan(next_comma + 1);
2003 // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
2004 to_parse.emplace_back(ParseContext::THRESH, 1, *k);
2005 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2006 script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff);
2007 } else if (Const("andor(", in)) {
2008 to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
2009 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2010 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2011 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2012 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2013 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2014 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2015 script_size += 5;
2016 } else {
2017 if (Const("and_n(", in)) {
2018 to_parse.emplace_back(ParseContext::AND_N, -1, -1);
2019 script_size += 5;
2020 } else if (Const("and_b(", in)) {
2021 to_parse.emplace_back(ParseContext::AND_B, -1, -1);
2022 script_size += 2;
2023 } else if (Const("and_v(", in)) {
2024 to_parse.emplace_back(ParseContext::AND_V, -1, -1);
2025 script_size += 1;
2026 } else if (Const("or_b(", in)) {
2027 to_parse.emplace_back(ParseContext::OR_B, -1, -1);
2028 script_size += 2;
2029 } else if (Const("or_c(", in)) {
2030 to_parse.emplace_back(ParseContext::OR_C, -1, -1);
2031 script_size += 3;
2032 } else if (Const("or_d(", in)) {
2033 to_parse.emplace_back(ParseContext::OR_D, -1, -1);
2034 script_size += 4;
2035 } else if (Const("or_i(", in)) {
2036 to_parse.emplace_back(ParseContext::OR_I, -1, -1);
2037 script_size += 4;
2038 } else {
2039 return {};
2040 }
2041 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2042 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2043 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2044 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2045 }
2046 break;
2047 }
2048 case ParseContext::ALT: {
2049 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
2050 break;
2051 }
2052 case ParseContext::SWAP: {
2053 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
2054 break;
2055 }
2056 case ParseContext::CHECK: {
2057 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
2058 break;
2059 }
2060 case ParseContext::DUP_IF: {
2061 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
2062 break;
2063 }
2064 case ParseContext::NON_ZERO: {
2065 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
2066 break;
2067 }
2068 case ParseContext::ZERO_NOTEQUAL: {
2069 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
2070 break;
2071 }
2072 case ParseContext::VERIFY: {
2073 script_size += (constructed.back()->GetType() << "x"_mst);
2074 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
2075 break;
2076 }
2077 case ParseContext::WRAP_U: {
2078 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
2079 break;
2080 }
2081 case ParseContext::WRAP_T: {
2082 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)));
2083 break;
2084 }
2085 case ParseContext::AND_B: {
2086 BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
2087 break;
2088 }
2089 case ParseContext::AND_N: {
2090 auto mid = std::move(constructed.back());
2091 constructed.pop_back();
2092 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
2093 break;
2094 }
2095 case ParseContext::AND_V: {
2096 BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
2097 break;
2098 }
2099 case ParseContext::OR_B: {
2100 BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
2101 break;
2102 }
2103 case ParseContext::OR_C: {
2104 BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
2105 break;
2106 }
2107 case ParseContext::OR_D: {
2108 BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
2109 break;
2110 }
2111 case ParseContext::OR_I: {
2112 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
2113 break;
2114 }
2115 case ParseContext::ANDOR: {
2116 auto right = std::move(constructed.back());
2117 constructed.pop_back();
2118 auto mid = std::move(constructed.back());
2119 constructed.pop_back();
2120 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
2121 break;
2122 }
2123 case ParseContext::THRESH: {
2124 if (in.size() < 1) return {};
2125 if (in[0] == ',') {
2126 in = in.subspan(1);
2127 to_parse.emplace_back(ParseContext::THRESH, n+1, k);
2128 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2129 script_size += 2;
2130 } else if (in[0] == ')') {
2131 if (k > n) return {};
2132 in = in.subspan(1);
2133 // Children are constructed in reverse order, so iterate from end to beginning
2134 std::vector<NodeRef<Key>> subs;
2135 for (int i = 0; i < n; ++i) {
2136 subs.push_back(std::move(constructed.back()));
2137 constructed.pop_back();
2138 }
2139 std::reverse(subs.begin(), subs.end());
2140 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
2141 } else {
2142 return {};
2143 }
2144 break;
2145 }
2146 case ParseContext::COMMA: {
2147 if (in.size() < 1 || in[0] != ',') return {};
2148 in = in.subspan(1);
2149 break;
2150 }
2151 case ParseContext::CLOSE_BRACKET: {
2152 if (in.size() < 1 || in[0] != ')') return {};
2153 in = in.subspan(1);
2154 break;
2155 }
2156 }
2157 }
2158
2159 // Sanity checks on the produced miniscript
2160 assert(constructed.size() >= 1);
2161 CHECK_NONFATAL(constructed.size() == 1);
2162 assert(constructed[0]->ScriptSize() == script_size);
2163 if (in.size() > 0) return {};
2164 NodeRef<Key> tl_node = std::move(constructed.front());
2165 tl_node->DuplicateKeyCheck(ctx);
2166 return tl_node;
2167}
2168
2177std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
2178
2180std::optional<int64_t> ParseScriptNumber(const Opcode& in);
2181
2182enum class DecodeContext {
2188 BKV_EXPR,
2190 W_EXPR,
2191
2195 SWAP,
2198 ALT,
2200 CHECK,
2202 DUP_IF,
2204 VERIFY,
2206 NON_ZERO,
2209
2216 AND_V,
2218 AND_B,
2220 ANDOR,
2222 OR_B,
2224 OR_C,
2226 OR_D,
2227
2231 THRESH_W,
2234 THRESH_E,
2235
2239 ENDIF,
2247 ENDIF_ELSE,
2248};
2249
2251template<typename Key, typename Ctx, typename I>
2252inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
2253{
2254 // The two integers are used to hold state for thresh()
2255 std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
2256 std::vector<NodeRef<Key>> constructed;
2257
2258 // This is the top level, so we assume the type is B
2259 // (in particular, disallowing top level W expressions)
2260 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2261
2262 while (!to_parse.empty()) {
2263 // Exit early if the Miniscript is not going to be valid.
2264 if (!constructed.empty() && !constructed.back()->IsValid()) return {};
2265
2266 // Get the current context we are decoding within
2267 auto [cur_context, n, k] = to_parse.back();
2268 to_parse.pop_back();
2269
2270 switch(cur_context) {
2271 case DecodeContext::SINGLE_BKV_EXPR: {
2272 if (in >= last) return {};
2273
2274 // Constants
2275 if (in[0].first == OP_1) {
2276 ++in;
2277 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
2278 break;
2279 }
2280 if (in[0].first == OP_0) {
2281 ++in;
2282 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
2283 break;
2284 }
2285 // Public keys
2286 if (in[0].second.size() == 33 || in[0].second.size() == 32) {
2287 auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
2288 if (!key) return {};
2289 ++in;
2290 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key))));
2291 break;
2292 }
2293 if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
2294 auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
2295 if (!key) return {};
2296 in += 5;
2297 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key))));
2298 break;
2299 }
2300 // Time locks
2301 std::optional<int64_t> num;
2302 if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
2303 in += 2;
2304 if (*num < 1 || *num > 0x7FFFFFFFL) return {};
2305 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
2306 break;
2307 }
2308 if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
2309 in += 2;
2310 if (num < 1 || num > 0x7FFFFFFFL) return {};
2311 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
2312 break;
2313 }
2314 // Hashes
2315 if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
2316 if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
2317 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second));
2318 in += 7;
2319 break;
2320 } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
2321 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second));
2322 in += 7;
2323 break;
2324 } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
2325 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second));
2326 in += 7;
2327 break;
2328 } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
2329 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second));
2330 in += 7;
2331 break;
2332 }
2333 }
2334 // Multi
2335 if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
2336 if (IsTapscript(ctx.MsContext())) return {};
2337 std::vector<Key> keys;
2338 const auto n = ParseScriptNumber(in[1]);
2339 if (!n || last - in < 3 + *n) return {};
2340 if (*n < 1 || *n > 20) return {};
2341 for (int i = 0; i < *n; ++i) {
2342 if (in[2 + i].second.size() != 33) return {};
2343 auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
2344 if (!key) return {};
2345 keys.push_back(std::move(*key));
2346 }
2347 const auto k = ParseScriptNumber(in[2 + *n]);
2348 if (!k || *k < 1 || *k > *n) return {};
2349 in += 3 + *n;
2350 std::reverse(keys.begin(), keys.end());
2351 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k));
2352 break;
2353 }
2354 // Tapscript's equivalent of multi
2355 if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
2356 if (!IsTapscript(ctx.MsContext())) return {};
2357 // The necessary threshold of signatures.
2358 const auto k = ParseScriptNumber(in[1]);
2359 if (!k) return {};
2360 if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
2361 if (last - in < 2 + *k * 2) return {};
2362 std::vector<Key> keys;
2363 keys.reserve(*k);
2364 // Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
2365 for (int pos = 2;; pos += 2) {
2366 if (last - in < pos + 2) return {};
2367 // Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
2368 if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
2369 if (in[pos + 1].second.size() != 32) return {};
2370 auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
2371 if (!key) return {};
2372 keys.push_back(std::move(*key));
2373 // Make sure early we don't parse an arbitrary large expression.
2374 if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
2375 // OP_CHECKSIG means it was the last one to parse.
2376 if (in[pos].first == OP_CHECKSIG) break;
2377 }
2378 if (keys.size() < (size_t)*k) return {};
2379 in += 2 + keys.size() * 2;
2380 std::reverse(keys.begin(), keys.end());
2381 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k));
2382 break;
2383 }
2387 // c: wrapper
2388 if (in[0].first == OP_CHECKSIG) {
2389 ++in;
2390 to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
2391 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2392 break;
2393 }
2394 // v: wrapper
2395 if (in[0].first == OP_VERIFY) {
2396 ++in;
2397 to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
2398 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2399 break;
2400 }
2401 // n: wrapper
2402 if (in[0].first == OP_0NOTEQUAL) {
2403 ++in;
2404 to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
2405 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2406 break;
2407 }
2408 // Thresh
2409 if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
2410 if (*num < 1) return {};
2411 in += 2;
2412 to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
2413 break;
2414 }
2415 // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
2416 if (in[0].first == OP_ENDIF) {
2417 ++in;
2418 to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
2419 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2420 break;
2421 }
2427 // and_b
2428 if (in[0].first == OP_BOOLAND) {
2429 ++in;
2430 to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
2431 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2432 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2433 break;
2434 }
2435 // or_b
2436 if (in[0].first == OP_BOOLOR) {
2437 ++in;
2438 to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
2439 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2440 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2441 break;
2442 }
2443 // Unrecognised expression
2444 return {};
2445 }
2446 case DecodeContext::BKV_EXPR: {
2447 to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
2448 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2449 break;
2450 }
2451 case DecodeContext::W_EXPR: {
2452 // a: wrapper
2453 if (in >= last) return {};
2454 if (in[0].first == OP_FROMALTSTACK) {
2455 ++in;
2456 to_parse.emplace_back(DecodeContext::ALT, -1, -1);
2457 } else {
2458 to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
2459 }
2460 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2461 break;
2462 }
2463 case DecodeContext::MAYBE_AND_V: {
2464 // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
2465 // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
2466 if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
2467 to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
2468 // BKV_EXPR can contain more AND_V nodes
2469 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2470 }
2471 break;
2472 }
2473 case DecodeContext::SWAP: {
2474 if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
2475 ++in;
2476 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
2477 break;
2478 }
2479 case DecodeContext::ALT: {
2480 if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
2481 ++in;
2482 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
2483 break;
2484 }
2485 case DecodeContext::CHECK: {
2486 if (constructed.empty()) return {};
2487 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
2488 break;
2489 }
2490 case DecodeContext::DUP_IF: {
2491 if (constructed.empty()) return {};
2492 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
2493 break;
2494 }
2495 case DecodeContext::VERIFY: {
2496 if (constructed.empty()) return {};
2497 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
2498 break;
2499 }
2500 case DecodeContext::NON_ZERO: {
2501 if (constructed.empty()) return {};
2502 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
2503 break;
2504 }
2505 case DecodeContext::ZERO_NOTEQUAL: {
2506 if (constructed.empty()) return {};
2507 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
2508 break;
2509 }
2510 case DecodeContext::AND_V: {
2511 if (constructed.size() < 2) return {};
2512 BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
2513 break;
2514 }
2515 case DecodeContext::AND_B: {
2516 if (constructed.size() < 2) return {};
2517 BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
2518 break;
2519 }
2520 case DecodeContext::OR_B: {
2521 if (constructed.size() < 2) return {};
2522 BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
2523 break;
2524 }
2525 case DecodeContext::OR_C: {
2526 if (constructed.size() < 2) return {};
2527 BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
2528 break;
2529 }
2530 case DecodeContext::OR_D: {
2531 if (constructed.size() < 2) return {};
2532 BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
2533 break;
2534 }
2535 case DecodeContext::ANDOR: {
2536 if (constructed.size() < 3) return {};
2537 NodeRef<Key> left = std::move(constructed.back());
2538 constructed.pop_back();
2539 NodeRef<Key> right = std::move(constructed.back());
2540 constructed.pop_back();
2541 NodeRef<Key> mid = std::move(constructed.back());
2542 constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
2543 break;
2544 }
2545 case DecodeContext::THRESH_W: {
2546 if (in >= last) return {};
2547 if (in[0].first == OP_ADD) {
2548 ++in;
2549 to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
2550 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2551 } else {
2552 to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
2553 // All children of thresh have type modifier d, so cannot be and_v
2554 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2555 }
2556 break;
2557 }
2558 case DecodeContext::THRESH_E: {
2559 if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
2560 std::vector<NodeRef<Key>> subs;
2561 for (int i = 0; i < n; ++i) {
2562 NodeRef<Key> sub = std::move(constructed.back());
2563 constructed.pop_back();
2564 subs.push_back(std::move(sub));
2565 }
2566 constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
2567 break;
2568 }
2569 case DecodeContext::ENDIF: {
2570 if (in >= last) return {};
2571
2572 // could be andor or or_i
2573 if (in[0].first == OP_ELSE) {
2574 ++in;
2575 to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
2576 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2577 }
2578 // could be j: or d: wrapper
2579 else if (in[0].first == OP_IF) {
2580 if (last - in >= 2 && in[1].first == OP_DUP) {
2581 in += 2;
2582 to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
2583 } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
2584 in += 3;
2585 to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
2586 }
2587 else {
2588 return {};
2589 }
2590 // could be or_c or or_d
2591 } else if (in[0].first == OP_NOTIF) {
2592 ++in;
2593 to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
2594 }
2595 else {
2596 return {};
2597 }
2598 break;
2599 }
2600 case DecodeContext::ENDIF_NOTIF: {
2601 if (in >= last) return {};
2602 if (in[0].first == OP_IFDUP) {
2603 ++in;
2604 to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
2605 } else {
2606 to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
2607 }
2608 // or_c and or_d both require X to have type modifier d so, can't contain and_v
2609 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2610 break;
2611 }
2612 case DecodeContext::ENDIF_ELSE: {
2613 if (in >= last) return {};
2614 if (in[0].first == OP_IF) {
2615 ++in;
2616 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
2617 } else if (in[0].first == OP_NOTIF) {
2618 ++in;
2619 to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
2620 // andor requires X to have type modifier d, so it can't be and_v
2621 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2622 } else {
2623 return {};
2624 }
2625 break;
2626 }
2627 }
2628 }
2629 if (constructed.size() != 1) return {};
2630 NodeRef<Key> tl_node = std::move(constructed.front());
2631 tl_node->DuplicateKeyCheck(ctx);
2632 // Note that due to how ComputeType works (only assign the type to the node if the
2633 // subs' types are valid) this would fail if any node of tree is badly typed.
2634 if (!tl_node->IsValidTopLevel()) return {};
2635 return tl_node;
2636}
2637
2638} // namespace internal
2639
2640template<typename Ctx>
2641inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
2642 return internal::Parse<typename Ctx::Key>(str, ctx);
2643}
2644
2645template<typename Ctx>
2646inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
2647 using namespace internal;
2648 // A too large Script is necessarily invalid, don't bother parsing it.
2649 if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
2650 auto decomposed = DecomposeScript(script);
2651 if (!decomposed) return {};
2652 auto it = decomposed->begin();
2653 auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
2654 if (!ret) return {};
2655 if (it != decomposed->end()) return {};
2656 return ret;
2657}
2658
2659} // namespace miniscript
2660
2661#endif // BITCOIN_SCRIPT_MINISCRIPT_H
int ret
int flags
Definition: bitcoin-tx.cpp:529
ArgsManager & args
Definition: bitcoind.cpp:277
#define CHECK_NONFATAL(condition)
Identity function.
Definition: check.h:102
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:413
This type encapsulates the miniscript type system properties.
Definition: miniscript.h:126
constexpr bool operator<<(Type x) const
Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
Definition: miniscript.h:144
uint32_t m_flags
Internal bitmap of properties (see ""_mst operator for details).
Definition: miniscript.h:128
constexpr Type(uint32_t flags)
Internal constructor used by the ""_mst operator.
Definition: miniscript.h:131
constexpr Type If(bool x) const
The empty type if x is false, itself otherwise.
Definition: miniscript.h:153
constexpr Type operator&(Type x) const
Compute the type with the intersection of properties.
Definition: miniscript.h:141
constexpr bool operator<(Type x) const
Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
Definition: miniscript.h:147
constexpr Type operator|(Type x) const
Compute the type with the union of properties.
Definition: miniscript.h:138
constexpr bool operator==(Type x) const
Equality operator.
Definition: miniscript.h:150
size_type size() const
Definition: prevector.h:255
static const int WITNESS_SCALE_FACTOR
Definition: consensus.h:21
uint160 RIPEMD160(std::span< const unsigned char > data)
Compute the 160-bit RIPEMD-160 hash of an array.
Definition: hash.h:222
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
@ TAPSCRIPT
Witness v1 with 32-byte program, not BIP16 P2SH-wrapped, script path spending, leaf version 0xc0; see...
static constexpr size_t TAPROOT_CONTROL_MAX_SIZE
Definition: interpreter.h:236
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx)
Helper function for Node::CalcScriptLen.
Definition: miniscript.cpp:264
std::optional< int64_t > ParseScriptNumber(const Opcode &in)
Determine whether the passed pair (created by DecomposeScript) is pushing a number.
Definition: miniscript.cpp:408
Type SanitizeType(Type e)
A helper sanitizer/checker for the output of CalcType.
Definition: miniscript.cpp:19
std::optional< std::vector< Opcode > > DecomposeScript(const CScript &script)
Decode a script into opcode/push pairs.
Definition: miniscript.cpp:368
NodeRef< Key > DecodeScript(I &in, I last, const Ctx &ctx)
Parse a miniscript from a bitcoin script.
Definition: miniscript.h:2252
constexpr uint32_t TX_BODY_LEEWAY_WEIGHT
Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout ...
Definition: miniscript.h:266
constexpr uint32_t TXIN_BYTES_NO_WITNESS
prevout + nSequence + scriptSig
Definition: miniscript.h:262
static const auto ONE
A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric co...
Definition: miniscript.h:335
static const auto ZERO32
A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challe...
Definition: miniscript.h:333
constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
The maximum size of a script depending on the context.
Definition: miniscript.h:270
constexpr uint32_t TX_OVERHEAD
version + nLockTime
Definition: miniscript.h:260
static const auto ZERO
A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in num...
Definition: miniscript.h:331
constexpr uint32_t P2WSH_TXOUT_BYTES
nValue + script len + OP_0 + pushdata 32.
Definition: miniscript.h:264
int FindNextChar(std::span< const char > sp, const char m)
Definition: miniscript.cpp:421
@ VERIFY
VERIFY wraps the top constructed node with v:
@ CLOSE_BRACKET
CLOSE_BRACKET expects the next element to be ')' and fails if not.
@ AND_N
AND_N will construct an andor(X,Y,0) node from the last two constructed nodes.
@ SWAP
SWAP wraps the top constructed node with s:
@ COMMA
COMMA expects the next element to be ',' and fails if not.
@ DUP_IF
DUP_IF wraps the top constructed node with d:
@ EXPR
A miniscript expression which does not begin with wrappers.
@ ZERO_NOTEQUAL
ZERO_NOTEQUAL wraps the top constructed node with n:
@ NON_ZERO
NON_ZERO wraps the top constructed node with j:
@ WRAP_T
WRAP_T will construct an and_v(X,1) node from the top constructed node.
@ ALT
ALT wraps the top constructed node with a:
@ WRAP_U
WRAP_U will construct an or_i(X,0) node from the top constructed node.
@ WRAPPED_EXPR
An expression which may be begin with wrappers followed by a colon.
static const auto INVALID
A stack representing the lack of any (dis)satisfactions.
Definition: miniscript.h:339
@ SINGLE_BKV_EXPR
A single expression of type B, K, or V.
@ ENDIF_NOTIF
If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE, we could either be in an ...
@ BKV_EXPR
Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple) and_v expressions.
@ ENDIF_ELSE
If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an or_i or an andor node.
@ MAYBE_AND_V
MAYBE_AND_V will check if the next part of the script could be a valid miniscript sub-expression,...
@ W_EXPR
An expression of type W (a: or s: wrappers).
@ THRESH_E
THRESH_E constructs a thresh node from the appropriate number of constructed children.
@ ENDIF
ENDIF signals that we are inside some sort of OP_IF structure, which could be or_d,...
@ THRESH_W
In a thresh expression, all sub-expressions other than the first are W-type, and end in OP_ADD.
constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE
Maximum possible stack size to spend a Taproot output (excluding the script itself).
Definition: miniscript.h:268
static const auto EMPTY
The empty stack.
Definition: miniscript.h:337
std::optional< std::pair< std::vector< unsigned char >, int > > ParseHexStrEnd(std::span< const char > in, const size_t expected_size, const Ctx &ctx)
Parse a hex string ending at the end of the fragment's text representation.
Definition: miniscript.h:1762
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector< Type > &sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx)
Helper function for Node::CalcType.
Definition: miniscript.cpp:39
void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > &constructed, const bool reverse=false)
BuildBack pops the last two elements off constructed and wraps them in the specified Fragment.
Definition: miniscript.h:1776
static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE
The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with...
Definition: miniscript.h:257
NodeRef< Key > Parse(std::span< const char > in, const Ctx &ctx)
Parse a miniscript from its textual descriptor form.
Definition: miniscript.h:1793
std::optional< std::pair< Key, int > > ParseKeyEnd(std::span< const char > in, const Ctx &ctx)
Parse a key string ending at the end of the fragment's text representation.
Definition: miniscript.h:1751
NodeRef< typename Ctx::Key > FromString(const std::string &str, const Ctx &ctx)
Definition: miniscript.h:2641
constexpr bool IsTapscript(MiniscriptContext ms_ctx)
Whether the context Tapscript, ensuring the only other possibility is P2WSH.
Definition: miniscript.h:245
NodeRef< typename Ctx::Key > FromScript(const CScript &script, const Ctx &ctx)
Definition: miniscript.h:2646
NodeRef< Key > MakeNodeRef(Args &&... args)
Construct a miniscript node as a unique_ptr.
Definition: miniscript.h:196
std::unique_ptr< const Node< Key > > NodeRef
Definition: miniscript.h:192
std::pair< opcodetype, std::vector< unsigned char > > Opcode
Definition: miniscript.h:189
Fragment
The different node types in miniscript.
Definition: miniscript.h:199
@ OR_I
OP_IF [X] OP_ELSE [Y] OP_ENDIF.
@ MULTI_A
[key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
@ RIPEMD160
OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL.
@ HASH160
OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL.
@ OR_B
[X] [Y] OP_BOOLOR
@ WRAP_A
OP_TOALTSTACK [X] OP_FROMALTSTACK.
@ WRAP_V
[X] OP_VERIFY (or -VERIFY version of last opcode in X)
@ ANDOR
[X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
@ THRESH
[X1] ([Xn] OP_ADD)* [k] OP_EQUAL
@ WRAP_N
[X] OP_0NOTEQUAL
@ WRAP_S
OP_SWAP [X].
@ OR_C
[X] OP_NOTIF [Y] OP_ENDIF
@ HASH256
OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL.
@ OLDER
[n] OP_CHECKSEQUENCEVERIFY
@ SHA256
OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL.
@ WRAP_J
OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF.
@ AFTER
[n] OP_CHECKLOCKTIMEVERIFY
@ OR_D
[X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
@ WRAP_D
OP_DUP OP_IF [X] OP_ENDIF.
@ AND_B
[X] [Y] OP_BOOLAND
@ PK_H
OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY.
@ WRAP_C
[X] OP_CHECKSIG
@ MULTI
[k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
Definition: messages.h:20
bool Const(const std::string &str, std::span< const char > &sp, bool skip)
Parse a constant.
Definition: parsing.cpp:15
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:245
static constexpr unsigned int MAX_STANDARD_P2WSH_STACK_ITEMS
The maximum number of witness stack items in a standard P2WSH script.
Definition: policy.h:50
static constexpr int32_t MAX_STANDARD_TX_WEIGHT
The maximum weight for transactions we're willing to relay/mine.
Definition: policy.h:34
static constexpr unsigned int MAX_STANDARD_P2WSH_SCRIPT_SIZE
The maximum size in bytes of a standard witnessScript.
Definition: policy.h:56
@ OP_SHA256
Definition: script.h:186
@ OP_BOOLAND
Definition: script.h:169
@ OP_CHECKMULTISIG
Definition: script.h:192
@ OP_IF
Definition: script.h:104
@ OP_SWAP
Definition: script.h:131
@ OP_CHECKSIG
Definition: script.h:190
@ OP_CHECKLOCKTIMEVERIFY
Definition: script.h:197
@ OP_EQUAL
Definition: script.h:146
@ OP_NUMEQUAL
Definition: script.h:171
@ OP_NOTIF
Definition: script.h:105
@ OP_SIZE
Definition: script.h:139
@ OP_ENDIF
Definition: script.h:109
@ OP_DUP
Definition: script.h:125
@ OP_TOALTSTACK
Definition: script.h:114
@ OP_RIPEMD160
Definition: script.h:184
@ OP_HASH256
Definition: script.h:188
@ OP_FROMALTSTACK
Definition: script.h:115
@ OP_NUMEQUALVERIFY
Definition: script.h:172
@ OP_HASH160
Definition: script.h:187
@ OP_1
Definition: script.h:83
@ OP_VERIFY
Definition: script.h:110
@ OP_ADD
Definition: script.h:161
@ OP_CHECKMULTISIGVERIFY
Definition: script.h:193
@ OP_BOOLOR
Definition: script.h:170
@ OP_CHECKSIGADD
Definition: script.h:210
@ OP_ELSE
Definition: script.h:108
@ OP_CHECKSIGVERIFY
Definition: script.h:191
@ OP_0NOTEQUAL
Definition: script.h:159
@ OP_0
Definition: script.h:76
@ OP_IFDUP
Definition: script.h:122
@ OP_EQUALVERIFY
Definition: script.h:147
@ OP_CHECKSEQUENCEVERIFY
Definition: script.h:199
static constexpr unsigned int MAX_PUBKEYS_PER_MULTI_A
The limit of keys in OP_CHECKSIGADD-based scripts.
Definition: script.h:37
static const int MAX_STACK_SIZE
Definition: script.h:43
static const int MAX_OPS_PER_SCRIPT
Definition: script.h:31
CScript BuildScript(Ts &&... inputs)
Build a script by concatenating other scripts, or any argument accepted by CScript::operator<<.
Definition: script.h:616
static const int MAX_PUBKEYS_PER_MULTISIG
Definition: script.h:34
static bool verify(const CScriptNum10 &bignum, const CScriptNum &scriptnum)
constexpr unsigned int GetSizeOfCompactSize(uint64_t nSize)
Compact Size size < 253 – 1 byte size <= USHRT_MAX – 3 bytes (253 + 2 bytes) size <= UINT_MAX – 5 byt...
Definition: serialize.h:288
std::vector< Byte > ParseHex(std::string_view hex_str)
Like TryParseHex, but returns an empty vector on invalid input.
Definition: strencodings.h:68
A node in a miniscript expression.
Definition: miniscript.h:504
const Type typ
Cached expression type (computed by CalcType and fed through SanitizeType).
Definition: miniscript.h:553
uint32_t GetStaticOps() const
Return the number of ops in the script (not counting the dynamic ones that depend on execution).
Definition: miniscript.h:1507
Result TreeEval(UpFn upfn) const
Like TreeEval, but without downfn or State type.
Definition: miniscript.h:698
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< Key > key, std::vector< unsigned char > arg, uint32_t val)
Definition: miniscript.h:566
const Node * FindInsaneSub() const
Find an insane subnode which has no insane children. Nullptr if there is none.
Definition: miniscript.h:1562
Node & operator=(const Node &)=delete
bool IsBKW() const
Whether this node is of type B, K or W.
Definition: miniscript.h:1517
NodeRef< Key > Clone() const
Definition: miniscript.h:531
internal::InputResult ProduceInput(const Ctx &ctx) const
Definition: miniscript.h:1186
CScript ToScript(const Ctx &ctx) const
Definition: miniscript.h:749
bool CheckStackSize() const
Check the maximum stack size for this script against the policy limit.
Definition: miniscript.h:1534
internal::StackSize CalcStackSize() const
Definition: miniscript.h:1017
bool IsSaneSubexpression() const
Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe...
Definition: miniscript.h:1638
Type GetType() const
Return the expression type.
Definition: miniscript.h:1556
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, uint32_t val=0)
Definition: miniscript.h:1667
friend int Compare(const Node< Key > &node1, const Node< Key > &node2)
Compare two miniscript subtrees, using a non-recursive algorithm.
Definition: miniscript.h:711
const size_t scriptlen
Cached script length (computed by CalcScriptLen).
Definition: miniscript.h:555
std::optional< uint32_t > GetStackSize() const
Return the maximum number of stack elements needed to satisfy this script non-malleably.
Definition: miniscript.h:1522
std::optional< bool > has_duplicate_keys
Whether a public key appears more than once in this node.
Definition: miniscript.h:561
const uint32_t k
The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
Definition: miniscript.h:508
std::optional< uint32_t > GetExecStackSize() const
Return the maximum size of the stack during execution of this script.
Definition: miniscript.h:1528
bool NeedsSignature() const
Check whether this script always needs a signature.
Definition: miniscript.h:1626
bool CheckOpsLimit() const
Check the ops limit of this script against the consensus limit.
Definition: miniscript.h:1510
std::vector< NodeRef< Key > > subs
Subexpressions (for WRAP_*‍/AND_*‍/OR_*‍/ANDOR/THRESH)
Definition: miniscript.h:514
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1661
const Fragment fragment
What node type this node is.
Definition: miniscript.h:506
std::optional< uint32_t > GetWitnessSize() const
Return the maximum size in bytes of a witness to satisfy this script non-malleably.
Definition: miniscript.h:1550
Node(const Ctx &ctx, Fragment nt, std::vector< NodeRef< Key > > sub, uint32_t val=0)
Definition: miniscript.h:1681
Node(const Node &)=delete
Node(const Ctx &ctx, Fragment nt, uint32_t val=0)
Definition: miniscript.h:1683
Node(const Ctx &ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1677
std::optional< Result > TreeEvalMaybe(UpFn upfn) const
Like TreeEvalMaybe, but without downfn or State type.
Definition: miniscript.h:669
internal::WitnessSize CalcWitnessSize() const
Definition: miniscript.h:1132
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val=0)
Definition: miniscript.h:1669
Result TreeEval(State root_state, DownFn &&downfn, UpFn upfn) const
Like TreeEvalMaybe, but always produces a result.
Definition: miniscript.h:682
internal::Ops CalcOps() const
Definition: miniscript.h:943
std::optional< std::string > ToString(const CTx &ctx) const
Definition: miniscript.h:828
const MiniscriptContext m_script_ctx
The Script context for this node. Either P2WSH or Tapscript.
Definition: miniscript.h:516
size_t CalcScriptLen() const
Compute the length of the script for this miniscript (including children).
Definition: miniscript.h:570
std::optional< Result > TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
Definition: miniscript.h:603
bool IsSane() const
Check whether this node is safe as a script on its own.
Definition: miniscript.h:1641
bool IsValidTopLevel() const
Check whether this node is valid as a script on its own.
Definition: miniscript.h:1620
bool IsNotSatisfiable() const
Whether no satisfaction exists for this node.
Definition: miniscript.h:1546
const internal::WitnessSize ws
Cached witness size bounds.
Definition: miniscript.h:551
bool IsNonMalleable() const
Check whether this script can always be satisfied in a non-malleable way.
Definition: miniscript.h:1623
Type CalcType() const
Compute the type for this miniscript.
Definition: miniscript.h:731
bool CheckDuplicateKey() const
Check whether there is no duplicate key across this fragment and all its sub-fragments.
Definition: miniscript.h:1632
Node(const Ctx &ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1673
size_t ScriptSize() const
Return the size of the script for this expression (faster than ToScript().size()).
Definition: miniscript.h:1498
bool ValidSatisfactions() const
Whether successful non-malleable satisfactions are guaranteed to be valid.
Definition: miniscript.h:1635
const std::vector< Key > keys
The keys used by this expression (only for PK_K/PK_H/MULTI)
Definition: miniscript.h:510
void DuplicateKeyCheck(const Ctx &ctx) const
Update duplicate key information in this Node.
Definition: miniscript.h:1439
bool operator==(const Node< Key > &arg) const
Equality testing.
Definition: miniscript.h:1656
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1665
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1663
std::optional< uint32_t > GetOps() const
Return the maximum number of ops needed to satisfy this script non-malleably.
Definition: miniscript.h:1501
bool CheckTimeLocksMix() const
Check whether there is no satisfaction path that contains both timelocks and heightlocks.
Definition: miniscript.h:1629
Node(const Ctx &ctx, Fragment nt, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1679
Node(const Ctx &ctx, Fragment nt, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1675
MiniscriptContext GetMsCtx() const
Return the script context for this node.
Definition: miniscript.h:1559
const internal::Ops ops
Cached ops counts.
Definition: miniscript.h:547
bool IsValid() const
Check whether this node is valid at all.
Definition: miniscript.h:1614
const std::vector< unsigned char > data
The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
Definition: miniscript.h:512
const internal::StackSize ss
Cached stack size bounds.
Definition: miniscript.h:549
Availability Satisfy(const Ctx &ctx, std::vector< std::vector< unsigned char > > &stack, bool nonmalleable=true) const
Produce a witness for this script, if possible and given the information available in the context.
Definition: miniscript.h:1648
Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector< NodeRef< Key > > sub, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1659
bool IsSatisfiable(F fn) const
Determine whether a Miniscript node is satisfiable.
Definition: miniscript.h:1573
A pair of a satisfaction and a dissatisfaction InputStack.
Definition: miniscript.h:342
InputResult(A &&in_nsat, B &&in_sat)
Definition: miniscript.h:346
An object representing a sequence of witness stack elements.
Definition: miniscript.h:294
bool malleable
Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
Definition: miniscript.h:304
friend InputStack operator|(InputStack a, InputStack b)
Choose between two potential input stacks.
Definition: miniscript.cpp:339
friend InputStack operator+(InputStack a, InputStack b)
Concatenate two input stacks.
Definition: miniscript.cpp:325
std::vector< std::vector< unsigned char > > stack
Data elements.
Definition: miniscript.h:311
InputStack()=default
Construct an empty stack (valid).
bool has_sig
Whether this stack contains a digital signature.
Definition: miniscript.h:302
InputStack & SetAvailable(Availability avail)
Change availability.
Definition: miniscript.cpp:298
Availability available
Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
Definition: miniscript.h:300
InputStack & SetMalleable(bool x=true)
Mark this input stack as malleable.
Definition: miniscript.cpp:320
size_t size
Serialized witness size.
Definition: miniscript.h:309
bool non_canon
Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
Definition: miniscript.h:307
InputStack(std::vector< unsigned char > in)
Construct a valid single-element stack (with an element up to 75 bytes).
Definition: miniscript.h:315
InputStack & SetWithSig()
Mark this input stack as having a signature.
Definition: miniscript.cpp:310
InputStack & SetNonCanon()
Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
Definition: miniscript.cpp:315
Class whose objects represent the maximum of a list of integers.
Definition: miniscript.h:351
friend MaxInt< I > operator+(const MaxInt< I > &a, const MaxInt< I > &b)
Definition: miniscript.h:358
friend MaxInt< I > operator|(const MaxInt< I > &a, const MaxInt< I > &b)
Definition: miniscript.h:363
Ops(uint32_t in_count, MaxInt< uint32_t > in_sat, MaxInt< uint32_t > in_dsat)
Definition: miniscript.h:378
MaxInt< uint32_t > sat
Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
Definition: miniscript.h:374
MaxInt< uint32_t > dsat
Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
Definition: miniscript.h:376
uint32_t count
Non-push opcodes.
Definition: miniscript.h:372
A data structure to help the calculation of stack size limits.
Definition: miniscript.h:422
static constexpr SatInfo Nop() noexcept
A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY).
Definition: miniscript.h:465
const int32_t exec
Mow much higher the stack size can be during execution compared to at the end.
Definition: miniscript.h:428
static constexpr SatInfo OP_CHECKSIG() noexcept
Definition: miniscript.h:477
static constexpr SatInfo BinaryOp() noexcept
A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD).
Definition: miniscript.h:469
static constexpr SatInfo OP_VERIFY() noexcept
Definition: miniscript.h:479
static constexpr SatInfo Push() noexcept
A script consisting of a single push opcode.
Definition: miniscript.h:461
static constexpr SatInfo Empty() noexcept
The empty script.
Definition: miniscript.h:459
constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept
Script set with a single script in it, with specified netdiff and exec.
Definition: miniscript.h:434
constexpr friend SatInfo operator|(const SatInfo &a, const SatInfo &b) noexcept
Script set union.
Definition: miniscript.h:438
const int32_t netdiff
How much higher the stack size at start of execution can be compared to at the end.
Definition: miniscript.h:426
constexpr SatInfo() noexcept
Empty script set.
Definition: miniscript.h:431
static constexpr SatInfo OP_EQUALVERIFY() noexcept
Definition: miniscript.h:474
static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept
Definition: miniscript.h:473
const bool valid
Whether a canonical satisfaction/dissatisfaction is possible at all.
Definition: miniscript.h:424
static constexpr SatInfo OP_DUP() noexcept
Definition: miniscript.h:472
static constexpr SatInfo OP_0NOTEQUAL() noexcept
Definition: miniscript.h:478
static constexpr SatInfo If() noexcept
A script consisting of just OP_IF or OP_NOTIF.
Definition: miniscript.h:467
static constexpr SatInfo OP_EQUAL() noexcept
Definition: miniscript.h:475
static constexpr SatInfo OP_SIZE() noexcept
Definition: miniscript.h:476
static constexpr SatInfo Hash() noexcept
A script consisting of a single hash opcode.
Definition: miniscript.h:463
constexpr friend SatInfo operator+(const SatInfo &a, const SatInfo &b) noexcept
Script set concatenation.
Definition: miniscript.h:448
constexpr StackSize(SatInfo in_both) noexcept
Definition: miniscript.h:486
constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept
Definition: miniscript.h:485
MaxInt< uint32_t > sat
Maximum witness size to satisfy;.
Definition: miniscript.h:491
MaxInt< uint32_t > dsat
Maximum witness size to dissatisfy;.
Definition: miniscript.h:493
WitnessSize(MaxInt< uint32_t > in_sat, MaxInt< uint32_t > in_dsat)
Definition: miniscript.h:495
static const std::vector< uint8_t > EMPTY
Definition: script.h:21
static int count
bool IsHex(std::string_view str)
#define B
Definition: util_tests.cpp:545
assert(!tx.IsCoinBase())
std::vector< std::common_type_t< Args... > > Vector(Args &&... args)
Construct a vector with the specified elements.
Definition: vector.h:23