Bitcoin Core 30.99.0
P2P Digital Currency
miniscript.h
Go to the documentation of this file.
1// Copyright (c) 2019-present The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#ifndef BITCOIN_SCRIPT_MINISCRIPT_H
6#define BITCOIN_SCRIPT_MINISCRIPT_H
7
8#include <algorithm>
9#include <compare>
10#include <concepts>
11#include <cstdint>
12#include <cstdlib>
13#include <functional>
14#include <iterator>
15#include <memory>
16#include <optional>
17#include <set>
18#include <stdexcept>
19#include <tuple>
20#include <utility>
21#include <vector>
22
23#include <consensus/consensus.h>
24#include <policy/policy.h>
25#include <script/interpreter.h>
26#include <script/parsing.h>
27#include <script/script.h>
28#include <serialize.h>
29#include <span.h>
30#include <util/check.h>
31#include <util/strencodings.h>
32#include <util/string.h>
33#include <util/vector.h>
34
35namespace miniscript {
36
128class Type {
130 uint32_t m_flags;
131
133 explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
134
135public:
137 friend consteval Type operator""_mst(const char* c, size_t l);
138
140 constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
141
143 constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
144
146 constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
147
149 constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
150
152 constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
153
155 constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
156};
157
159inline consteval Type operator""_mst(const char* c, size_t l)
160{
161 Type typ{0};
162
163 for (const char *p = c; p < c + l; p++) {
164 typ = typ | Type(
165 *p == 'B' ? 1 << 0 : // Base type
166 *p == 'V' ? 1 << 1 : // Verify type
167 *p == 'K' ? 1 << 2 : // Key type
168 *p == 'W' ? 1 << 3 : // Wrapped type
169 *p == 'z' ? 1 << 4 : // Zero-arg property
170 *p == 'o' ? 1 << 5 : // One-arg property
171 *p == 'n' ? 1 << 6 : // Nonzero arg property
172 *p == 'd' ? 1 << 7 : // Dissatisfiable property
173 *p == 'u' ? 1 << 8 : // Unit property
174 *p == 'e' ? 1 << 9 : // Expression property
175 *p == 'f' ? 1 << 10 : // Forced property
176 *p == 's' ? 1 << 11 : // Safe property
177 *p == 'm' ? 1 << 12 : // Nonmalleable property
178 *p == 'x' ? 1 << 13 : // Expensive verify
179 *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
180 *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
181 *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
182 *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
183 *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
184 (throw std::logic_error("Unknown character in _mst literal"), 0)
185 );
186 }
187
188 return typ;
189}
190
191using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
192
193template<typename Key> class Node;
194
196template <typename Key, std::invocable<const Node<Key>&> Fn>
197void ForEachNode(const Node<Key>& root, Fn&& fn)
198{
199 std::vector<std::reference_wrapper<const Node<Key>>> stack{root};
200 while (!stack.empty()) {
201 const Node<Key>& node = stack.back();
202 std::invoke(fn, node);
203 stack.pop_back();
204 for (const auto& sub : node.Subs()) {
205 stack.emplace_back(sub);
206 }
207 }
208}
209
211enum class Fragment {
212 JUST_0,
213 JUST_1,
214 PK_K,
215 PK_H,
216 OLDER,
217 AFTER,
218 SHA256,
219 HASH256,
220 RIPEMD160,
221 HASH160,
222 WRAP_A,
223 WRAP_S,
224 WRAP_C,
225 WRAP_D,
226 WRAP_V,
227 WRAP_J,
228 WRAP_N,
229 AND_V,
230 AND_B,
231 OR_B,
232 OR_C,
233 OR_D,
234 OR_I,
235 ANDOR,
236 THRESH,
237 MULTI,
238 MULTI_A,
239 // AND_N(X,Y) is represented as ANDOR(X,Y,0)
240 // WRAP_T(X) is represented as AND_V(X,1)
241 // WRAP_L(X) is represented as OR_I(0,X)
242 // WRAP_U(X) is represented as OR_I(X,0)
243};
244
245enum class Availability {
246 NO,
247 YES,
248 MAYBE,
249};
250
252 P2WSH,
253 TAPSCRIPT,
254};
255
257constexpr bool IsTapscript(MiniscriptContext ms_ctx)
258{
259 switch (ms_ctx) {
260 case MiniscriptContext::P2WSH: return false;
261 case MiniscriptContext::TAPSCRIPT: return true;
262 }
263 assert(false);
264}
265
266namespace internal {
267
269static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
270
272constexpr uint32_t TX_OVERHEAD{4 + 4};
274constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
276constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
282constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
283{
284 if (IsTapscript(ms_ctx)) {
285 // Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
286 // bounded by the maximum standard size of a spending transaction. Let the maximum script
287 // size conservatively be small enough such that even a maximum sized witness and a reasonably
288 // sized spending transaction can spend an output paying to this script without running into
289 // the maximum standard tx size limit.
291 return max_size - GetSizeOfCompactSize(max_size);
292 }
294}
295
297Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
298
300size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
301
304
314 bool has_sig = false;
316 bool malleable = false;
319 bool non_canon = false;
321 size_t size = 0;
323 std::vector<std::vector<unsigned char>> stack;
325 InputStack() = default;
327 InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
335 InputStack& SetMalleable(bool x = true);
340};
341
343static const auto ZERO = InputStack(std::vector<unsigned char>());
345static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
347static const auto ONE = InputStack(Vector((unsigned char)1));
349static const auto EMPTY = InputStack();
352
356
357 template<typename A, typename B>
358 InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
359};
360
362template <typename I>
364{
365 bool valid;
367
368public:
369 MaxInt() : valid(false), value(0) {}
370 MaxInt(I val) : valid(true), value(val) {}
371
372 bool Valid() const { return valid; }
373 I Value() const { return value; }
374
375 friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
376 if (!a.valid || !b.valid) return {};
377 return a.value + b.value;
378 }
379
380 friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
381 if (!a.valid) return b;
382 if (!b.valid) return a;
383 return std::max(a.value, b.value);
384 }
385};
386
387struct Ops {
389 uint32_t count;
394
395 Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
396};
397
440{
442 bool valid;
444 int32_t netdiff;
446 int32_t exec;
447
448public:
450 constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
451
453 constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
454 valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
455
456 bool Valid() const { return valid; }
457 int32_t NetDiff() const { return netdiff; }
458 int32_t Exec() const { return exec; }
459
461 constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
462 {
463 // Union with an empty set is itself.
464 if (!a.valid) return b;
465 if (!b.valid) return a;
466 // Otherwise the netdiff and exec of the union is the maximum of the individual values.
467 return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
468 }
469
471 constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
472 {
473 // Concatenation with an empty set yields an empty set.
474 if (!a.valid || !b.valid) return {};
475 // Otherwise, the maximum stack size difference for the combined scripts is the sum of the
476 // netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
477 // maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
478 return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
479 }
480
482 static constexpr SatInfo Empty() noexcept { return {0, 0}; }
484 static constexpr SatInfo Push() noexcept { return {-1, 0}; }
486 static constexpr SatInfo Hash() noexcept { return {0, 0}; }
488 static constexpr SatInfo Nop() noexcept { return {0, 0}; }
490 static constexpr SatInfo If() noexcept { return {1, 1}; }
492 static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
493
494 // Scripts for specific individual opcodes.
495 static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
496 static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
497 static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
498 static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
499 static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
500 static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
501 static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
502 static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
503};
504
506{
508
509public:
510 constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
511 constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
512
513 const SatInfo& Sat() const { return sat; }
514 const SatInfo& Dsat() const { return dsat; }
515};
516
522
523 WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
524};
525
526struct NoDupCheck {};
527
528} // namespace internal
529
531template <typename Key>
532class Node
533{
537 uint32_t k = 0;
539 std::vector<Key> keys;
541 std::vector<unsigned char> data;
543 std::vector<Node> subs;
546
547public:
548 // Permit 1 level deep recursion since we own instances of our own type.
549 // NOLINTBEGIN(misc-no-recursion)
551 {
552 // Destroy the subexpressions iteratively after moving out their
553 // subexpressions to avoid a stack-overflow due to recursive calls to
554 // the subs' destructors.
555 std::vector<std::vector<Node>> queue;
556 queue.push_back(std::move(subs));
557 do {
558 auto flattening{std::move(queue.back())};
559 queue.pop_back();
560 for (Node& n : flattening) {
561 if (!n.subs.empty()) queue.push_back(std::move(n.subs));
562 }
563 } while (!queue.empty());
564 }
565 // NOLINTEND(misc-no-recursion)
566
568 {
569 // Use TreeEval() to avoid a stack-overflow due to recursion
570 auto upfn = [](const Node& node, std::span<Node> children) {
571 std::vector<Node> new_subs;
572 for (auto& child : children) {
573 // It's fine to move from children as they are new nodes having
574 // been produced by calling this function one level down.
575 new_subs.push_back(std::move(child));
576 }
577 return Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k};
578 };
579 return TreeEval<Node>(upfn);
580 }
581
582 enum Fragment Fragment() const { return fragment; }
583 uint32_t K() const { return k; }
584 const std::vector<Key>& Keys() const { return keys; }
585 const std::vector<unsigned char>& Data() const { return data; }
586 const std::vector<Node>& Subs() const { return subs; }
587
588private:
598 size_t scriptlen;
604 mutable std::optional<bool> has_duplicate_keys;
605
606 // Constructor which takes all of the data that a Node could possibly contain.
607 // This is kept private as no valid fragment has all of these arguments.
608 // Only used by Clone()
609 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, std::vector<Key> key, std::vector<unsigned char> arg, uint32_t val)
610 : fragment(nt), k(val), keys(key), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
611
613 size_t CalcScriptLen() const
614 {
615 size_t subsize = 0;
616 for (const auto& sub : subs) {
617 subsize += sub.ScriptSize();
618 }
619 Type sub0type = subs.size() > 0 ? subs[0].GetType() : ""_mst;
620 return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
621 }
622
623 /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
624 *
625 * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
626 * result can be thought of as first using downfn to compute a "state" for each node,
627 * from the root down to the leaves. Then upfn is used to compute a "result" for each
628 * node, from the leaves back up to the root, which is then returned. In the actual
629 * implementation, both functions are invoked in an interleaved fashion, performing a
630 * depth-first traversal of the tree.
631 *
632 * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
633 * - root is the state of the root node, of type State.
634 * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
635 * node, its state, and an index of one of its children, computes the state of that
636 * child. It can modify the state. Children of a given node will have downfn()
637 * called in order.
638 * - upfn is a callable (State&&, const Node&, std::span<Result>) -> std::optional<Result>,
639 * which given a node, its state, and a span of the results of its children,
640 * computes the result of the node. If std::nullopt is returned by upfn,
641 * TreeEvalMaybe() immediately returns std::nullopt.
642 * The return value of TreeEvalMaybe is the result of the root node.
643 *
644 * Result type cannot be bool due to the std::vector<bool> specialization.
645 */
646 template<typename Result, typename State, typename DownFn, typename UpFn>
647 std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
648 {
650 struct StackElem
651 {
652 const Node& node;
653 size_t expanded;
654 State state;
655
656 StackElem(const Node& node_, size_t exp_, State&& state_) :
657 node(node_), expanded(exp_), state(std::move(state_)) {}
658 };
659 /* Stack of tree nodes being explored. */
660 std::vector<StackElem> stack;
661 /* Results of subtrees so far. Their order and mapping to tree nodes
662 * is implicitly defined by stack. */
663 std::vector<Result> results;
664 stack.emplace_back(*this, 0, std::move(root_state));
665
666 /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
667 * State variables are omitted for simplicity.
668 *
669 * First: stack=[(A,0)] results=[]
670 * stack=[(A,1),(B,0)] results=[]
671 * stack=[(A,1)] results=[B]
672 * stack=[(A,2),(C,0)] results=[B]
673 * stack=[(A,2),(C,1),(D,0)] results=[B]
674 * stack=[(A,2),(C,1)] results=[B,D]
675 * stack=[(A,2),(C,2),(E,0)] results=[B,D]
676 * stack=[(A,2),(C,2)] results=[B,D,E]
677 * stack=[(A,2)] results=[B,C]
678 * stack=[(A,3),(F,0)] results=[B,C]
679 * stack=[(A,3)] results=[B,C,F]
680 * Final: stack=[] results=[A]
681 */
682 while (stack.size()) {
683 const Node& node = stack.back().node;
684 if (stack.back().expanded < node.subs.size()) {
685 /* We encounter a tree node with at least one unexpanded child.
686 * Expand it. By the time we hit this node again, the result of
687 * that child (and all earlier children) will be at the end of `results`. */
688 size_t child_index = stack.back().expanded++;
689 State child_state = downfn(stack.back().state, node, child_index);
690 stack.emplace_back(node.subs[child_index], 0, std::move(child_state));
691 continue;
692 }
693 // Invoke upfn with the last node.subs.size() elements of results as input.
694 assert(results.size() >= node.subs.size());
695 std::optional<Result> result{upfn(std::move(stack.back().state), node,
696 std::span<Result>{results}.last(node.subs.size()))};
697 // If evaluation returns std::nullopt, abort immediately.
698 if (!result) return {};
699 // Replace the last node.subs.size() elements of results with the new result.
700 results.erase(results.end() - node.subs.size(), results.end());
701 results.push_back(std::move(*result));
702 stack.pop_back();
703 }
704 // The final remaining results element is the root result, return it.
705 assert(results.size() >= 1);
706 CHECK_NONFATAL(results.size() == 1);
707 return std::move(results[0]);
708 }
709
712 template<typename Result, typename UpFn>
713 std::optional<Result> TreeEvalMaybe(UpFn upfn) const
714 {
715 struct DummyState {};
716 return TreeEvalMaybe<Result>(DummyState{},
717 [](DummyState, const Node&, size_t) { return DummyState{}; },
718 [&upfn](DummyState, const Node& node, std::span<Result> subs) {
719 return upfn(node, subs);
720 }
721 );
722 }
723
725 template<typename Result, typename State, typename DownFn, typename UpFn>
726 Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
727 {
728 // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
729 // unconditionally dereference the result (it cannot be std::nullopt).
730 return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
731 std::forward<DownFn>(downfn),
732 [&upfn](State&& state, const Node& node, std::span<Result> subs) {
733 Result res{upfn(std::move(state), node, subs)};
734 return std::optional<Result>(std::move(res));
735 }
736 ));
737 }
738
741 template<typename Result, typename UpFn>
742 Result TreeEval(UpFn upfn) const
743 {
744 struct DummyState {};
745 return std::move(*TreeEvalMaybe<Result>(DummyState{},
746 [](DummyState, const Node&, size_t) { return DummyState{}; },
747 [&upfn](DummyState, const Node& node, std::span<Result> subs) {
748 Result res{upfn(node, subs)};
749 return std::optional<Result>(std::move(res));
750 }
751 ));
752 }
753
755 friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
756 {
757 std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
758 queue.emplace_back(node1, node2);
759 while (!queue.empty()) {
760 const auto& [a, b] = queue.back();
761 queue.pop_back();
762 if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
763 if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
764 if (a.subs.size() < b.subs.size()) return -1;
765 if (b.subs.size() < a.subs.size()) return 1;
766 size_t n = a.subs.size();
767 for (size_t i = 0; i < n; ++i) {
768 queue.emplace_back(a.subs[n - 1 - i], b.subs[n - 1 - i]);
769 }
770 }
771 return 0;
772 }
773
775 Type CalcType() const {
776 using namespace internal;
777
778 // THRESH has a variable number of subexpressions
779 std::vector<Type> sub_types;
780 if (fragment == Fragment::THRESH) {
781 for (const auto& sub : subs) sub_types.push_back(sub.GetType());
782 }
783 // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
784 Type x = subs.size() > 0 ? subs[0].GetType() : ""_mst;
785 Type y = subs.size() > 1 ? subs[1].GetType() : ""_mst;
786 Type z = subs.size() > 2 ? subs[2].GetType() : ""_mst;
787
788 return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
789 }
790
791public:
792 template<typename Ctx>
793 CScript ToScript(const Ctx& ctx) const
794 {
795 // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
796 // The State is a boolean: whether or not the node's script expansion is followed
797 // by an OP_VERIFY (which may need to be combined with the last script opcode).
798 auto downfn = [](bool verify, const Node& node, size_t index) {
799 // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
800 if (node.fragment == Fragment::WRAP_V) return true;
801 // The subexpression of WRAP_S, and the last subexpression of AND_V
802 // inherit the followed-by-OP_VERIFY property from the parent.
803 if (node.fragment == Fragment::WRAP_S ||
804 (node.fragment == Fragment::AND_V && index == 1)) return verify;
805 return false;
806 };
807 // The upward function computes for a node, given its followed-by-OP_VERIFY status
808 // and the CScripts of its child nodes, the CScript of the node.
809 const bool is_tapscript{IsTapscript(m_script_ctx)};
810 auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, std::span<CScript> subs) -> CScript {
811 switch (node.fragment) {
812 case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
813 case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
821 case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
822 case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
824 case Fragment::WRAP_V: {
825 if (node.subs[0].GetType() << "x"_mst) {
826 return BuildScript(std::move(subs[0]), OP_VERIFY);
827 } else {
828 return std::move(subs[0]);
829 }
830 }
832 case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
833 case Fragment::JUST_1: return BuildScript(OP_1);
834 case Fragment::JUST_0: return BuildScript(OP_0);
835 case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
836 case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
837 case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
838 case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
839 case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
840 case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
841 case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
842 case Fragment::MULTI: {
843 CHECK_NONFATAL(!is_tapscript);
845 for (const auto& key : node.keys) {
846 script = BuildScript(std::move(script), ctx.ToPKBytes(key));
847 }
848 return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
849 }
850 case Fragment::MULTI_A: {
851 CHECK_NONFATAL(is_tapscript);
852 CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
853 for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
854 script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
855 }
856 return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
857 }
858 case Fragment::THRESH: {
859 CScript script = std::move(subs[0]);
860 for (size_t i = 1; i < subs.size(); ++i) {
861 script = BuildScript(std::move(script), subs[i], OP_ADD);
862 }
863 return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
864 }
865 }
866 assert(false);
867 };
868 return TreeEval<CScript>(false, downfn, upfn);
869 }
870
871 template<typename CTx>
872 std::optional<std::string> ToString(const CTx& ctx) const {
873 bool dummy{false};
874 return ToString(ctx, dummy);
875 }
876
877 template<typename CTx>
878 std::optional<std::string> ToString(const CTx& ctx, bool& has_priv_key) const {
879 // To construct the std::string representation for a Miniscript object, we use
880 // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
881 // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
882 auto downfn = [](bool, const Node& node, size_t) {
883 return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
884 node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
885 node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
886 node.fragment == Fragment::WRAP_C ||
887 (node.fragment == Fragment::AND_V && node.subs[1].fragment == Fragment::JUST_1) ||
888 (node.fragment == Fragment::OR_I && node.subs[0].fragment == Fragment::JUST_0) ||
889 (node.fragment == Fragment::OR_I && node.subs[1].fragment == Fragment::JUST_0));
890 };
891 auto toString = [&ctx, &has_priv_key](Key key) -> std::optional<std::string> {
892 bool fragment_has_priv_key{false};
893 auto key_str{ctx.ToString(key, fragment_has_priv_key)};
894 if (key_str) has_priv_key = has_priv_key || fragment_has_priv_key;
895 return key_str;
896 };
897 // The upward function computes for a node, given whether its parent is a wrapper,
898 // and the string representations of its child nodes, the string representation of the node.
899 const bool is_tapscript{IsTapscript(m_script_ctx)};
900 auto upfn = [is_tapscript, &toString](bool wrapped, const Node& node, std::span<std::string> subs) -> std::optional<std::string> {
901 std::string ret = wrapped ? ":" : "";
902
903 switch (node.fragment) {
904 case Fragment::WRAP_A: return "a" + std::move(subs[0]);
905 case Fragment::WRAP_S: return "s" + std::move(subs[0]);
906 case Fragment::WRAP_C:
907 if (node.subs[0].fragment == Fragment::PK_K) {
908 // pk(K) is syntactic sugar for c:pk_k(K)
909 auto key_str = toString(node.subs[0].keys[0]);
910 if (!key_str) return {};
911 return std::move(ret) + "pk(" + std::move(*key_str) + ")";
912 }
913 if (node.subs[0].fragment == Fragment::PK_H) {
914 // pkh(K) is syntactic sugar for c:pk_h(K)
915 auto key_str = toString(node.subs[0].keys[0]);
916 if (!key_str) return {};
917 return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
918 }
919 return "c" + std::move(subs[0]);
920 case Fragment::WRAP_D: return "d" + std::move(subs[0]);
921 case Fragment::WRAP_V: return "v" + std::move(subs[0]);
922 case Fragment::WRAP_J: return "j" + std::move(subs[0]);
923 case Fragment::WRAP_N: return "n" + std::move(subs[0]);
924 case Fragment::AND_V:
925 // t:X is syntactic sugar for and_v(X,1).
926 if (node.subs[1].fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
927 break;
928 case Fragment::OR_I:
929 if (node.subs[0].fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
930 if (node.subs[1].fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
931 break;
932 default: break;
933 }
934 switch (node.fragment) {
935 case Fragment::PK_K: {
936 auto key_str = toString(node.keys[0]);
937 if (!key_str) return {};
938 return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
939 }
940 case Fragment::PK_H: {
941 auto key_str = toString(node.keys[0]);
942 if (!key_str) return {};
943 return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
944 }
945 case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")";
946 case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")";
947 case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
948 case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
949 case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
950 case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
951 case Fragment::JUST_1: return std::move(ret) + "1";
952 case Fragment::JUST_0: return std::move(ret) + "0";
953 case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
954 case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
955 case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
956 case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
957 case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
958 case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
959 case Fragment::ANDOR:
960 // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
961 if (node.subs[2].fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
962 return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
963 case Fragment::MULTI: {
964 CHECK_NONFATAL(!is_tapscript);
965 auto str = std::move(ret) + "multi(" + util::ToString(node.k);
966 for (const auto& key : node.keys) {
967 auto key_str = toString(key);
968 if (!key_str) return {};
969 str += "," + std::move(*key_str);
970 }
971 return std::move(str) + ")";
972 }
973 case Fragment::MULTI_A: {
974 CHECK_NONFATAL(is_tapscript);
975 auto str = std::move(ret) + "multi_a(" + util::ToString(node.k);
976 for (const auto& key : node.keys) {
977 auto key_str = toString(key);
978 if (!key_str) return {};
979 str += "," + std::move(*key_str);
980 }
981 return std::move(str) + ")";
982 }
983 case Fragment::THRESH: {
984 auto str = std::move(ret) + "thresh(" + util::ToString(node.k);
985 for (auto& sub : subs) {
986 str += "," + std::move(sub);
987 }
988 return std::move(str) + ")";
989 }
990 default: break;
991 }
992 assert(false);
993 };
994
995 return TreeEvalMaybe<std::string>(false, downfn, upfn);
996 }
997
998private:
1000 switch (fragment) {
1001 case Fragment::JUST_1: return {0, 0, {}};
1002 case Fragment::JUST_0: return {0, {}, 0};
1003 case Fragment::PK_K: return {0, 0, 0};
1004 case Fragment::PK_H: return {3, 0, 0};
1005 case Fragment::OLDER:
1006 case Fragment::AFTER: return {1, 0, {}};
1007 case Fragment::SHA256:
1009 case Fragment::HASH256:
1010 case Fragment::HASH160: return {4, 0, {}};
1011 case Fragment::AND_V: return {subs[0].ops.count + subs[1].ops.count, subs[0].ops.sat + subs[1].ops.sat, {}};
1012 case Fragment::AND_B: {
1013 const auto count{1 + subs[0].ops.count + subs[1].ops.count};
1014 const auto sat{subs[0].ops.sat + subs[1].ops.sat};
1015 const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat};
1016 return {count, sat, dsat};
1017 }
1018 case Fragment::OR_B: {
1019 const auto count{1 + subs[0].ops.count + subs[1].ops.count};
1020 const auto sat{(subs[0].ops.sat + subs[1].ops.dsat) | (subs[1].ops.sat + subs[0].ops.dsat)};
1021 const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat};
1022 return {count, sat, dsat};
1023 }
1024 case Fragment::OR_D: {
1025 const auto count{3 + subs[0].ops.count + subs[1].ops.count};
1026 const auto sat{subs[0].ops.sat | (subs[1].ops.sat + subs[0].ops.dsat)};
1027 const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat};
1028 return {count, sat, dsat};
1029 }
1030 case Fragment::OR_C: {
1031 const auto count{2 + subs[0].ops.count + subs[1].ops.count};
1032 const auto sat{subs[0].ops.sat | (subs[1].ops.sat + subs[0].ops.dsat)};
1033 return {count, sat, {}};
1034 }
1035 case Fragment::OR_I: {
1036 const auto count{3 + subs[0].ops.count + subs[1].ops.count};
1037 const auto sat{subs[0].ops.sat | subs[1].ops.sat};
1038 const auto dsat{subs[0].ops.dsat | subs[1].ops.dsat};
1039 return {count, sat, dsat};
1040 }
1041 case Fragment::ANDOR: {
1042 const auto count{3 + subs[0].ops.count + subs[1].ops.count + subs[2].ops.count};
1043 const auto sat{(subs[1].ops.sat + subs[0].ops.sat) | (subs[0].ops.dsat + subs[2].ops.sat)};
1044 const auto dsat{subs[0].ops.dsat + subs[2].ops.dsat};
1045 return {count, sat, dsat};
1046 }
1047 case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
1048 case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
1049 case Fragment::WRAP_S:
1050 case Fragment::WRAP_C:
1051 case Fragment::WRAP_N: return {1 + subs[0].ops.count, subs[0].ops.sat, subs[0].ops.dsat};
1052 case Fragment::WRAP_A: return {2 + subs[0].ops.count, subs[0].ops.sat, subs[0].ops.dsat};
1053 case Fragment::WRAP_D: return {3 + subs[0].ops.count, subs[0].ops.sat, 0};
1054 case Fragment::WRAP_J: return {4 + subs[0].ops.count, subs[0].ops.sat, 0};
1055 case Fragment::WRAP_V: return {subs[0].ops.count + (subs[0].GetType() << "x"_mst), subs[0].ops.sat, {}};
1056 case Fragment::THRESH: {
1057 uint32_t count = 0;
1058 auto sats = Vector(internal::MaxInt<uint32_t>(0));
1059 for (const auto& sub : subs) {
1060 count += sub.ops.count + 1;
1061 auto next_sats = Vector(sats[0] + sub.ops.dsat);
1062 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub.ops.dsat) | (sats[j - 1] + sub.ops.sat));
1063 next_sats.push_back(sats[sats.size() - 1] + sub.ops.sat);
1064 sats = std::move(next_sats);
1065 }
1066 assert(k < sats.size());
1067 return {count, sats[k], sats[0]};
1068 }
1069 }
1070 assert(false);
1071 }
1072
1074 using namespace internal;
1075 switch (fragment) {
1076 case Fragment::JUST_0: return {{}, SatInfo::Push()};
1077 case Fragment::JUST_1: return {SatInfo::Push(), {}};
1078 case Fragment::OLDER:
1079 case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
1080 case Fragment::PK_K: return {SatInfo::Push()};
1081 case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
1082 case Fragment::SHA256:
1084 case Fragment::HASH256:
1085 case Fragment::HASH160: return {
1086 SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
1087 {}
1088 };
1089 case Fragment::ANDOR: {
1090 const auto& x{subs[0].ss};
1091 const auto& y{subs[1].ss};
1092 const auto& z{subs[2].ss};
1093 return {
1094 (x.Sat() + SatInfo::If() + y.Sat()) | (x.Dsat() + SatInfo::If() + z.Sat()),
1095 x.Dsat() + SatInfo::If() + z.Dsat()
1096 };
1097 }
1098 case Fragment::AND_V: {
1099 const auto& x{subs[0].ss};
1100 const auto& y{subs[1].ss};
1101 return {x.Sat() + y.Sat(), {}};
1102 }
1103 case Fragment::AND_B: {
1104 const auto& x{subs[0].ss};
1105 const auto& y{subs[1].ss};
1106 return {x.Sat() + y.Sat() + SatInfo::BinaryOp(), x.Dsat() + y.Dsat() + SatInfo::BinaryOp()};
1107 }
1108 case Fragment::OR_B: {
1109 const auto& x{subs[0].ss};
1110 const auto& y{subs[1].ss};
1111 return {
1112 ((x.Sat() + y.Dsat()) | (x.Dsat() + y.Sat())) + SatInfo::BinaryOp(),
1113 x.Dsat() + y.Dsat() + SatInfo::BinaryOp()
1114 };
1115 }
1116 case Fragment::OR_C: {
1117 const auto& x{subs[0].ss};
1118 const auto& y{subs[1].ss};
1119 return {(x.Sat() + SatInfo::If()) | (x.Dsat() + SatInfo::If() + y.Sat()), {}};
1120 }
1121 case Fragment::OR_D: {
1122 const auto& x{subs[0].ss};
1123 const auto& y{subs[1].ss};
1124 return {
1125 (x.Sat() + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.Dsat() + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.Sat()),
1126 x.Dsat() + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.Dsat()
1127 };
1128 }
1129 case Fragment::OR_I: {
1130 const auto& x{subs[0].ss};
1131 const auto& y{subs[1].ss};
1132 return {SatInfo::If() + (x.Sat() | y.Sat()), SatInfo::If() + (x.Dsat() | y.Dsat())};
1133 }
1134 // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
1135 // signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
1136 // n itself, and ends with 1 stack element (success or failure). Thus, it net removes
1137 // k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
1138 case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
1139 // multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
1140 // signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
1141 // removes n-1 elements (from n to 1) while reaching n more than it ends with.
1142 case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
1143 case Fragment::WRAP_A:
1144 case Fragment::WRAP_N:
1145 case Fragment::WRAP_S: return subs[0].ss;
1146 case Fragment::WRAP_C: return {
1147 subs[0].ss.Sat() + SatInfo::OP_CHECKSIG(),
1148 subs[0].ss.Dsat() + SatInfo::OP_CHECKSIG()
1149 };
1150 case Fragment::WRAP_D: return {
1151 SatInfo::OP_DUP() + SatInfo::If() + subs[0].ss.Sat(),
1152 SatInfo::OP_DUP() + SatInfo::If()
1153 };
1154 case Fragment::WRAP_V: return {subs[0].ss.Sat() + SatInfo::OP_VERIFY(), {}};
1155 case Fragment::WRAP_J: return {
1156 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0].ss.Sat(),
1157 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
1158 };
1159 case Fragment::THRESH: {
1160 // sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
1161 auto sats = Vector(SatInfo::Empty());
1162 for (size_t i = 0; i < subs.size(); ++i) {
1163 // Loop over the subexpressions, processing them one by one. After adding
1164 // element i we need to add OP_ADD (if i>0).
1165 auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
1166 // Construct a variable that will become the next sats, starting with index 0.
1167 auto next_sats = Vector(sats[0] + subs[i].ss.Dsat() + add);
1168 // Then loop to construct next_sats[1..i].
1169 for (size_t j = 1; j < sats.size(); ++j) {
1170 next_sats.push_back(((sats[j] + subs[i].ss.Dsat()) | (sats[j - 1] + subs[i].ss.Sat())) + add);
1171 }
1172 // Finally construct next_sats[i+1].
1173 next_sats.push_back(sats[sats.size() - 1] + subs[i].ss.Sat() + add);
1174 // Switch over.
1175 sats = std::move(next_sats);
1176 }
1177 // To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
1178 // cases a push of k and an OP_EQUAL follow.
1179 return {
1180 sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
1181 sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
1182 };
1183 }
1184 }
1185 assert(false);
1186 }
1187
1189 const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
1190 const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
1191 switch (fragment) {
1192 case Fragment::JUST_0: return {{}, 0};
1193 case Fragment::JUST_1:
1194 case Fragment::OLDER:
1195 case Fragment::AFTER: return {0, {}};
1196 case Fragment::PK_K: return {sig_size, 1};
1197 case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
1198 case Fragment::SHA256:
1200 case Fragment::HASH256:
1201 case Fragment::HASH160: return {1 + 32, {}};
1202 case Fragment::ANDOR: {
1203 const auto sat{(subs[0].ws.sat + subs[1].ws.sat) | (subs[0].ws.dsat + subs[2].ws.sat)};
1204 const auto dsat{subs[0].ws.dsat + subs[2].ws.dsat};
1205 return {sat, dsat};
1206 }
1207 case Fragment::AND_V: return {subs[0].ws.sat + subs[1].ws.sat, {}};
1208 case Fragment::AND_B: return {subs[0].ws.sat + subs[1].ws.sat, subs[0].ws.dsat + subs[1].ws.dsat};
1209 case Fragment::OR_B: {
1210 const auto sat{(subs[0].ws.dsat + subs[1].ws.sat) | (subs[0].ws.sat + subs[1].ws.dsat)};
1211 const auto dsat{subs[0].ws.dsat + subs[1].ws.dsat};
1212 return {sat, dsat};
1213 }
1214 case Fragment::OR_C: return {subs[0].ws.sat | (subs[0].ws.dsat + subs[1].ws.sat), {}};
1215 case Fragment::OR_D: return {subs[0].ws.sat | (subs[0].ws.dsat + subs[1].ws.sat), subs[0].ws.dsat + subs[1].ws.dsat};
1216 case Fragment::OR_I: return {(subs[0].ws.sat + 1 + 1) | (subs[1].ws.sat + 1), (subs[0].ws.dsat + 1 + 1) | (subs[1].ws.dsat + 1)};
1217 case Fragment::MULTI: return {k * sig_size + 1, k + 1};
1218 case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
1219 case Fragment::WRAP_A:
1220 case Fragment::WRAP_N:
1221 case Fragment::WRAP_S:
1222 case Fragment::WRAP_C: return subs[0].ws;
1223 case Fragment::WRAP_D: return {1 + 1 + subs[0].ws.sat, 1};
1224 case Fragment::WRAP_V: return {subs[0].ws.sat, {}};
1225 case Fragment::WRAP_J: return {subs[0].ws.sat, 1};
1226 case Fragment::THRESH: {
1227 auto sats = Vector(internal::MaxInt<uint32_t>(0));
1228 for (const auto& sub : subs) {
1229 auto next_sats = Vector(sats[0] + sub.ws.dsat);
1230 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub.ws.dsat) | (sats[j - 1] + sub.ws.sat));
1231 next_sats.push_back(sats[sats.size() - 1] + sub.ws.sat);
1232 sats = std::move(next_sats);
1233 }
1234 assert(k < sats.size());
1235 return {sats[k], sats[0]};
1236 }
1237 }
1238 assert(false);
1239 }
1240
1241 template<typename Ctx>
1242 internal::InputResult ProduceInput(const Ctx& ctx) const {
1243 using namespace internal;
1244
1245 // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
1246 // given those of its subnodes.
1247 auto helper = [&ctx](const Node& node, std::span<InputResult> subres) -> InputResult {
1248 switch (node.fragment) {
1249 case Fragment::PK_K: {
1250 std::vector<unsigned char> sig;
1251 Availability avail = ctx.Sign(node.keys[0], sig);
1252 return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
1253 }
1254 case Fragment::PK_H: {
1255 std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
1256 Availability avail = ctx.Sign(node.keys[0], sig);
1257 return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
1258 }
1259 case Fragment::MULTI_A: {
1260 // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1261 // In the loop below, these stacks are built up using a dynamic programming approach.
1262 std::vector<InputStack> sats = Vector(EMPTY);
1263 for (size_t i = 0; i < node.keys.size(); ++i) {
1264 // Get the signature for the i'th key in reverse order (the signature for the first key needs to
1265 // be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
1266 std::vector<unsigned char> sig;
1267 Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
1268 // Compute signature stack for just this key.
1269 auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
1270 // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1271 // next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
1272 // for the current (i'th) key. The very last element needs all signatures filled.
1273 std::vector<InputStack> next_sats;
1274 next_sats.push_back(sats[0] + ZERO);
1275 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
1276 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
1277 // Switch over.
1278 sats = std::move(next_sats);
1279 }
1280 // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
1281 // satisfying 0 keys.
1282 auto& nsat{sats[0]};
1283 CHECK_NONFATAL(node.k != 0);
1284 assert(node.k < sats.size());
1285 return {std::move(nsat), std::move(sats[node.k])};
1286 }
1287 case Fragment::MULTI: {
1288 // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1289 // In the loop below, these stacks are built up using a dynamic programming approach.
1290 // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
1291 std::vector<InputStack> sats = Vector(ZERO);
1292 for (size_t i = 0; i < node.keys.size(); ++i) {
1293 std::vector<unsigned char> sig;
1294 Availability avail = ctx.Sign(node.keys[i], sig);
1295 // Compute signature stack for just the i'th key.
1296 auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
1297 // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1298 // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
1299 // current (i'th) key. The very last element needs all signatures filled.
1300 std::vector<InputStack> next_sats;
1301 next_sats.push_back(sats[0]);
1302 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
1303 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
1304 // Switch over.
1305 sats = std::move(next_sats);
1306 }
1307 // The dissatisfaction consists of k+1 stack elements all equal to 0.
1308 InputStack nsat = ZERO;
1309 for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
1310 assert(node.k < sats.size());
1311 return {std::move(nsat), std::move(sats[node.k])};
1312 }
1313 case Fragment::THRESH: {
1314 // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
1315 // In the loop below, these stacks are built up using a dynamic programming approach.
1316 // sats[0] starts off empty.
1317 std::vector<InputStack> sats = Vector(EMPTY);
1318 for (size_t i = 0; i < subres.size(); ++i) {
1319 // Introduce an alias for the i'th last satisfaction/dissatisfaction.
1320 auto& res = subres[subres.size() - i - 1];
1321 // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
1322 // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
1323 // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
1324 std::vector<InputStack> next_sats;
1325 next_sats.push_back(sats[0] + res.nsat);
1326 for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
1327 next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
1328 // Switch over.
1329 sats = std::move(next_sats);
1330 }
1331 // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
1332 // is computed by gathering all sats[i].nsat for i != k.
1333 InputStack nsat = INVALID;
1334 for (size_t i = 0; i < sats.size(); ++i) {
1335 // i==k is the satisfaction; i==0 is the canonical dissatisfaction;
1336 // the rest are non-canonical (a no-signature dissatisfaction - the i=0
1337 // form - is always available) and malleable (due to overcompleteness).
1338 // Marking the solutions malleable here is not strictly necessary, as they
1339 // should already never be picked in non-malleable solutions due to the
1340 // availability of the i=0 form.
1341 if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
1342 // Include all dissatisfactions (even these non-canonical ones) in nsat.
1343 if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
1344 }
1345 assert(node.k < sats.size());
1346 return {std::move(nsat), std::move(sats[node.k])};
1347 }
1348 case Fragment::OLDER: {
1349 return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
1350 }
1351 case Fragment::AFTER: {
1352 return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
1353 }
1354 case Fragment::SHA256: {
1355 std::vector<unsigned char> preimage;
1356 Availability avail = ctx.SatSHA256(node.data, preimage);
1357 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1358 }
1359 case Fragment::RIPEMD160: {
1360 std::vector<unsigned char> preimage;
1361 Availability avail = ctx.SatRIPEMD160(node.data, preimage);
1362 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1363 }
1364 case Fragment::HASH256: {
1365 std::vector<unsigned char> preimage;
1366 Availability avail = ctx.SatHASH256(node.data, preimage);
1367 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1368 }
1369 case Fragment::HASH160: {
1370 std::vector<unsigned char> preimage;
1371 Availability avail = ctx.SatHASH160(node.data, preimage);
1372 return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
1373 }
1374 case Fragment::AND_V: {
1375 auto& x = subres[0], &y = subres[1];
1376 // As the dissatisfaction here only consist of a single option, it doesn't
1377 // actually need to be listed (it's not required for reasoning about malleability of
1378 // other options), and is never required (no valid miniscript relies on the ability
1379 // to satisfy the type V left subexpression). It's still listed here for
1380 // completeness, as a hypothetical (not currently implemented) satisfier that doesn't
1381 // care about malleability might in some cases prefer it still.
1382 return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
1383 }
1384 case Fragment::AND_B: {
1385 auto& x = subres[0], &y = subres[1];
1386 // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
1387 // as malleable. While they are definitely malleable, they are also non-canonical due
1388 // to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
1389 // option. Because of that, the 2nd and 3rd option will never be chosen, even if they
1390 // weren't marked as malleable.
1391 return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
1392 }
1393 case Fragment::OR_B: {
1394 auto& x = subres[0], &z = subres[1];
1395 // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
1396 return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
1397 }
1398 case Fragment::OR_C: {
1399 auto& x = subres[0], &z = subres[1];
1400 return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
1401 }
1402 case Fragment::OR_D: {
1403 auto& x = subres[0], &z = subres[1];
1404 return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
1405 }
1406 case Fragment::OR_I: {
1407 auto& x = subres[0], &z = subres[1];
1408 return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
1409 }
1410 case Fragment::ANDOR: {
1411 auto& x = subres[0], &y = subres[1], &z = subres[2];
1412 return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
1413 }
1414 case Fragment::WRAP_A:
1415 case Fragment::WRAP_S:
1416 case Fragment::WRAP_C:
1417 case Fragment::WRAP_N:
1418 return std::move(subres[0]);
1419 case Fragment::WRAP_D: {
1420 auto &x = subres[0];
1421 return {ZERO, x.sat + ONE};
1422 }
1423 case Fragment::WRAP_J: {
1424 auto &x = subres[0];
1425 // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
1426 // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
1427 // if a dissatisfaction with a top zero element is found, we don't know whether another one with a
1428 // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
1429 // dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
1430 return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
1431 }
1432 case Fragment::WRAP_V: {
1433 auto &x = subres[0];
1434 return {INVALID, std::move(x.sat)};
1435 }
1436 case Fragment::JUST_0: return {EMPTY, INVALID};
1437 case Fragment::JUST_1: return {INVALID, EMPTY};
1438 }
1439 assert(false);
1440 return {INVALID, INVALID};
1441 };
1442
1443 auto tester = [&helper](const Node& node, std::span<InputResult> subres) -> InputResult {
1444 auto ret = helper(node, subres);
1445
1446 // Do a consistency check between the satisfaction code and the type checker
1447 // (the actual satisfaction code in ProduceInputHelper does not use GetType)
1448
1449 // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
1450 if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0);
1451 if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0);
1452
1453 // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
1454 if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1);
1455 if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1);
1456
1457 // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
1458 // the top element cannot be 0.
1459 if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1);
1460 if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1);
1461 if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty());
1462
1463 // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
1464 // it must be canonical.
1465 if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
1466 if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig);
1467 if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon);
1468
1469 // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
1470 if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig);
1471 if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig);
1472
1473 // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
1474 if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
1475 if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable);
1476
1477 // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
1478 if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable);
1479
1480 // If a non-malleable satisfaction exists, it must be canonical.
1481 if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon);
1482
1483 return ret;
1484 };
1485
1486 return TreeEval<InputResult>(tester);
1487 }
1488
1489public:
1495 template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
1496 {
1497 // We cannot use a lambda here, as lambdas are non assignable, and the set operations
1498 // below require moving the comparators around.
1499 struct Comp {
1500 const Ctx* ctx_ptr;
1501 Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
1502 bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
1503 };
1504
1505 // state in the recursive computation:
1506 // - std::nullopt means "this node has duplicates"
1507 // - an std::set means "this node has no duplicate keys, and they are: ...".
1508 using keyset = std::set<Key, Comp>;
1509 using state = std::optional<keyset>;
1510
1511 auto upfn = [&ctx](const Node& node, std::span<state> subs) -> state {
1512 // If this node is already known to have duplicates, nothing left to do.
1513 if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
1514
1515 // Check if one of the children is already known to have duplicates.
1516 for (auto& sub : subs) {
1517 if (!sub.has_value()) {
1518 node.has_duplicate_keys = true;
1519 return {};
1520 }
1521 }
1522
1523 // Start building the set of keys involved in this node and children.
1524 // Start by keys in this node directly.
1525 size_t keys_count = node.keys.size();
1526 keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
1527 if (key_set.size() != keys_count) {
1528 // It already has duplicates; bail out.
1529 node.has_duplicate_keys = true;
1530 return {};
1531 }
1532
1533 // Merge the keys from the children into this set.
1534 for (auto& sub : subs) {
1535 keys_count += sub->size();
1536 // Small optimization: std::set::merge is linear in the size of the second arg but
1537 // logarithmic in the size of the first.
1538 if (key_set.size() < sub->size()) std::swap(key_set, *sub);
1539 key_set.merge(*sub);
1540 if (key_set.size() != keys_count) {
1541 node.has_duplicate_keys = true;
1542 return {};
1543 }
1544 }
1545
1546 node.has_duplicate_keys = false;
1547 return key_set;
1548 };
1549
1550 TreeEval<state>(upfn);
1551 }
1552
1554 size_t ScriptSize() const { return scriptlen; }
1555
1557 std::optional<uint32_t> GetOps() const {
1558 if (!ops.sat.Valid()) return {};
1559 return ops.count + ops.sat.Value();
1560 }
1561
1563 uint32_t GetStaticOps() const { return ops.count; }
1564
1566 bool CheckOpsLimit() const {
1567 if (IsTapscript(m_script_ctx)) return true;
1568 if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
1569 return true;
1570 }
1571
1573 bool IsBKW() const {
1574 return !((GetType() & "BKW"_mst) == ""_mst);
1575 }
1576
1578 std::optional<uint32_t> GetStackSize() const {
1579 if (!ss.Sat().Valid()) return {};
1580 return ss.Sat().NetDiff() + static_cast<int32_t>(IsBKW());
1581 }
1582
1584 std::optional<uint32_t> GetExecStackSize() const {
1585 if (!ss.Sat().Valid()) return {};
1586 return ss.Sat().Exec() + static_cast<int32_t>(IsBKW());
1587 }
1588
1590 bool CheckStackSize() const {
1591 // Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
1592 // into the maximum stack size while executing the script. Make sure it doesn't happen.
1593 if (IsTapscript(m_script_ctx)) {
1594 if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
1595 return true;
1596 }
1597 if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
1598 return true;
1599 }
1600
1602 bool IsNotSatisfiable() const { return !GetStackSize(); }
1603
1606 std::optional<uint32_t> GetWitnessSize() const {
1607 if (!ws.sat.Valid()) return {};
1608 return ws.sat.Value();
1609 }
1610
1612 Type GetType() const { return typ; }
1613
1615 MiniscriptContext GetMsCtx() const { return m_script_ctx; }
1616
1618 const Node* FindInsaneSub() const {
1619 return TreeEval<const Node*>([](const Node& node, std::span<const Node*> subs) -> const Node* {
1620 for (auto& sub: subs) if (sub) return sub;
1621 if (!node.IsSaneSubexpression()) return &node;
1622 return nullptr;
1623 });
1624 }
1625
1628 template<typename F>
1629 bool IsSatisfiable(F fn) const
1630 {
1631 // TreeEval() doesn't support bool as NodeType, so use int instead.
1632 return TreeEval<int>([&fn](const Node& node, std::span<int> subs) -> bool {
1633 switch (node.fragment) {
1634 case Fragment::JUST_0:
1635 return false;
1636 case Fragment::JUST_1:
1637 return true;
1638 case Fragment::PK_K:
1639 case Fragment::PK_H:
1640 case Fragment::MULTI:
1641 case Fragment::MULTI_A:
1642 case Fragment::AFTER:
1643 case Fragment::OLDER:
1644 case Fragment::HASH256:
1645 case Fragment::HASH160:
1646 case Fragment::SHA256:
1647 case Fragment::RIPEMD160:
1648 return bool{fn(node)};
1649 case Fragment::ANDOR:
1650 return (subs[0] && subs[1]) || subs[2];
1651 case Fragment::AND_V:
1652 case Fragment::AND_B:
1653 return subs[0] && subs[1];
1654 case Fragment::OR_B:
1655 case Fragment::OR_C:
1656 case Fragment::OR_D:
1657 case Fragment::OR_I:
1658 return subs[0] || subs[1];
1659 case Fragment::THRESH:
1660 return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
1661 default: // wrappers
1662 assert(subs.size() >= 1);
1663 CHECK_NONFATAL(subs.size() == 1);
1664 return subs[0];
1665 }
1666 });
1667 }
1668
1670 bool IsValid() const {
1671 if (GetType() == ""_mst) return false;
1672 return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
1673 }
1674
1676 bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
1677
1679 bool IsNonMalleable() const { return GetType() << "m"_mst; }
1680
1682 bool NeedsSignature() const { return GetType() << "s"_mst; }
1683
1685 bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
1686
1688 bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
1689
1691 bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
1692
1694 bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
1695
1697 bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
1698
1703 template<typename Ctx>
1704 Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
1705 auto ret = ProduceInput(ctx);
1706 if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
1707 stack = std::move(ret.sat.stack);
1708 return ret.sat.available;
1709 }
1710
1712 bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
1713
1714 // Constructors with various argument combinations, which bypass the duplicate key check.
1715 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1716 : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1717 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1718 : fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1719 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, std::vector<Key> key, uint32_t val = 0)
1720 : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1721 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Key> key, uint32_t val = 0)
1722 : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1723 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, uint32_t val = 0)
1724 : fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1725 Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, uint32_t val = 0)
1726 : fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1727
1728 // Constructors with various argument combinations, which do perform the duplicate key check.
1729 template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Node> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1730 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
1731 template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1732 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
1733 template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Node> sub, std::vector<Key> key, uint32_t val = 0)
1734 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
1735 template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Key> key, uint32_t val = 0)
1736 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
1737 template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Node> sub, uint32_t val = 0)
1738 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
1739 template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, uint32_t val = 0)
1740 : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
1741
1742 // Delete copy constructor and assignment operator, use Clone() instead
1743 Node(const Node&) = delete;
1744 Node& operator=(const Node&) = delete;
1745
1746 // subs is movable, circumventing recursion, so these are permitted.
1747 Node(Node&&) noexcept = default;
1748 Node& operator=(Node&&) noexcept = default;
1749};
1750
1751namespace internal {
1752
1753enum class ParseContext {
1757 EXPR,
1758
1760 SWAP,
1762 ALT,
1764 CHECK,
1766 DUP_IF,
1768 VERIFY,
1770 NON_ZERO,
1774 WRAP_U,
1776 WRAP_T,
1777
1779 AND_N,
1781 AND_V,
1783 AND_B,
1785 ANDOR,
1787 OR_B,
1789 OR_C,
1791 OR_D,
1793 OR_I,
1794
1799 THRESH,
1800
1802 COMMA,
1805};
1806
1807int FindNextChar(std::span<const char> in, char m);
1808
1810template<typename Key, typename Ctx>
1811std::optional<std::pair<Key, int>> ParseKeyEnd(std::span<const char> in, const Ctx& ctx)
1812{
1813 int key_size = FindNextChar(in, ')');
1814 if (key_size < 1) return {};
1815 auto key = ctx.FromString(in.begin(), in.begin() + key_size);
1816 if (!key) return {};
1817 return {{std::move(*key), key_size}};
1818}
1819
1821template<typename Ctx>
1822std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(std::span<const char> in, const size_t expected_size,
1823 const Ctx& ctx)
1824{
1825 int hash_size = FindNextChar(in, ')');
1826 if (hash_size < 1) return {};
1827 std::string val = std::string(in.begin(), in.begin() + hash_size);
1828 if (!IsHex(val)) return {};
1829 auto hash = ParseHex(val);
1830 if (hash.size() != expected_size) return {};
1831 return {{std::move(hash), hash_size}};
1832}
1833
1835template<typename Key>
1836void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<Node<Key>>& constructed, const bool reverse = false)
1837{
1838 Node<Key> child{std::move(constructed.back())};
1839 constructed.pop_back();
1840 if (reverse) {
1841 constructed.back() = Node<Key>{internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back()))};
1842 } else {
1843 constructed.back() = Node<Key>{internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child))};
1844 }
1845}
1846
1852template <typename Key, typename Ctx>
1853inline std::optional<Node<Key>> Parse(std::span<const char> in, const Ctx& ctx)
1854{
1855 using namespace script;
1856
1857 // Account for the minimum script size for all parsed fragments so far. It "borrows" 1
1858 // script byte from all leaf nodes, counting it instead whenever a space for a recursive
1859 // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
1860 // increment the script_size by at least one, except for:
1861 // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
1862 // This is not an issue however, as "space" for them has to be created by combinators,
1863 // which do increment script_size.
1864 // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
1865 // (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
1866 // to be interleaved with other fragments to be valid, so this is not a concern.
1867 size_t script_size{1};
1868 size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
1869
1870 // The two integers are used to hold state for thresh()
1871 std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
1872 std::vector<Node<Key>> constructed;
1873
1874 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1875
1876 // Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
1877 const auto parse_multi_exp = [&](std::span<const char>& in, const bool is_multi_a) -> bool {
1878 const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
1879 const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
1880 if (ctx.MsContext() != required_ctx) return false;
1881 // Get threshold
1882 int next_comma = FindNextChar(in, ',');
1883 if (next_comma < 1) return false;
1884 const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
1885 if (!k_to_integral.has_value()) return false;
1886 const int64_t k{k_to_integral.value()};
1887 in = in.subspan(next_comma + 1);
1888 // Get keys. It is compatible for both compressed and x-only keys.
1889 std::vector<Key> keys;
1890 while (next_comma != -1) {
1891 next_comma = FindNextChar(in, ',');
1892 int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
1893 if (key_length < 1) return false;
1894 auto key = ctx.FromString(in.begin(), in.begin() + key_length);
1895 if (!key) return false;
1896 keys.push_back(std::move(*key));
1897 in = in.subspan(key_length + 1);
1898 }
1899 if (keys.size() < 1 || keys.size() > max_keys) return false;
1900 if (k < 1 || k > (int64_t)keys.size()) return false;
1901 if (is_multi_a) {
1902 // (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
1903 script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
1904 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k);
1905 } else {
1906 script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
1907 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k);
1908 }
1909 return true;
1910 };
1911
1912 while (!to_parse.empty()) {
1913 if (script_size > max_size) return {};
1914
1915 // Get the current context we are decoding within
1916 auto [cur_context, n, k] = to_parse.back();
1917 to_parse.pop_back();
1918
1919 switch (cur_context) {
1920 case ParseContext::WRAPPED_EXPR: {
1921 std::optional<size_t> colon_index{};
1922 for (size_t i = 1; i < in.size(); ++i) {
1923 if (in[i] == ':') {
1924 colon_index = i;
1925 break;
1926 }
1927 if (in[i] < 'a' || in[i] > 'z') break;
1928 }
1929 // If there is no colon, this loop won't execute
1930 bool last_was_v{false};
1931 for (size_t j = 0; colon_index && j < *colon_index; ++j) {
1932 if (script_size > max_size) return {};
1933 if (in[j] == 'a') {
1934 script_size += 2;
1935 to_parse.emplace_back(ParseContext::ALT, -1, -1);
1936 } else if (in[j] == 's') {
1937 script_size += 1;
1938 to_parse.emplace_back(ParseContext::SWAP, -1, -1);
1939 } else if (in[j] == 'c') {
1940 script_size += 1;
1941 to_parse.emplace_back(ParseContext::CHECK, -1, -1);
1942 } else if (in[j] == 'd') {
1943 script_size += 3;
1944 to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
1945 } else if (in[j] == 'j') {
1946 script_size += 4;
1947 to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
1948 } else if (in[j] == 'n') {
1949 script_size += 1;
1950 to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
1951 } else if (in[j] == 'v') {
1952 // do not permit "...vv...:"; it's not valid, and also doesn't trigger early
1953 // failure as script_size isn't incremented.
1954 if (last_was_v) return {};
1955 to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
1956 } else if (in[j] == 'u') {
1957 script_size += 4;
1958 to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
1959 } else if (in[j] == 't') {
1960 script_size += 1;
1961 to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
1962 } else if (in[j] == 'l') {
1963 // The l: wrapper is equivalent to or_i(0,X)
1964 script_size += 4;
1965 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0);
1966 to_parse.emplace_back(ParseContext::OR_I, -1, -1);
1967 } else {
1968 return {};
1969 }
1970 last_was_v = (in[j] == 'v');
1971 }
1972 to_parse.emplace_back(ParseContext::EXPR, -1, -1);
1973 if (colon_index) in = in.subspan(*colon_index + 1);
1974 break;
1975 }
1976 case ParseContext::EXPR: {
1977 if (Const("0", in)) {
1978 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0);
1979 } else if (Const("1", in)) {
1980 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1);
1981 } else if (Const("pk(", in)) {
1982 auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
1983 if (!res) return {};
1984 auto& [key, key_size] = *res;
1985 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(Node<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key)))));
1986 in = in.subspan(key_size + 1);
1987 script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
1988 } else if (Const("pkh(", in)) {
1989 auto res = ParseKeyEnd<Key>(in, ctx);
1990 if (!res) return {};
1991 auto& [key, key_size] = *res;
1992 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(Node<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key)))));
1993 in = in.subspan(key_size + 1);
1994 script_size += 24;
1995 } else if (Const("pk_k(", in)) {
1996 auto res = ParseKeyEnd<Key>(in, ctx);
1997 if (!res) return {};
1998 auto& [key, key_size] = *res;
1999 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key)));
2000 in = in.subspan(key_size + 1);
2001 script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
2002 } else if (Const("pk_h(", in)) {
2003 auto res = ParseKeyEnd<Key>(in, ctx);
2004 if (!res) return {};
2005 auto& [key, key_size] = *res;
2006 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key)));
2007 in = in.subspan(key_size + 1);
2008 script_size += 23;
2009 } else if (Const("sha256(", in)) {
2010 auto res = ParseHexStrEnd(in, 32, ctx);
2011 if (!res) return {};
2012 auto& [hash, hash_size] = *res;
2013 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash));
2014 in = in.subspan(hash_size + 1);
2015 script_size += 38;
2016 } else if (Const("ripemd160(", in)) {
2017 auto res = ParseHexStrEnd(in, 20, ctx);
2018 if (!res) return {};
2019 auto& [hash, hash_size] = *res;
2020 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash));
2021 in = in.subspan(hash_size + 1);
2022 script_size += 26;
2023 } else if (Const("hash256(", in)) {
2024 auto res = ParseHexStrEnd(in, 32, ctx);
2025 if (!res) return {};
2026 auto& [hash, hash_size] = *res;
2027 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash));
2028 in = in.subspan(hash_size + 1);
2029 script_size += 38;
2030 } else if (Const("hash160(", in)) {
2031 auto res = ParseHexStrEnd(in, 20, ctx);
2032 if (!res) return {};
2033 auto& [hash, hash_size] = *res;
2034 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash));
2035 in = in.subspan(hash_size + 1);
2036 script_size += 26;
2037 } else if (Const("after(", in)) {
2038 int arg_size = FindNextChar(in, ')');
2039 if (arg_size < 1) return {};
2040 const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
2041 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
2042 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num);
2043 in = in.subspan(arg_size + 1);
2044 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
2045 } else if (Const("older(", in)) {
2046 int arg_size = FindNextChar(in, ')');
2047 if (arg_size < 1) return {};
2048 const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
2049 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
2050 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num);
2051 in = in.subspan(arg_size + 1);
2052 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
2053 } else if (Const("multi(", in)) {
2054 if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
2055 } else if (Const("multi_a(", in)) {
2056 if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
2057 } else if (Const("thresh(", in)) {
2058 int next_comma = FindNextChar(in, ',');
2059 if (next_comma < 1) return {};
2060 const auto k{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
2061 if (!k.has_value() || *k < 1) return {};
2062 in = in.subspan(next_comma + 1);
2063 // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
2064 to_parse.emplace_back(ParseContext::THRESH, 1, *k);
2065 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2066 script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff);
2067 } else if (Const("andor(", in)) {
2068 to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
2069 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2070 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2071 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2072 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2073 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2074 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2075 script_size += 5;
2076 } else {
2077 if (Const("and_n(", in)) {
2078 to_parse.emplace_back(ParseContext::AND_N, -1, -1);
2079 script_size += 5;
2080 } else if (Const("and_b(", in)) {
2081 to_parse.emplace_back(ParseContext::AND_B, -1, -1);
2082 script_size += 2;
2083 } else if (Const("and_v(", in)) {
2084 to_parse.emplace_back(ParseContext::AND_V, -1, -1);
2085 script_size += 1;
2086 } else if (Const("or_b(", in)) {
2087 to_parse.emplace_back(ParseContext::OR_B, -1, -1);
2088 script_size += 2;
2089 } else if (Const("or_c(", in)) {
2090 to_parse.emplace_back(ParseContext::OR_C, -1, -1);
2091 script_size += 3;
2092 } else if (Const("or_d(", in)) {
2093 to_parse.emplace_back(ParseContext::OR_D, -1, -1);
2094 script_size += 4;
2095 } else if (Const("or_i(", in)) {
2096 to_parse.emplace_back(ParseContext::OR_I, -1, -1);
2097 script_size += 4;
2098 } else {
2099 return {};
2100 }
2101 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2102 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2103 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2104 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2105 }
2106 break;
2107 }
2108 case ParseContext::ALT: {
2109 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back()))};
2110 break;
2111 }
2112 case ParseContext::SWAP: {
2113 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back()))};
2114 break;
2115 }
2116 case ParseContext::CHECK: {
2117 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back()))};
2118 break;
2119 }
2120 case ParseContext::DUP_IF: {
2121 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back()))};
2122 break;
2123 }
2124 case ParseContext::NON_ZERO: {
2125 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back()))};
2126 break;
2127 }
2128 case ParseContext::ZERO_NOTEQUAL: {
2129 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back()))};
2130 break;
2131 }
2132 case ParseContext::VERIFY: {
2133 script_size += (constructed.back().GetType() << "x"_mst);
2134 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))};
2135 break;
2136 }
2137 case ParseContext::WRAP_U: {
2138 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), Node<Key>{internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0})};
2139 break;
2140 }
2141 case ParseContext::WRAP_T: {
2142 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), Node<Key>{internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1})};
2143 break;
2144 }
2145 case ParseContext::AND_B: {
2146 BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
2147 break;
2148 }
2149 case ParseContext::AND_N: {
2150 auto mid = std::move(constructed.back());
2151 constructed.pop_back();
2152 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), Node<Key>{internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0})};
2153 break;
2154 }
2155 case ParseContext::AND_V: {
2156 BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
2157 break;
2158 }
2159 case ParseContext::OR_B: {
2160 BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
2161 break;
2162 }
2163 case ParseContext::OR_C: {
2164 BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
2165 break;
2166 }
2167 case ParseContext::OR_D: {
2168 BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
2169 break;
2170 }
2171 case ParseContext::OR_I: {
2172 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
2173 break;
2174 }
2175 case ParseContext::ANDOR: {
2176 auto right = std::move(constructed.back());
2177 constructed.pop_back();
2178 auto mid = std::move(constructed.back());
2179 constructed.pop_back();
2180 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right))};
2181 break;
2182 }
2183 case ParseContext::THRESH: {
2184 if (in.size() < 1) return {};
2185 if (in[0] == ',') {
2186 in = in.subspan(1);
2187 to_parse.emplace_back(ParseContext::THRESH, n+1, k);
2188 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2189 script_size += 2;
2190 } else if (in[0] == ')') {
2191 if (k > n) return {};
2192 in = in.subspan(1);
2193 // Children are constructed in reverse order, so iterate from end to beginning
2194 std::vector<Node<Key>> subs;
2195 for (int i = 0; i < n; ++i) {
2196 subs.push_back(std::move(constructed.back()));
2197 constructed.pop_back();
2198 }
2199 std::reverse(subs.begin(), subs.end());
2200 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k);
2201 } else {
2202 return {};
2203 }
2204 break;
2205 }
2206 case ParseContext::COMMA: {
2207 if (in.size() < 1 || in[0] != ',') return {};
2208 in = in.subspan(1);
2209 break;
2210 }
2211 case ParseContext::CLOSE_BRACKET: {
2212 if (in.size() < 1 || in[0] != ')') return {};
2213 in = in.subspan(1);
2214 break;
2215 }
2216 }
2217 }
2218
2219 // Sanity checks on the produced miniscript
2220 assert(constructed.size() >= 1);
2221 CHECK_NONFATAL(constructed.size() == 1);
2222 assert(constructed[0].ScriptSize() == script_size);
2223 if (in.size() > 0) return {};
2224 Node<Key> tl_node{std::move(constructed.front())};
2225 tl_node.DuplicateKeyCheck(ctx);
2226 return tl_node;
2227}
2228
2237std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
2238
2240std::optional<int64_t> ParseScriptNumber(const Opcode& in);
2241
2242enum class DecodeContext {
2248 BKV_EXPR,
2250 W_EXPR,
2251
2255 SWAP,
2258 ALT,
2260 CHECK,
2262 DUP_IF,
2264 VERIFY,
2266 NON_ZERO,
2269
2276 AND_V,
2278 AND_B,
2280 ANDOR,
2282 OR_B,
2284 OR_C,
2286 OR_D,
2287
2291 THRESH_W,
2294 THRESH_E,
2295
2299 ENDIF,
2307 ENDIF_ELSE,
2308};
2309
2311template <typename Key, typename Ctx, typename I>
2312inline std::optional<Node<Key>> DecodeScript(I& in, I last, const Ctx& ctx)
2313{
2314 // The two integers are used to hold state for thresh()
2315 std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
2316 std::vector<Node<Key>> constructed;
2317
2318 // This is the top level, so we assume the type is B
2319 // (in particular, disallowing top level W expressions)
2320 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2321
2322 while (!to_parse.empty()) {
2323 // Exit early if the Miniscript is not going to be valid.
2324 if (!constructed.empty() && !constructed.back().IsValid()) return {};
2325
2326 // Get the current context we are decoding within
2327 auto [cur_context, n, k] = to_parse.back();
2328 to_parse.pop_back();
2329
2330 switch(cur_context) {
2331 case DecodeContext::SINGLE_BKV_EXPR: {
2332 if (in >= last) return {};
2333
2334 // Constants
2335 if (in[0].first == OP_1) {
2336 ++in;
2337 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1);
2338 break;
2339 }
2340 if (in[0].first == OP_0) {
2341 ++in;
2342 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0);
2343 break;
2344 }
2345 // Public keys
2346 if (in[0].second.size() == 33 || in[0].second.size() == 32) {
2347 auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
2348 if (!key) return {};
2349 ++in;
2350 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key)));
2351 break;
2352 }
2353 if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
2354 auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
2355 if (!key) return {};
2356 in += 5;
2357 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key)));
2358 break;
2359 }
2360 // Time locks
2361 std::optional<int64_t> num;
2362 if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
2363 in += 2;
2364 if (*num < 1 || *num > 0x7FFFFFFFL) return {};
2365 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num);
2366 break;
2367 }
2368 if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
2369 in += 2;
2370 if (num < 1 || num > 0x7FFFFFFFL) return {};
2371 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num);
2372 break;
2373 }
2374 // Hashes
2375 if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
2376 if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
2377 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second);
2378 in += 7;
2379 break;
2380 } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
2381 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second);
2382 in += 7;
2383 break;
2384 } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
2385 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second);
2386 in += 7;
2387 break;
2388 } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
2389 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second);
2390 in += 7;
2391 break;
2392 }
2393 }
2394 // Multi
2395 if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
2396 if (IsTapscript(ctx.MsContext())) return {};
2397 std::vector<Key> keys;
2398 const auto n = ParseScriptNumber(in[1]);
2399 if (!n || last - in < 3 + *n) return {};
2400 if (*n < 1 || *n > 20) return {};
2401 for (int i = 0; i < *n; ++i) {
2402 if (in[2 + i].second.size() != 33) return {};
2403 auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
2404 if (!key) return {};
2405 keys.push_back(std::move(*key));
2406 }
2407 const auto k = ParseScriptNumber(in[2 + *n]);
2408 if (!k || *k < 1 || *k > *n) return {};
2409 in += 3 + *n;
2410 std::reverse(keys.begin(), keys.end());
2411 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k);
2412 break;
2413 }
2414 // Tapscript's equivalent of multi
2415 if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
2416 if (!IsTapscript(ctx.MsContext())) return {};
2417 // The necessary threshold of signatures.
2418 const auto k = ParseScriptNumber(in[1]);
2419 if (!k) return {};
2420 if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
2421 if (last - in < 2 + *k * 2) return {};
2422 std::vector<Key> keys;
2423 keys.reserve(*k);
2424 // Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
2425 for (int pos = 2;; pos += 2) {
2426 if (last - in < pos + 2) return {};
2427 // Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
2428 if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
2429 if (in[pos + 1].second.size() != 32) return {};
2430 auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
2431 if (!key) return {};
2432 keys.push_back(std::move(*key));
2433 // Make sure early we don't parse an arbitrary large expression.
2434 if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
2435 // OP_CHECKSIG means it was the last one to parse.
2436 if (in[pos].first == OP_CHECKSIG) break;
2437 }
2438 if (keys.size() < (size_t)*k) return {};
2439 in += 2 + keys.size() * 2;
2440 std::reverse(keys.begin(), keys.end());
2441 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k);
2442 break;
2443 }
2447 // c: wrapper
2448 if (in[0].first == OP_CHECKSIG) {
2449 ++in;
2450 to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
2451 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2452 break;
2453 }
2454 // v: wrapper
2455 if (in[0].first == OP_VERIFY) {
2456 ++in;
2457 to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
2458 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2459 break;
2460 }
2461 // n: wrapper
2462 if (in[0].first == OP_0NOTEQUAL) {
2463 ++in;
2464 to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
2465 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2466 break;
2467 }
2468 // Thresh
2469 if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
2470 if (*num < 1) return {};
2471 in += 2;
2472 to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
2473 break;
2474 }
2475 // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
2476 if (in[0].first == OP_ENDIF) {
2477 ++in;
2478 to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
2479 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2480 break;
2481 }
2487 // and_b
2488 if (in[0].first == OP_BOOLAND) {
2489 ++in;
2490 to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
2491 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2492 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2493 break;
2494 }
2495 // or_b
2496 if (in[0].first == OP_BOOLOR) {
2497 ++in;
2498 to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
2499 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2500 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2501 break;
2502 }
2503 // Unrecognised expression
2504 return {};
2505 }
2506 case DecodeContext::BKV_EXPR: {
2507 to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
2508 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2509 break;
2510 }
2511 case DecodeContext::W_EXPR: {
2512 // a: wrapper
2513 if (in >= last) return {};
2514 if (in[0].first == OP_FROMALTSTACK) {
2515 ++in;
2516 to_parse.emplace_back(DecodeContext::ALT, -1, -1);
2517 } else {
2518 to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
2519 }
2520 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2521 break;
2522 }
2523 case DecodeContext::MAYBE_AND_V: {
2524 // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
2525 // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
2526 if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
2527 to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
2528 // BKV_EXPR can contain more AND_V nodes
2529 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2530 }
2531 break;
2532 }
2533 case DecodeContext::SWAP: {
2534 if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
2535 ++in;
2536 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back()))};
2537 break;
2538 }
2539 case DecodeContext::ALT: {
2540 if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
2541 ++in;
2542 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back()))};
2543 break;
2544 }
2545 case DecodeContext::CHECK: {
2546 if (constructed.empty()) return {};
2547 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back()))};
2548 break;
2549 }
2550 case DecodeContext::DUP_IF: {
2551 if (constructed.empty()) return {};
2552 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back()))};
2553 break;
2554 }
2555 case DecodeContext::VERIFY: {
2556 if (constructed.empty()) return {};
2557 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))};
2558 break;
2559 }
2560 case DecodeContext::NON_ZERO: {
2561 if (constructed.empty()) return {};
2562 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back()))};
2563 break;
2564 }
2565 case DecodeContext::ZERO_NOTEQUAL: {
2566 if (constructed.empty()) return {};
2567 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back()))};
2568 break;
2569 }
2570 case DecodeContext::AND_V: {
2571 if (constructed.size() < 2) return {};
2572 BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
2573 break;
2574 }
2575 case DecodeContext::AND_B: {
2576 if (constructed.size() < 2) return {};
2577 BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
2578 break;
2579 }
2580 case DecodeContext::OR_B: {
2581 if (constructed.size() < 2) return {};
2582 BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
2583 break;
2584 }
2585 case DecodeContext::OR_C: {
2586 if (constructed.size() < 2) return {};
2587 BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
2588 break;
2589 }
2590 case DecodeContext::OR_D: {
2591 if (constructed.size() < 2) return {};
2592 BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
2593 break;
2594 }
2595 case DecodeContext::ANDOR: {
2596 if (constructed.size() < 3) return {};
2597 Node left{std::move(constructed.back())};
2598 constructed.pop_back();
2599 Node right{std::move(constructed.back())};
2600 constructed.pop_back();
2601 Node mid{std::move(constructed.back())};
2602 constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right))};
2603 break;
2604 }
2605 case DecodeContext::THRESH_W: {
2606 if (in >= last) return {};
2607 if (in[0].first == OP_ADD) {
2608 ++in;
2609 to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
2610 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2611 } else {
2612 to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
2613 // All children of thresh have type modifier d, so cannot be and_v
2614 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2615 }
2616 break;
2617 }
2618 case DecodeContext::THRESH_E: {
2619 if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
2620 std::vector<Node<Key>> subs;
2621 for (int i = 0; i < n; ++i) {
2622 Node sub{std::move(constructed.back())};
2623 constructed.pop_back();
2624 subs.push_back(std::move(sub));
2625 }
2626 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k);
2627 break;
2628 }
2629 case DecodeContext::ENDIF: {
2630 if (in >= last) return {};
2631
2632 // could be andor or or_i
2633 if (in[0].first == OP_ELSE) {
2634 ++in;
2635 to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
2636 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2637 }
2638 // could be j: or d: wrapper
2639 else if (in[0].first == OP_IF) {
2640 if (last - in >= 2 && in[1].first == OP_DUP) {
2641 in += 2;
2642 to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
2643 } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
2644 in += 3;
2645 to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
2646 }
2647 else {
2648 return {};
2649 }
2650 // could be or_c or or_d
2651 } else if (in[0].first == OP_NOTIF) {
2652 ++in;
2653 to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
2654 }
2655 else {
2656 return {};
2657 }
2658 break;
2659 }
2660 case DecodeContext::ENDIF_NOTIF: {
2661 if (in >= last) return {};
2662 if (in[0].first == OP_IFDUP) {
2663 ++in;
2664 to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
2665 } else {
2666 to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
2667 }
2668 // or_c and or_d both require X to have type modifier d so, can't contain and_v
2669 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2670 break;
2671 }
2672 case DecodeContext::ENDIF_ELSE: {
2673 if (in >= last) return {};
2674 if (in[0].first == OP_IF) {
2675 ++in;
2676 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
2677 } else if (in[0].first == OP_NOTIF) {
2678 ++in;
2679 to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
2680 // andor requires X to have type modifier d, so it can't be and_v
2681 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2682 } else {
2683 return {};
2684 }
2685 break;
2686 }
2687 }
2688 }
2689 if (constructed.size() != 1) return {};
2690 Node tl_node{std::move(constructed.front())};
2691 tl_node.DuplicateKeyCheck(ctx);
2692 // Note that due to how ComputeType works (only assign the type to the node if the
2693 // subs' types are valid) this would fail if any node of tree is badly typed.
2694 if (!tl_node.IsValidTopLevel()) return {};
2695 return tl_node;
2696}
2697
2698} // namespace internal
2699
2700template <typename Ctx>
2701inline std::optional<Node<typename Ctx::Key>> FromString(const std::string& str, const Ctx& ctx)
2702{
2703 return internal::Parse<typename Ctx::Key>(str, ctx);
2704}
2705
2706template <typename Ctx>
2707inline std::optional<Node<typename Ctx::Key>> FromScript(const CScript& script, const Ctx& ctx)
2708{
2709 using namespace internal;
2710 // A too large Script is necessarily invalid, don't bother parsing it.
2711 if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
2712 auto decomposed = DecomposeScript(script);
2713 if (!decomposed) return {};
2714 auto it = decomposed->begin();
2715 auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
2716 if (!ret) return {};
2717 if (it != decomposed->end()) return {};
2718 return ret;
2719}
2720
2721} // namespace miniscript
2722
2723#endif // BITCOIN_SCRIPT_MINISCRIPT_H
int ret
int flags
Definition: bitcoin-tx.cpp:529
#define CHECK_NONFATAL(condition)
Identity function.
Definition: check.h:109
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:405
A node in a miniscript expression.
Definition: miniscript.h:533
uint32_t GetStaticOps() const
Return the number of ops in the script (not counting the dynamic ones that depend on execution).
Definition: miniscript.h:1563
Result TreeEval(UpFn upfn) const
Like TreeEval, but without downfn or State type.
Definition: miniscript.h:742
const std::vector< Key > & Keys() const
Definition: miniscript.h:584
const Node * FindInsaneSub() const
Find an insane subnode which has no insane children. Nullptr if there is none.
Definition: miniscript.h:1618
Node & operator=(const Node &)=delete
bool IsBKW() const
Whether this node is of type B, K or W.
Definition: miniscript.h:1573
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector< Node > sub, uint32_t val=0)
Definition: miniscript.h:1723
internal::InputResult ProduceInput(const Ctx &ctx) const
Definition: miniscript.h:1242
CScript ToScript(const Ctx &ctx) const
Definition: miniscript.h:793
bool CheckStackSize() const
Check the maximum stack size for this script against the policy limit.
Definition: miniscript.h:1590
Type typ
Cached expression type (computed by CalcType and fed through SanitizeType).
Definition: miniscript.h:596
std::vector< unsigned char > data
The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD160).
Definition: miniscript.h:541
internal::StackSize CalcStackSize() const
Definition: miniscript.h:1073
bool IsSaneSubexpression() const
Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe...
Definition: miniscript.h:1694
Type GetType() const
Return the expression type.
Definition: miniscript.h:1612
enum Fragment Fragment() const
Definition: miniscript.h:582
const std::vector< unsigned char > & Data() const
Definition: miniscript.h:585
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector< Node > sub, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1715
friend int Compare(const Node< Key > &node1, const Node< Key > &node2)
Compare two miniscript subtrees, using a non-recursive algorithm.
Definition: miniscript.h:755
std::optional< uint32_t > GetStackSize() const
Return the maximum number of stack elements needed to satisfy this script non-malleably.
Definition: miniscript.h:1578
std::optional< bool > has_duplicate_keys
Whether a public key appears more than once in this node.
Definition: miniscript.h:604
std::optional< uint32_t > GetExecStackSize() const
Return the maximum size of the stack during execution of this script.
Definition: miniscript.h:1584
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1721
bool NeedsSignature() const
Check whether this script always needs a signature.
Definition: miniscript.h:1682
std::vector< Node > subs
Subexpressions (for WRAP_*‍/AND_*‍/OR_*‍/ANDOR/THRESH)
Definition: miniscript.h:543
std::optional< std::string > ToString(const CTx &ctx, bool &has_priv_key) const
Definition: miniscript.h:878
internal::WitnessSize ws
Cached witness size bounds.
Definition: miniscript.h:594
bool CheckOpsLimit() const
Check the ops limit of this script against the consensus limit.
Definition: miniscript.h:1566
std::vector< Key > keys
The keys used by this expression (only for PK_K/PK_H/MULTI)
Definition: miniscript.h:539
std::optional< uint32_t > GetWitnessSize() const
Return the maximum size in bytes of a witness to satisfy this script non-malleably.
Definition: miniscript.h:1606
Node(const Node &)=delete
uint32_t k
The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
Definition: miniscript.h:537
Node< Key > Clone() const
Definition: miniscript.h:567
Node(const Ctx &ctx, enum Fragment nt, std::vector< Node > sub, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1729
std::optional< Result > TreeEvalMaybe(UpFn upfn) const
Like TreeEvalMaybe, but without downfn or State type.
Definition: miniscript.h:713
internal::WitnessSize CalcWitnessSize() const
Definition: miniscript.h:1188
Node(Node &&) noexcept=default
Result TreeEval(State root_state, DownFn &&downfn, UpFn upfn) const
Like TreeEvalMaybe, but always produces a result.
Definition: miniscript.h:726
uint32_t K() const
Definition: miniscript.h:583
internal::Ops CalcOps() const
Definition: miniscript.h:999
internal::StackSize ss
Cached stack size bounds.
Definition: miniscript.h:592
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector< Node > sub, std::vector< Key > key, std::vector< unsigned char > arg, uint32_t val)
Definition: miniscript.h:609
std::optional< std::string > ToString(const CTx &ctx) const
Definition: miniscript.h:872
const std::vector< Node > & Subs() const
Definition: miniscript.h:586
Node(const Ctx &ctx, enum Fragment nt, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1735
size_t CalcScriptLen() const
Compute the length of the script for this miniscript (including children).
Definition: miniscript.h:613
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector< Node > sub, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1719
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, uint32_t val=0)
Definition: miniscript.h:1725
std::optional< Result > TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
Definition: miniscript.h:647
bool IsSane() const
Check whether this node is safe as a script on its own.
Definition: miniscript.h:1697
bool IsValidTopLevel() const
Check whether this node is valid as a script on its own.
Definition: miniscript.h:1676
enum Fragment fragment
What node type this node is.
Definition: miniscript.h:535
Node(const Ctx &ctx, enum Fragment nt, std::vector< Node > sub, std::vector< Key > key, uint32_t val=0)
Definition: miniscript.h:1733
bool IsNotSatisfiable() const
Whether no satisfaction exists for this node.
Definition: miniscript.h:1602
bool IsNonMalleable() const
Check whether this script can always be satisfied in a non-malleable way.
Definition: miniscript.h:1679
Type CalcType() const
Compute the type for this miniscript.
Definition: miniscript.h:775
bool CheckDuplicateKey() const
Check whether there is no duplicate key across this fragment and all its sub-fragments.
Definition: miniscript.h:1688
size_t ScriptSize() const
Return the size of the script for this expression (faster than ToScript().size()).
Definition: miniscript.h:1554
MiniscriptContext m_script_ctx
The Script context for this node. Either P2WSH or Tapscript.
Definition: miniscript.h:545
bool ValidSatisfactions() const
Whether successful non-malleable satisfactions are guaranteed to be valid.
Definition: miniscript.h:1691
void DuplicateKeyCheck(const Ctx &ctx) const
Update duplicate key information in this Node.
Definition: miniscript.h:1495
Node(const Ctx &ctx, enum Fragment nt, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1731
bool operator==(const Node< Key > &arg) const
Equality testing.
Definition: miniscript.h:1712
Node(const Ctx &ctx, enum Fragment nt, std::vector< Node > sub, uint32_t val=0)
Definition: miniscript.h:1737
std::optional< uint32_t > GetOps() const
Return the maximum number of ops needed to satisfy this script non-malleably.
Definition: miniscript.h:1557
bool CheckTimeLocksMix() const
Check whether there is no satisfaction path that contains both timelocks and heightlocks.
Definition: miniscript.h:1685
internal::Ops ops
Cached ops counts.
Definition: miniscript.h:590
MiniscriptContext GetMsCtx() const
Return the script context for this node.
Definition: miniscript.h:1615
size_t scriptlen
Cached script length (computed by CalcScriptLen).
Definition: miniscript.h:598
bool IsValid() const
Check whether this node is valid at all.
Definition: miniscript.h:1670
Node(const Ctx &ctx, enum Fragment nt, uint32_t val=0)
Definition: miniscript.h:1739
Availability Satisfy(const Ctx &ctx, std::vector< std::vector< unsigned char > > &stack, bool nonmalleable=true) const
Produce a witness for this script, if possible and given the information available in the context.
Definition: miniscript.h:1704
Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector< unsigned char > arg, uint32_t val=0)
Definition: miniscript.h:1717
bool IsSatisfiable(F fn) const
Determine whether a Miniscript node is satisfiable.
Definition: miniscript.h:1629
This type encapsulates the miniscript type system properties.
Definition: miniscript.h:128
constexpr bool operator<<(Type x) const
Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
Definition: miniscript.h:146
uint32_t m_flags
Internal bitmap of properties (see ""_mst operator for details).
Definition: miniscript.h:130
constexpr Type(uint32_t flags)
Internal constructor used by the ""_mst operator.
Definition: miniscript.h:133
constexpr Type If(bool x) const
The empty type if x is false, itself otherwise.
Definition: miniscript.h:155
constexpr Type operator&(Type x) const
Compute the type with the intersection of properties.
Definition: miniscript.h:143
constexpr bool operator<(Type x) const
Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
Definition: miniscript.h:149
constexpr Type operator|(Type x) const
Compute the type with the union of properties.
Definition: miniscript.h:140
constexpr bool operator==(Type x) const
Equality operator.
Definition: miniscript.h:152
Class whose objects represent the maximum of a list of integers.
Definition: miniscript.h:364
friend MaxInt< I > operator+(const MaxInt< I > &a, const MaxInt< I > &b)
Definition: miniscript.h:375
friend MaxInt< I > operator|(const MaxInt< I > &a, const MaxInt< I > &b)
Definition: miniscript.h:380
A data structure to help the calculation of stack size limits.
Definition: miniscript.h:440
static constexpr SatInfo Nop() noexcept
A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY).
Definition: miniscript.h:488
static constexpr SatInfo OP_CHECKSIG() noexcept
Definition: miniscript.h:500
static constexpr SatInfo BinaryOp() noexcept
A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD).
Definition: miniscript.h:492
static constexpr SatInfo OP_VERIFY() noexcept
Definition: miniscript.h:502
static constexpr SatInfo Push() noexcept
A script consisting of a single push opcode.
Definition: miniscript.h:484
static constexpr SatInfo Empty() noexcept
The empty script.
Definition: miniscript.h:482
constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept
Script set with a single script in it, with specified netdiff and exec.
Definition: miniscript.h:453
constexpr friend SatInfo operator|(const SatInfo &a, const SatInfo &b) noexcept
Script set union.
Definition: miniscript.h:461
int32_t exec
How much higher the stack size can be during execution compared to at the end.
Definition: miniscript.h:446
constexpr SatInfo() noexcept
Empty script set.
Definition: miniscript.h:450
static constexpr SatInfo OP_EQUALVERIFY() noexcept
Definition: miniscript.h:497
static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept
Definition: miniscript.h:496
static constexpr SatInfo OP_DUP() noexcept
Definition: miniscript.h:495
static constexpr SatInfo OP_0NOTEQUAL() noexcept
Definition: miniscript.h:501
static constexpr SatInfo If() noexcept
A script consisting of just OP_IF or OP_NOTIF.
Definition: miniscript.h:490
bool valid
Whether a canonical satisfaction/dissatisfaction is possible at all.
Definition: miniscript.h:442
int32_t netdiff
How much higher the stack size at start of execution can be compared to at the end.
Definition: miniscript.h:444
static constexpr SatInfo OP_EQUAL() noexcept
Definition: miniscript.h:498
static constexpr SatInfo OP_SIZE() noexcept
Definition: miniscript.h:499
static constexpr SatInfo Hash() noexcept
A script consisting of a single hash opcode.
Definition: miniscript.h:486
constexpr friend SatInfo operator+(const SatInfo &a, const SatInfo &b) noexcept
Script set concatenation.
Definition: miniscript.h:471
constexpr StackSize(SatInfo in_both) noexcept
Definition: miniscript.h:511
const SatInfo & Dsat() const
Definition: miniscript.h:514
constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept
Definition: miniscript.h:510
const SatInfo & Sat() const
Definition: miniscript.h:513
size_type size() const
Definition: prevector.h:247
static const int WITNESS_SCALE_FACTOR
Definition: consensus.h:21
uint160 RIPEMD160(std::span< const unsigned char > data)
Compute the 160-bit RIPEMD-160 hash of an array.
Definition: hash.h:222
uint256 Hash(const T &in1)
Compute the 256-bit hash of an object.
Definition: hash.h:75
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:30
@ TAPSCRIPT
Witness v1 with 32-byte program, not BIP16 P2SH-wrapped, script path spending, leaf version 0xc0; see...
static constexpr size_t TAPROOT_CONTROL_MAX_SIZE
Definition: interpreter.h:246
#define CHECK(cond)
Unconditional failure on condition failure.
Definition: util.h:35
size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx)
Helper function for Node::CalcScriptLen.
Definition: miniscript.cpp:264
std::optional< Node< Key > > Parse(std::span< const char > in, const Ctx &ctx)
Parse a miniscript from its textual descriptor form.
Definition: miniscript.h:1853
std::optional< int64_t > ParseScriptNumber(const Opcode &in)
Determine whether the passed pair (created by DecomposeScript) is pushing a number.
Definition: miniscript.cpp:408
Type SanitizeType(Type e)
A helper sanitizer/checker for the output of CalcType.
Definition: miniscript.cpp:19
std::optional< std::vector< Opcode > > DecomposeScript(const CScript &script)
Decode a script into opcode/push pairs.
Definition: miniscript.cpp:368
constexpr uint32_t TX_BODY_LEEWAY_WEIGHT
Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout ...
Definition: miniscript.h:278
std::optional< Node< Key > > DecodeScript(I &in, I last, const Ctx &ctx)
Parse a miniscript from a bitcoin script.
Definition: miniscript.h:2312
constexpr uint32_t TXIN_BYTES_NO_WITNESS
prevout + nSequence + scriptSig
Definition: miniscript.h:274
static const auto ONE
A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric co...
Definition: miniscript.h:347
static const auto ZERO32
A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challe...
Definition: miniscript.h:345
constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
The maximum size of a script depending on the context.
Definition: miniscript.h:282
constexpr uint32_t TX_OVERHEAD
version + nLockTime
Definition: miniscript.h:272
static const auto ZERO
A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in num...
Definition: miniscript.h:343
constexpr uint32_t P2WSH_TXOUT_BYTES
nValue + script len + OP_0 + pushdata 32.
Definition: miniscript.h:276
int FindNextChar(std::span< const char > sp, const char m)
Definition: miniscript.cpp:421
@ VERIFY
VERIFY wraps the top constructed node with v:
@ CLOSE_BRACKET
CLOSE_BRACKET expects the next element to be ')' and fails if not.
@ AND_N
AND_N will construct an andor(X,Y,0) node from the last two constructed nodes.
@ SWAP
SWAP wraps the top constructed node with s:
@ COMMA
COMMA expects the next element to be ',' and fails if not.
@ DUP_IF
DUP_IF wraps the top constructed node with d:
@ EXPR
A miniscript expression which does not begin with wrappers.
@ ZERO_NOTEQUAL
ZERO_NOTEQUAL wraps the top constructed node with n:
@ NON_ZERO
NON_ZERO wraps the top constructed node with j:
@ WRAP_T
WRAP_T will construct an and_v(X,1) node from the top constructed node.
@ ALT
ALT wraps the top constructed node with a:
@ WRAP_U
WRAP_U will construct an or_i(X,0) node from the top constructed node.
@ WRAPPED_EXPR
An expression which may be begin with wrappers followed by a colon.
static const auto INVALID
A stack representing the lack of any (dis)satisfactions.
Definition: miniscript.h:351
@ SINGLE_BKV_EXPR
A single expression of type B, K, or V.
@ ENDIF_NOTIF
If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE, we could either be in an ...
@ BKV_EXPR
Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple) and_v expressions.
@ ENDIF_ELSE
If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an or_i or an andor node.
@ MAYBE_AND_V
MAYBE_AND_V will check if the next part of the script could be a valid miniscript sub-expression,...
@ W_EXPR
An expression of type W (a: or s: wrappers).
@ THRESH_E
THRESH_E constructs a thresh node from the appropriate number of constructed children.
@ ENDIF
ENDIF signals that we are inside some sort of OP_IF structure, which could be or_d,...
@ THRESH_W
In a thresh expression, all sub-expressions other than the first are W-type, and end in OP_ADD.
constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE
Maximum possible stack size to spend a Taproot output (excluding the script itself).
Definition: miniscript.h:280
static const auto EMPTY
The empty stack.
Definition: miniscript.h:349
std::optional< std::pair< std::vector< unsigned char >, int > > ParseHexStrEnd(std::span< const char > in, const size_t expected_size, const Ctx &ctx)
Parse a hex string ending at the end of the fragment's text representation.
Definition: miniscript.h:1822
Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector< Type > &sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx)
Helper function for Node::CalcType.
Definition: miniscript.cpp:39
void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector< Node< Key > > &constructed, const bool reverse=false)
BuildBack pops the last two elements off constructed and wraps them in the specified Fragment.
Definition: miniscript.h:1836
static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE
The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with...
Definition: miniscript.h:269
std::optional< std::pair< Key, int > > ParseKeyEnd(std::span< const char > in, const Ctx &ctx)
Parse a key string ending at the end of the fragment's text representation.
Definition: miniscript.h:1811
constexpr bool IsTapscript(MiniscriptContext ms_ctx)
Whether the context Tapscript, ensuring the only other possibility is P2WSH.
Definition: miniscript.h:257
std::optional< Node< typename Ctx::Key > > FromScript(const CScript &script, const Ctx &ctx)
Definition: miniscript.h:2707
void ForEachNode(const Node< Key > &root, Fn &&fn)
Unordered traversal of a miniscript node tree.
Definition: miniscript.h:197
std::optional< Node< typename Ctx::Key > > FromString(const std::string &str, const Ctx &ctx)
Definition: miniscript.h:2701
std::pair< opcodetype, std::vector< unsigned char > > Opcode
Definition: miniscript.h:191
Fragment
The different node types in miniscript.
Definition: miniscript.h:211
@ OR_I
OP_IF [X] OP_ELSE [Y] OP_ENDIF.
@ MULTI_A
[key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
@ RIPEMD160
OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL.
@ HASH160
OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL.
@ OR_B
[X] [Y] OP_BOOLOR
@ WRAP_A
OP_TOALTSTACK [X] OP_FROMALTSTACK.
@ WRAP_V
[X] OP_VERIFY (or -VERIFY version of last opcode in X)
@ ANDOR
[X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
@ THRESH
[X1] ([Xn] OP_ADD)* [k] OP_EQUAL
@ WRAP_N
[X] OP_0NOTEQUAL
@ WRAP_S
OP_SWAP [X].
@ OR_C
[X] OP_NOTIF [Y] OP_ENDIF
@ HASH256
OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL.
@ OLDER
[n] OP_CHECKSEQUENCEVERIFY
@ SHA256
OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL.
@ WRAP_J
OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF.
@ AFTER
[n] OP_CHECKLOCKTIMEVERIFY
@ OR_D
[X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
@ WRAP_D
OP_DUP OP_IF [X] OP_ENDIF.
@ AND_B
[X] [Y] OP_BOOLAND
@ PK_H
OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY.
@ WRAP_C
[X] OP_CHECKSIG
@ MULTI
[k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
Definition: messages.h:21
bool Const(const std::string &str, std::span< const char > &sp, bool skip)
Parse a constant.
Definition: parsing.cpp:15
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:246
static constexpr unsigned int MAX_STANDARD_P2WSH_STACK_ITEMS
The maximum number of witness stack items in a standard P2WSH script.
Definition: policy.h:51
static constexpr int32_t MAX_STANDARD_TX_WEIGHT
The maximum weight for transactions we're willing to relay/mine.
Definition: policy.h:35
static constexpr unsigned int MAX_STANDARD_P2WSH_SCRIPT_SIZE
The maximum size in bytes of a standard witnessScript.
Definition: policy.h:57
@ OP_SHA256
Definition: script.h:186
@ OP_BOOLAND
Definition: script.h:169
@ OP_CHECKMULTISIG
Definition: script.h:192
@ OP_IF
Definition: script.h:104
@ OP_SWAP
Definition: script.h:131
@ OP_CHECKSIG
Definition: script.h:190
@ OP_CHECKLOCKTIMEVERIFY
Definition: script.h:197
@ OP_EQUAL
Definition: script.h:146
@ OP_NUMEQUAL
Definition: script.h:171
@ OP_NOTIF
Definition: script.h:105
@ OP_SIZE
Definition: script.h:139
@ OP_ENDIF
Definition: script.h:109
@ OP_DUP
Definition: script.h:125
@ OP_TOALTSTACK
Definition: script.h:114
@ OP_RIPEMD160
Definition: script.h:184
@ OP_HASH256
Definition: script.h:188
@ OP_FROMALTSTACK
Definition: script.h:115
@ OP_NUMEQUALVERIFY
Definition: script.h:172
@ OP_HASH160
Definition: script.h:187
@ OP_1
Definition: script.h:83
@ OP_VERIFY
Definition: script.h:110
@ OP_ADD
Definition: script.h:161
@ OP_CHECKMULTISIGVERIFY
Definition: script.h:193
@ OP_BOOLOR
Definition: script.h:170
@ OP_CHECKSIGADD
Definition: script.h:210
@ OP_ELSE
Definition: script.h:108
@ OP_CHECKSIGVERIFY
Definition: script.h:191
@ OP_0NOTEQUAL
Definition: script.h:159
@ OP_0
Definition: script.h:76
@ OP_IFDUP
Definition: script.h:122
@ OP_EQUALVERIFY
Definition: script.h:147
@ OP_CHECKSEQUENCEVERIFY
Definition: script.h:199
static constexpr unsigned int MAX_PUBKEYS_PER_MULTI_A
The limit of keys in OP_CHECKSIGADD-based scripts.
Definition: script.h:37
static const int MAX_STACK_SIZE
Definition: script.h:43
static const int MAX_OPS_PER_SCRIPT
Definition: script.h:31
CScript BuildScript(Ts &&... inputs)
Build a script by concatenating other scripts, or any argument accepted by CScript::operator<<.
Definition: script.h:608
static const int MAX_PUBKEYS_PER_MULTISIG
Definition: script.h:34
static bool verify(const CScriptNum10 &bignum, const CScriptNum &scriptnum)
constexpr unsigned int GetSizeOfCompactSize(uint64_t nSize)
Compact Size size < 253 – 1 byte size <= USHRT_MAX – 3 bytes (253 + 2 bytes) size <= UINT_MAX – 5 byt...
Definition: serialize.h:288
std::vector< Byte > ParseHex(std::string_view hex_str)
Like TryParseHex, but returns an empty vector on invalid input.
Definition: strencodings.h:69
A pair of a satisfaction and a dissatisfaction InputStack.
Definition: miniscript.h:354
InputResult(A &&in_nsat, B &&in_sat)
Definition: miniscript.h:358
An object representing a sequence of witness stack elements.
Definition: miniscript.h:306
bool malleable
Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
Definition: miniscript.h:316
friend InputStack operator|(InputStack a, InputStack b)
Choose between two potential input stacks.
Definition: miniscript.cpp:339
friend InputStack operator+(InputStack a, InputStack b)
Concatenate two input stacks.
Definition: miniscript.cpp:325
std::vector< std::vector< unsigned char > > stack
Data elements.
Definition: miniscript.h:323
InputStack()=default
Construct an empty stack (valid).
bool has_sig
Whether this stack contains a digital signature.
Definition: miniscript.h:314
InputStack & SetAvailable(Availability avail)
Change availability.
Definition: miniscript.cpp:298
Availability available
Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
Definition: miniscript.h:312
InputStack & SetMalleable(bool x=true)
Mark this input stack as malleable.
Definition: miniscript.cpp:320
size_t size
Serialized witness size.
Definition: miniscript.h:321
bool non_canon
Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
Definition: miniscript.h:319
InputStack(std::vector< unsigned char > in)
Construct a valid single-element stack (with an element up to 75 bytes).
Definition: miniscript.h:327
InputStack & SetWithSig()
Mark this input stack as having a signature.
Definition: miniscript.cpp:310
InputStack & SetNonCanon()
Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
Definition: miniscript.cpp:315
Ops(uint32_t in_count, MaxInt< uint32_t > in_sat, MaxInt< uint32_t > in_dsat)
Definition: miniscript.h:395
MaxInt< uint32_t > sat
Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
Definition: miniscript.h:391
MaxInt< uint32_t > dsat
Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
Definition: miniscript.h:393
uint32_t count
Non-push opcodes.
Definition: miniscript.h:389
MaxInt< uint32_t > sat
Maximum witness size to satisfy;.
Definition: miniscript.h:519
MaxInt< uint32_t > dsat
Maximum witness size to dissatisfy;.
Definition: miniscript.h:521
WitnessSize(MaxInt< uint32_t > in_sat, MaxInt< uint32_t > in_dsat)
Definition: miniscript.h:523
static const std::vector< uint8_t > EMPTY
Definition: script.h:22
static int count
bool IsHex(std::string_view str)
#define B
Definition: util_tests.cpp:560
assert(!tx.IsCoinBase())
std::vector< std::common_type_t< Args... > > Vector(Args &&... args)
Construct a vector with the specified elements.
Definition: vector.h:23