Bitcoin Core 30.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/types.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
38#include <node/txorphanage.h>
40#include <node/warnings.h>
41#include <policy/feerate.h>
43#include <policy/packages.h>
44#include <policy/policy.h>
45#include <primitives/block.h>
47#include <private_broadcast.h>
48#include <protocol.h>
49#include <random.h>
50#include <scheduler.h>
51#include <script/script.h>
52#include <serialize.h>
53#include <span.h>
54#include <streams.h>
55#include <sync.h>
56#include <tinyformat.h>
57#include <txmempool.h>
58#include <uint256.h>
59#include <util/check.h>
60#include <util/strencodings.h>
61#include <util/time.h>
62#include <util/trace.h>
63#include <validation.h>
64
65#include <algorithm>
66#include <array>
67#include <atomic>
68#include <compare>
69#include <cstddef>
70#include <deque>
71#include <exception>
72#include <functional>
73#include <future>
74#include <initializer_list>
75#include <iterator>
76#include <limits>
77#include <list>
78#include <map>
79#include <memory>
80#include <optional>
81#include <queue>
82#include <ranges>
83#include <ratio>
84#include <set>
85#include <span>
86#include <typeinfo>
87#include <utility>
88
90using namespace util::hex_literals;
91
92TRACEPOINT_SEMAPHORE(net, inbound_message);
93TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
94
97static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
98static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
100static constexpr auto HEADERS_RESPONSE_TIME{2min};
106static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
108static constexpr auto STALE_CHECK_INTERVAL{10min};
110static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
112static constexpr auto MINIMUM_CONNECT_TIME{30s};
114static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
117static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
120static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
122static constexpr auto PING_INTERVAL{2min};
124static const unsigned int MAX_LOCATOR_SZ = 101;
126static const unsigned int MAX_INV_SZ = 50000;
128static const unsigned int MAX_GETDATA_SZ = 1000;
130static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
133static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
135static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
138static const int MAX_CMPCTBLOCK_DEPTH = 5;
140static const int MAX_BLOCKTXN_DEPTH = 10;
141static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
146static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
148static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
150static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
152static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
154static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
156static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
158static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
160static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
162static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
172static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND{14};
176static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
177static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
178static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
180static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
182static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
184static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
186static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
188static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
190static constexpr size_t MAX_ADDR_TO_SEND{1000};
193static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
199static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
201static constexpr size_t NUM_PRIVATE_BROADCAST_PER_TX{3};
204
205// Internal stuff
206namespace {
208struct QueuedBlock {
210 const CBlockIndex* pindex;
212 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
213};
214
227struct Peer {
229 const NodeId m_id{0};
230
244 const ServiceFlags m_our_services;
246 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
247
249 const bool m_is_inbound;
250
252 Mutex m_misbehavior_mutex;
254 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
255
257 Mutex m_block_inv_mutex;
261 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
265 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
270 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
271
273 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
274
276 // TODO: remove in v32.0, only show reported height once in "receive version message: ..." debug log
277 std::atomic<int> m_starting_height{-1};
278
280 std::atomic<uint64_t> m_ping_nonce_sent{0};
282 std::atomic<std::chrono::microseconds> m_ping_start{0us};
284 std::atomic<bool> m_ping_queued{false};
285
287 std::atomic<bool> m_wtxid_relay{false};
294 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
295
296 struct TxRelay {
297 mutable RecursiveMutex m_bloom_filter_mutex;
299 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
301 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
302
303 mutable RecursiveMutex m_tx_inventory_mutex;
307 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
312 std::set<Wtxid> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
316 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
319 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
322 uint64_t m_last_inv_sequence GUARDED_BY(m_tx_inventory_mutex){1};
323
325 std::atomic<CAmount> m_fee_filter_received{0};
326 };
327
328 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
329 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
330 {
331 LOCK(m_tx_relay_mutex);
332 Assume(!m_tx_relay);
333 m_tx_relay = std::make_unique<Peer::TxRelay>();
334 return m_tx_relay.get();
335 };
336
337 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
338 {
339 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
340 };
341
343 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
353 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
368 std::atomic_bool m_addr_relay_enabled{false};
370 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
372 mutable Mutex m_addr_send_times_mutex;
374 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
376 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
379 std::atomic_bool m_wants_addrv2{false};
381 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
384 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
386 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
388 std::atomic<uint64_t> m_addr_rate_limited{0};
390 std::atomic<uint64_t> m_addr_processed{0};
391
393 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
394
396 Mutex m_getdata_requests_mutex;
398 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
399
402
404 Mutex m_headers_sync_mutex;
407 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
408
410 std::atomic<bool> m_sent_sendheaders{false};
411
413 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
414
416 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
417
420 std::atomic<std::chrono::seconds> m_time_offset{0s};
421
422 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
423 : m_id{id}
424 , m_our_services{our_services}
425 , m_is_inbound{is_inbound}
426 {}
427
428private:
429 mutable Mutex m_tx_relay_mutex;
430
432 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
433};
434
435using PeerRef = std::shared_ptr<Peer>;
436
443struct CNodeState {
445 const CBlockIndex* pindexBestKnownBlock{nullptr};
447 uint256 hashLastUnknownBlock{};
449 const CBlockIndex* pindexLastCommonBlock{nullptr};
451 const CBlockIndex* pindexBestHeaderSent{nullptr};
453 bool fSyncStarted{false};
455 std::chrono::microseconds m_stalling_since{0us};
456 std::list<QueuedBlock> vBlocksInFlight;
458 std::chrono::microseconds m_downloading_since{0us};
460 bool fPreferredDownload{false};
462 bool m_requested_hb_cmpctblocks{false};
464 bool m_provides_cmpctblocks{false};
465
490 struct ChainSyncTimeoutState {
492 std::chrono::seconds m_timeout{0s};
494 const CBlockIndex* m_work_header{nullptr};
496 bool m_sent_getheaders{false};
498 bool m_protect{false};
499 };
500
501 ChainSyncTimeoutState m_chain_sync;
502
504 int64_t m_last_block_announcement{0};
505};
506
507class PeerManagerImpl final : public PeerManager
508{
509public:
510 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
511 BanMan* banman, ChainstateManager& chainman,
512 CTxMemPool& pool, node::Warnings& warnings, Options opts);
513
515 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
516 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
517 void BlockConnected(const ChainstateRole& role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
518 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
519 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
520 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
521 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
522 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
523 void BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state) override
524 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
525 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
526 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
527
529 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
530 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
531 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
532 bool ProcessMessages(CNode& node, std::atomic<bool>& interrupt) override
533 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
534 bool SendMessages(CNode& node) override
535 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
536
538 void StartScheduledTasks(CScheduler& scheduler) override;
539 void CheckForStaleTipAndEvictPeers() override;
540 util::Expected<void, std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
541 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
542 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
543 std::vector<node::TxOrphanage::OrphanInfo> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
544 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
545 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
546 void InitiateTxBroadcastToAll(const Txid& txid, const Wtxid& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
547 void InitiateTxBroadcastPrivate(const CTransactionRef& tx) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
548 void SetBestBlock(int height, std::chrono::seconds time) override
549 {
550 m_best_height = height;
551 m_best_block_time = time;
552 };
553 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
554 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
555 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
556
557private:
558 void ProcessMessage(Peer& peer, CNode& pfrom, const std::string& msg_type, DataStream& vRecv, std::chrono::microseconds time_received,
559 const std::atomic<bool>& interruptMsgProc)
560 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
561
563 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
564
566 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
567
569 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
570
572 void ReattemptPrivateBroadcast(CScheduler& scheduler);
573
576 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
577
580 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
581
584 void Misbehaving(Peer& peer, const std::string& message);
585
594 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
595 bool via_compact_block, const std::string& message = "")
596 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
597
604 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
605
617 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
618 bool first_time_failure)
619 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
620
623 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
624 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
625
629 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
630 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
631
643 bool ProcessOrphanTx(Peer& peer)
644 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
645
653 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
654 std::vector<CBlockHeader>&& headers,
655 bool via_compact_block)
656 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
659 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, Peer& peer);
661 arith_uint256 GetAntiDoSWorkThreshold();
665 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
667 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
686 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
687 std::vector<CBlockHeader>& headers)
688 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
700 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
701 const CBlockIndex& chain_start_header,
702 std::vector<CBlockHeader>& headers)
703 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
704
707 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
708
713 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
715 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
717 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
718 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
719
720 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
721
723 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
724 template <typename... Args>
725 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
726 {
727 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
728 }
729
731 void PushNodeVersion(CNode& pnode, const Peer& peer);
732
737 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
738
740 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
741
743 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
744
752 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
753
755 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
756
758
760
761 const CChainParams& m_chainparams;
762 CConnman& m_connman;
763 AddrMan& m_addrman;
765 BanMan* const m_banman;
766 ChainstateManager& m_chainman;
767 CTxMemPool& m_mempool;
768
777 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
778 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
779
780 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
781
783 std::atomic<int> m_best_height{-1};
785 std::atomic<std::chrono::seconds> m_best_block_time{0s};
786
788 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
789
790 node::Warnings& m_warnings;
791 TimeOffsets m_outbound_time_offsets{m_warnings};
792
793 const Options m_opts;
794
795 bool RejectIncomingTxs(const CNode& peer) const;
796
799 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
800
803 mutable Mutex m_peer_mutex;
810 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
811
813 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
814
816 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
818 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
819
820 uint32_t GetFetchFlags(const Peer& peer) const;
821
822 std::map<uint64_t, std::chrono::microseconds> m_next_inv_to_inbounds_per_network_key GUARDED_BY(g_msgproc_mutex);
823
825 int nSyncStarted GUARDED_BY(cs_main) = 0;
826
828 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
829
836 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
837
839 std::atomic<int> m_wtxid_relay_peers{0};
840
842 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
843
845 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
846
848 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
849
857 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
858 std::chrono::seconds average_interval,
859 uint64_t network_key) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
860
861
862 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
863 Mutex m_most_recent_block_mutex;
864 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
865 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
866 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
867 std::unique_ptr<const std::map<GenTxid, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
868
869 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
871 Mutex m_headers_presync_mutex;
879 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
881 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
883 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
885 std::atomic_bool m_headers_presync_should_signal{false};
886
888 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
889
891 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
892
894 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
895
903 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
904
905 /* Mark a block as in flight
906 * Returns false, still setting pit, if the block was already in flight from the same peer
907 * pit will only be valid as long as the same cs_main lock is being held
908 */
909 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
910
911 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
912
916 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
917
919 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
920
948 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
949
950 /* Multimap used to preserve insertion order */
951 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
952 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
953
955 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
956
958 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
959 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, !tx_relay.m_tx_inventory_mutex);
960
961 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
962 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
964
966 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
967
969 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
970 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
971
978 void PushPrivateBroadcastTx(CNode& node) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
979
986 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
987
989 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
990
992 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
993
994 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
995
999 std::vector<std::pair<Wtxid, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
1001 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
1002
1004 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1006 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1007 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1008
1013 int64_t ApproximateBestBlockDepth() const;
1014
1021 bool BlockRequestAllowed(const CBlockIndex& block_index) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1022 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1023 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1024 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1025
1041 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1042 BlockFilterType filter_type, uint32_t start_height,
1043 const uint256& stop_hash, uint32_t max_height_diff,
1044 const CBlockIndex*& stop_index,
1045 BlockFilterIndex*& filter_index);
1046
1056 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1057
1067 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1068
1078 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1079
1086 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1087
1088 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1089 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1090
1091 void LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block);
1092
1094 PrivateBroadcast m_tx_for_private_broadcast;
1095};
1096
1097const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1098{
1099 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1100 if (it == m_node_states.end())
1101 return nullptr;
1102 return &it->second;
1103}
1104
1105CNodeState* PeerManagerImpl::State(NodeId pnode)
1106{
1107 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1108}
1109
1115static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1116{
1117 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1118}
1119
1120void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1121{
1122 assert(peer.m_addr_known);
1123 peer.m_addr_known->insert(addr.GetKey());
1124}
1125
1126void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1127{
1128 // Known checking here is only to save space from duplicates.
1129 // Before sending, we'll filter it again for known addresses that were
1130 // added after addresses were pushed.
1131 assert(peer.m_addr_known);
1132 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1133 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1134 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1135 } else {
1136 peer.m_addrs_to_send.push_back(addr);
1137 }
1138 }
1139}
1140
1141static void AddKnownTx(Peer& peer, const uint256& hash)
1142{
1143 auto tx_relay = peer.GetTxRelay();
1144 if (!tx_relay) return;
1145
1146 LOCK(tx_relay->m_tx_inventory_mutex);
1147 tx_relay->m_tx_inventory_known_filter.insert(hash);
1148}
1149
1151static bool CanServeBlocks(const Peer& peer)
1152{
1153 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1154}
1155
1158static bool IsLimitedPeer(const Peer& peer)
1159{
1160 return (!(peer.m_their_services & NODE_NETWORK) &&
1161 (peer.m_their_services & NODE_NETWORK_LIMITED));
1162}
1163
1165static bool CanServeWitnesses(const Peer& peer)
1166{
1167 return peer.m_their_services & NODE_WITNESS;
1168}
1169
1170std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1171 std::chrono::seconds average_interval,
1172 uint64_t network_key)
1173{
1174 auto [it, inserted] = m_next_inv_to_inbounds_per_network_key.try_emplace(network_key, 0us);
1175 auto& timer{it->second};
1176 if (timer < now) {
1177 timer = now + m_rng.rand_exp_duration(average_interval);
1178 }
1179 return timer;
1180}
1181
1182bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1183{
1184 return mapBlocksInFlight.contains(hash);
1185}
1186
1187bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1188{
1189 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1190 auto [nodeid, block_it] = range.first->second;
1191 PeerRef peer{GetPeerRef(nodeid)};
1192 if (peer && !peer->m_is_inbound) return true;
1193 }
1194
1195 return false;
1196}
1197
1198void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1199{
1200 auto range = mapBlocksInFlight.equal_range(hash);
1201 if (range.first == range.second) {
1202 // Block was not requested from any peer
1203 return;
1204 }
1205
1206 // We should not have requested too many of this block
1207 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1208
1209 while (range.first != range.second) {
1210 const auto& [node_id, list_it]{range.first->second};
1211
1212 if (from_peer && *from_peer != node_id) {
1213 range.first++;
1214 continue;
1215 }
1216
1217 CNodeState& state = *Assert(State(node_id));
1218
1219 if (state.vBlocksInFlight.begin() == list_it) {
1220 // First block on the queue was received, update the start download time for the next one
1221 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1222 }
1223 state.vBlocksInFlight.erase(list_it);
1224
1225 if (state.vBlocksInFlight.empty()) {
1226 // Last validated block on the queue for this peer was received.
1227 m_peers_downloading_from--;
1228 }
1229 state.m_stalling_since = 0us;
1230
1231 range.first = mapBlocksInFlight.erase(range.first);
1232 }
1233}
1234
1235bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1236{
1237 const uint256& hash{block.GetBlockHash()};
1238
1239 CNodeState *state = State(nodeid);
1240 assert(state != nullptr);
1241
1242 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1243
1244 // Short-circuit most stuff in case it is from the same node
1245 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1246 if (range.first->second.first == nodeid) {
1247 if (pit) {
1248 *pit = &range.first->second.second;
1249 }
1250 return false;
1251 }
1252 }
1253
1254 // Make sure it's not being fetched already from same peer.
1255 RemoveBlockRequest(hash, nodeid);
1256
1257 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1258 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1259 if (state->vBlocksInFlight.size() == 1) {
1260 // We're starting a block download (batch) from this peer.
1261 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1262 m_peers_downloading_from++;
1263 }
1264 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1265 if (pit) {
1266 *pit = &itInFlight->second.second;
1267 }
1268 return true;
1269}
1270
1271void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1272{
1274
1275 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1276 // mempool will not contain the transactions necessary to reconstruct the
1277 // compact block.
1278 if (m_opts.ignore_incoming_txs) return;
1279
1280 CNodeState* nodestate = State(nodeid);
1281 PeerRef peer{GetPeerRef(nodeid)};
1282 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1283 // Don't request compact blocks if the peer has not signalled support
1284 return;
1285 }
1286
1287 int num_outbound_hb_peers = 0;
1288 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1289 if (*it == nodeid) {
1290 lNodesAnnouncingHeaderAndIDs.erase(it);
1291 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1292 return;
1293 }
1294 PeerRef peer_ref{GetPeerRef(*it)};
1295 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1296 }
1297 if (peer && peer->m_is_inbound) {
1298 // If we're adding an inbound HB peer, make sure we're not removing
1299 // our last outbound HB peer in the process.
1300 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1301 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1302 if (remove_peer && !remove_peer->m_is_inbound) {
1303 // Put the HB outbound peer in the second slot, so that it
1304 // doesn't get removed.
1305 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1306 }
1307 }
1308 }
1309 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1311 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1312 // As per BIP152, we only get 3 of our peers to announce
1313 // blocks using compact encodings.
1314 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1315 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1316 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1317 pnodeStop->m_bip152_highbandwidth_to = false;
1318 return true;
1319 });
1320 lNodesAnnouncingHeaderAndIDs.pop_front();
1321 }
1322 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1323 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1324 pfrom->m_bip152_highbandwidth_to = true;
1325 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1326 return true;
1327 });
1328}
1329
1330bool PeerManagerImpl::TipMayBeStale()
1331{
1333 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1334 if (m_last_tip_update.load() == 0s) {
1335 m_last_tip_update = GetTime<std::chrono::seconds>();
1336 }
1337 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1338}
1339
1340int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1341{
1342 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1343}
1344
1345bool PeerManagerImpl::CanDirectFetch()
1346{
1347 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1348}
1349
1350static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1351{
1352 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1353 return true;
1354 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1355 return true;
1356 return false;
1357}
1358
1359void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1360 CNodeState *state = State(nodeid);
1361 assert(state != nullptr);
1362
1363 if (!state->hashLastUnknownBlock.IsNull()) {
1364 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1365 if (pindex && pindex->nChainWork > 0) {
1366 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1367 state->pindexBestKnownBlock = pindex;
1368 }
1369 state->hashLastUnknownBlock.SetNull();
1370 }
1371 }
1372}
1373
1374void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1375 CNodeState *state = State(nodeid);
1376 assert(state != nullptr);
1377
1378 ProcessBlockAvailability(nodeid);
1379
1380 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1381 if (pindex && pindex->nChainWork > 0) {
1382 // An actually better block was announced.
1383 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1384 state->pindexBestKnownBlock = pindex;
1385 }
1386 } else {
1387 // An unknown block was announced; just assume that the latest one is the best one.
1388 state->hashLastUnknownBlock = hash;
1389 }
1390}
1391
1392// Logic for calculating which blocks to download from a given peer, given our current tip.
1393void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1394{
1395 if (count == 0)
1396 return;
1397
1398 vBlocks.reserve(vBlocks.size() + count);
1399 CNodeState *state = State(peer.m_id);
1400 assert(state != nullptr);
1401
1402 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1403 ProcessBlockAvailability(peer.m_id);
1404
1405 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1406 // This peer has nothing interesting.
1407 return;
1408 }
1409
1410 // When syncing with AssumeUtxo and the snapshot has not yet been validated,
1411 // abort downloading blocks from peers that don't have the snapshot block in their best chain.
1412 // We can't reorg to this chain due to missing undo data until validation completes,
1413 // so downloading blocks from it would be futile.
1414 const CBlockIndex* snap_base{m_chainman.CurrentChainstate().SnapshotBase()};
1415 if (snap_base && m_chainman.CurrentChainstate().m_assumeutxo == Assumeutxo::UNVALIDATED &&
1416 state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1417 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1418 return;
1419 }
1420
1421 // Determine the forking point between the peer's chain and our chain:
1422 // pindexLastCommonBlock is required to be an ancestor of pindexBestKnownBlock, and will be used as a starting point.
1423 // It is being set to the fork point between the peer's best known block and the current tip, unless it is already set to
1424 // an ancestor with more work than the fork point.
1425 auto fork_point = LastCommonAncestor(state->pindexBestKnownBlock, m_chainman.ActiveTip());
1426 if (state->pindexLastCommonBlock == nullptr ||
1427 fork_point->nChainWork > state->pindexLastCommonBlock->nChainWork ||
1428 state->pindexBestKnownBlock->GetAncestor(state->pindexLastCommonBlock->nHeight) != state->pindexLastCommonBlock) {
1429 state->pindexLastCommonBlock = fork_point;
1430 }
1431 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1432 return;
1433
1434 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1435 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1436 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1437 // download that next block if the window were 1 larger.
1438 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1439
1440 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1441}
1442
1443void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1444{
1445 Assert(from_tip);
1446 Assert(target_block);
1447
1448 if (vBlocks.size() >= count) {
1449 return;
1450 }
1451
1452 vBlocks.reserve(count);
1453 CNodeState *state = Assert(State(peer.m_id));
1454
1455 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1456 // This peer can't provide us the complete series of blocks leading up to the
1457 // assumeutxo snapshot base.
1458 //
1459 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1460 // will eventually crash when we try to reorg to it. Let other logic
1461 // deal with whether we disconnect this peer.
1462 //
1463 // TODO at some point in the future, we might choose to request what blocks
1464 // this peer does have from the historical chain, despite it not having a
1465 // complete history beneath the snapshot base.
1466 return;
1467 }
1468
1469 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1470}
1471
1472void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1473{
1474 std::vector<const CBlockIndex*> vToFetch;
1475 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1476 bool is_limited_peer = IsLimitedPeer(peer);
1477 NodeId waitingfor = -1;
1478 while (pindexWalk->nHeight < nMaxHeight) {
1479 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1480 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1481 // as iterating over ~100 CBlockIndex* entries anyway.
1482 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1483 vToFetch.resize(nToFetch);
1484 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1485 vToFetch[nToFetch - 1] = pindexWalk;
1486 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1487 vToFetch[i - 1] = vToFetch[i]->pprev;
1488 }
1489
1490 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1491 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1492 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1493 // already part of our chain (and therefore don't need it even if pruned).
1494 for (const CBlockIndex* pindex : vToFetch) {
1495 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1496 // We consider the chain that this peer is on invalid.
1497 return;
1498 }
1499
1500 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1501 // We wouldn't download this block or its descendants from this peer.
1502 return;
1503 }
1504
1505 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1506 if (activeChain && pindex->HaveNumChainTxs()) {
1507 state->pindexLastCommonBlock = pindex;
1508 }
1509 continue;
1510 }
1511
1512 // Is block in-flight?
1513 if (IsBlockRequested(pindex->GetBlockHash())) {
1514 if (waitingfor == -1) {
1515 // This is the first already-in-flight block.
1516 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1517 }
1518 continue;
1519 }
1520
1521 // The block is not already downloaded, and not yet in flight.
1522 if (pindex->nHeight > nWindowEnd) {
1523 // We reached the end of the window.
1524 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1525 // We aren't able to fetch anything, but we would be if the download window was one larger.
1526 if (nodeStaller) *nodeStaller = waitingfor;
1527 }
1528 return;
1529 }
1530
1531 // Don't request blocks that go further than what limited peers can provide
1532 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1533 continue;
1534 }
1535
1536 vBlocks.push_back(pindex);
1537 if (vBlocks.size() == count) {
1538 return;
1539 }
1540 }
1541 }
1542}
1543
1544} // namespace
1545
1546void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1547{
1548 uint64_t my_services;
1549 int64_t my_time;
1550 uint64_t your_services;
1551 CService your_addr;
1552 std::string my_user_agent;
1553 int my_height;
1554 bool my_tx_relay;
1555 if (pnode.IsPrivateBroadcastConn()) {
1556 my_services = NODE_NONE;
1557 my_time = 0;
1558 your_services = NODE_NONE;
1559 your_addr = CService{};
1560 my_user_agent = "/pynode:0.0.1/"; // Use a constant other than the default (or user-configured). See https://github.com/bitcoin/bitcoin/pull/27509#discussion_r1214671917
1561 my_height = 0;
1562 my_tx_relay = false;
1563 } else {
1564 const CAddress& addr{pnode.addr};
1565 my_services = peer.m_our_services;
1566 my_time = count_seconds(GetTime<std::chrono::seconds>());
1567 your_services = addr.nServices;
1568 your_addr = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? CService{addr} : CService{};
1569 my_user_agent = strSubVersion;
1570 my_height = m_best_height;
1571 my_tx_relay = !RejectIncomingTxs(pnode);
1572 }
1573
1574 MakeAndPushMessage(
1575 pnode,
1578 my_services,
1579 my_time,
1580 // your_services + CNetAddr::V1(your_addr) is the pre-version-31402 serialization of your_addr (without nTime)
1581 your_services, CNetAddr::V1(your_addr),
1582 // same, for a dummy address
1583 my_services, CNetAddr::V1(CService{}),
1584 pnode.GetLocalNonce(),
1585 my_user_agent,
1586 my_height,
1587 my_tx_relay);
1588
1589 LogDebug(
1590 BCLog::NET, "send version message: version=%d, blocks=%d%s, txrelay=%d, peer=%d\n",
1591 PROTOCOL_VERSION, my_height,
1592 fLogIPs ? strprintf(", them=%s", your_addr.ToStringAddrPort()) : "",
1593 my_tx_relay, pnode.GetId());
1594}
1595
1596void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1597{
1598 LOCK(cs_main);
1599 CNodeState *state = State(node);
1600 if (state) state->m_last_block_announcement = time_in_seconds;
1601}
1602
1603void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1604{
1605 NodeId nodeid = node.GetId();
1606 {
1607 LOCK(cs_main); // For m_node_states
1608 m_node_states.try_emplace(m_node_states.end(), nodeid);
1609 }
1610 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1611
1613 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1614 }
1615
1616 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1617 {
1618 LOCK(m_peer_mutex);
1619 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1620 }
1621}
1622
1623void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1624{
1625 std::set<Txid> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1626
1627 for (const auto& txid : unbroadcast_txids) {
1628 CTransactionRef tx = m_mempool.get(txid);
1629
1630 if (tx != nullptr) {
1631 InitiateTxBroadcastToAll(txid, tx->GetWitnessHash());
1632 } else {
1633 m_mempool.RemoveUnbroadcastTx(txid, true);
1634 }
1635 }
1636
1637 // Schedule next run for 10-15 minutes in the future.
1638 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1639 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1640 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1641}
1642
1643void PeerManagerImpl::ReattemptPrivateBroadcast(CScheduler& scheduler)
1644{
1645 // Remove stale transactions that are no longer relevant (e.g. already in
1646 // the mempool or mined) and count the remaining ones.
1647 size_t num_for_rebroadcast{0};
1648 const auto stale_txs = m_tx_for_private_broadcast.GetStale();
1649 if (!stale_txs.empty()) {
1650 LOCK(cs_main);
1651 for (const auto& stale_tx : stale_txs) {
1652 auto mempool_acceptable = m_chainman.ProcessTransaction(stale_tx, /*test_accept=*/true);
1653 if (mempool_acceptable.m_result_type == MempoolAcceptResult::ResultType::VALID) {
1655 "Reattempting broadcast of stale txid=%s wtxid=%s",
1656 stale_tx->GetHash().ToString(), stale_tx->GetWitnessHash().ToString());
1657 ++num_for_rebroadcast;
1658 } else {
1659 LogDebug(BCLog::PRIVBROADCAST, "Giving up broadcast attempts for txid=%s wtxid=%s: %s",
1660 stale_tx->GetHash().ToString(), stale_tx->GetWitnessHash().ToString(),
1661 mempool_acceptable.m_state.ToString());
1662 m_tx_for_private_broadcast.Remove(stale_tx);
1663 }
1664 }
1665
1666 // This could overshoot, but that is ok - we will open some private connections in vain.
1667 m_connman.m_private_broadcast.NumToOpenAdd(num_for_rebroadcast);
1668 }
1669
1670 const auto delta{2min + FastRandomContext().randrange<std::chrono::milliseconds>(1min)};
1671 scheduler.scheduleFromNow([&] { ReattemptPrivateBroadcast(scheduler); }, delta);
1672}
1673
1674void PeerManagerImpl::FinalizeNode(const CNode& node)
1675{
1676 NodeId nodeid = node.GetId();
1677 {
1678 LOCK(cs_main);
1679 {
1680 // We remove the PeerRef from g_peer_map here, but we don't always
1681 // destruct the Peer. Sometimes another thread is still holding a
1682 // PeerRef, so the refcount is >= 1. Be careful not to do any
1683 // processing here that assumes Peer won't be changed before it's
1684 // destructed.
1685 PeerRef peer = RemovePeer(nodeid);
1686 assert(peer != nullptr);
1687 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1688 assert(m_wtxid_relay_peers >= 0);
1689 }
1690 CNodeState *state = State(nodeid);
1691 assert(state != nullptr);
1692
1693 if (state->fSyncStarted)
1694 nSyncStarted--;
1695
1696 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1697 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1698 while (range.first != range.second) {
1699 auto [node_id, list_it] = range.first->second;
1700 if (node_id != nodeid) {
1701 range.first++;
1702 } else {
1703 range.first = mapBlocksInFlight.erase(range.first);
1704 }
1705 }
1706 }
1707 {
1708 LOCK(m_tx_download_mutex);
1709 m_txdownloadman.DisconnectedPeer(nodeid);
1710 }
1711 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1712 m_num_preferred_download_peers -= state->fPreferredDownload;
1713 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1714 assert(m_peers_downloading_from >= 0);
1715 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1716 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1717
1718 m_node_states.erase(nodeid);
1719
1720 if (m_node_states.empty()) {
1721 // Do a consistency check after the last peer is removed.
1722 assert(mapBlocksInFlight.empty());
1723 assert(m_num_preferred_download_peers == 0);
1724 assert(m_peers_downloading_from == 0);
1725 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1726 assert(m_wtxid_relay_peers == 0);
1727 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1728 }
1729 } // cs_main
1730 if (node.fSuccessfullyConnected &&
1731 !node.IsBlockOnlyConn() && !node.IsPrivateBroadcastConn() && !node.IsInboundConn()) {
1732 // Only change visible addrman state for full outbound peers. We don't
1733 // call Connected() for feeler connections since they don't have
1734 // fSuccessfullyConnected set. Also don't call Connected() for private broadcast
1735 // connections since they could leak information in addrman.
1736 m_addrman.Connected(node.addr);
1737 }
1738 {
1739 LOCK(m_headers_presync_mutex);
1740 m_headers_presync_stats.erase(nodeid);
1741 }
1742 if (node.IsPrivateBroadcastConn() &&
1743 !m_tx_for_private_broadcast.DidNodeConfirmReception(nodeid) &&
1744 m_tx_for_private_broadcast.HavePendingTransactions()) {
1745
1746 m_connman.m_private_broadcast.NumToOpenAdd(1);
1747 }
1748 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1749}
1750
1751bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1752{
1753 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1754 return !(GetDesirableServiceFlags(services) & (~services));
1755}
1756
1757ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1758{
1759 if (services & NODE_NETWORK_LIMITED) {
1760 // Limited peers are desirable when we are close to the tip.
1761 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1763 }
1764 }
1766}
1767
1768PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1769{
1770 LOCK(m_peer_mutex);
1771 auto it = m_peer_map.find(id);
1772 return it != m_peer_map.end() ? it->second : nullptr;
1773}
1774
1775PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1776{
1777 PeerRef ret;
1778 LOCK(m_peer_mutex);
1779 auto it = m_peer_map.find(id);
1780 if (it != m_peer_map.end()) {
1781 ret = std::move(it->second);
1782 m_peer_map.erase(it);
1783 }
1784 return ret;
1785}
1786
1787bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1788{
1789 {
1790 LOCK(cs_main);
1791 const CNodeState* state = State(nodeid);
1792 if (state == nullptr)
1793 return false;
1794 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1795 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1796 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1797 if (queue.pindex)
1798 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1799 }
1800 }
1801
1802 PeerRef peer = GetPeerRef(nodeid);
1803 if (peer == nullptr) return false;
1804 stats.their_services = peer->m_their_services;
1805 stats.m_starting_height = peer->m_starting_height;
1806 // It is common for nodes with good ping times to suddenly become lagged,
1807 // due to a new block arriving or other large transfer.
1808 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1809 // since pingtime does not update until the ping is complete, which might take a while.
1810 // So, if a ping is taking an unusually long time in flight,
1811 // the caller can immediately detect that this is happening.
1812 auto ping_wait{0us};
1813 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1814 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1815 }
1816
1817 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1818 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1819 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1820 LOCK(tx_relay->m_tx_inventory_mutex);
1821 stats.m_last_inv_seq = tx_relay->m_last_inv_sequence;
1822 stats.m_inv_to_send = tx_relay->m_tx_inventory_to_send.size();
1823 } else {
1824 stats.m_relay_txs = false;
1825 stats.m_fee_filter_received = 0;
1826 stats.m_inv_to_send = 0;
1827 }
1828
1829 stats.m_ping_wait = ping_wait;
1830 stats.m_addr_processed = peer->m_addr_processed.load();
1831 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1832 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1833 {
1834 LOCK(peer->m_headers_sync_mutex);
1835 if (peer->m_headers_sync) {
1836 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1837 }
1838 }
1839 stats.time_offset = peer->m_time_offset;
1840
1841 return true;
1842}
1843
1844std::vector<node::TxOrphanage::OrphanInfo> PeerManagerImpl::GetOrphanTransactions()
1845{
1846 LOCK(m_tx_download_mutex);
1847 return m_txdownloadman.GetOrphanTransactions();
1848}
1849
1850PeerManagerInfo PeerManagerImpl::GetInfo() const
1851{
1852 return PeerManagerInfo{
1853 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1854 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1855 };
1856}
1857
1858void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1859{
1860 if (m_opts.max_extra_txs <= 0)
1861 return;
1862 if (!vExtraTxnForCompact.size())
1863 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1864 vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1865 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1866}
1867
1868void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1869{
1870 LOCK(peer.m_misbehavior_mutex);
1871
1872 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1873 peer.m_should_discourage = true;
1874 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1875 TRACEPOINT(net, misbehaving_connection,
1876 peer.m_id,
1877 message.c_str()
1878 );
1879}
1880
1881void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1882 bool via_compact_block, const std::string& message)
1883{
1884 PeerRef peer{GetPeerRef(nodeid)};
1885 switch (state.GetResult()) {
1887 break;
1889 // We didn't try to process the block because the header chain may have
1890 // too little work.
1891 break;
1892 // The node is providing invalid data:
1895 if (!via_compact_block) {
1896 if (peer) Misbehaving(*peer, message);
1897 return;
1898 }
1899 break;
1901 {
1902 // Discourage outbound (but not inbound) peers if on an invalid chain.
1903 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1904 if (peer && !via_compact_block && !peer->m_is_inbound) {
1905 if (peer) Misbehaving(*peer, message);
1906 return;
1907 }
1908 break;
1909 }
1912 if (peer) Misbehaving(*peer, message);
1913 return;
1914 // Conflicting (but not necessarily invalid) data or different policy:
1916 if (peer) Misbehaving(*peer, message);
1917 return;
1919 break;
1920 }
1921 if (message != "") {
1922 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1923 }
1924}
1925
1926bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex& block_index)
1927{
1929 if (m_chainman.ActiveChain().Contains(&block_index)) return true;
1930 return block_index.IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1931 (m_chainman.m_best_header->GetBlockTime() - block_index.GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1932 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, block_index, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1933}
1934
1935util::Expected<void, std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1936{
1937 if (m_chainman.m_blockman.LoadingBlocks()) return util::Unexpected{"Loading blocks ..."};
1938
1939 // Ensure this peer exists and hasn't been disconnected
1940 PeerRef peer = GetPeerRef(peer_id);
1941 if (peer == nullptr) return util::Unexpected{"Peer does not exist"};
1942
1943 // Ignore pre-segwit peers
1944 if (!CanServeWitnesses(*peer)) return util::Unexpected{"Pre-SegWit peer"};
1945
1946 LOCK(cs_main);
1947
1948 // Forget about all prior requests
1949 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1950
1951 // Mark block as in-flight
1952 if (!BlockRequested(peer_id, block_index)) return util::Unexpected{"Already requested from this peer"};
1953
1954 // Construct message to request the block
1955 const uint256& hash{block_index.GetBlockHash()};
1956 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1957
1958 // Send block request message to the peer
1959 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1960 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1961 return true;
1962 });
1963
1964 if (!success) return util::Unexpected{"Peer not fully connected"};
1965
1966 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1967 hash.ToString(), peer_id);
1968 return {};
1969}
1970
1971std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1972 BanMan* banman, ChainstateManager& chainman,
1973 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1974{
1975 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1976}
1977
1978PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1979 BanMan* banman, ChainstateManager& chainman,
1980 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1981 : m_rng{opts.deterministic_rng},
1982 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1983 m_chainparams(chainman.GetParams()),
1984 m_connman(connman),
1985 m_addrman(addrman),
1986 m_banman(banman),
1987 m_chainman(chainman),
1988 m_mempool(pool),
1989 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.deterministic_rng}),
1990 m_warnings{warnings},
1991 m_opts{opts}
1992{
1993 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1994 // This argument can go away after Erlay support is complete.
1995 if (opts.reconcile_txs) {
1996 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1997 }
1998}
1999
2000void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
2001{
2002 // Stale tip checking and peer eviction are on two different timers, but we
2003 // don't want them to get out of sync due to drift in the scheduler, so we
2004 // combine them in one function and schedule at the quicker (peer-eviction)
2005 // timer.
2006 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
2007 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
2008
2009 // schedule next run for 10-15 minutes in the future
2010 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
2011 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
2012
2013 if (m_opts.private_broadcast) {
2014 scheduler.scheduleFromNow([&] { ReattemptPrivateBroadcast(scheduler); }, 0min);
2015 }
2016}
2017
2018void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
2019{
2020 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
2021 // m_tx_download_mutex waits on the mempool mutex.
2022 AssertLockNotHeld(m_mempool.cs);
2023 AssertLockNotHeld(m_tx_download_mutex);
2024
2025 if (!is_ibd) {
2026 LOCK(m_tx_download_mutex);
2027 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
2028 // to a timelock. Reset the rejection filters to give those transactions another chance if we
2029 // see them again.
2030 m_txdownloadman.ActiveTipChange();
2031 }
2032}
2033
2040void PeerManagerImpl::BlockConnected(
2041 const ChainstateRole& role,
2042 const std::shared_ptr<const CBlock>& pblock,
2043 const CBlockIndex* pindex)
2044{
2045 // Update this for all chainstate roles so that we don't mistakenly see peers
2046 // helping us do background IBD as having a stale tip.
2047 m_last_tip_update = GetTime<std::chrono::seconds>();
2048
2049 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
2050 auto stalling_timeout = m_block_stalling_timeout.load();
2051 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
2052 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
2053 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
2054 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
2055 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
2056 }
2057 }
2058
2059 // The following task can be skipped since we don't maintain a mempool for
2060 // the historical chainstate.
2061 if (role.historical) {
2062 return;
2063 }
2064 LOCK(m_tx_download_mutex);
2065 m_txdownloadman.BlockConnected(pblock);
2066}
2067
2068void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
2069{
2070 LOCK(m_tx_download_mutex);
2071 m_txdownloadman.BlockDisconnected();
2072}
2073
2078void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
2079{
2080 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
2081
2082 LOCK(cs_main);
2083
2084 if (pindex->nHeight <= m_highest_fast_announce)
2085 return;
2086 m_highest_fast_announce = pindex->nHeight;
2087
2088 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
2089
2090 uint256 hashBlock(pblock->GetHash());
2091 const std::shared_future<CSerializedNetMsg> lazy_ser{
2092 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2093
2094 {
2095 auto most_recent_block_txs = std::make_unique<std::map<GenTxid, CTransactionRef>>();
2096 for (const auto& tx : pblock->vtx) {
2097 most_recent_block_txs->emplace(tx->GetHash(), tx);
2098 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2099 }
2100
2101 LOCK(m_most_recent_block_mutex);
2102 m_most_recent_block_hash = hashBlock;
2103 m_most_recent_block = pblock;
2104 m_most_recent_compact_block = pcmpctblock;
2105 m_most_recent_block_txs = std::move(most_recent_block_txs);
2106 }
2107
2108 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2110
2112 return;
2113 ProcessBlockAvailability(pnode->GetId());
2114 CNodeState &state = *State(pnode->GetId());
2115 // If the peer has, or we announced to them the previous block already,
2116 // but we don't think they have this one, go ahead and announce it
2117 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2118
2119 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2120 hashBlock.ToString(), pnode->GetId());
2121
2122 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2123 PushMessage(*pnode, ser_cmpctblock.Copy());
2124 state.pindexBestHeaderSent = pindex;
2125 }
2126 });
2127}
2128
2133void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2134{
2135 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2136
2137 // Don't relay inventory during initial block download.
2138 if (fInitialDownload) return;
2139
2140 // Find the hashes of all blocks that weren't previously in the best chain.
2141 std::vector<uint256> vHashes;
2142 const CBlockIndex *pindexToAnnounce = pindexNew;
2143 while (pindexToAnnounce != pindexFork) {
2144 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2145 pindexToAnnounce = pindexToAnnounce->pprev;
2146 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2147 // Limit announcements in case of a huge reorganization.
2148 // Rely on the peer's synchronization mechanism in that case.
2149 break;
2150 }
2151 }
2152
2153 {
2154 LOCK(m_peer_mutex);
2155 for (auto& it : m_peer_map) {
2156 Peer& peer = *it.second;
2157 LOCK(peer.m_block_inv_mutex);
2158 for (const uint256& hash : vHashes | std::views::reverse) {
2159 peer.m_blocks_for_headers_relay.push_back(hash);
2160 }
2161 }
2162 }
2163
2164 m_connman.WakeMessageHandler();
2165}
2166
2171void PeerManagerImpl::BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state)
2172{
2173 LOCK(cs_main);
2174
2175 const uint256 hash(block->GetHash());
2176 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2177
2178 // If the block failed validation, we know where it came from and we're still connected
2179 // to that peer, maybe punish.
2180 if (state.IsInvalid() &&
2181 it != mapBlockSource.end() &&
2182 State(it->second.first)) {
2183 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2184 }
2185 // Check that:
2186 // 1. The block is valid
2187 // 2. We're not in initial block download
2188 // 3. This is currently the best block we're aware of. We haven't updated
2189 // the tip yet so we have no way to check this directly here. Instead we
2190 // just check that there are currently no other blocks in flight.
2191 else if (state.IsValid() &&
2192 !m_chainman.IsInitialBlockDownload() &&
2193 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2194 if (it != mapBlockSource.end()) {
2195 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2196 }
2197 }
2198 if (it != mapBlockSource.end())
2199 mapBlockSource.erase(it);
2200}
2201
2203//
2204// Messages
2205//
2206
2207bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2208{
2209 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2210}
2211
2212void PeerManagerImpl::SendPings()
2213{
2214 LOCK(m_peer_mutex);
2215 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2216}
2217
2218void PeerManagerImpl::InitiateTxBroadcastToAll(const Txid& txid, const Wtxid& wtxid)
2219{
2220 LOCK(m_peer_mutex);
2221 for(auto& it : m_peer_map) {
2222 Peer& peer = *it.second;
2223 auto tx_relay = peer.GetTxRelay();
2224 if (!tx_relay) continue;
2225
2226 LOCK(tx_relay->m_tx_inventory_mutex);
2227 // Only queue transactions for announcement once the version handshake
2228 // is completed. The time of arrival for these transactions is
2229 // otherwise at risk of leaking to a spy, if the spy is able to
2230 // distinguish transactions received during the handshake from the rest
2231 // in the announcement.
2232 if (tx_relay->m_next_inv_send_time == 0s) continue;
2233
2234 const uint256& hash{peer.m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256()};
2235 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2236 tx_relay->m_tx_inventory_to_send.insert(wtxid);
2237 }
2238 }
2239}
2240
2241void PeerManagerImpl::InitiateTxBroadcastPrivate(const CTransactionRef& tx)
2242{
2243 const auto txstr{strprintf("txid=%s, wtxid=%s", tx->GetHash().ToString(), tx->GetWitnessHash().ToString())};
2244 if (m_tx_for_private_broadcast.Add(tx)) {
2245 LogDebug(BCLog::PRIVBROADCAST, "Requesting %d new connections due to %s", NUM_PRIVATE_BROADCAST_PER_TX, txstr);
2247 } else {
2248 LogDebug(BCLog::PRIVBROADCAST, "Ignoring unnecessary request to schedule an already scheduled transaction: %s", txstr);
2249 }
2250}
2251
2252void PeerManagerImpl::RelayAddress(NodeId originator,
2253 const CAddress& addr,
2254 bool fReachable)
2255{
2256 // We choose the same nodes within a given 24h window (if the list of connected
2257 // nodes does not change) and we don't relay to nodes that already know an
2258 // address. So within 24h we will likely relay a given address once. This is to
2259 // prevent a peer from unjustly giving their address better propagation by sending
2260 // it to us repeatedly.
2261
2262 if (!fReachable && !addr.IsRelayable()) return;
2263
2264 // Relay to a limited number of other nodes
2265 // Use deterministic randomness to send to the same nodes for 24 hours
2266 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2267 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2268 const auto current_time{GetTime<std::chrono::seconds>()};
2269 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2270 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2272 .Write(hash_addr)
2273 .Write(time_addr)};
2274
2275 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2276 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2277
2278 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2279 assert(nRelayNodes <= best.size());
2280
2281 LOCK(m_peer_mutex);
2282
2283 for (auto& [id, peer] : m_peer_map) {
2284 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2285 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2286 for (unsigned int i = 0; i < nRelayNodes; i++) {
2287 if (hashKey > best[i].first) {
2288 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2289 best[i] = std::make_pair(hashKey, peer.get());
2290 break;
2291 }
2292 }
2293 }
2294 };
2295
2296 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2297 PushAddress(*best[i].second, addr);
2298 }
2299}
2300
2301void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2302{
2303 std::shared_ptr<const CBlock> a_recent_block;
2304 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2305 {
2306 LOCK(m_most_recent_block_mutex);
2307 a_recent_block = m_most_recent_block;
2308 a_recent_compact_block = m_most_recent_compact_block;
2309 }
2310
2311 bool need_activate_chain = false;
2312 {
2313 LOCK(cs_main);
2314 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2315 if (pindex) {
2316 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2317 pindex->IsValid(BLOCK_VALID_TREE)) {
2318 // If we have the block and all of its parents, but have not yet validated it,
2319 // we might be in the middle of connecting it (ie in the unlock of cs_main
2320 // before ActivateBestChain but after AcceptBlock).
2321 // In this case, we need to run ActivateBestChain prior to checking the relay
2322 // conditions below.
2323 need_activate_chain = true;
2324 }
2325 }
2326 } // release cs_main before calling ActivateBestChain
2327 if (need_activate_chain) {
2329 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2330 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2331 }
2332 }
2333
2334 const CBlockIndex* pindex{nullptr};
2335 const CBlockIndex* tip{nullptr};
2336 bool can_direct_fetch{false};
2337 FlatFilePos block_pos{};
2338 {
2339 LOCK(cs_main);
2340 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2341 if (!pindex) {
2342 return;
2343 }
2344 if (!BlockRequestAllowed(*pindex)) {
2345 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2346 return;
2347 }
2348 // disconnect node in case we have reached the outbound limit for serving historical blocks
2349 if (m_connman.OutboundTargetReached(true) &&
2350 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2351 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2352 ) {
2353 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2354 pfrom.fDisconnect = true;
2355 return;
2356 }
2357 tip = m_chainman.ActiveChain().Tip();
2358 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2360 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2361 )) {
2362 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2363 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2364 pfrom.fDisconnect = true;
2365 return;
2366 }
2367 // Pruned nodes may have deleted the block, so check whether
2368 // it's available before trying to send.
2369 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2370 return;
2371 }
2372 can_direct_fetch = CanDirectFetch();
2373 block_pos = pindex->GetBlockPos();
2374 }
2375
2376 std::shared_ptr<const CBlock> pblock;
2377 if (a_recent_block && a_recent_block->GetHash() == inv.hash) {
2378 pblock = a_recent_block;
2379 } else if (inv.IsMsgWitnessBlk()) {
2380 // Fast-path: in this case it is possible to serve the block directly from disk,
2381 // as the network format matches the format on disk
2382 if (const auto block_data{m_chainman.m_blockman.ReadRawBlock(block_pos)}) {
2383 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{*block_data});
2384 } else {
2385 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2386 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2387 } else {
2388 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2389 }
2390 pfrom.fDisconnect = true;
2391 return;
2392 }
2393 // Don't set pblock as we've sent the block
2394 } else {
2395 // Send block from disk
2396 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2397 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos, inv.hash)) {
2398 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2399 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2400 } else {
2401 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2402 }
2403 pfrom.fDisconnect = true;
2404 return;
2405 }
2406 pblock = pblockRead;
2407 }
2408 if (pblock) {
2409 if (inv.IsMsgBlk()) {
2410 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2411 } else if (inv.IsMsgWitnessBlk()) {
2412 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2413 } else if (inv.IsMsgFilteredBlk()) {
2414 bool sendMerkleBlock = false;
2415 CMerkleBlock merkleBlock;
2416 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2417 LOCK(tx_relay->m_bloom_filter_mutex);
2418 if (tx_relay->m_bloom_filter) {
2419 sendMerkleBlock = true;
2420 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2421 }
2422 }
2423 if (sendMerkleBlock) {
2424 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2425 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2426 // This avoids hurting performance by pointlessly requiring a round-trip
2427 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2428 // they must either disconnect and retry or request the full block.
2429 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2430 // however we MUST always provide at least what the remote peer needs
2431 for (const auto& [tx_idx, _] : merkleBlock.vMatchedTxn)
2432 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[tx_idx]));
2433 }
2434 // else
2435 // no response
2436 } else if (inv.IsMsgCmpctBlk()) {
2437 // If a peer is asking for old blocks, we're almost guaranteed
2438 // they won't have a useful mempool to match against a compact block,
2439 // and we don't feel like constructing the object for them, so
2440 // instead we respond with the full, non-compact block.
2441 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2442 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == inv.hash) {
2443 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2444 } else {
2445 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2446 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2447 }
2448 } else {
2449 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2450 }
2451 }
2452 }
2453
2454 {
2455 LOCK(peer.m_block_inv_mutex);
2456 // Trigger the peer node to send a getblocks request for the next batch of inventory
2457 if (inv.hash == peer.m_continuation_block) {
2458 // Send immediately. This must send even if redundant,
2459 // and we want it right after the last block so they don't
2460 // wait for other stuff first.
2461 std::vector<CInv> vInv;
2462 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2463 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2464 peer.m_continuation_block.SetNull();
2465 }
2466 }
2467}
2468
2469CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2470{
2471 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2472 auto txinfo{std::visit(
2473 [&](const auto& id) {
2474 return m_mempool.info_for_relay(id, WITH_LOCK(tx_relay.m_tx_inventory_mutex, return tx_relay.m_last_inv_sequence));
2475 },
2476 gtxid)};
2477 if (txinfo.tx) {
2478 return std::move(txinfo.tx);
2479 }
2480
2481 // Or it might be from the most recent block
2482 {
2483 LOCK(m_most_recent_block_mutex);
2484 if (m_most_recent_block_txs != nullptr) {
2485 auto it = m_most_recent_block_txs->find(gtxid);
2486 if (it != m_most_recent_block_txs->end()) return it->second;
2487 }
2488 }
2489
2490 return {};
2491}
2492
2493void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2494{
2496
2497 auto tx_relay = peer.GetTxRelay();
2498
2499 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2500 std::vector<CInv> vNotFound;
2501
2502 // Process as many TX items from the front of the getdata queue as
2503 // possible, since they're common and it's efficient to batch process
2504 // them.
2505 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2506 if (interruptMsgProc) return;
2507 // The send buffer provides backpressure. If there's no space in
2508 // the buffer, pause processing until the next call.
2509 if (pfrom.fPauseSend) break;
2510
2511 const CInv &inv = *it++;
2512
2513 if (tx_relay == nullptr) {
2514 // Ignore GETDATA requests for transactions from block-relay-only
2515 // peers and peers that asked us not to announce transactions.
2516 continue;
2517 }
2518
2519 if (auto tx{FindTxForGetData(*tx_relay, ToGenTxid(inv))}) {
2520 // WTX and WITNESS_TX imply we serialize with witness
2521 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2522 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2523 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2524 } else {
2525 vNotFound.push_back(inv);
2526 }
2527 }
2528
2529 // Only process one BLOCK item per call, since they're uncommon and can be
2530 // expensive to process.
2531 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2532 const CInv &inv = *it++;
2533 if (inv.IsGenBlkMsg()) {
2534 ProcessGetBlockData(pfrom, peer, inv);
2535 }
2536 // else: If the first item on the queue is an unknown type, we erase it
2537 // and continue processing the queue on the next call.
2538 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2539 // result in never making progress and this thread using 100% allocated CPU. See
2540 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2541 }
2542
2543 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2544
2545 if (!vNotFound.empty()) {
2546 // Let the peer know that we didn't find what it asked for, so it doesn't
2547 // have to wait around forever.
2548 // SPV clients care about this message: it's needed when they are
2549 // recursively walking the dependencies of relevant unconfirmed
2550 // transactions. SPV clients want to do that because they want to know
2551 // about (and store and rebroadcast and risk analyze) the dependencies
2552 // of transactions relevant to them, without having to download the
2553 // entire memory pool.
2554 // Also, other nodes can use these messages to automatically request a
2555 // transaction from some other peer that announced it, and stop
2556 // waiting for us to respond.
2557 // In normal operation, we often send NOTFOUND messages for parents of
2558 // transactions that we relay; if a peer is missing a parent, they may
2559 // assume we have them and request the parents from us.
2560 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2561 }
2562}
2563
2564uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2565{
2566 uint32_t nFetchFlags = 0;
2567 if (CanServeWitnesses(peer)) {
2568 nFetchFlags |= MSG_WITNESS_FLAG;
2569 }
2570 return nFetchFlags;
2571}
2572
2573void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2574{
2575 BlockTransactions resp(req);
2576 for (size_t i = 0; i < req.indexes.size(); i++) {
2577 if (req.indexes[i] >= block.vtx.size()) {
2578 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2579 return;
2580 }
2581 resp.txn[i] = block.vtx[req.indexes[i]];
2582 }
2583
2584 if (LogAcceptCategory(BCLog::CMPCTBLOCK, BCLog::Level::Debug)) {
2585 uint32_t tx_requested_size{0};
2586 for (const auto& tx : resp.txn) tx_requested_size += tx->ComputeTotalSize();
2587 LogDebug(BCLog::CMPCTBLOCK, "Peer %d sent us a GETBLOCKTXN for block %s, sending a BLOCKTXN with %u txns. (%u bytes)\n", pfrom.GetId(), block.GetHash().ToString(), resp.txn.size(), tx_requested_size);
2588 }
2589 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2590}
2591
2592bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, Peer& peer)
2593{
2594 // Do these headers have proof-of-work matching what's claimed?
2595 if (!HasValidProofOfWork(headers, m_chainparams.GetConsensus())) {
2596 Misbehaving(peer, "header with invalid proof of work");
2597 return false;
2598 }
2599
2600 // Are these headers connected to each other?
2601 if (!CheckHeadersAreContinuous(headers)) {
2602 Misbehaving(peer, "non-continuous headers sequence");
2603 return false;
2604 }
2605 return true;
2606}
2607
2608arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2609{
2610 arith_uint256 near_chaintip_work = 0;
2611 LOCK(cs_main);
2612 if (m_chainman.ActiveChain().Tip() != nullptr) {
2613 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2614 // Use a 144 block buffer, so that we'll accept headers that fork from
2615 // near our tip.
2616 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2617 }
2618 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2619}
2620
2627void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2628 const std::vector<CBlockHeader>& headers)
2629{
2630 // Try to fill in the missing headers.
2631 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2632 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2633 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2634 headers[0].GetHash().ToString(),
2635 headers[0].hashPrevBlock.ToString(),
2636 best_header->nHeight,
2637 pfrom.GetId());
2638 }
2639
2640 // Set hashLastUnknownBlock for this peer, so that if we
2641 // eventually get the headers - even from a different peer -
2642 // we can use this peer to download.
2643 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2644}
2645
2646bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2647{
2648 uint256 hashLastBlock;
2649 for (const CBlockHeader& header : headers) {
2650 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2651 return false;
2652 }
2653 hashLastBlock = header.GetHash();
2654 }
2655 return true;
2656}
2657
2658bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2659{
2660 if (peer.m_headers_sync) {
2661 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2662 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2663 if (result.success) peer.m_last_getheaders_timestamp = {};
2664 if (result.request_more) {
2665 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2666 // If we were instructed to ask for a locator, it should not be empty.
2667 Assume(!locator.vHave.empty());
2668 // We can only be instructed to request more if processing was successful.
2669 Assume(result.success);
2670 if (!locator.vHave.empty()) {
2671 // It should be impossible for the getheaders request to fail,
2672 // because we just cleared the last getheaders timestamp.
2673 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2674 Assume(sent_getheaders);
2675 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2676 locator.vHave.front().ToString(), pfrom.GetId());
2677 }
2678 }
2679
2680 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2681 peer.m_headers_sync.reset(nullptr);
2682
2683 // Delete this peer's entry in m_headers_presync_stats.
2684 // If this is m_headers_presync_bestpeer, it will be replaced later
2685 // by the next peer that triggers the else{} branch below.
2686 LOCK(m_headers_presync_mutex);
2687 m_headers_presync_stats.erase(pfrom.GetId());
2688 } else {
2689 // Build statistics for this peer's sync.
2690 HeadersPresyncStats stats;
2691 stats.first = peer.m_headers_sync->GetPresyncWork();
2692 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2693 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2694 peer.m_headers_sync->GetPresyncTime()};
2695 }
2696
2697 // Update statistics in stats.
2698 LOCK(m_headers_presync_mutex);
2699 m_headers_presync_stats[pfrom.GetId()] = stats;
2700 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2701 bool best_updated = false;
2702 if (best_it == m_headers_presync_stats.end()) {
2703 // If the cached best peer is outdated, iterate over all remaining ones (including
2704 // newly updated one) to find the best one.
2705 NodeId peer_best{-1};
2706 const HeadersPresyncStats* stat_best{nullptr};
2707 for (const auto& [peer, stat] : m_headers_presync_stats) {
2708 if (!stat_best || stat > *stat_best) {
2709 peer_best = peer;
2710 stat_best = &stat;
2711 }
2712 }
2713 m_headers_presync_bestpeer = peer_best;
2714 best_updated = (peer_best == pfrom.GetId());
2715 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2716 // pfrom was and remains the best peer, or pfrom just became best.
2717 m_headers_presync_bestpeer = pfrom.GetId();
2718 best_updated = true;
2719 }
2720 if (best_updated && stats.second.has_value()) {
2721 // If the best peer updated, and it is in its first phase, signal.
2722 m_headers_presync_should_signal = true;
2723 }
2724 }
2725
2726 if (result.success) {
2727 // We only overwrite the headers passed in if processing was
2728 // successful.
2729 headers.swap(result.pow_validated_headers);
2730 }
2731
2732 return result.success;
2733 }
2734 // Either we didn't have a sync in progress, or something went wrong
2735 // processing these headers, or we are returning headers to the caller to
2736 // process.
2737 return false;
2738}
2739
2740bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex& chain_start_header, std::vector<CBlockHeader>& headers)
2741{
2742 // Calculate the claimed total work on this chain.
2743 arith_uint256 total_work = chain_start_header.nChainWork + CalculateClaimedHeadersWork(headers);
2744
2745 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2746 // before we'll store it)
2747 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2748
2749 // Avoid DoS via low-difficulty-headers by only processing if the headers
2750 // are part of a chain with sufficient work.
2751 if (total_work < minimum_chain_work) {
2752 // Only try to sync with this peer if their headers message was full;
2753 // otherwise they don't have more headers after this so no point in
2754 // trying to sync their too-little-work chain.
2755 if (headers.size() == m_opts.max_headers_result) {
2756 // Note: we could advance to the last header in this set that is
2757 // known to us, rather than starting at the first header (which we
2758 // may already have); however this is unlikely to matter much since
2759 // ProcessHeadersMessage() already handles the case where all
2760 // headers in a received message are already known and are
2761 // ancestors of m_best_header or chainActive.Tip(), by skipping
2762 // this logic in that case. So even if the first header in this set
2763 // of headers is known, some header in this set must be new, so
2764 // advancing to the first unknown header would be a small effect.
2765 LOCK(peer.m_headers_sync_mutex);
2766 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2767 m_chainparams.HeadersSync(), chain_start_header, minimum_chain_work));
2768
2769 // Now a HeadersSyncState object for tracking this synchronization
2770 // is created, process the headers using it as normal. Failures are
2771 // handled inside of IsContinuationOfLowWorkHeadersSync.
2772 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2773 } else {
2774 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header.nHeight + headers.size(), pfrom.GetId());
2775 }
2776
2777 // The peer has not yet given us a chain that meets our work threshold,
2778 // so we want to prevent further processing of the headers in any case.
2779 headers = {};
2780 return true;
2781 }
2782
2783 return false;
2784}
2785
2786bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2787{
2788 if (header == nullptr) {
2789 return false;
2790 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2791 return true;
2792 } else if (m_chainman.ActiveChain().Contains(header)) {
2793 return true;
2794 }
2795 return false;
2796}
2797
2798bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2799{
2800 const auto current_time = NodeClock::now();
2801
2802 // Only allow a new getheaders message to go out if we don't have a recent
2803 // one already in-flight
2804 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2805 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2806 peer.m_last_getheaders_timestamp = current_time;
2807 return true;
2808 }
2809 return false;
2810}
2811
2812/*
2813 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2814 * We require that the given tip have at least as much work as our tip, and for
2815 * our current tip to be "close to synced" (see CanDirectFetch()).
2816 */
2817void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2818{
2819 LOCK(cs_main);
2820 CNodeState *nodestate = State(pfrom.GetId());
2821
2822 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2823 std::vector<const CBlockIndex*> vToFetch;
2824 const CBlockIndex* pindexWalk{&last_header};
2825 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2826 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2827 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2828 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2829 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2830 // We don't have this block, and it's not yet in flight.
2831 vToFetch.push_back(pindexWalk);
2832 }
2833 pindexWalk = pindexWalk->pprev;
2834 }
2835 // If pindexWalk still isn't on our main chain, we're looking at a
2836 // very large reorg at a time we think we're close to caught up to
2837 // the main chain -- this shouldn't really happen. Bail out on the
2838 // direct fetch and rely on parallel download instead.
2839 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2840 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2841 last_header.GetBlockHash().ToString(),
2842 last_header.nHeight);
2843 } else {
2844 std::vector<CInv> vGetData;
2845 // Download as much as possible, from earliest to latest.
2846 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2847 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2848 // Can't download any more from this peer
2849 break;
2850 }
2851 uint32_t nFetchFlags = GetFetchFlags(peer);
2852 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2853 BlockRequested(pfrom.GetId(), *pindex);
2854 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2855 pindex->GetBlockHash().ToString(), pfrom.GetId());
2856 }
2857 if (vGetData.size() > 1) {
2858 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2859 last_header.GetBlockHash().ToString(),
2860 last_header.nHeight);
2861 }
2862 if (vGetData.size() > 0) {
2863 if (!m_opts.ignore_incoming_txs &&
2864 nodestate->m_provides_cmpctblocks &&
2865 vGetData.size() == 1 &&
2866 mapBlocksInFlight.size() == 1 &&
2867 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2868 // In any case, we want to download using a compact block, not a regular one
2869 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2870 }
2871 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2872 }
2873 }
2874 }
2875}
2876
2882void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2883 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2884{
2885 LOCK(cs_main);
2886 CNodeState *nodestate = State(pfrom.GetId());
2887
2888 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2889
2890 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2891 // because it is set in UpdateBlockAvailability. Some nullptr checks
2892 // are still present, however, as belt-and-suspenders.
2893
2894 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2895 nodestate->m_last_block_announcement = GetTime();
2896 }
2897
2898 // If we're in IBD, we want outbound peers that will serve us a useful
2899 // chain. Disconnect peers that are on chains with insufficient work.
2900 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2901 // If the peer has no more headers to give us, then we know we have
2902 // their tip.
2903 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2904 // This peer has too little work on their headers chain to help
2905 // us sync -- disconnect if it is an outbound disconnection
2906 // candidate.
2907 // Note: We compare their tip to the minimum chain work (rather than
2908 // m_chainman.ActiveChain().Tip()) because we won't start block download
2909 // until we have a headers chain that has at least
2910 // the minimum chain work, even if a peer has a chain past our tip,
2911 // as an anti-DoS measure.
2912 if (pfrom.IsOutboundOrBlockRelayConn()) {
2913 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2914 pfrom.fDisconnect = true;
2915 }
2916 }
2917 }
2918
2919 // If this is an outbound full-relay peer, check to see if we should protect
2920 // it from the bad/lagging chain logic.
2921 // Note that outbound block-relay peers are excluded from this protection, and
2922 // thus always subject to eviction under the bad/lagging chain logic.
2923 // See ChainSyncTimeoutState.
2924 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2925 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2926 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2927 nodestate->m_chain_sync.m_protect = true;
2928 ++m_outbound_peers_with_protect_from_disconnect;
2929 }
2930 }
2931}
2932
2933void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2934 std::vector<CBlockHeader>&& headers,
2935 bool via_compact_block)
2936{
2937 size_t nCount = headers.size();
2938
2939 if (nCount == 0) {
2940 // Nothing interesting. Stop asking this peers for more headers.
2941 // If we were in the middle of headers sync, receiving an empty headers
2942 // message suggests that the peer suddenly has nothing to give us
2943 // (perhaps it reorged to our chain). Clear download state for this peer.
2944 LOCK(peer.m_headers_sync_mutex);
2945 if (peer.m_headers_sync) {
2946 peer.m_headers_sync.reset(nullptr);
2947 LOCK(m_headers_presync_mutex);
2948 m_headers_presync_stats.erase(pfrom.GetId());
2949 }
2950 // A headers message with no headers cannot be an announcement, so assume
2951 // it is a response to our last getheaders request, if there is one.
2952 peer.m_last_getheaders_timestamp = {};
2953 return;
2954 }
2955
2956 // Before we do any processing, make sure these pass basic sanity checks.
2957 // We'll rely on headers having valid proof-of-work further down, as an
2958 // anti-DoS criteria (note: this check is required before passing any
2959 // headers into HeadersSyncState).
2960 if (!CheckHeadersPoW(headers, peer)) {
2961 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2962 // just return. (Note that even if a header is announced via compact
2963 // block, the header itself should be valid, so this type of error can
2964 // always be punished.)
2965 return;
2966 }
2967
2968 const CBlockIndex *pindexLast = nullptr;
2969
2970 // We'll set already_validated_work to true if these headers are
2971 // successfully processed as part of a low-work headers sync in progress
2972 // (either in PRESYNC or REDOWNLOAD phase).
2973 // If true, this will mean that any headers returned to us (ie during
2974 // REDOWNLOAD) can be validated without further anti-DoS checks.
2975 bool already_validated_work = false;
2976
2977 // If we're in the middle of headers sync, let it do its magic.
2978 bool have_headers_sync = false;
2979 {
2980 LOCK(peer.m_headers_sync_mutex);
2981
2982 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2983
2984 // The headers we passed in may have been:
2985 // - untouched, perhaps if no headers-sync was in progress, or some
2986 // failure occurred
2987 // - erased, such as if the headers were successfully processed and no
2988 // additional headers processing needs to take place (such as if we
2989 // are still in PRESYNC)
2990 // - replaced with headers that are now ready for validation, such as
2991 // during the REDOWNLOAD phase of a low-work headers sync.
2992 // So just check whether we still have headers that we need to process,
2993 // or not.
2994 if (headers.empty()) {
2995 return;
2996 }
2997
2998 have_headers_sync = !!peer.m_headers_sync;
2999 }
3000
3001 // Do these headers connect to something in our block index?
3002 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
3003 bool headers_connect_blockindex{chain_start_header != nullptr};
3004
3005 if (!headers_connect_blockindex) {
3006 // This could be a BIP 130 block announcement, use
3007 // special logic for handling headers that don't connect, as this
3008 // could be benign.
3009 HandleUnconnectingHeaders(pfrom, peer, headers);
3010 return;
3011 }
3012
3013 // If headers connect, assume that this is in response to any outstanding getheaders
3014 // request we may have sent, and clear out the time of our last request. Non-connecting
3015 // headers cannot be a response to a getheaders request.
3016 peer.m_last_getheaders_timestamp = {};
3017
3018 // If the headers we received are already in memory and an ancestor of
3019 // m_best_header or our tip, skip anti-DoS checks. These headers will not
3020 // use any more memory (and we are not leaking information that could be
3021 // used to fingerprint us).
3022 const CBlockIndex *last_received_header{nullptr};
3023 {
3024 LOCK(cs_main);
3025 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
3026 already_validated_work = already_validated_work || IsAncestorOfBestHeaderOrTip(last_received_header);
3027 }
3028
3029 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
3030 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
3031 // on startup).
3033 already_validated_work = true;
3034 }
3035
3036 // At this point, the headers connect to something in our block index.
3037 // Do anti-DoS checks to determine if we should process or store for later
3038 // processing.
3039 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
3040 *chain_start_header, headers)) {
3041 // If we successfully started a low-work headers sync, then there
3042 // should be no headers to process any further.
3043 Assume(headers.empty());
3044 return;
3045 }
3046
3047 // At this point, we have a set of headers with sufficient work on them
3048 // which can be processed.
3049
3050 // If we don't have the last header, then this peer will have given us
3051 // something new (if these headers are valid).
3052 bool received_new_header{last_received_header == nullptr};
3053
3054 // Now process all the headers.
3056 const bool processed{m_chainman.ProcessNewBlockHeaders(headers,
3057 /*min_pow_checked=*/true,
3058 state, &pindexLast)};
3059 if (!processed) {
3060 if (state.IsInvalid()) {
3062 // Warn user if outgoing peers send us headers of blocks that we previously marked as invalid.
3063 LogWarning("%s (received from peer=%i). "
3064 "If this happens with all peers, consider database corruption (that -reindex may fix) "
3065 "or a potential consensus incompatibility.",
3066 state.GetDebugMessage(), pfrom.GetId());
3067 }
3068 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
3069 return;
3070 }
3071 }
3072 assert(pindexLast);
3073
3074 if (processed && received_new_header) {
3075 LogBlockHeader(*pindexLast, pfrom, /*via_compact_block=*/false);
3076 }
3077
3078 // Consider fetching more headers if we are not using our headers-sync mechanism.
3079 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
3080 // Headers message had its maximum size; the peer may have more headers.
3081 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
3082 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
3083 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
3084 }
3085 }
3086
3087 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
3088
3089 // Consider immediately downloading blocks.
3090 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
3091
3092 return;
3093}
3094
3095std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
3096 bool first_time_failure)
3097{
3098 AssertLockNotHeld(m_peer_mutex);
3099 AssertLockHeld(g_msgproc_mutex);
3100 AssertLockHeld(m_tx_download_mutex);
3101
3102 PeerRef peer{GetPeerRef(nodeid)};
3103
3104 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3105 ptx->GetHash().ToString(),
3106 ptx->GetWitnessHash().ToString(),
3107 nodeid,
3108 state.ToString());
3109
3110 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
3111
3112 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
3113 AddToCompactExtraTransactions(ptx);
3114 }
3115 for (const Txid& parent_txid : unique_parents) {
3116 if (peer) AddKnownTx(*peer, parent_txid.ToUint256());
3117 }
3118
3119 return package_to_validate;
3120}
3121
3122void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3123{
3124 AssertLockNotHeld(m_peer_mutex);
3125 AssertLockHeld(g_msgproc_mutex);
3126 AssertLockHeld(m_tx_download_mutex);
3127
3128 m_txdownloadman.MempoolAcceptedTx(tx);
3129
3130 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3131 nodeid,
3132 tx->GetHash().ToString(),
3133 tx->GetWitnessHash().ToString(),
3134 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3135
3136 InitiateTxBroadcastToAll(tx->GetHash(), tx->GetWitnessHash());
3137
3138 for (const CTransactionRef& removedTx : replaced_transactions) {
3139 AddToCompactExtraTransactions(removedTx);
3140 }
3141}
3142
3143void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3144{
3145 AssertLockNotHeld(m_peer_mutex);
3146 AssertLockHeld(g_msgproc_mutex);
3147 AssertLockHeld(m_tx_download_mutex);
3148
3149 const auto& package = package_to_validate.m_txns;
3150 const auto& senders = package_to_validate.m_senders;
3151
3152 if (package_result.m_state.IsInvalid()) {
3153 m_txdownloadman.MempoolRejectedPackage(package);
3154 }
3155 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3156 if (!Assume(package.size() == 2)) return;
3157
3158 // Iterate backwards to erase in-package descendants from the orphanage before they become
3159 // relevant in AddChildrenToWorkSet.
3160 auto package_iter = package.rbegin();
3161 auto senders_iter = senders.rbegin();
3162 while (package_iter != package.rend()) {
3163 const auto& tx = *package_iter;
3164 const NodeId nodeid = *senders_iter;
3165 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3166
3167 // It is not guaranteed that a result exists for every transaction.
3168 if (it_result != package_result.m_tx_results.end()) {
3169 const auto& tx_result = it_result->second;
3170 switch (tx_result.m_result_type) {
3172 {
3173 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3174 break;
3175 }
3178 {
3179 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3180 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3181 // This should be updated if package submission is ever used for transactions
3182 // that haven't already been validated before.
3183 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3184 break;
3185 }
3187 {
3188 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3189 Assume(false);
3190 break;
3191 }
3192 }
3193 }
3194 package_iter++;
3195 senders_iter++;
3196 }
3197}
3198
3199// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3200// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3201bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3202{
3203 AssertLockHeld(g_msgproc_mutex);
3204 LOCK2(::cs_main, m_tx_download_mutex);
3205
3206 CTransactionRef porphanTx = nullptr;
3207
3208 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3209 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3210 const TxValidationState& state = result.m_state;
3211 const Txid& orphanHash = porphanTx->GetHash();
3212 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3213
3215 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3216 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3217 return true;
3218 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3219 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3220 orphanHash.ToString(),
3221 orphan_wtxid.ToString(),
3222 peer.m_id,
3223 state.ToString());
3224
3225 if (Assume(state.IsInvalid() &&
3229 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3230 }
3231 return true;
3232 }
3233 }
3234
3235 return false;
3236}
3237
3238bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3239 BlockFilterType filter_type, uint32_t start_height,
3240 const uint256& stop_hash, uint32_t max_height_diff,
3241 const CBlockIndex*& stop_index,
3242 BlockFilterIndex*& filter_index)
3243{
3244 const bool supported_filter_type =
3245 (filter_type == BlockFilterType::BASIC &&
3246 (peer.m_our_services & NODE_COMPACT_FILTERS));
3247 if (!supported_filter_type) {
3248 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3249 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3250 node.fDisconnect = true;
3251 return false;
3252 }
3253
3254 {
3255 LOCK(cs_main);
3256 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3257
3258 // Check that the stop block exists and the peer would be allowed to fetch it.
3259 if (!stop_index || !BlockRequestAllowed(*stop_index)) {
3260 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3261 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3262 node.fDisconnect = true;
3263 return false;
3264 }
3265 }
3266
3267 uint32_t stop_height = stop_index->nHeight;
3268 if (start_height > stop_height) {
3269 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3270 "start height %d and stop height %d, %s\n",
3271 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3272 node.fDisconnect = true;
3273 return false;
3274 }
3275 if (stop_height - start_height >= max_height_diff) {
3276 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3277 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3278 node.fDisconnect = true;
3279 return false;
3280 }
3281
3282 filter_index = GetBlockFilterIndex(filter_type);
3283 if (!filter_index) {
3284 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3285 return false;
3286 }
3287
3288 return true;
3289}
3290
3291void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3292{
3293 uint8_t filter_type_ser;
3294 uint32_t start_height;
3295 uint256 stop_hash;
3296
3297 vRecv >> filter_type_ser >> start_height >> stop_hash;
3298
3299 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3300
3301 const CBlockIndex* stop_index;
3302 BlockFilterIndex* filter_index;
3303 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3304 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3305 return;
3306 }
3307
3308 std::vector<BlockFilter> filters;
3309 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3310 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3311 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3312 return;
3313 }
3314
3315 for (const auto& filter : filters) {
3316 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3317 }
3318}
3319
3320void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3321{
3322 uint8_t filter_type_ser;
3323 uint32_t start_height;
3324 uint256 stop_hash;
3325
3326 vRecv >> filter_type_ser >> start_height >> stop_hash;
3327
3328 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3329
3330 const CBlockIndex* stop_index;
3331 BlockFilterIndex* filter_index;
3332 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3333 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3334 return;
3335 }
3336
3337 uint256 prev_header;
3338 if (start_height > 0) {
3339 const CBlockIndex* const prev_block =
3340 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3341 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3342 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3343 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3344 return;
3345 }
3346 }
3347
3348 std::vector<uint256> filter_hashes;
3349 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3350 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3351 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3352 return;
3353 }
3354
3355 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3356 filter_type_ser,
3357 stop_index->GetBlockHash(),
3358 prev_header,
3359 filter_hashes);
3360}
3361
3362void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3363{
3364 uint8_t filter_type_ser;
3365 uint256 stop_hash;
3366
3367 vRecv >> filter_type_ser >> stop_hash;
3368
3369 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3370
3371 const CBlockIndex* stop_index;
3372 BlockFilterIndex* filter_index;
3373 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3374 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3375 stop_index, filter_index)) {
3376 return;
3377 }
3378
3379 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3380
3381 // Populate headers.
3382 const CBlockIndex* block_index = stop_index;
3383 for (int i = headers.size() - 1; i >= 0; i--) {
3384 int height = (i + 1) * CFCHECKPT_INTERVAL;
3385 block_index = block_index->GetAncestor(height);
3386
3387 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3388 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3389 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3390 return;
3391 }
3392 }
3393
3394 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3395 filter_type_ser,
3396 stop_index->GetBlockHash(),
3397 headers);
3398}
3399
3400void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3401{
3402 bool new_block{false};
3403 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3404 if (new_block) {
3405 node.m_last_block_time = GetTime<std::chrono::seconds>();
3406 // In case this block came from a different peer than we requested
3407 // from, we can erase the block request now anyway (as we just stored
3408 // this block to disk).
3409 LOCK(cs_main);
3410 RemoveBlockRequest(block->GetHash(), std::nullopt);
3411 } else {
3412 LOCK(cs_main);
3413 mapBlockSource.erase(block->GetHash());
3414 }
3415}
3416
3417void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3418{
3419 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3420 bool fBlockRead{false};
3421 {
3422 LOCK(cs_main);
3423
3424 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3425 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3426 bool requested_block_from_this_peer{false};
3427
3428 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3429 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3430
3431 while (range_flight.first != range_flight.second) {
3432 auto [node_id, block_it] = range_flight.first->second;
3433 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3434 requested_block_from_this_peer = true;
3435 break;
3436 }
3437 range_flight.first++;
3438 }
3439
3440 if (!requested_block_from_this_peer) {
3441 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3442 return;
3443 }
3444
3445 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3446
3447 if (partialBlock.header.IsNull()) {
3448 // It is possible for the header to be empty if a previous call to FillBlock wiped the header, but left
3449 // the PartiallyDownloadedBlock pointer around (i.e. did not call RemoveBlockRequest). In this case, we
3450 // should not call LookupBlockIndex below.
3451 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3452 Misbehaving(peer, "previous compact block reconstruction attempt failed");
3453 LogDebug(BCLog::NET, "Peer %d sent compact block transactions multiple times", pfrom.GetId());
3454 return;
3455 }
3456
3457 // We should not have gotten this far in compact block processing unless it's attached to a known header
3458 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(partialBlock.header.hashPrevBlock))};
3459 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn,
3460 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
3461 if (status == READ_STATUS_INVALID) {
3462 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3463 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3464 return;
3465 } else if (status == READ_STATUS_FAILED) {
3466 if (first_in_flight) {
3467 // Might have collided, fall back to getdata now :(
3468 // We keep the failed partialBlock to disallow processing another compact block announcement from the same
3469 // peer for the same block. We let the full block download below continue under the same m_downloading_since
3470 // timer.
3471 std::vector<CInv> invs;
3472 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3473 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3474 } else {
3475 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3476 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3477 return;
3478 }
3479 } else {
3480 // Block is okay for further processing
3481 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3482 fBlockRead = true;
3483 // mapBlockSource is used for potentially punishing peers and
3484 // updating which peers send us compact blocks, so the race
3485 // between here and cs_main in ProcessNewBlock is fine.
3486 // BIP 152 permits peers to relay compact blocks after validating
3487 // the header only; we should not punish peers if the block turns
3488 // out to be invalid.
3489 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3490 }
3491 } // Don't hold cs_main when we call into ProcessNewBlock
3492 if (fBlockRead) {
3493 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3494 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3495 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3496 // disk-space attacks), but this should be safe due to the
3497 // protections in the compact block handler -- see related comment
3498 // in compact block optimistic reconstruction handling.
3499 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3500 }
3501 return;
3502}
3503
3504void PeerManagerImpl::LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block) {
3505 // To prevent log spam, this function should only be called after it was determined that a
3506 // header is both new and valid.
3507 //
3508 // These messages are valuable for detecting potential selfish mining behavior;
3509 // if multiple displacing headers are seen near simultaneously across many
3510 // nodes in the network, this might be an indication of selfish mining.
3511 // In addition it can be used to identify peers which send us a header, but
3512 // don't followup with a complete and valid (compact) block.
3513 // Having this log by default when not in IBD ensures broad availability of
3514 // this data in case investigation is merited.
3515 const auto msg = strprintf(
3516 "Saw new %sheader hash=%s height=%d peer=%d%s",
3517 via_compact_block ? "cmpctblock " : "",
3518 index.GetBlockHash().ToString(),
3519 index.nHeight,
3520 peer.GetId(),
3521 peer.LogIP(fLogIPs)
3522 );
3523 if (m_chainman.IsInitialBlockDownload()) {
3525 } else {
3526 LogInfo("%s", msg);
3527 }
3528}
3529
3530void PeerManagerImpl::PushPrivateBroadcastTx(CNode& node)
3531{
3532 Assume(node.IsPrivateBroadcastConn());
3533
3534 const auto opt_tx{m_tx_for_private_broadcast.PickTxForSend(node.GetId())};
3535 if (!opt_tx) {
3536 LogDebug(BCLog::PRIVBROADCAST, "Disconnecting: no more transactions for private broadcast (connected in vain), peer=%d%s", node.GetId(), node.LogIP(fLogIPs));
3537 node.fDisconnect = true;
3538 return;
3539 }
3540 const CTransactionRef& tx{*opt_tx};
3541
3542 LogDebug(BCLog::PRIVBROADCAST, "P2P handshake completed, sending INV for txid=%s%s, peer=%d%s",
3543 tx->GetHash().ToString(), tx->HasWitness() ? strprintf(", wtxid=%s", tx->GetWitnessHash().ToString()) : "",
3544 node.GetId(), node.LogIP(fLogIPs));
3545
3546 MakeAndPushMessage(node, NetMsgType::INV, std::vector<CInv>{{CInv{MSG_TX, tx->GetHash().ToUint256()}}});
3547}
3548
3549void PeerManagerImpl::ProcessMessage(Peer& peer, CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3550 const std::chrono::microseconds time_received,
3551 const std::atomic<bool>& interruptMsgProc)
3552{
3553 AssertLockHeld(g_msgproc_mutex);
3554
3555 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3556
3557
3558 if (msg_type == NetMsgType::VERSION) {
3559 if (pfrom.nVersion != 0) {
3560 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3561 return;
3562 }
3563
3564 int64_t nTime;
3565 CService addrMe;
3566 uint64_t nNonce = 1;
3567 ServiceFlags nServices;
3568 int nVersion;
3569 std::string cleanSubVer;
3570 int starting_height = -1;
3571 bool fRelay = true;
3572
3573 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3574 if (nTime < 0) {
3575 nTime = 0;
3576 }
3577 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3578 vRecv >> CNetAddr::V1(addrMe);
3579 if (!pfrom.IsInboundConn())
3580 {
3581 // Overwrites potentially existing services. In contrast to this,
3582 // unvalidated services received via gossip relay in ADDR/ADDRV2
3583 // messages are only ever added but cannot replace existing ones.
3584 m_addrman.SetServices(pfrom.addr, nServices);
3585 }
3586 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3587 {
3588 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3589 nServices,
3590 GetDesirableServiceFlags(nServices),
3591 pfrom.DisconnectMsg(fLogIPs));
3592 pfrom.fDisconnect = true;
3593 return;
3594 }
3595
3596 if (nVersion < MIN_PEER_PROTO_VERSION) {
3597 // disconnect from peers older than this proto version
3598 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3599 pfrom.fDisconnect = true;
3600 return;
3601 }
3602
3603 if (!vRecv.empty()) {
3604 // The version message includes information about the sending node which we don't use:
3605 // - 8 bytes (service bits)
3606 // - 16 bytes (ipv6 address)
3607 // - 2 bytes (port)
3608 vRecv.ignore(26);
3609 vRecv >> nNonce;
3610 }
3611 if (!vRecv.empty()) {
3612 std::string strSubVer;
3613 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3614 cleanSubVer = SanitizeString(strSubVer);
3615 }
3616 if (!vRecv.empty()) {
3617 vRecv >> starting_height;
3618 }
3619 if (!vRecv.empty())
3620 vRecv >> fRelay;
3621 // Disconnect if we connected to ourself
3622 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3623 {
3624 LogInfo("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3625 pfrom.fDisconnect = true;
3626 return;
3627 }
3628
3629 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3630 {
3631 SeenLocal(addrMe);
3632 }
3633
3634 // Inbound peers send us their version message when they connect.
3635 // We send our version message in response.
3636 if (pfrom.IsInboundConn()) {
3637 PushNodeVersion(pfrom, peer);
3638 }
3639
3640 // Change version
3641 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3642 pfrom.SetCommonVersion(greatest_common_version);
3643 pfrom.nVersion = nVersion;
3644
3645 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3646 peer.m_their_services = nServices;
3647 pfrom.SetAddrLocal(addrMe);
3648 {
3649 LOCK(pfrom.m_subver_mutex);
3650 pfrom.cleanSubVer = cleanSubVer;
3651 }
3652 peer.m_starting_height = starting_height;
3653
3654 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3655 // - this isn't an outbound block-relay-only connection, and
3656 // - this isn't an outbound feeler connection, and
3657 // - fRelay=true (the peer wishes to receive transaction announcements)
3658 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3659 // the peer may turn on transaction relay later.
3660 if (!pfrom.IsBlockOnlyConn() &&
3661 !pfrom.IsFeelerConn() &&
3662 (fRelay || (peer.m_our_services & NODE_BLOOM))) {
3663 auto* const tx_relay = peer.SetTxRelay();
3664 {
3665 LOCK(tx_relay->m_bloom_filter_mutex);
3666 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3667 }
3668 if (fRelay) pfrom.m_relays_txs = true;
3669 }
3670
3671 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3672 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3673 cleanSubVer, pfrom.nVersion,
3674 peer.m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3675 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3676
3677 if (pfrom.IsPrivateBroadcastConn()) {
3678 if (fRelay) {
3679 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3680 } else {
3681 LogDebug(BCLog::PRIVBROADCAST, "Disconnecting: does not support transaction relay (connected in vain), peer=%d%s",
3682 pfrom.GetId(), pfrom.LogIP(fLogIPs));
3683 pfrom.fDisconnect = true;
3684 }
3685 return;
3686 }
3687
3688 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3689 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3690 }
3691
3692 // Signal ADDRv2 support (BIP155).
3693 if (greatest_common_version >= 70016) {
3694 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3695 // implementations reject messages they don't know. As a courtesy, don't send
3696 // it to nodes with a version before 70016, as no software is known to support
3697 // BIP155 that doesn't announce at least that protocol version number.
3698 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3699 }
3700
3701 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3702 // Per BIP-330, we announce txreconciliation support if:
3703 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3704 // - transaction relay is supported per the peer's VERSION message
3705 // - this is not a block-relay-only connection and not a feeler
3706 // - this is not an addr fetch connection;
3707 // - we are not in -blocksonly mode.
3708 const auto* tx_relay = peer.GetTxRelay();
3709 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3710 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3711 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3712 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3713 TXRECONCILIATION_VERSION, recon_salt);
3714 }
3715 }
3716
3717 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3718
3719 // Potentially mark this peer as a preferred download peer.
3720 {
3721 LOCK(cs_main);
3722 CNodeState* state = State(pfrom.GetId());
3723 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(peer);
3724 m_num_preferred_download_peers += state->fPreferredDownload;
3725 }
3726
3727 // Attempt to initialize address relay for outbound peers and use result
3728 // to decide whether to send GETADDR, so that we don't send it to
3729 // inbound or outbound block-relay-only peers.
3730 bool send_getaddr{false};
3731 if (!pfrom.IsInboundConn()) {
3732 send_getaddr = SetupAddressRelay(pfrom, peer);
3733 }
3734 if (send_getaddr) {
3735 // Do a one-time address fetch to help populate/update our addrman.
3736 // If we're starting up for the first time, our addrman may be pretty
3737 // empty, so this mechanism is important to help us connect to the network.
3738 // We skip this for block-relay-only peers. We want to avoid
3739 // potentially leaking addr information and we do not want to
3740 // indicate to the peer that we will participate in addr relay.
3741 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3742 peer.m_getaddr_sent = true;
3743 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3744 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3745 peer.m_addr_token_bucket += MAX_ADDR_TO_SEND;
3746 }
3747
3748 if (!pfrom.IsInboundConn()) {
3749 // For non-inbound connections, we update the addrman to record
3750 // connection success so that addrman will have an up-to-date
3751 // notion of which peers are online and available.
3752 //
3753 // While we strive to not leak information about block-relay-only
3754 // connections via the addrman, not moving an address to the tried
3755 // table is also potentially detrimental because new-table entries
3756 // are subject to eviction in the event of addrman collisions. We
3757 // mitigate the information-leak by never calling
3758 // AddrMan::Connected() on block-relay-only peers; see
3759 // FinalizeNode().
3760 //
3761 // This moves an address from New to Tried table in Addrman,
3762 // resolves tried-table collisions, etc.
3763 m_addrman.Good(pfrom.addr);
3764 }
3765
3766 peer.m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3767 if (!pfrom.IsInboundConn()) {
3768 // Don't use timedata samples from inbound peers to make it
3769 // harder for others to create false warnings about our clock being out of sync.
3770 m_outbound_time_offsets.Add(peer.m_time_offset);
3771 m_outbound_time_offsets.WarnIfOutOfSync();
3772 }
3773
3774 // If the peer is old enough to have the old alert system, send it the final alert.
3775 if (greatest_common_version <= 70012) {
3776 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3777 MakeAndPushMessage(pfrom, "alert", finalAlert);
3778 }
3779
3780 // Feeler connections exist only to verify if address is online.
3781 if (pfrom.IsFeelerConn()) {
3782 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3783 pfrom.fDisconnect = true;
3784 }
3785 return;
3786 }
3787
3788 if (pfrom.nVersion == 0) {
3789 // Must have a version message before anything else
3790 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3791 return;
3792 }
3793
3794 if (msg_type == NetMsgType::VERACK) {
3795 if (pfrom.fSuccessfullyConnected) {
3796 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3797 return;
3798 }
3799
3800 auto new_peer_msg = [&]() {
3801 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3802 return strprintf("New %s peer connected: transport: %s, version: %d, blocks=%d peer=%d%s%s\n",
3803 pfrom.ConnectionTypeAsString(),
3804 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3805 pfrom.nVersion.load(), peer.m_starting_height,
3806 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3807 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3808 };
3809
3810 // Log successful connections unconditionally for outbound, but not for inbound as those
3811 // can be triggered by an attacker at high rate.
3812 if (pfrom.IsInboundConn()) {
3813 LogDebug(BCLog::NET, "%s", new_peer_msg());
3814 } else {
3815 LogInfo("%s", new_peer_msg());
3816 }
3817
3818 if (auto tx_relay = peer.GetTxRelay()) {
3819 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3820 // version handshake is completed as
3821 // `TxRelay::m_next_inv_send_time` is first initialised in
3822 // `SendMessages` after the verack is received. Any transactions
3823 // received during the version handshake would otherwise
3824 // immediately be advertised without random delay, potentially
3825 // leaking the time of arrival to a spy.
3827 tx_relay->m_tx_inventory_mutex,
3828 return tx_relay->m_tx_inventory_to_send.empty() &&
3829 tx_relay->m_next_inv_send_time == 0s));
3830 }
3831
3832 if (pfrom.IsPrivateBroadcastConn()) {
3833 pfrom.fSuccessfullyConnected = true;
3834 // The peer may intend to later send us NetMsgType::FEEFILTER limiting
3835 // cheap transactions, but we don't wait for that and thus we may send
3836 // them a transaction below their threshold. This is ok because this
3837 // relay logic is designed to work even in cases when the peer drops
3838 // the transaction (due to it being too cheap, or for other reasons).
3839 PushPrivateBroadcastTx(pfrom);
3840 return;
3841 }
3842
3844 // Tell our peer we are willing to provide version 2 cmpctblocks.
3845 // However, we do not request new block announcements using
3846 // cmpctblock messages.
3847 // We send this to non-NODE NETWORK peers as well, because
3848 // they may wish to request compact blocks from us
3849 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3850 }
3851
3852 if (m_txreconciliation) {
3853 if (!peer.m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3854 // We could have optimistically pre-registered/registered the peer. In that case,
3855 // we should forget about the reconciliation state here if this wasn't followed
3856 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3857 m_txreconciliation->ForgetPeer(pfrom.GetId());
3858 }
3859 }
3860
3861 {
3862 LOCK2(::cs_main, m_tx_download_mutex);
3863 const CNodeState* state = State(pfrom.GetId());
3864 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3865 .m_preferred = state->fPreferredDownload,
3866 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3867 .m_wtxid_relay = peer.m_wtxid_relay,
3868 });
3869 }
3870
3871 pfrom.fSuccessfullyConnected = true;
3872 return;
3873 }
3874
3875 if (msg_type == NetMsgType::SENDHEADERS) {
3876 peer.m_prefers_headers = true;
3877 return;
3878 }
3879
3880 if (msg_type == NetMsgType::SENDCMPCT) {
3881 bool sendcmpct_hb{false};
3882 uint64_t sendcmpct_version{0};
3883 vRecv >> sendcmpct_hb >> sendcmpct_version;
3884
3885 // Only support compact block relay with witnesses
3886 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3887
3888 LOCK(cs_main);
3889 CNodeState* nodestate = State(pfrom.GetId());
3890 nodestate->m_provides_cmpctblocks = true;
3891 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3892 // save whether peer selects us as BIP152 high-bandwidth peer
3893 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3894 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3895 return;
3896 }
3897
3898 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3899 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3900 if (msg_type == NetMsgType::WTXIDRELAY) {
3901 if (pfrom.fSuccessfullyConnected) {
3902 // Disconnect peers that send a wtxidrelay message after VERACK.
3903 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3904 pfrom.fDisconnect = true;
3905 return;
3906 }
3907 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3908 if (!peer.m_wtxid_relay) {
3909 peer.m_wtxid_relay = true;
3910 m_wtxid_relay_peers++;
3911 } else {
3912 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3913 }
3914 } else {
3915 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3916 }
3917 return;
3918 }
3919
3920 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3921 // between VERSION and VERACK.
3922 if (msg_type == NetMsgType::SENDADDRV2) {
3923 if (pfrom.fSuccessfullyConnected) {
3924 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3925 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3926 pfrom.fDisconnect = true;
3927 return;
3928 }
3929 peer.m_wants_addrv2 = true;
3930 return;
3931 }
3932
3933 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3934 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3935 // from switching announcement protocols after the connection is up.
3936 if (msg_type == NetMsgType::SENDTXRCNCL) {
3937 if (!m_txreconciliation) {
3938 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3939 return;
3940 }
3941
3942 if (pfrom.fSuccessfullyConnected) {
3943 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3944 pfrom.fDisconnect = true;
3945 return;
3946 }
3947
3948 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3949 if (RejectIncomingTxs(pfrom)) {
3950 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3951 pfrom.fDisconnect = true;
3952 return;
3953 }
3954
3955 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3956 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3957 // eliminates them, so that this flag fully represents what we are looking for.
3958 const auto* tx_relay = peer.GetTxRelay();
3959 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3960 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3961 pfrom.fDisconnect = true;
3962 return;
3963 }
3964
3965 uint32_t peer_txreconcl_version;
3966 uint64_t remote_salt;
3967 vRecv >> peer_txreconcl_version >> remote_salt;
3968
3969 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3970 peer_txreconcl_version, remote_salt);
3971 switch (result) {
3973 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3974 break;
3976 break;
3978 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3979 pfrom.fDisconnect = true;
3980 return;
3982 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3983 pfrom.fDisconnect = true;
3984 return;
3985 }
3986 return;
3987 }
3988
3989 if (!pfrom.fSuccessfullyConnected) {
3990 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3991 return;
3992 }
3993
3994 if (pfrom.IsPrivateBroadcastConn()) {
3995 if (msg_type != NetMsgType::PONG && msg_type != NetMsgType::GETDATA) {
3996 LogDebug(BCLog::PRIVBROADCAST, "Ignoring incoming message '%s', peer=%d%s", msg_type, pfrom.GetId(), pfrom.LogIP(fLogIPs));
3997 return;
3998 }
3999 }
4000
4001 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
4002 const auto ser_params{
4003 msg_type == NetMsgType::ADDRV2 ?
4004 // Set V2 param so that the CNetAddr and CAddress
4005 // unserialize methods know that an address in v2 format is coming.
4008 };
4009
4010 std::vector<CAddress> vAddr;
4011
4012 vRecv >> ser_params(vAddr);
4013
4014 if (!SetupAddressRelay(pfrom, peer)) {
4015 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
4016 return;
4017 }
4018
4019 if (vAddr.size() > MAX_ADDR_TO_SEND)
4020 {
4021 Misbehaving(peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
4022 return;
4023 }
4024
4025 // Store the new addresses
4026 std::vector<CAddress> vAddrOk;
4027 const auto current_a_time{Now<NodeSeconds>()};
4028
4029 // Update/increment addr rate limiting bucket.
4030 const auto current_time{GetTime<std::chrono::microseconds>()};
4031 if (peer.m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
4032 // Don't increment bucket if it's already full
4033 const auto time_diff = std::max(current_time - peer.m_addr_token_timestamp, 0us);
4034 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
4035 peer.m_addr_token_bucket = std::min<double>(peer.m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
4036 }
4037 peer.m_addr_token_timestamp = current_time;
4038
4039 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
4040 uint64_t num_proc = 0;
4041 uint64_t num_rate_limit = 0;
4042 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
4043 for (CAddress& addr : vAddr)
4044 {
4045 if (interruptMsgProc)
4046 return;
4047
4048 // Apply rate limiting.
4049 if (peer.m_addr_token_bucket < 1.0) {
4050 if (rate_limited) {
4051 ++num_rate_limit;
4052 continue;
4053 }
4054 } else {
4055 peer.m_addr_token_bucket -= 1.0;
4056 }
4057 // We only bother storing full nodes, though this may include
4058 // things which we would not make an outbound connection to, in
4059 // part because we may make feeler connections to them.
4060 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
4061 continue;
4062
4063 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
4064 addr.nTime = current_a_time - 5 * 24h;
4065 }
4066 AddAddressKnown(peer, addr);
4067 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
4068 // Do not process banned/discouraged addresses beyond remembering we received them
4069 continue;
4070 }
4071 ++num_proc;
4072 const bool reachable{g_reachable_nets.Contains(addr)};
4073 if (addr.nTime > current_a_time - 10min && !peer.m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
4074 // Relay to a limited number of other nodes
4075 RelayAddress(pfrom.GetId(), addr, reachable);
4076 }
4077 // Do not store addresses outside our network
4078 if (reachable) {
4079 vAddrOk.push_back(addr);
4080 }
4081 }
4082 peer.m_addr_processed += num_proc;
4083 peer.m_addr_rate_limited += num_rate_limit;
4084 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
4085 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
4086
4087 m_addrman.Add(vAddrOk, pfrom.addr, /*time_penalty=*/2h);
4088 if (vAddr.size() < 1000) peer.m_getaddr_sent = false;
4089
4090 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
4091 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
4092 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
4093 pfrom.fDisconnect = true;
4094 }
4095 return;
4096 }
4097
4098 if (msg_type == NetMsgType::INV) {
4099 std::vector<CInv> vInv;
4100 vRecv >> vInv;
4101 if (vInv.size() > MAX_INV_SZ)
4102 {
4103 Misbehaving(peer, strprintf("inv message size = %u", vInv.size()));
4104 return;
4105 }
4106
4107 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
4108
4109 LOCK2(cs_main, m_tx_download_mutex);
4110
4111 const auto current_time{GetTime<std::chrono::microseconds>()};
4112 uint256* best_block{nullptr};
4113
4114 for (CInv& inv : vInv) {
4115 if (interruptMsgProc) return;
4116
4117 // Ignore INVs that don't match wtxidrelay setting.
4118 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
4119 // This is fine as no INV messages are involved in that process.
4120 if (peer.m_wtxid_relay) {
4121 if (inv.IsMsgTx()) continue;
4122 } else {
4123 if (inv.IsMsgWtx()) continue;
4124 }
4125
4126 if (inv.IsMsgBlk()) {
4127 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
4128 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4129
4130 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
4131 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
4132 // Headers-first is the primary method of announcement on
4133 // the network. If a node fell back to sending blocks by
4134 // inv, it may be for a re-org, or because we haven't
4135 // completed initial headers sync. The final block hash
4136 // provided should be the highest, so send a getheaders and
4137 // then fetch the blocks we need to catch up.
4138 best_block = &inv.hash;
4139 }
4140 } else if (inv.IsGenTxMsg()) {
4141 if (reject_tx_invs) {
4142 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
4143 pfrom.fDisconnect = true;
4144 return;
4145 }
4146 const GenTxid gtxid = ToGenTxid(inv);
4147 AddKnownTx(peer, inv.hash);
4148
4149 if (!m_chainman.IsInitialBlockDownload()) {
4150 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
4151 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4152 }
4153 } else {
4154 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
4155 }
4156 }
4157
4158 if (best_block != nullptr) {
4159 // If we haven't started initial headers-sync with this peer, then
4160 // consider sending a getheaders now. On initial startup, there's a
4161 // reliability vs bandwidth tradeoff, where we are only trying to do
4162 // initial headers sync with one peer at a time, with a long
4163 // timeout (at which point, if the sync hasn't completed, we will
4164 // disconnect the peer and then choose another). In the meantime,
4165 // as new blocks are found, we are willing to add one new peer per
4166 // block to sync with as well, to sync quicker in the case where
4167 // our initial peer is unresponsive (but less bandwidth than we'd
4168 // use if we turned on sync with all peers).
4169 CNodeState& state{*Assert(State(pfrom.GetId()))};
4170 if (state.fSyncStarted || (!peer.m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
4171 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), peer)) {
4172 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
4173 m_chainman.m_best_header->nHeight, best_block->ToString(),
4174 pfrom.GetId());
4175 }
4176 if (!state.fSyncStarted) {
4177 peer.m_inv_triggered_getheaders_before_sync = true;
4178 // Update the last block hash that triggered a new headers
4179 // sync, so that we don't turn on headers sync with more
4180 // than 1 new peer every new block.
4181 m_last_block_inv_triggering_headers_sync = *best_block;
4182 }
4183 }
4184 }
4185
4186 return;
4187 }
4188
4189 if (msg_type == NetMsgType::GETDATA) {
4190 std::vector<CInv> vInv;
4191 vRecv >> vInv;
4192 if (vInv.size() > MAX_INV_SZ)
4193 {
4194 Misbehaving(peer, strprintf("getdata message size = %u", vInv.size()));
4195 return;
4196 }
4197
4198 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4199
4200 if (vInv.size() > 0) {
4201 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4202 }
4203
4204 if (pfrom.IsPrivateBroadcastConn()) {
4205 const auto pushed_tx_opt{m_tx_for_private_broadcast.GetTxForNode(pfrom.GetId())};
4206 if (!pushed_tx_opt) {
4207 LogDebug(BCLog::PRIVBROADCAST, "Disconnecting: got GETDATA without sending an INV, peer=%d%s",
4208 pfrom.GetId(), fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : "");
4209 pfrom.fDisconnect = true;
4210 return;
4211 }
4212
4213 const CTransactionRef& pushed_tx{*pushed_tx_opt};
4214
4215 // The GETDATA request must contain exactly one inv and it must be for the transaction
4216 // that we INVed to the peer earlier.
4217 if (vInv.size() == 1 && vInv[0].IsMsgTx() && vInv[0].hash == pushed_tx->GetHash().ToUint256()) {
4218
4219 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_WITH_WITNESS(*pushed_tx));
4220
4221 peer.m_ping_queued = true; // Ensure a ping will be sent: mimic a request via RPC.
4222 MaybeSendPing(pfrom, peer, GetTime<std::chrono::microseconds>());
4223 } else {
4224 LogDebug(BCLog::PRIVBROADCAST, "Disconnecting: got an unexpected GETDATA message, peer=%d%s",
4225 pfrom.GetId(), fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : "");
4226 pfrom.fDisconnect = true;
4227 }
4228 return;
4229 }
4230
4231 {
4232 LOCK(peer.m_getdata_requests_mutex);
4233 peer.m_getdata_requests.insert(peer.m_getdata_requests.end(), vInv.begin(), vInv.end());
4234 ProcessGetData(pfrom, peer, interruptMsgProc);
4235 }
4236
4237 return;
4238 }
4239
4240 if (msg_type == NetMsgType::GETBLOCKS) {
4241 CBlockLocator locator;
4242 uint256 hashStop;
4243 vRecv >> locator >> hashStop;
4244
4245 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4246 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4247 pfrom.fDisconnect = true;
4248 return;
4249 }
4250
4251 // We might have announced the currently-being-connected tip using a
4252 // compact block, which resulted in the peer sending a getblocks
4253 // request, which we would otherwise respond to without the new block.
4254 // To avoid this situation we simply verify that we are on our best
4255 // known chain now. This is super overkill, but we handle it better
4256 // for getheaders requests, and there are no known nodes which support
4257 // compact blocks but still use getblocks to request blocks.
4258 {
4259 std::shared_ptr<const CBlock> a_recent_block;
4260 {
4261 LOCK(m_most_recent_block_mutex);
4262 a_recent_block = m_most_recent_block;
4263 }
4265 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4266 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4267 }
4268 }
4269
4270 LOCK(cs_main);
4271
4272 // Find the last block the caller has in the main chain
4273 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4274
4275 // Send the rest of the chain
4276 if (pindex)
4277 pindex = m_chainman.ActiveChain().Next(pindex);
4278 int nLimit = 500;
4279 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4280 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4281 {
4282 if (pindex->GetBlockHash() == hashStop)
4283 {
4284 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4285 break;
4286 }
4287 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4288 // for some reasonable time window (1 hour) that block relay might require.
4289 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4290 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4291 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4292 break;
4293 }
4294 WITH_LOCK(peer.m_block_inv_mutex, peer.m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4295 if (--nLimit <= 0) {
4296 // When this block is requested, we'll send an inv that'll
4297 // trigger the peer to getblocks the next batch of inventory.
4298 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4299 WITH_LOCK(peer.m_block_inv_mutex, {peer.m_continuation_block = pindex->GetBlockHash();});
4300 break;
4301 }
4302 }
4303 return;
4304 }
4305
4306 if (msg_type == NetMsgType::GETBLOCKTXN) {
4308 vRecv >> req;
4309 // Verify differential encoding invariant: indexes must be strictly increasing
4310 // DifferenceFormatter should guarantee this property during deserialization
4311 for (size_t i = 1; i < req.indexes.size(); ++i) {
4312 Assume(req.indexes[i] > req.indexes[i-1]);
4313 }
4314
4315 std::shared_ptr<const CBlock> recent_block;
4316 {
4317 LOCK(m_most_recent_block_mutex);
4318 if (m_most_recent_block_hash == req.blockhash)
4319 recent_block = m_most_recent_block;
4320 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4321 }
4322 if (recent_block) {
4323 SendBlockTransactions(pfrom, peer, *recent_block, req);
4324 return;
4325 }
4326
4327 FlatFilePos block_pos{};
4328 {
4329 LOCK(cs_main);
4330
4331 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4332 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4333 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4334 return;
4335 }
4336
4337 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4338 block_pos = pindex->GetBlockPos();
4339 }
4340 }
4341
4342 if (!block_pos.IsNull()) {
4343 CBlock block;
4344 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos, req.blockhash)};
4345 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4346 // pruned after we release cs_main above, so this read should never fail.
4347 assert(ret);
4348
4349 SendBlockTransactions(pfrom, peer, block, req);
4350 return;
4351 }
4352
4353 // If an older block is requested (should never happen in practice,
4354 // but can happen in tests) send a block response instead of a
4355 // blocktxn response. Sending a full block response instead of a
4356 // small blocktxn response is preferable in the case where a peer
4357 // might maliciously send lots of getblocktxn requests to trigger
4358 // expensive disk reads, because it will require the peer to
4359 // actually receive all the data read from disk over the network.
4360 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4362 WITH_LOCK(peer.m_getdata_requests_mutex, peer.m_getdata_requests.push_back(inv));
4363 // The message processing loop will go around again (without pausing) and we'll respond then
4364 return;
4365 }
4366
4367 if (msg_type == NetMsgType::GETHEADERS) {
4368 CBlockLocator locator;
4369 uint256 hashStop;
4370 vRecv >> locator >> hashStop;
4371
4372 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4373 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4374 pfrom.fDisconnect = true;
4375 return;
4376 }
4377
4378 if (m_chainman.m_blockman.LoadingBlocks()) {
4379 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4380 return;
4381 }
4382
4383 LOCK(cs_main);
4384
4385 // Don't serve headers from our active chain until our chainwork is at least
4386 // the minimum chain work. This prevents us from starting a low-work headers
4387 // sync that will inevitably be aborted by our peer.
4388 if (m_chainman.ActiveTip() == nullptr ||
4389 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4390 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4391 // Just respond with an empty headers message, to tell the peer to
4392 // go away but not treat us as unresponsive.
4393 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4394 return;
4395 }
4396
4397 CNodeState *nodestate = State(pfrom.GetId());
4398 const CBlockIndex* pindex = nullptr;
4399 if (locator.IsNull())
4400 {
4401 // If locator is null, return the hashStop block
4402 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4403 if (!pindex) {
4404 return;
4405 }
4406 if (!BlockRequestAllowed(*pindex)) {
4407 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4408 return;
4409 }
4410 }
4411 else
4412 {
4413 // Find the last block the caller has in the main chain
4414 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4415 if (pindex)
4416 pindex = m_chainman.ActiveChain().Next(pindex);
4417 }
4418
4419 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4420 std::vector<CBlock> vHeaders;
4421 int nLimit = m_opts.max_headers_result;
4422 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4423 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4424 {
4425 vHeaders.emplace_back(pindex->GetBlockHeader());
4426 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4427 break;
4428 }
4429 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4430 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4431 // headers message). In both cases it's safe to update
4432 // pindexBestHeaderSent to be our tip.
4433 //
4434 // It is important that we simply reset the BestHeaderSent value here,
4435 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4436 // the currently-being-connected tip using a compact block, which
4437 // resulted in the peer sending a headers request, which we respond to
4438 // without the new block. By resetting the BestHeaderSent, we ensure we
4439 // will re-announce the new block via headers (or compact blocks again)
4440 // in the SendMessages logic.
4441 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4442 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4443 return;
4444 }
4445
4446 if (msg_type == NetMsgType::TX) {
4447 if (RejectIncomingTxs(pfrom)) {
4448 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4449 pfrom.fDisconnect = true;
4450 return;
4451 }
4452
4453 // Stop processing the transaction early if we are still in IBD since we don't
4454 // have enough information to validate it yet. Sending unsolicited transactions
4455 // is not considered a protocol violation, so don't punish the peer.
4456 if (m_chainman.IsInitialBlockDownload()) return;
4457
4458 CTransactionRef ptx;
4459 vRecv >> TX_WITH_WITNESS(ptx);
4460
4461 const Txid& txid = ptx->GetHash();
4462 const Wtxid& wtxid = ptx->GetWitnessHash();
4463
4464 const uint256& hash = peer.m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256();
4465 AddKnownTx(peer, hash);
4466
4467 if (const auto num_broadcasted{m_tx_for_private_broadcast.Remove(ptx)}) {
4468 LogDebug(BCLog::PRIVBROADCAST, "Received our privately broadcast transaction (txid=%s) from the "
4469 "network from peer=%d%s; stopping private broadcast attempts",
4470 txid.ToString(), pfrom.GetId(), pfrom.LogIP(fLogIPs));
4471 if (NUM_PRIVATE_BROADCAST_PER_TX > num_broadcasted.value()) {
4472 // Not all of the initial NUM_PRIVATE_BROADCAST_PER_TX connections were needed.
4473 // Tell CConnman it does not need to start the remaining ones.
4474 m_connman.m_private_broadcast.NumToOpenSub(NUM_PRIVATE_BROADCAST_PER_TX - num_broadcasted.value());
4475 }
4476 }
4477
4478 LOCK2(cs_main, m_tx_download_mutex);
4479
4480 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4481 if (!should_validate) {
4483 // Always relay transactions received from peers with forcerelay
4484 // permission, even if they were already in the mempool, allowing
4485 // the node to function as a gateway for nodes hidden behind it.
4486 if (!m_mempool.exists(txid)) {
4487 LogInfo("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4488 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4489 } else {
4490 LogInfo("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4491 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4492 InitiateTxBroadcastToAll(txid, wtxid);
4493 }
4494 }
4495
4496 if (package_to_validate) {
4497 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4498 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4499 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4500 ProcessPackageResult(package_to_validate.value(), package_result);
4501 }
4502 return;
4503 }
4504
4505 // ReceivedTx should not be telling us to validate the tx and a package.
4506 Assume(!package_to_validate.has_value());
4507
4508 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4509 const TxValidationState& state = result.m_state;
4510
4512 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4513 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4514 }
4515 if (state.IsInvalid()) {
4516 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4517 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4518 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4519 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4520 ProcessPackageResult(package_to_validate.value(), package_result);
4521 }
4522 }
4523
4524 return;
4525 }
4526
4527 if (msg_type == NetMsgType::CMPCTBLOCK)
4528 {
4529 // Ignore cmpctblock received while importing
4530 if (m_chainman.m_blockman.LoadingBlocks()) {
4531 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4532 return;
4533 }
4534
4535 CBlockHeaderAndShortTxIDs cmpctblock;
4536 vRecv >> cmpctblock;
4537
4538 bool received_new_header = false;
4539 const auto blockhash = cmpctblock.header.GetHash();
4540
4541 {
4542 LOCK(cs_main);
4543
4544 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4545 if (!prev_block) {
4546 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4547 if (!m_chainman.IsInitialBlockDownload()) {
4548 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), peer);
4549 }
4550 return;
4551 } else if (prev_block->nChainWork + GetBlockProof(cmpctblock.header) < GetAntiDoSWorkThreshold()) {
4552 // If we get a low-work header in a compact block, we can ignore it.
4553 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4554 return;
4555 }
4556
4557 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4558 received_new_header = true;
4559 }
4560 }
4561
4562 const CBlockIndex *pindex = nullptr;
4564 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4565 if (state.IsInvalid()) {
4566 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4567 return;
4568 }
4569 }
4570
4571 // If AcceptBlockHeader returned true, it set pindex
4572 Assert(pindex);
4573 if (received_new_header) {
4574 LogBlockHeader(*pindex, pfrom, /*via_compact_block=*/true);
4575 }
4576
4577 bool fProcessBLOCKTXN = false;
4578
4579 // If we end up treating this as a plain headers message, call that as well
4580 // without cs_main.
4581 bool fRevertToHeaderProcessing = false;
4582
4583 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4584 // below)
4585 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4586 bool fBlockReconstructed = false;
4587
4588 {
4589 LOCK(cs_main);
4590 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4591
4592 CNodeState *nodestate = State(pfrom.GetId());
4593
4594 // If this was a new header with more work than our tip, update the
4595 // peer's last block announcement time
4596 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4597 nodestate->m_last_block_announcement = GetTime();
4598 }
4599
4600 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4601 return;
4602
4603 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4604 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4605 bool requested_block_from_this_peer{false};
4606
4607 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4608 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4609
4610 while (range_flight.first != range_flight.second) {
4611 if (range_flight.first->second.first == pfrom.GetId()) {
4612 requested_block_from_this_peer = true;
4613 break;
4614 }
4615 range_flight.first++;
4616 }
4617
4618 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4619 pindex->nTx != 0) { // We had this block at some point, but pruned it
4620 if (requested_block_from_this_peer) {
4621 // We requested this block for some reason, but our mempool will probably be useless
4622 // so we just grab the block via normal getdata
4623 std::vector<CInv> vInv(1);
4624 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(peer), blockhash);
4625 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4626 }
4627 return;
4628 }
4629
4630 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4631 if (!already_in_flight && !CanDirectFetch()) {
4632 return;
4633 }
4634
4635 // We want to be a bit conservative just to be extra careful about DoS
4636 // possibilities in compact block processing...
4637 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4638 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4639 requested_block_from_this_peer) {
4640 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4641 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4642 if (!(*queuedBlockIt)->partialBlock)
4643 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4644 else {
4645 // The block was already in flight using compact blocks from the same peer
4646 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4647 return;
4648 }
4649 }
4650
4651 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4652 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4653 if (status == READ_STATUS_INVALID) {
4654 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4655 Misbehaving(peer, "invalid compact block");
4656 return;
4657 } else if (status == READ_STATUS_FAILED) {
4658 if (first_in_flight) {
4659 // Duplicate txindexes, the block is now in-flight, so just request it
4660 std::vector<CInv> vInv(1);
4661 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(peer), blockhash);
4662 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4663 } else {
4664 // Give up for this peer and wait for other peer(s)
4665 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4666 }
4667 return;
4668 }
4669
4671 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4672 if (!partialBlock.IsTxAvailable(i))
4673 req.indexes.push_back(i);
4674 }
4675 if (req.indexes.empty()) {
4676 fProcessBLOCKTXN = true;
4677 } else if (first_in_flight) {
4678 // We will try to round-trip any compact blocks we get on failure,
4679 // as long as it's first...
4680 req.blockhash = pindex->GetBlockHash();
4681 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4682 } else if (pfrom.m_bip152_highbandwidth_to &&
4683 (!pfrom.IsInboundConn() ||
4684 IsBlockRequestedFromOutbound(blockhash) ||
4685 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4686 // ... or it's a hb relay peer and:
4687 // - peer is outbound, or
4688 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4689 // - it's not the final parallel download slot (which we may reserve for first outbound)
4690 req.blockhash = pindex->GetBlockHash();
4691 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4692 } else {
4693 // Give up for this peer and wait for other peer(s)
4694 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4695 }
4696 } else {
4697 // This block is either already in flight from a different
4698 // peer, or this peer has too many blocks outstanding to
4699 // download from.
4700 // Optimistically try to reconstruct anyway since we might be
4701 // able to without any round trips.
4702 PartiallyDownloadedBlock tempBlock(&m_mempool);
4703 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4704 if (status != READ_STATUS_OK) {
4705 // TODO: don't ignore failures
4706 return;
4707 }
4708 std::vector<CTransactionRef> dummy;
4709 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock))};
4710 status = tempBlock.FillBlock(*pblock, dummy,
4711 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
4712 if (status == READ_STATUS_OK) {
4713 fBlockReconstructed = true;
4714 }
4715 }
4716 } else {
4717 if (requested_block_from_this_peer) {
4718 // We requested this block, but its far into the future, so our
4719 // mempool will probably be useless - request the block normally
4720 std::vector<CInv> vInv(1);
4721 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(peer), blockhash);
4722 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4723 return;
4724 } else {
4725 // If this was an announce-cmpctblock, we want the same treatment as a header message
4726 fRevertToHeaderProcessing = true;
4727 }
4728 }
4729 } // cs_main
4730
4731 if (fProcessBLOCKTXN) {
4733 txn.blockhash = blockhash;
4734 return ProcessCompactBlockTxns(pfrom, peer, txn);
4735 }
4736
4737 if (fRevertToHeaderProcessing) {
4738 // Headers received from HB compact block peers are permitted to be
4739 // relayed before full validation (see BIP 152), so we don't want to disconnect
4740 // the peer if the header turns out to be for an invalid block.
4741 // Note that if a peer tries to build on an invalid chain, that
4742 // will be detected and the peer will be disconnected/discouraged.
4743 return ProcessHeadersMessage(pfrom, peer, {cmpctblock.header}, /*via_compact_block=*/true);
4744 }
4745
4746 if (fBlockReconstructed) {
4747 // If we got here, we were able to optimistically reconstruct a
4748 // block that is in flight from some other peer.
4749 {
4750 LOCK(cs_main);
4751 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4752 }
4753 // Setting force_processing to true means that we bypass some of
4754 // our anti-DoS protections in AcceptBlock, which filters
4755 // unrequested blocks that might be trying to waste our resources
4756 // (eg disk space). Because we only try to reconstruct blocks when
4757 // we're close to caught up (via the CanDirectFetch() requirement
4758 // above, combined with the behavior of not requesting blocks until
4759 // we have a chain with at least the minimum chain work), and we ignore
4760 // compact blocks with less work than our tip, it is safe to treat
4761 // reconstructed compact blocks as having been requested.
4762 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4763 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4764 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4765 // Clear download state for this block, which is in
4766 // process from some other peer. We do this after calling
4767 // ProcessNewBlock so that a malleated cmpctblock announcement
4768 // can't be used to interfere with block relay.
4769 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4770 }
4771 }
4772 return;
4773 }
4774
4775 if (msg_type == NetMsgType::BLOCKTXN)
4776 {
4777 // Ignore blocktxn received while importing
4778 if (m_chainman.m_blockman.LoadingBlocks()) {
4779 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4780 return;
4781 }
4782
4783 BlockTransactions resp;
4784 vRecv >> resp;
4785
4786 return ProcessCompactBlockTxns(pfrom, peer, resp);
4787 }
4788
4789 if (msg_type == NetMsgType::HEADERS)
4790 {
4791 // Ignore headers received while importing
4792 if (m_chainman.m_blockman.LoadingBlocks()) {
4793 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4794 return;
4795 }
4796
4797 std::vector<CBlockHeader> headers;
4798
4799 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4800 unsigned int nCount = ReadCompactSize(vRecv);
4801 if (nCount > m_opts.max_headers_result) {
4802 Misbehaving(peer, strprintf("headers message size = %u", nCount));
4803 return;
4804 }
4805 headers.resize(nCount);
4806 for (unsigned int n = 0; n < nCount; n++) {
4807 vRecv >> headers[n];
4808 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4809 }
4810
4811 ProcessHeadersMessage(pfrom, peer, std::move(headers), /*via_compact_block=*/false);
4812
4813 // Check if the headers presync progress needs to be reported to validation.
4814 // This needs to be done without holding the m_headers_presync_mutex lock.
4815 if (m_headers_presync_should_signal.exchange(false)) {
4816 HeadersPresyncStats stats;
4817 {
4818 LOCK(m_headers_presync_mutex);
4819 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4820 if (it != m_headers_presync_stats.end()) stats = it->second;
4821 }
4822 if (stats.second) {
4823 m_chainman.ReportHeadersPresync(stats.second->first, stats.second->second);
4824 }
4825 }
4826
4827 return;
4828 }
4829
4830 if (msg_type == NetMsgType::BLOCK)
4831 {
4832 // Ignore block received while importing
4833 if (m_chainman.m_blockman.LoadingBlocks()) {
4834 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4835 return;
4836 }
4837
4838 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4839 vRecv >> TX_WITH_WITNESS(*pblock);
4840
4841 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4842
4843 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4844
4845 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4846 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4847 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4848 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer.m_id);
4849 Misbehaving(peer, "mutated block");
4850 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer.m_id));
4851 return;
4852 }
4853
4854 bool forceProcessing = false;
4855 const uint256 hash(pblock->GetHash());
4856 bool min_pow_checked = false;
4857 {
4858 LOCK(cs_main);
4859 // Always process the block if we requested it, since we may
4860 // need it even when it's not a candidate for a new best tip.
4861 forceProcessing = IsBlockRequested(hash);
4862 RemoveBlockRequest(hash, pfrom.GetId());
4863 // mapBlockSource is only used for punishing peers and setting
4864 // which peers send us compact blocks, so the race between here and
4865 // cs_main in ProcessNewBlock is fine.
4866 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4867
4868 // Check claimed work on this block against our anti-dos thresholds.
4869 if (prev_block && prev_block->nChainWork + GetBlockProof(*pblock) >= GetAntiDoSWorkThreshold()) {
4870 min_pow_checked = true;
4871 }
4872 }
4873 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4874 return;
4875 }
4876
4877 if (msg_type == NetMsgType::GETADDR) {
4878 // This asymmetric behavior for inbound and outbound connections was introduced
4879 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4880 // to users' AddrMan and later request them by sending getaddr messages.
4881 // Making nodes which are behind NAT and can only make outgoing connections ignore
4882 // the getaddr message mitigates the attack.
4883 if (!pfrom.IsInboundConn()) {
4884 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4885 return;
4886 }
4887
4888 // Since this must be an inbound connection, SetupAddressRelay will
4889 // never fail.
4890 Assume(SetupAddressRelay(pfrom, peer));
4891
4892 // Only send one GetAddr response per connection to reduce resource waste
4893 // and discourage addr stamping of INV announcements.
4894 if (peer.m_getaddr_recvd) {
4895 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4896 return;
4897 }
4898 peer.m_getaddr_recvd = true;
4899
4900 peer.m_addrs_to_send.clear();
4901 std::vector<CAddress> vAddr;
4903 vAddr = m_connman.GetAddressesUnsafe(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4904 } else {
4905 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4906 }
4907 for (const CAddress &addr : vAddr) {
4908 PushAddress(peer, addr);
4909 }
4910 return;
4911 }
4912
4913 if (msg_type == NetMsgType::MEMPOOL) {
4914 // Only process received mempool messages if we advertise NODE_BLOOM
4915 // or if the peer has mempool permissions.
4916 if (!(peer.m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4917 {
4919 {
4920 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4921 pfrom.fDisconnect = true;
4922 }
4923 return;
4924 }
4925
4926 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4927 {
4929 {
4930 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4931 pfrom.fDisconnect = true;
4932 }
4933 return;
4934 }
4935
4936 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
4937 LOCK(tx_relay->m_tx_inventory_mutex);
4938 tx_relay->m_send_mempool = true;
4939 }
4940 return;
4941 }
4942
4943 if (msg_type == NetMsgType::PING) {
4944 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4945 uint64_t nonce = 0;
4946 vRecv >> nonce;
4947 // Echo the message back with the nonce. This allows for two useful features:
4948 //
4949 // 1) A remote node can quickly check if the connection is operational
4950 // 2) Remote nodes can measure the latency of the network thread. If this node
4951 // is overloaded it won't respond to pings quickly and the remote node can
4952 // avoid sending us more work, like chain download requests.
4953 //
4954 // The nonce stops the remote getting confused between different pings: without
4955 // it, if the remote node sends a ping once per second and this node takes 5
4956 // seconds to respond to each, the 5th ping the remote sends would appear to
4957 // return very quickly.
4958 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4959 }
4960 return;
4961 }
4962
4963 if (msg_type == NetMsgType::PONG) {
4964 const auto ping_end = time_received;
4965 uint64_t nonce = 0;
4966 size_t nAvail = vRecv.in_avail();
4967 bool bPingFinished = false;
4968 std::string sProblem;
4969
4970 if (nAvail >= sizeof(nonce)) {
4971 vRecv >> nonce;
4972
4973 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4974 if (peer.m_ping_nonce_sent != 0) {
4975 if (nonce == peer.m_ping_nonce_sent) {
4976 // Matching pong received, this ping is no longer outstanding
4977 bPingFinished = true;
4978 const auto ping_time = ping_end - peer.m_ping_start.load();
4979 if (ping_time.count() >= 0) {
4980 // Let connman know about this successful ping-pong
4981 pfrom.PongReceived(ping_time);
4982 if (pfrom.IsPrivateBroadcastConn()) {
4983 m_tx_for_private_broadcast.NodeConfirmedReception(pfrom.GetId());
4984 LogDebug(BCLog::PRIVBROADCAST, "Got a PONG (the transaction will probably reach the network), marking for disconnect, peer=%d%s",
4985 pfrom.GetId(), pfrom.LogIP(fLogIPs));
4986 pfrom.fDisconnect = true;
4987 }
4988 } else {
4989 // This should never happen
4990 sProblem = "Timing mishap";
4991 }
4992 } else {
4993 // Nonce mismatches are normal when pings are overlapping
4994 sProblem = "Nonce mismatch";
4995 if (nonce == 0) {
4996 // This is most likely a bug in another implementation somewhere; cancel this ping
4997 bPingFinished = true;
4998 sProblem = "Nonce zero";
4999 }
5000 }
5001 } else {
5002 sProblem = "Unsolicited pong without ping";
5003 }
5004 } else {
5005 // This is most likely a bug in another implementation somewhere; cancel this ping
5006 bPingFinished = true;
5007 sProblem = "Short payload";
5008 }
5009
5010 if (!(sProblem.empty())) {
5011 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
5012 pfrom.GetId(),
5013 sProblem,
5014 peer.m_ping_nonce_sent,
5015 nonce,
5016 nAvail);
5017 }
5018 if (bPingFinished) {
5019 peer.m_ping_nonce_sent = 0;
5020 }
5021 return;
5022 }
5023
5024 if (msg_type == NetMsgType::FILTERLOAD) {
5025 if (!(peer.m_our_services & NODE_BLOOM)) {
5026 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
5027 pfrom.fDisconnect = true;
5028 return;
5029 }
5030 CBloomFilter filter;
5031 vRecv >> filter;
5032
5033 if (!filter.IsWithinSizeConstraints())
5034 {
5035 // There is no excuse for sending a too-large filter
5036 Misbehaving(peer, "too-large bloom filter");
5037 } else if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
5038 {
5039 LOCK(tx_relay->m_bloom_filter_mutex);
5040 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
5041 tx_relay->m_relay_txs = true;
5042 }
5043 pfrom.m_bloom_filter_loaded = true;
5044 pfrom.m_relays_txs = true;
5045 }
5046 return;
5047 }
5048
5049 if (msg_type == NetMsgType::FILTERADD) {
5050 if (!(peer.m_our_services & NODE_BLOOM)) {
5051 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
5052 pfrom.fDisconnect = true;
5053 return;
5054 }
5055 std::vector<unsigned char> vData;
5056 vRecv >> vData;
5057
5058 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
5059 // and thus, the maximum size any matched object can have) in a filteradd message
5060 bool bad = false;
5061 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
5062 bad = true;
5063 } else if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
5064 LOCK(tx_relay->m_bloom_filter_mutex);
5065 if (tx_relay->m_bloom_filter) {
5066 tx_relay->m_bloom_filter->insert(vData);
5067 } else {
5068 bad = true;
5069 }
5070 }
5071 if (bad) {
5072 Misbehaving(peer, "bad filteradd message");
5073 }
5074 return;
5075 }
5076
5077 if (msg_type == NetMsgType::FILTERCLEAR) {
5078 if (!(peer.m_our_services & NODE_BLOOM)) {
5079 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
5080 pfrom.fDisconnect = true;
5081 return;
5082 }
5083 auto tx_relay = peer.GetTxRelay();
5084 if (!tx_relay) return;
5085
5086 {
5087 LOCK(tx_relay->m_bloom_filter_mutex);
5088 tx_relay->m_bloom_filter = nullptr;
5089 tx_relay->m_relay_txs = true;
5090 }
5091 pfrom.m_bloom_filter_loaded = false;
5092 pfrom.m_relays_txs = true;
5093 return;
5094 }
5095
5096 if (msg_type == NetMsgType::FEEFILTER) {
5097 CAmount newFeeFilter = 0;
5098 vRecv >> newFeeFilter;
5099 if (MoneyRange(newFeeFilter)) {
5100 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
5101 tx_relay->m_fee_filter_received = newFeeFilter;
5102 }
5103 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
5104 }
5105 return;
5106 }
5107
5108 if (msg_type == NetMsgType::GETCFILTERS) {
5109 ProcessGetCFilters(pfrom, peer, vRecv);
5110 return;
5111 }
5112
5113 if (msg_type == NetMsgType::GETCFHEADERS) {
5114 ProcessGetCFHeaders(pfrom, peer, vRecv);
5115 return;
5116 }
5117
5118 if (msg_type == NetMsgType::GETCFCHECKPT) {
5119 ProcessGetCFCheckPt(pfrom, peer, vRecv);
5120 return;
5121 }
5122
5123 if (msg_type == NetMsgType::NOTFOUND) {
5124 std::vector<CInv> vInv;
5125 vRecv >> vInv;
5126 std::vector<GenTxid> tx_invs;
5128 for (CInv &inv : vInv) {
5129 if (inv.IsGenTxMsg()) {
5130 tx_invs.emplace_back(ToGenTxid(inv));
5131 }
5132 }
5133 }
5134 LOCK(m_tx_download_mutex);
5135 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
5136 return;
5137 }
5138
5139 // Ignore unknown message types for extensibility
5140 LogDebug(BCLog::NET, "Unknown message type \"%s\" from peer=%d", SanitizeString(msg_type), pfrom.GetId());
5141 return;
5142}
5143
5144bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
5145{
5146 {
5147 LOCK(peer.m_misbehavior_mutex);
5148
5149 // There's nothing to do if the m_should_discourage flag isn't set
5150 if (!peer.m_should_discourage) return false;
5151
5152 peer.m_should_discourage = false;
5153 } // peer.m_misbehavior_mutex
5154
5156 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
5157 LogWarning("Not punishing noban peer %d!", peer.m_id);
5158 return false;
5159 }
5160
5161 if (pnode.IsManualConn()) {
5162 // We never disconnect or discourage manual peers for bad behavior
5163 LogWarning("Not punishing manually connected peer %d!", peer.m_id);
5164 return false;
5165 }
5166
5167 if (pnode.addr.IsLocal()) {
5168 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
5169 // all peers on the same local address)
5170 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
5171 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
5172 pnode.fDisconnect = true;
5173 return true;
5174 }
5175
5176 // Normal case: Disconnect the peer and discourage all nodes sharing the address
5177 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
5178 if (m_banman) m_banman->Discourage(pnode.addr);
5179 m_connman.DisconnectNode(pnode.addr);
5180 return true;
5181}
5182
5183bool PeerManagerImpl::ProcessMessages(CNode& node, std::atomic<bool>& interruptMsgProc)
5184{
5185 AssertLockNotHeld(m_tx_download_mutex);
5186 AssertLockHeld(g_msgproc_mutex);
5187
5188 PeerRef maybe_peer{GetPeerRef(node.GetId())};
5189 if (maybe_peer == nullptr) return false;
5190 Peer& peer{*maybe_peer};
5191
5192 // For outbound connections, ensure that the initial VERSION message
5193 // has been sent first before processing any incoming messages
5194 if (!node.IsInboundConn() && !peer.m_outbound_version_message_sent) return false;
5195
5196 {
5197 LOCK(peer.m_getdata_requests_mutex);
5198 if (!peer.m_getdata_requests.empty()) {
5199 ProcessGetData(node, peer, interruptMsgProc);
5200 }
5201 }
5202
5203 const bool processed_orphan = ProcessOrphanTx(peer);
5204
5205 if (node.fDisconnect)
5206 return false;
5207
5208 if (processed_orphan) return true;
5209
5210 // this maintains the order of responses
5211 // and prevents m_getdata_requests to grow unbounded
5212 {
5213 LOCK(peer.m_getdata_requests_mutex);
5214 if (!peer.m_getdata_requests.empty()) return true;
5215 }
5216
5217 // Don't bother if send buffer is too full to respond anyway
5218 if (node.fPauseSend) return false;
5219
5220 auto poll_result{node.PollMessage()};
5221 if (!poll_result) {
5222 // No message to process
5223 return false;
5224 }
5225
5226 CNetMessage& msg{poll_result->first};
5227 bool fMoreWork = poll_result->second;
5228
5229 TRACEPOINT(net, inbound_message,
5230 node.GetId(),
5231 node.m_addr_name.c_str(),
5232 node.ConnectionTypeAsString().c_str(),
5233 msg.m_type.c_str(),
5234 msg.m_recv.size(),
5235 msg.m_recv.data()
5236 );
5237
5238 if (m_opts.capture_messages) {
5239 CaptureMessage(node.addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5240 }
5241
5242 try {
5243 ProcessMessage(peer, node, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5244 if (interruptMsgProc) return false;
5245 {
5246 LOCK(peer.m_getdata_requests_mutex);
5247 if (!peer.m_getdata_requests.empty()) fMoreWork = true;
5248 }
5249 // Does this peer have an orphan ready to reconsider?
5250 // (Note: we may have provided a parent for an orphan provided
5251 // by another peer that was already processed; in that case,
5252 // the extra work may not be noticed, possibly resulting in an
5253 // unnecessary 100ms delay)
5254 LOCK(m_tx_download_mutex);
5255 if (m_txdownloadman.HaveMoreWork(peer.m_id)) fMoreWork = true;
5256 } catch (const std::exception& e) {
5257 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5258 } catch (...) {
5259 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5260 }
5261
5262 return fMoreWork;
5263}
5264
5265void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5266{
5268
5269 CNodeState &state = *State(pto.GetId());
5270
5271 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5272 // This is an outbound peer subject to disconnection if they don't
5273 // announce a block with as much work as the current tip within
5274 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5275 // their chain has more work than ours, we should sync to it,
5276 // unless it's invalid, in which case we should find that out and
5277 // disconnect from them elsewhere).
5278 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5279 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5280 if (state.m_chain_sync.m_timeout != 0s) {
5281 state.m_chain_sync.m_timeout = 0s;
5282 state.m_chain_sync.m_work_header = nullptr;
5283 state.m_chain_sync.m_sent_getheaders = false;
5284 }
5285 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5286 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5287 // AND
5288 // we are noticing this for the first time (m_timeout is 0)
5289 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5290 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5291 // Either way, set a new timeout based on our current tip.
5292 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5293 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5294 state.m_chain_sync.m_sent_getheaders = false;
5295 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5296 // No evidence yet that our peer has synced to a chain with work equal to that
5297 // of our tip, when we first detected it was behind. Send a single getheaders
5298 // message to give the peer a chance to update us.
5299 if (state.m_chain_sync.m_sent_getheaders) {
5300 // They've run out of time to catch up!
5301 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5302 pto.fDisconnect = true;
5303 } else {
5304 assert(state.m_chain_sync.m_work_header);
5305 // Here, we assume that the getheaders message goes out,
5306 // because it'll either go out or be skipped because of a
5307 // getheaders in-flight already, in which case the peer should
5308 // still respond to us with a sufficiently high work chain tip.
5309 MaybeSendGetHeaders(pto,
5310 GetLocator(state.m_chain_sync.m_work_header->pprev),
5311 peer);
5312 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5313 state.m_chain_sync.m_sent_getheaders = true;
5314 // Bump the timeout to allow a response, which could clear the timeout
5315 // (if the response shows the peer has synced), reset the timeout (if
5316 // the peer syncs to the required work but not to our tip), or result
5317 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5318 // has not sufficiently progressed)
5319 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5320 }
5321 }
5322 }
5323}
5324
5325void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5326{
5327 // If we have any extra block-relay-only peers, disconnect the youngest unless
5328 // it's given us a block -- in which case, compare with the second-youngest, and
5329 // out of those two, disconnect the peer who least recently gave us a block.
5330 // The youngest block-relay-only peer would be the extra peer we connected
5331 // to temporarily in order to sync our tip; see net.cpp.
5332 // Note that we use higher nodeid as a measure for most recent connection.
5333 if (m_connman.GetExtraBlockRelayCount() > 0) {
5334 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5335
5336 m_connman.ForEachNode([&](CNode* pnode) {
5337 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5338 if (pnode->GetId() > youngest_peer.first) {
5339 next_youngest_peer = youngest_peer;
5340 youngest_peer.first = pnode->GetId();
5341 youngest_peer.second = pnode->m_last_block_time;
5342 }
5343 });
5344 NodeId to_disconnect = youngest_peer.first;
5345 if (youngest_peer.second > next_youngest_peer.second) {
5346 // Our newest block-relay-only peer gave us a block more recently;
5347 // disconnect our second youngest.
5348 to_disconnect = next_youngest_peer.first;
5349 }
5350 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5352 // Make sure we're not getting a block right now, and that
5353 // we've been connected long enough for this eviction to happen
5354 // at all.
5355 // Note that we only request blocks from a peer if we learn of a
5356 // valid headers chain with at least as much work as our tip.
5357 CNodeState *node_state = State(pnode->GetId());
5358 if (node_state == nullptr ||
5359 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5360 pnode->fDisconnect = true;
5361 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5362 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5363 return true;
5364 } else {
5365 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5366 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5367 }
5368 return false;
5369 });
5370 }
5371
5372 // Check whether we have too many outbound-full-relay peers
5373 if (m_connman.GetExtraFullOutboundCount() > 0) {
5374 // If we have more outbound-full-relay peers than we target, disconnect one.
5375 // Pick the outbound-full-relay peer that least recently announced
5376 // us a new block, with ties broken by choosing the more recent
5377 // connection (higher node id)
5378 // Protect peers from eviction if we don't have another connection
5379 // to their network, counting both outbound-full-relay and manual peers.
5380 NodeId worst_peer = -1;
5381 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5382
5383 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5384 AssertLockHeld(::cs_main);
5385
5386 // Only consider outbound-full-relay peers that are not already
5387 // marked for disconnection
5388 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5389 CNodeState *state = State(pnode->GetId());
5390 if (state == nullptr) return; // shouldn't be possible, but just in case
5391 // Don't evict our protected peers
5392 if (state->m_chain_sync.m_protect) return;
5393 // If this is the only connection on a particular network that is
5394 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5395 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5396 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5397 worst_peer = pnode->GetId();
5398 oldest_block_announcement = state->m_last_block_announcement;
5399 }
5400 });
5401 if (worst_peer != -1) {
5402 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5404
5405 // Only disconnect a peer that has been connected to us for
5406 // some reasonable fraction of our check-frequency, to give
5407 // it time for new information to have arrived.
5408 // Also don't disconnect any peer we're trying to download a
5409 // block from.
5410 CNodeState &state = *State(pnode->GetId());
5411 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5412 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5413 pnode->fDisconnect = true;
5414 return true;
5415 } else {
5416 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5417 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5418 return false;
5419 }
5420 });
5421 if (disconnected) {
5422 // If we disconnected an extra peer, that means we successfully
5423 // connected to at least one peer after the last time we
5424 // detected a stale tip. Don't try any more extra peers until
5425 // we next detect a stale tip, to limit the load we put on the
5426 // network from these extra connections.
5427 m_connman.SetTryNewOutboundPeer(false);
5428 }
5429 }
5430 }
5431}
5432
5433void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5434{
5435 LOCK(cs_main);
5436
5437 auto now{GetTime<std::chrono::seconds>()};
5438
5439 EvictExtraOutboundPeers(now);
5440
5441 if (now > m_stale_tip_check_time) {
5442 // Check whether our tip is stale, and if so, allow using an extra
5443 // outbound peer
5444 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5445 LogInfo("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5446 count_seconds(now - m_last_tip_update.load()));
5447 m_connman.SetTryNewOutboundPeer(true);
5448 } else if (m_connman.GetTryNewOutboundPeer()) {
5449 m_connman.SetTryNewOutboundPeer(false);
5450 }
5451 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5452 }
5453
5454 if (!m_initial_sync_finished && CanDirectFetch()) {
5455 m_connman.StartExtraBlockRelayPeers();
5456 m_initial_sync_finished = true;
5457 }
5458}
5459
5460void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5461{
5462 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5463 peer.m_ping_nonce_sent &&
5464 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5465 {
5466 // The ping timeout is using mocktime. To disable the check during
5467 // testing, increase -peertimeout.
5468 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5469 node_to.fDisconnect = true;
5470 return;
5471 }
5472
5473 bool pingSend = false;
5474
5475 if (peer.m_ping_queued) {
5476 // RPC ping request by user
5477 pingSend = true;
5478 }
5479
5480 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5481 // Ping automatically sent as a latency probe & keepalive.
5482 pingSend = true;
5483 }
5484
5485 if (pingSend) {
5486 uint64_t nonce;
5487 do {
5489 } while (nonce == 0);
5490 peer.m_ping_queued = false;
5491 peer.m_ping_start = now;
5492 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5493 peer.m_ping_nonce_sent = nonce;
5494 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5495 } else {
5496 // Peer is too old to support ping message type with nonce, pong will never arrive.
5497 peer.m_ping_nonce_sent = 0;
5498 MakeAndPushMessage(node_to, NetMsgType::PING);
5499 }
5500 }
5501}
5502
5503void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5504{
5505 // Nothing to do for non-address-relay peers
5506 if (!peer.m_addr_relay_enabled) return;
5507
5508 LOCK(peer.m_addr_send_times_mutex);
5509 // Periodically advertise our local address to the peer.
5510 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5511 peer.m_next_local_addr_send < current_time) {
5512 // If we've sent before, clear the bloom filter for the peer, so that our
5513 // self-announcement will actually go out.
5514 // This might be unnecessary if the bloom filter has already rolled
5515 // over since our last self-announcement, but there is only a small
5516 // bandwidth cost that we can incur by doing this (which happens
5517 // once a day on average).
5518 if (peer.m_next_local_addr_send != 0us) {
5519 peer.m_addr_known->reset();
5520 }
5521 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5522 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5523 if (peer.m_next_local_addr_send == 0us) {
5524 // Send the initial self-announcement in its own message. This makes sure
5525 // rate-limiting with limited start-tokens doesn't ignore it if the first
5526 // message ends up containing multiple addresses.
5527 if (IsAddrCompatible(peer, local_addr)) {
5528 std::vector<CAddress> self_announcement{local_addr};
5529 if (peer.m_wants_addrv2) {
5530 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(self_announcement));
5531 } else {
5532 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(self_announcement));
5533 }
5534 }
5535 } else {
5536 // All later self-announcements are sent together with the other addresses.
5537 PushAddress(peer, local_addr);
5538 }
5539 }
5540 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5541 }
5542
5543 // We sent an `addr` message to this peer recently. Nothing more to do.
5544 if (current_time <= peer.m_next_addr_send) return;
5545
5546 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5547
5548 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5549 // Should be impossible since we always check size before adding to
5550 // m_addrs_to_send. Recover by trimming the vector.
5551 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5552 }
5553
5554 // Remove addr records that the peer already knows about, and add new
5555 // addrs to the m_addr_known filter on the same pass.
5556 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5557 bool ret = peer.m_addr_known->contains(addr.GetKey());
5558 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5559 return ret;
5560 };
5561 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5562 peer.m_addrs_to_send.end());
5563
5564 // No addr messages to send
5565 if (peer.m_addrs_to_send.empty()) return;
5566
5567 if (peer.m_wants_addrv2) {
5568 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5569 } else {
5570 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5571 }
5572 peer.m_addrs_to_send.clear();
5573
5574 // we only send the big addr message once
5575 if (peer.m_addrs_to_send.capacity() > 40) {
5576 peer.m_addrs_to_send.shrink_to_fit();
5577 }
5578}
5579
5580void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5581{
5582 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5583 // initial-headers-sync with this peer. Receiving headers announcements for
5584 // new blocks while trying to sync their headers chain is problematic,
5585 // because of the state tracking done.
5586 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5587 LOCK(cs_main);
5588 CNodeState &state = *State(node.GetId());
5589 if (state.pindexBestKnownBlock != nullptr &&
5590 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5591 // Tell our peer we prefer to receive headers rather than inv's
5592 // We send this to non-NODE NETWORK peers as well, because even
5593 // non-NODE NETWORK peers can announce blocks (such as pruning
5594 // nodes)
5595 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5596 peer.m_sent_sendheaders = true;
5597 }
5598 }
5599}
5600
5601void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5602{
5603 if (m_opts.ignore_incoming_txs) return;
5604 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5605 // peers with the forcerelay permission should not filter txs to us
5607 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5608 // transactions to us, regardless of feefilter state.
5609 if (pto.IsBlockOnlyConn()) return;
5610
5611 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5612
5613 if (m_chainman.IsInitialBlockDownload()) {
5614 // Received tx-inv messages are discarded when the active
5615 // chainstate is in IBD, so tell the peer to not send them.
5616 currentFilter = MAX_MONEY;
5617 } else {
5618 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5619 if (peer.m_fee_filter_sent == MAX_FILTER) {
5620 // Send the current filter if we sent MAX_FILTER previously
5621 // and made it out of IBD.
5622 peer.m_next_send_feefilter = 0us;
5623 }
5624 }
5625 if (current_time > peer.m_next_send_feefilter) {
5626 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5627 // We always have a fee filter of at least the min relay fee
5628 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5629 if (filterToSend != peer.m_fee_filter_sent) {
5630 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5631 peer.m_fee_filter_sent = filterToSend;
5632 }
5633 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5634 }
5635 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5636 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5637 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5638 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5639 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5640 }
5641}
5642
5643namespace {
5644class CompareInvMempoolOrder
5645{
5646 const CTxMemPool* m_mempool;
5647public:
5648 explicit CompareInvMempoolOrder(CTxMemPool* mempool) : m_mempool{mempool} {}
5649
5650 bool operator()(std::set<Wtxid>::iterator a, std::set<Wtxid>::iterator b)
5651 {
5652 /* As std::make_heap produces a max-heap, we want the entries with the
5653 * higher mining score to sort later. */
5654 return m_mempool->CompareMiningScoreWithTopology(*b, *a);
5655 }
5656};
5657} // namespace
5658
5659bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5660{
5661 // block-relay-only peers may never send txs to us
5662 if (peer.IsBlockOnlyConn()) return true;
5663 if (peer.IsFeelerConn()) return true;
5664 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5665 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5666 return false;
5667}
5668
5669bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5670{
5671 // We don't participate in addr relay with outbound block-relay-only
5672 // connections to prevent providing adversaries with the additional
5673 // information of addr traffic to infer the link.
5674 if (node.IsBlockOnlyConn()) return false;
5675
5676 if (!peer.m_addr_relay_enabled.exchange(true)) {
5677 // During version message processing (non-block-relay-only outbound peers)
5678 // or on first addr-related message we have received (inbound peers), initialize
5679 // m_addr_known.
5680 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5681 }
5682
5683 return true;
5684}
5685
5686bool PeerManagerImpl::SendMessages(CNode& node)
5687{
5688 AssertLockNotHeld(m_tx_download_mutex);
5689 AssertLockHeld(g_msgproc_mutex);
5690
5691 PeerRef maybe_peer{GetPeerRef(node.GetId())};
5692 if (!maybe_peer) return false;
5693 Peer& peer{*maybe_peer};
5694 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5695
5696 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5697 // disconnect misbehaving peers even before the version handshake is complete.
5698 if (MaybeDiscourageAndDisconnect(node, peer)) return true;
5699
5700 // Initiate version handshake for outbound connections
5701 if (!node.IsInboundConn() && !peer.m_outbound_version_message_sent) {
5702 PushNodeVersion(node, peer);
5703 peer.m_outbound_version_message_sent = true;
5704 }
5705
5706 // Don't send anything until the version handshake is complete
5707 if (!node.fSuccessfullyConnected || node.fDisconnect)
5708 return true;
5709
5710 const auto current_time{GetTime<std::chrono::microseconds>()};
5711
5712 // The logic below does not apply to private broadcast peers, so skip it.
5713 // Also in CConnman::PushMessage() we make sure that unwanted messages are
5714 // not sent. This here is just an optimization.
5715 if (node.IsPrivateBroadcastConn()) {
5716 if (node.m_connected + PRIVATE_BROADCAST_MAX_CONNECTION_LIFETIME < current_time) {
5717 LogDebug(BCLog::PRIVBROADCAST, "Disconnecting: did not complete the transaction send within %d seconds, peer=%d%s",
5719 node.fDisconnect = true;
5720 }
5721 return true;
5722 }
5723
5724 if (node.IsAddrFetchConn() && current_time - node.m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5725 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", node.DisconnectMsg(fLogIPs));
5726 node.fDisconnect = true;
5727 return true;
5728 }
5729
5730 MaybeSendPing(node, peer, current_time);
5731
5732 // MaybeSendPing may have marked peer for disconnection
5733 if (node.fDisconnect) return true;
5734
5735 MaybeSendAddr(node, peer, current_time);
5736
5737 MaybeSendSendHeaders(node, peer);
5738
5739 {
5740 LOCK(cs_main);
5741
5742 CNodeState &state = *State(node.GetId());
5743
5744 // Start block sync
5745 if (m_chainman.m_best_header == nullptr) {
5746 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5747 }
5748
5749 // Determine whether we might try initial headers sync or parallel
5750 // block download from this peer -- this mostly affects behavior while
5751 // in IBD (once out of IBD, we sync from all peers).
5752 bool sync_blocks_and_headers_from_peer = false;
5753 if (state.fPreferredDownload) {
5754 sync_blocks_and_headers_from_peer = true;
5755 } else if (CanServeBlocks(peer) && !node.IsAddrFetchConn()) {
5756 // Typically this is an inbound peer. If we don't have any outbound
5757 // peers, or if we aren't downloading any blocks from such peers,
5758 // then allow block downloads from this peer, too.
5759 // We prefer downloading blocks from outbound peers to avoid
5760 // putting undue load on (say) some home user who is just making
5761 // outbound connections to the network, but if our only source of
5762 // the latest blocks is from an inbound peer, we have to be sure to
5763 // eventually download it (and not just wait indefinitely for an
5764 // outbound peer to have it).
5765 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5766 sync_blocks_and_headers_from_peer = true;
5767 }
5768 }
5769
5770 if (!state.fSyncStarted && CanServeBlocks(peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5771 // Only actively request headers from a single peer, unless we're close to today.
5772 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5773 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5774 /* If possible, start at the block preceding the currently
5775 best known header. This ensures that we always get a
5776 non-empty list of headers back as long as the peer
5777 is up-to-date. With a non-empty response, we can initialise
5778 the peer's known best block. This wouldn't be possible
5779 if we requested starting at m_chainman.m_best_header and
5780 got back an empty response. */
5781 if (pindexStart->pprev)
5782 pindexStart = pindexStart->pprev;
5783 if (MaybeSendGetHeaders(node, GetLocator(pindexStart), peer)) {
5784 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, node.GetId(), peer.m_starting_height);
5785
5786 state.fSyncStarted = true;
5787 peer.m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5788 (
5789 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5790 // to maintain precision
5791 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5792 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5793 );
5794 nSyncStarted++;
5795 }
5796 }
5797 }
5798
5799 //
5800 // Try sending block announcements via headers
5801 //
5802 {
5803 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5804 // list of block hashes we're relaying, and our peer wants
5805 // headers announcements, then find the first header
5806 // not yet known to our peer but would connect, and send.
5807 // If no header would connect, or if we have too many
5808 // blocks, or if the peer doesn't want headers, just
5809 // add all to the inv queue.
5810 LOCK(peer.m_block_inv_mutex);
5811 std::vector<CBlock> vHeaders;
5812 bool fRevertToInv = ((!peer.m_prefers_headers &&
5813 (!state.m_requested_hb_cmpctblocks || peer.m_blocks_for_headers_relay.size() > 1)) ||
5814 peer.m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5815 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5816 ProcessBlockAvailability(node.GetId()); // ensure pindexBestKnownBlock is up-to-date
5817
5818 if (!fRevertToInv) {
5819 bool fFoundStartingHeader = false;
5820 // Try to find first header that our peer doesn't have, and
5821 // then send all headers past that one. If we come across any
5822 // headers that aren't on m_chainman.ActiveChain(), give up.
5823 for (const uint256& hash : peer.m_blocks_for_headers_relay) {
5824 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5825 assert(pindex);
5826 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5827 // Bail out if we reorged away from this block
5828 fRevertToInv = true;
5829 break;
5830 }
5831 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5832 // This means that the list of blocks to announce don't
5833 // connect to each other.
5834 // This shouldn't really be possible to hit during
5835 // regular operation (because reorgs should take us to
5836 // a chain that has some block not on the prior chain,
5837 // which should be caught by the prior check), but one
5838 // way this could happen is by using invalidateblock /
5839 // reconsiderblock repeatedly on the tip, causing it to
5840 // be added multiple times to m_blocks_for_headers_relay.
5841 // Robustly deal with this rare situation by reverting
5842 // to an inv.
5843 fRevertToInv = true;
5844 break;
5845 }
5846 pBestIndex = pindex;
5847 if (fFoundStartingHeader) {
5848 // add this to the headers message
5849 vHeaders.emplace_back(pindex->GetBlockHeader());
5850 } else if (PeerHasHeader(&state, pindex)) {
5851 continue; // keep looking for the first new block
5852 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5853 // Peer doesn't have this header but they do have the prior one.
5854 // Start sending headers.
5855 fFoundStartingHeader = true;
5856 vHeaders.emplace_back(pindex->GetBlockHeader());
5857 } else {
5858 // Peer doesn't have this header or the prior one -- nothing will
5859 // connect, so bail out.
5860 fRevertToInv = true;
5861 break;
5862 }
5863 }
5864 }
5865 if (!fRevertToInv && !vHeaders.empty()) {
5866 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5867 // We only send up to 1 block as header-and-ids, as otherwise
5868 // probably means we're doing an initial-ish-sync or they're slow
5869 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5870 vHeaders.front().GetHash().ToString(), node.GetId());
5871
5872 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5873 {
5874 LOCK(m_most_recent_block_mutex);
5875 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5876 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5877 }
5878 }
5879 if (cached_cmpctblock_msg.has_value()) {
5880 PushMessage(node, std::move(cached_cmpctblock_msg.value()));
5881 } else {
5882 CBlock block;
5883 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5884 assert(ret);
5885 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5886 MakeAndPushMessage(node, NetMsgType::CMPCTBLOCK, cmpctblock);
5887 }
5888 state.pindexBestHeaderSent = pBestIndex;
5889 } else if (peer.m_prefers_headers) {
5890 if (vHeaders.size() > 1) {
5891 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5892 vHeaders.size(),
5893 vHeaders.front().GetHash().ToString(),
5894 vHeaders.back().GetHash().ToString(), node.GetId());
5895 } else {
5896 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5897 vHeaders.front().GetHash().ToString(), node.GetId());
5898 }
5899 MakeAndPushMessage(node, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5900 state.pindexBestHeaderSent = pBestIndex;
5901 } else
5902 fRevertToInv = true;
5903 }
5904 if (fRevertToInv) {
5905 // If falling back to using an inv, just try to inv the tip.
5906 // The last entry in m_blocks_for_headers_relay was our tip at some point
5907 // in the past.
5908 if (!peer.m_blocks_for_headers_relay.empty()) {
5909 const uint256& hashToAnnounce = peer.m_blocks_for_headers_relay.back();
5910 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5911 assert(pindex);
5912
5913 // Warn if we're announcing a block that is not on the main chain.
5914 // This should be very rare and could be optimized out.
5915 // Just log for now.
5916 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5917 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5918 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5919 }
5920
5921 // If the peer's chain has this block, don't inv it back.
5922 if (!PeerHasHeader(&state, pindex)) {
5923 peer.m_blocks_for_inv_relay.push_back(hashToAnnounce);
5924 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5925 node.GetId(), hashToAnnounce.ToString());
5926 }
5927 }
5928 }
5929 peer.m_blocks_for_headers_relay.clear();
5930 }
5931
5932 //
5933 // Message: inventory
5934 //
5935 std::vector<CInv> vInv;
5936 {
5937 LOCK(peer.m_block_inv_mutex);
5938 vInv.reserve(std::max<size_t>(peer.m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5939
5940 // Add blocks
5941 for (const uint256& hash : peer.m_blocks_for_inv_relay) {
5942 vInv.emplace_back(MSG_BLOCK, hash);
5943 if (vInv.size() == MAX_INV_SZ) {
5944 MakeAndPushMessage(node, NetMsgType::INV, vInv);
5945 vInv.clear();
5946 }
5947 }
5948 peer.m_blocks_for_inv_relay.clear();
5949 }
5950
5951 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
5952 LOCK(tx_relay->m_tx_inventory_mutex);
5953 // Check whether periodic sends should happen
5954 bool fSendTrickle = node.HasPermission(NetPermissionFlags::NoBan);
5955 if (tx_relay->m_next_inv_send_time < current_time) {
5956 fSendTrickle = true;
5957 if (node.IsInboundConn()) {
5958 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL, node.m_network_key);
5959 } else {
5960 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5961 }
5962 }
5963
5964 // Time to send but the peer has requested we not relay transactions.
5965 if (fSendTrickle) {
5966 LOCK(tx_relay->m_bloom_filter_mutex);
5967 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5968 }
5969
5970 // Respond to BIP35 mempool requests
5971 if (fSendTrickle && tx_relay->m_send_mempool) {
5972 auto vtxinfo = m_mempool.infoAll();
5973 tx_relay->m_send_mempool = false;
5974 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5975
5976 LOCK(tx_relay->m_bloom_filter_mutex);
5977
5978 for (const auto& txinfo : vtxinfo) {
5979 const Txid& txid{txinfo.tx->GetHash()};
5980 const Wtxid& wtxid{txinfo.tx->GetWitnessHash()};
5981 const auto inv = peer.m_wtxid_relay ?
5982 CInv{MSG_WTX, wtxid.ToUint256()} :
5983 CInv{MSG_TX, txid.ToUint256()};
5984 tx_relay->m_tx_inventory_to_send.erase(wtxid);
5985
5986 // Don't send transactions that peers will not put into their mempool
5987 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5988 continue;
5989 }
5990 if (tx_relay->m_bloom_filter) {
5991 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5992 }
5993 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5994 vInv.push_back(inv);
5995 if (vInv.size() == MAX_INV_SZ) {
5996 MakeAndPushMessage(node, NetMsgType::INV, vInv);
5997 vInv.clear();
5998 }
5999 }
6000 }
6001
6002 // Determine transactions to relay
6003 if (fSendTrickle) {
6004 // Produce a vector with all candidates for sending
6005 std::vector<std::set<Wtxid>::iterator> vInvTx;
6006 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
6007 for (std::set<Wtxid>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
6008 vInvTx.push_back(it);
6009 }
6010 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
6011 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
6012 // A heap is used so that not all items need sorting if only a few are being sent.
6013 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
6014 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
6015 // No reason to drain out at many times the network's capacity,
6016 // especially since we have many peers and some will draw much shorter delays.
6017 unsigned int nRelayedTransactions = 0;
6018 LOCK(tx_relay->m_bloom_filter_mutex);
6019 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
6020 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
6021 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
6022 // Fetch the top element from the heap
6023 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
6024 std::set<Wtxid>::iterator it = vInvTx.back();
6025 vInvTx.pop_back();
6026 auto wtxid = *it;
6027 // Remove it from the to-be-sent set
6028 tx_relay->m_tx_inventory_to_send.erase(it);
6029 // Not in the mempool anymore? don't bother sending it.
6030 auto txinfo = m_mempool.info(wtxid);
6031 if (!txinfo.tx) {
6032 continue;
6033 }
6034 // `TxRelay::m_tx_inventory_known_filter` contains either txids or wtxids
6035 // depending on whether our peer supports wtxid-relay. Therefore, first
6036 // construct the inv and then use its hash for the filter check.
6037 const auto inv = peer.m_wtxid_relay ?
6038 CInv{MSG_WTX, wtxid.ToUint256()} :
6039 CInv{MSG_TX, txinfo.tx->GetHash().ToUint256()};
6040 // Check if not in the filter already
6041 if (tx_relay->m_tx_inventory_known_filter.contains(inv.hash)) {
6042 continue;
6043 }
6044 // Peer told you to not send transactions at that feerate? Don't bother sending it.
6045 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
6046 continue;
6047 }
6048 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
6049 // Send
6050 vInv.push_back(inv);
6051 nRelayedTransactions++;
6052 if (vInv.size() == MAX_INV_SZ) {
6053 MakeAndPushMessage(node, NetMsgType::INV, vInv);
6054 vInv.clear();
6055 }
6056 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
6057 }
6058
6059 // Ensure we'll respond to GETDATA requests for anything we've just announced
6060 LOCK(m_mempool.cs);
6061 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
6062 }
6063 }
6064 if (!vInv.empty())
6065 MakeAndPushMessage(node, NetMsgType::INV, vInv);
6066
6067 // Detect whether we're stalling
6068 auto stalling_timeout = m_block_stalling_timeout.load();
6069 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
6070 // Stalling only triggers when the block download window cannot move. During normal steady state,
6071 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
6072 // should only happen during initial block download.
6073 LogInfo("Peer is stalling block download, %s\n", node.DisconnectMsg(fLogIPs));
6074 node.fDisconnect = true;
6075 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
6076 // bandwidth is insufficient.
6077 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
6078 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
6079 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
6080 }
6081 return true;
6082 }
6083 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
6084 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
6085 // We compensate for other peers to prevent killing off peers due to our own downstream link
6086 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
6087 // to unreasonably increase our timeout.
6088 if (state.vBlocksInFlight.size() > 0) {
6089 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
6090 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
6091 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
6092 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), node.DisconnectMsg(fLogIPs));
6093 node.fDisconnect = true;
6094 return true;
6095 }
6096 }
6097 // Check for headers sync timeouts
6098 if (state.fSyncStarted && peer.m_headers_sync_timeout < std::chrono::microseconds::max()) {
6099 // Detect whether this is a stalling initial-headers-sync peer
6100 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
6101 if (current_time > peer.m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
6102 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
6103 // and we have others we could be using instead.
6104 // Note: If all our peers are inbound, then we won't
6105 // disconnect our sync peer for stalling; we have bigger
6106 // problems if we can't get any outbound peers.
6107 if (!node.HasPermission(NetPermissionFlags::NoBan)) {
6108 LogInfo("Timeout downloading headers, %s\n", node.DisconnectMsg(fLogIPs));
6109 node.fDisconnect = true;
6110 return true;
6111 } else {
6112 LogInfo("Timeout downloading headers from noban peer, not %s\n", node.DisconnectMsg(fLogIPs));
6113 // Reset the headers sync state so that we have a
6114 // chance to try downloading from a different peer.
6115 // Note: this will also result in at least one more
6116 // getheaders message to be sent to
6117 // this peer (eventually).
6118 state.fSyncStarted = false;
6119 nSyncStarted--;
6120 peer.m_headers_sync_timeout = 0us;
6121 }
6122 }
6123 } else {
6124 // After we've caught up once, reset the timeout so we can't trigger
6125 // disconnect later.
6126 peer.m_headers_sync_timeout = std::chrono::microseconds::max();
6127 }
6128 }
6129
6130 // Check that outbound peers have reasonable chains
6131 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
6132 ConsiderEviction(node, peer, GetTime<std::chrono::seconds>());
6133
6134 //
6135 // Message: getdata (blocks)
6136 //
6137 std::vector<CInv> vGetData;
6138 if (CanServeBlocks(peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
6139 std::vector<const CBlockIndex*> vToDownload;
6140 NodeId staller = -1;
6141 auto get_inflight_budget = [&state]() {
6142 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
6143 };
6144
6145 // If there are multiple chainstates, download blocks for the
6146 // current chainstate first, to prioritize getting to network tip
6147 // before downloading historical blocks.
6148 FindNextBlocksToDownload(peer, get_inflight_budget(), vToDownload, staller);
6149 auto historical_blocks{m_chainman.GetHistoricalBlockRange()};
6150 if (historical_blocks && !IsLimitedPeer(peer)) {
6151 // If the first needed historical block is not an ancestor of the last,
6152 // we need to start requesting blocks from their last common ancestor.
6153 const CBlockIndex* from_tip = LastCommonAncestor(historical_blocks->first, historical_blocks->second);
6154 TryDownloadingHistoricalBlocks(
6155 peer,
6156 get_inflight_budget(),
6157 vToDownload, from_tip, historical_blocks->second);
6158 }
6159 for (const CBlockIndex *pindex : vToDownload) {
6160 uint32_t nFetchFlags = GetFetchFlags(peer);
6161 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
6162 BlockRequested(node.GetId(), *pindex);
6163 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
6164 pindex->nHeight, node.GetId());
6165 }
6166 if (state.vBlocksInFlight.empty() && staller != -1) {
6167 if (State(staller)->m_stalling_since == 0us) {
6168 State(staller)->m_stalling_since = current_time;
6169 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
6170 }
6171 }
6172 }
6173
6174 //
6175 // Message: getdata (transactions)
6176 //
6177 {
6178 LOCK(m_tx_download_mutex);
6179 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(node.GetId(), current_time)) {
6180 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(peer)), gtxid.ToUint256());
6181 if (vGetData.size() >= MAX_GETDATA_SZ) {
6182 MakeAndPushMessage(node, NetMsgType::GETDATA, vGetData);
6183 vGetData.clear();
6184 }
6185 }
6186 }
6187
6188 if (!vGetData.empty())
6189 MakeAndPushMessage(node, NetMsgType::GETDATA, vGetData);
6190 } // release cs_main
6191 MaybeSendFeefilter(node, peer, current_time);
6192 return true;
6193}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:94
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:45
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:136
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:155
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:65
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:61
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:69
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:51
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:75
arith_uint256 GetBlockProof(const CBlockIndex &block)
Compute how much work a block index entry corresponds to.
Definition: chain.h:306
#define Assert(val)
Identity function.
Definition: check.h:113
#define Assume(val)
Assume is the identity function.
Definition: check.h:125
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:27
uint256 hashPrevBlock
Definition: block.h:31
uint256 GetHash() const
Definition: block.cpp:15
bool IsNull() const
Definition: block.h:54
Definition: block.h:74
std::vector< CTransactionRef > vtx
Definition: block.h:77
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:95
bool IsValid(enum BlockStatus nUpTo) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:251
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:101
CBlockHeader GetBlockHeader() const
Definition: chain.h:186
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:119
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:215
uint256 GetBlockHash() const
Definition: chain.h:199
int64_t GetBlockTime() const
Definition: chain.h:222
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:124
NodeSeconds Time() const
Definition: chain.h:217
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:110
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:107
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:164
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:381
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:397
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:417
int Height() const
Return the maximal height in the chain.
Definition: chain.h:426
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:411
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:77
const HeadersSyncParams & HeadersSync() const
Definition: chainparams.h:117
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:89
void NumToOpenAdd(size_t n)
Increment the number of new connections of type ConnectionType::PRIVATE_BROADCAST to be opened by CCo...
Definition: net.cpp:3091
size_t NumToOpenSub(size_t n)
Decrement the number of new connections of type ConnectionType::PRIVATE_BROADCAST to be opened by CCo...
Definition: net.cpp:3097
Definition: net.h:1072
void ForEachNode(const NodeFn &func)
Definition: net.h:1267
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:4117
bool GetNetworkActive() const
Definition: net.h:1167
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::microseconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:2002
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2425
class CConnman::PrivateBroadcast m_private_broadcast
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3693
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2430
int GetExtraBlockRelayCount() const
Definition: net.cpp:2475
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2245
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3910
void StartExtraBlockRelayPeers()
Definition: net.cpp:2436
bool DisconnectNode(std::string_view node)
Definition: net.cpp:3808
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:4130
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3791
int GetExtraFullOutboundCount() const
Definition: net.cpp:2461
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3682
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:353
bool GetUseAddrmanOutgoing() const
Definition: net.h:1168
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per virtualbyte: CAmount / vB the feerate is represented internally as FeeFrac.
Definition: feerate.h:35
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:65
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:127
std::vector< std::pair< unsigned int, Txid > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:139
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:462
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:424
bool IsLocal() const
Definition: netaddress.cpp:398
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:477
Transport protocol agnostic message container.
Definition: net.h:238
Information about a peer.
Definition: net.h:680
bool IsFeelerConn() const
Definition: net.h:816
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:713
bool ExpectServicesFromConn() const
Definition: net.h:833
std::atomic< int > nVersion
Definition: net.h:723
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:870
bool IsInboundConn() const
Definition: net.h:829
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:731
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:771
NodeId GetId() const
Definition: net.h:914
bool IsManualConn() const
Definition: net.h:791
std::string ConnectionTypeAsString() const
Definition: net.h:968
void SetCommonVersion(int greatest_common_version)
Definition: net.h:939
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:865
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:874
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:867
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:987
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:735
bool IsAddrFetchConn() const
Definition: net.h:820
uint64_t GetLocalNonce() const
Definition: net.h:918
const CAddress addr
Definition: net.h:715
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:593
bool IsBlockOnlyConn() const
Definition: net.h:812
int GetCommonVersion() const
Definition: net.h:944
bool IsFullOutboundConn() const
Definition: net.h:787
Mutex m_subver_mutex
Definition: net.h:724
std::atomic_bool fPauseSend
Definition: net.h:744
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:878
bool IsPrivateBroadcastConn() const
Definition: net.h:824
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:703
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:684
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:722
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:885
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:708
std::atomic_bool fDisconnect
Definition: net.h:738
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:891
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:530
std::string ToStringAddrPort() const
Definition: netaddress.cpp:903
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:895
General SipHash-2-4 implementation.
Definition: siphash.h:27
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:73
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data.
Definition: siphash.cpp:24
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:188
bool CompareMiningScoreWithTopology(const Wtxid &hasha, const Wtxid &hashb) const
Definition: txmempool.cpp:542
TxMempoolInfo info_for_relay(const T &id, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.h:530
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:261
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:815
CTransactionRef get(const Txid &hash) const
Definition: txmempool.cpp:607
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:764
const Options m_opts
Definition: txmempool.h:304
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:586
TxMempoolInfo info(const T &id) const
Definition: txmempool.h:521
bool exists(const Txid &txid) const
Definition: txmempool.h:504
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:575
std::set< Txid > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:557
unsigned long size() const
Definition: txmempool.h:486
void RemoveUnbroadcastTx(const Txid &txid, bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:770
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void BlockChecked(const std::shared_ptr< const CBlock > &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
virtual void BlockConnected(const kernel::ChainstateRole &role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
void ClearBlockIndexCandidates() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex * FindForkInGlobalIndex(const CBlockLocator &locator) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Find the last common block of this chain and a locator.
Definition: validation.cpp:122
Interface for managing multiple Chainstate objects, where each chainstate is associated with chainsta...
Definition: validation.h:935
bool IsInitialBlockDownload() const noexcept
Check whether we are doing an initial block download (synchronizing from disk or network)
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1027
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1162
Chainstate & ActiveChainstate() const
Alternatives to CurrentChainstate() used by older code to query latest chainstate information without...
SnapshotCompletionResult MaybeValidateSnapshot(Chainstate &validated_cs, Chainstate &unvalidated_cs) EXCLUSIVE_LOCKS_REQUIRED(Chainstate & CurrentChainstate() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Try to validate an assumeutxo snapshot by using a validated historical chainstate targeted at the sna...
Definition: validation.h:1114
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:1005
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1160
void ReportHeadersPresync(int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1033
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:133
bool empty() const
Definition: streams.h:168
size_type size() const
Definition: streams.h:167
void ignore(size_t num_ignore)
Definition: streams.h:221
int in_avail() const
Definition: streams.h:201
Fast randomness source.
Definition: random.h:386
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:404
bool IsWtxid() const
const uint256 & ToUint256() const LIFETIMEBOUND
HeadersSyncState:
Definition: headerssync.h:102
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1031
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool ProcessMessages(CNode &node, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool SendMessages(CNode &node) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing, bool segwit_active)
bool IsTxAvailable(size_t index) const
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< std::pair< Wtxid, CTransactionRef > > &extra_txn)
virtual util::Expected< void, std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
virtual std::vector< node::TxOrphanage::OrphanInfo > GetOrphanTransactions()=0
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
Store a list of transactions to be broadcast privately.
void NodeConfirmedReception(const NodeId &nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Mark that the node has confirmed reception of the transaction we sent it by responding with PONG to o...
bool HavePendingTransactions() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Check if there are transactions that need to be broadcast.
bool DidNodeConfirmReception(const NodeId &nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Check if the node has confirmed reception of the transaction.
std::optional< size_t > Remove(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Forget a transaction.
std::optional< CTransactionRef > PickTxForSend(const NodeId &will_send_to_nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Pick the transaction with the fewest send attempts, and confirmations, and oldest send/confirm times.
std::optional< CTransactionRef > GetTxForNode(const NodeId &nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Get the transaction that was picked for sending to a given node by PickTxForSend().
bool Add(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Add a transaction to the storage.
std::vector< CTransactionRef > GetStale() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Get the transactions that have not been broadcast recently.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:132
bool IsValid() const
Definition: validation.h:105
std::string GetDebugMessage() const
Definition: validation.h:110
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool LoadingBlocks() const
Definition: blockstorage.h:410
ReadRawBlockResult ReadRawBlock(const FlatFilePos &pos, std::optional< std::pair< size_t, size_t > > block_part=std::nullopt) const
bool ReadBlock(CBlock &block, const FlatFilePos &pos, const std::optional< uint256 > &expected_hash) const
Functions for disk access for blocks.
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:404
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
const uint256 & ToUint256() const LIFETIMEBOUND
256-bit opaque blob.
Definition: uint256.h:195
The util::Expected class provides a standard way for low-level functions to return either error value...
Definition: expected.h:45
The util::Unexpected class represents an unexpected value stored in util::Expected.
Definition: expected.h:22
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
HeadersSyncState::State State
is a home for simple enum and struct type definitions that can be used internally by functions in the...
#define LogWarning(...)
Definition: log.h:96
#define LogInfo(...)
Definition: log.h:95
#define LogError(...)
Definition: log.h:97
#define LogDebug(category,...)
Definition: log.h:115
bool fLogIPs
Definition: logging.cpp:47
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:294
unsigned int nonce
Definition: miner_tests.cpp:81
@ TXPACKAGES
Definition: categories.h:46
@ PRIVBROADCAST
Definition: categories.h:48
@ VALIDATION
Definition: categories.h:37
@ MEMPOOLREJ
Definition: categories.h:32
@ CMPCTBLOCK
Definition: categories.h:28
@ MEMPOOL
Definition: categories.h:18
@ NET
Definition: categories.h:16
@ DEPLOYMENT_SEGWIT
Definition: params.h:30
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Definition: messages.h:21
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:400
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:246
bool fListen
Definition: net.cpp:117
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:120
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:240
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4223
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:67
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:59
int64_t NodeId
Definition: net.h:103
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr size_t NUM_PRIVATE_BROADCAST_PER_TX
For private broadcast, send a transaction to this many peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto PRIVATE_BROADCAST_MAX_CONNECTION_LIFETIME
Private broadcast connections must complete within this time.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:739
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:67
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:181
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:180
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:403
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" message type for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" message type and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:493
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:330
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:117
std::vector< uint256 > vHave
Definition: block.h:127
bool IsNull() const
Definition: block.h:145
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_last_inv_seq
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:84
int64_t nPowTargetSpacing
Definition: params.h:120
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:122
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:130
const ResultType m_result_type
Result type.
Definition: validation.h:139
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:142
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:145
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:30
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:236
PackageValidationState m_state
Definition: validation.h:237
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:244
std::chrono::seconds median_outbound_time_offset
Information about chainstate that notifications are sent from.
Definition: types.h:18
bool historical
Whether this is a historical chainstate downloading old blocks to validate an assumeutxo snapshot,...
Definition: types.h:26
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:57
std::string ToString() const
Definition: txdownloadman.h:79
#define AssertLockNotHeld(cs)
Definition: sync.h:141
#define LOCK2(cs1, cs2)
Definition: sync.h:259
#define LOCK(cs)
Definition: sync.h:258
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:289
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:106
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define GUARDED_BY(x)
Definition: threadsafety.h:39
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:50
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:42
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:40
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:56
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:81
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:90
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:88
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(std::span< const CBlockHeader > headers, const Consensus::Params &consensusParams)
Check that the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:75
@ UNVALIDATED
Blocks after an assumeutxo snapshot have been validated but the snapshot itself has not been validate...