Bitcoin Core 28.99.0
P2P Digital Currency
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages Concepts
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2022 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <banman.h>
10#include <blockencodings.h>
11#include <blockfilter.h>
12#include <chainparams.h>
13#include <consensus/amount.h>
15#include <deploymentstatus.h>
16#include <hash.h>
17#include <headerssync.h>
19#include <kernel/chain.h>
21#include <logging.h>
22#include <merkleblock.h>
23#include <netbase.h>
24#include <netmessagemaker.h>
25#include <node/blockstorage.h>
26#include <node/timeoffsets.h>
27#include <node/txdownloadman.h>
29#include <node/warnings.h>
30#include <policy/fees.h>
31#include <policy/policy.h>
32#include <policy/settings.h>
33#include <primitives/block.h>
35#include <random.h>
36#include <scheduler.h>
37#include <streams.h>
38#include <sync.h>
39#include <tinyformat.h>
40#include <txmempool.h>
41#include <txorphanage.h>
42#include <txrequest.h>
43#include <util/check.h>
44#include <util/strencodings.h>
45#include <util/time.h>
46#include <util/trace.h>
47#include <validation.h>
48
49#include <algorithm>
50#include <atomic>
51#include <future>
52#include <memory>
53#include <optional>
54#include <ranges>
55#include <typeinfo>
56#include <utility>
57
58using namespace util::hex_literals;
59
60TRACEPOINT_SEMAPHORE(net, inbound_message);
61
64static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
65static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
67static constexpr auto HEADERS_RESPONSE_TIME{2min};
73static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
75static constexpr auto STALE_CHECK_INTERVAL{10min};
77static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
79static constexpr auto MINIMUM_CONNECT_TIME{30s};
81static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
84static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
87static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
89static constexpr auto PING_INTERVAL{2min};
91static const unsigned int MAX_LOCATOR_SZ = 101;
93static const unsigned int MAX_INV_SZ = 50000;
95static const unsigned int MAX_GETDATA_SZ = 1000;
97static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
100static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
102static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
105static const int MAX_CMPCTBLOCK_DEPTH = 5;
107static const int MAX_BLOCKTXN_DEPTH = 10;
108static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
113static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
115static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
117static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
119static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
121static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
123static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
125static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
127static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
129static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
139static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
143static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
144static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
145static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
147static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
149static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
151static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
153static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
155static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
157static constexpr size_t MAX_ADDR_TO_SEND{1000};
160static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
166static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
167
168// Internal stuff
169namespace {
171struct QueuedBlock {
173 const CBlockIndex* pindex;
175 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
176};
177
190struct Peer {
192 const NodeId m_id{0};
193
207 const ServiceFlags m_our_services;
209 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
210
212 const bool m_is_inbound;
213
215 Mutex m_misbehavior_mutex;
217 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
218
220 Mutex m_block_inv_mutex;
224 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
228 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
233 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
234
236 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
237
239 std::atomic<int> m_starting_height{-1};
240
242 std::atomic<uint64_t> m_ping_nonce_sent{0};
244 std::atomic<std::chrono::microseconds> m_ping_start{0us};
246 std::atomic<bool> m_ping_queued{false};
247
249 std::atomic<bool> m_wtxid_relay{false};
256 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
257
258 struct TxRelay {
259 mutable RecursiveMutex m_bloom_filter_mutex;
261 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
263 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
264
265 mutable RecursiveMutex m_tx_inventory_mutex;
269 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
274 std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
278 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
281 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
284 uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
285
287 std::atomic<CAmount> m_fee_filter_received{0};
288 };
289
290 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
291 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
292 {
293 LOCK(m_tx_relay_mutex);
294 Assume(!m_tx_relay);
295 m_tx_relay = std::make_unique<Peer::TxRelay>();
296 return m_tx_relay.get();
297 };
298
299 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
300 {
301 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
302 };
303
305 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
315 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
330 std::atomic_bool m_addr_relay_enabled{false};
332 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
334 mutable Mutex m_addr_send_times_mutex;
336 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
338 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
341 std::atomic_bool m_wants_addrv2{false};
343 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
346 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
348 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
350 std::atomic<uint64_t> m_addr_rate_limited{0};
352 std::atomic<uint64_t> m_addr_processed{0};
353
355 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
356
358 Mutex m_getdata_requests_mutex;
360 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
361
364
366 Mutex m_headers_sync_mutex;
369 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
370
372 std::atomic<bool> m_sent_sendheaders{false};
373
375 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
376
378 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
379
382 std::atomic<std::chrono::seconds> m_time_offset{0s};
383
384 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
385 : m_id{id}
386 , m_our_services{our_services}
387 , m_is_inbound{is_inbound}
388 {}
389
390private:
391 mutable Mutex m_tx_relay_mutex;
392
394 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
395};
396
397using PeerRef = std::shared_ptr<Peer>;
398
405struct CNodeState {
407 const CBlockIndex* pindexBestKnownBlock{nullptr};
409 uint256 hashLastUnknownBlock{};
411 const CBlockIndex* pindexLastCommonBlock{nullptr};
413 const CBlockIndex* pindexBestHeaderSent{nullptr};
415 bool fSyncStarted{false};
417 std::chrono::microseconds m_stalling_since{0us};
418 std::list<QueuedBlock> vBlocksInFlight;
420 std::chrono::microseconds m_downloading_since{0us};
422 bool fPreferredDownload{false};
424 bool m_requested_hb_cmpctblocks{false};
426 bool m_provides_cmpctblocks{false};
427
452 struct ChainSyncTimeoutState {
454 std::chrono::seconds m_timeout{0s};
456 const CBlockIndex* m_work_header{nullptr};
458 bool m_sent_getheaders{false};
460 bool m_protect{false};
461 };
462
463 ChainSyncTimeoutState m_chain_sync;
464
466 int64_t m_last_block_announcement{0};
467};
468
469class PeerManagerImpl final : public PeerManager
470{
471public:
472 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
473 BanMan* banman, ChainstateManager& chainman,
474 CTxMemPool& pool, node::Warnings& warnings, Options opts);
475
477 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
478 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
479 void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
480 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
481 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
482 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
483 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
484 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
485 void BlockChecked(const CBlock& block, const BlockValidationState& state) override
486 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
487 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
488 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
489
491 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
492 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
493 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
494 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
495 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
496 bool SendMessages(CNode* pto) override
497 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
498
500 void StartScheduledTasks(CScheduler& scheduler) override;
501 void CheckForStaleTipAndEvictPeers() override;
502 std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
503 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
504 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
505 std::vector<TxOrphanage::OrphanTxBase> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
506 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
507 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
508 void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
509 void SetBestBlock(int height, std::chrono::seconds time) override
510 {
511 m_best_height = height;
512 m_best_block_time = time;
513 };
514 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
515 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
516 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
517 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
518 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
519 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
520
521private:
523 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
524
526 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
527
529 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
530
533 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
534
537 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
538
541 void Misbehaving(Peer& peer, const std::string& message);
542
551 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
552 bool via_compact_block, const std::string& message = "")
553 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
554
558 void MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
559 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
560
567 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
568
580 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
581 bool first_time_failure)
582 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
583
586 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
587 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
588
592 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
593 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
594
606 bool ProcessOrphanTx(Peer& peer)
607 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
608
616 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
617 std::vector<CBlockHeader>&& headers,
618 bool via_compact_block)
619 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
622 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
624 arith_uint256 GetAntiDoSWorkThreshold();
628 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
630 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
649 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
650 std::vector<CBlockHeader>& headers)
651 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
663 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
664 const CBlockIndex* chain_start_header,
665 std::vector<CBlockHeader>& headers)
666 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
667
670 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
671
676 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
678 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
680 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
681 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
682
683 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
684
686 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
687 template <typename... Args>
688 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
689 {
690 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
691 }
692
694 void PushNodeVersion(CNode& pnode, const Peer& peer);
695
700 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
701
703 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
704
706 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
707
715 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
716
718 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
719
721
723
724 const CChainParams& m_chainparams;
725 CConnman& m_connman;
726 AddrMan& m_addrman;
728 BanMan* const m_banman;
729 ChainstateManager& m_chainman;
730 CTxMemPool& m_mempool;
731
740 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
741 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
742
743 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
744
746 std::atomic<int> m_best_height{-1};
748 std::atomic<std::chrono::seconds> m_best_block_time{0s};
749
751 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
752
753 node::Warnings& m_warnings;
754 TimeOffsets m_outbound_time_offsets{m_warnings};
755
756 const Options m_opts;
757
758 bool RejectIncomingTxs(const CNode& peer) const;
759
762 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
763
766 mutable Mutex m_peer_mutex;
773 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
774
776 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
777
779 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
781 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
782
783 uint32_t GetFetchFlags(const Peer& peer) const;
784
785 std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
786
788 int nSyncStarted GUARDED_BY(cs_main) = 0;
789
791 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
792
799 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
800
802 std::atomic<int> m_wtxid_relay_peers{0};
803
805 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
806
808 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
809
811 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
812
819 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
820 std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
821
822
823 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
824 Mutex m_most_recent_block_mutex;
825 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
826 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
827 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
828 std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
829
830 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
832 Mutex m_headers_presync_mutex;
840 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
842 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
844 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
846 std::atomic_bool m_headers_presync_should_signal{false};
847
849 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
850
852 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
853
855 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
856
864 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
865
866 /* Mark a block as in flight
867 * Returns false, still setting pit, if the block was already in flight from the same peer
868 * pit will only be valid as long as the same cs_main lock is being held
869 */
870 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
871
872 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
873
877 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
878
880 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
881
909 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
910
911 /* Multimap used to preserve insertion order */
912 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
913 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
914
916 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
917
919 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
921
922 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
923 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
925
927 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
928
930 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
931 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
932
939 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
940
942 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
943
945 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
946
947 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
948
952 std::vector<CTransactionRef> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
954 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
955
957 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
959 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
960 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
961
966 int64_t ApproximateBestBlockDepth() const;
967
974 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
975 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
976 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
977 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
978
994 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
995 BlockFilterType filter_type, uint32_t start_height,
996 const uint256& stop_hash, uint32_t max_height_diff,
997 const CBlockIndex*& stop_index,
998 BlockFilterIndex*& filter_index);
999
1009 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1010
1020 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1021
1031 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1032
1039 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1040
1041 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1042 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1043};
1044
1045const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1046{
1047 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1048 if (it == m_node_states.end())
1049 return nullptr;
1050 return &it->second;
1051}
1052
1053CNodeState* PeerManagerImpl::State(NodeId pnode)
1054{
1055 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1056}
1057
1063static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1064{
1065 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1066}
1067
1068void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1069{
1070 assert(peer.m_addr_known);
1071 peer.m_addr_known->insert(addr.GetKey());
1072}
1073
1074void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1075{
1076 // Known checking here is only to save space from duplicates.
1077 // Before sending, we'll filter it again for known addresses that were
1078 // added after addresses were pushed.
1079 assert(peer.m_addr_known);
1080 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1081 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1082 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1083 } else {
1084 peer.m_addrs_to_send.push_back(addr);
1085 }
1086 }
1087}
1088
1089static void AddKnownTx(Peer& peer, const uint256& hash)
1090{
1091 auto tx_relay = peer.GetTxRelay();
1092 if (!tx_relay) return;
1093
1094 LOCK(tx_relay->m_tx_inventory_mutex);
1095 tx_relay->m_tx_inventory_known_filter.insert(hash);
1096}
1097
1099static bool CanServeBlocks(const Peer& peer)
1100{
1101 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1102}
1103
1106static bool IsLimitedPeer(const Peer& peer)
1107{
1108 return (!(peer.m_their_services & NODE_NETWORK) &&
1109 (peer.m_their_services & NODE_NETWORK_LIMITED));
1110}
1111
1113static bool CanServeWitnesses(const Peer& peer)
1114{
1115 return peer.m_their_services & NODE_WITNESS;
1116}
1117
1118std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1119 std::chrono::seconds average_interval)
1120{
1121 if (m_next_inv_to_inbounds.load() < now) {
1122 // If this function were called from multiple threads simultaneously
1123 // it would possible that both update the next send variable, and return a different result to their caller.
1124 // This is not possible in practice as only the net processing thread invokes this function.
1125 m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1126 }
1127 return m_next_inv_to_inbounds;
1128}
1129
1130bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1131{
1132 return mapBlocksInFlight.count(hash);
1133}
1134
1135bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1136{
1137 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1138 auto [nodeid, block_it] = range.first->second;
1139 PeerRef peer{GetPeerRef(nodeid)};
1140 if (peer && !peer->m_is_inbound) return true;
1141 }
1142
1143 return false;
1144}
1145
1146void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1147{
1148 auto range = mapBlocksInFlight.equal_range(hash);
1149 if (range.first == range.second) {
1150 // Block was not requested from any peer
1151 return;
1152 }
1153
1154 // We should not have requested too many of this block
1155 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1156
1157 while (range.first != range.second) {
1158 auto [node_id, list_it] = range.first->second;
1159
1160 if (from_peer && *from_peer != node_id) {
1161 range.first++;
1162 continue;
1163 }
1164
1165 CNodeState& state = *Assert(State(node_id));
1166
1167 if (state.vBlocksInFlight.begin() == list_it) {
1168 // First block on the queue was received, update the start download time for the next one
1169 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1170 }
1171 state.vBlocksInFlight.erase(list_it);
1172
1173 if (state.vBlocksInFlight.empty()) {
1174 // Last validated block on the queue for this peer was received.
1175 m_peers_downloading_from--;
1176 }
1177 state.m_stalling_since = 0us;
1178
1179 range.first = mapBlocksInFlight.erase(range.first);
1180 }
1181}
1182
1183bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1184{
1185 const uint256& hash{block.GetBlockHash()};
1186
1187 CNodeState *state = State(nodeid);
1188 assert(state != nullptr);
1189
1190 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1191
1192 // Short-circuit most stuff in case it is from the same node
1193 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1194 if (range.first->second.first == nodeid) {
1195 if (pit) {
1196 *pit = &range.first->second.second;
1197 }
1198 return false;
1199 }
1200 }
1201
1202 // Make sure it's not being fetched already from same peer.
1203 RemoveBlockRequest(hash, nodeid);
1204
1205 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1206 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1207 if (state->vBlocksInFlight.size() == 1) {
1208 // We're starting a block download (batch) from this peer.
1209 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1210 m_peers_downloading_from++;
1211 }
1212 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1213 if (pit) {
1214 *pit = &itInFlight->second.second;
1215 }
1216 return true;
1217}
1218
1219void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1220{
1222
1223 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1224 // mempool will not contain the transactions necessary to reconstruct the
1225 // compact block.
1226 if (m_opts.ignore_incoming_txs) return;
1227
1228 CNodeState* nodestate = State(nodeid);
1229 PeerRef peer{GetPeerRef(nodeid)};
1230 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1231 // Don't request compact blocks if the peer has not signalled support
1232 return;
1233 }
1234
1235 int num_outbound_hb_peers = 0;
1236 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1237 if (*it == nodeid) {
1238 lNodesAnnouncingHeaderAndIDs.erase(it);
1239 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1240 return;
1241 }
1242 PeerRef peer_ref{GetPeerRef(*it)};
1243 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1244 }
1245 if (peer && peer->m_is_inbound) {
1246 // If we're adding an inbound HB peer, make sure we're not removing
1247 // our last outbound HB peer in the process.
1248 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1249 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1250 if (remove_peer && !remove_peer->m_is_inbound) {
1251 // Put the HB outbound peer in the second slot, so that it
1252 // doesn't get removed.
1253 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1254 }
1255 }
1256 }
1257 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1259 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1260 // As per BIP152, we only get 3 of our peers to announce
1261 // blocks using compact encodings.
1262 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1263 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1264 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1265 pnodeStop->m_bip152_highbandwidth_to = false;
1266 return true;
1267 });
1268 lNodesAnnouncingHeaderAndIDs.pop_front();
1269 }
1270 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1271 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1272 pfrom->m_bip152_highbandwidth_to = true;
1273 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1274 return true;
1275 });
1276}
1277
1278bool PeerManagerImpl::TipMayBeStale()
1279{
1281 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1282 if (m_last_tip_update.load() == 0s) {
1283 m_last_tip_update = GetTime<std::chrono::seconds>();
1284 }
1285 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1286}
1287
1288int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1289{
1290 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1291}
1292
1293bool PeerManagerImpl::CanDirectFetch()
1294{
1295 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1296}
1297
1298static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1299{
1300 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1301 return true;
1302 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1303 return true;
1304 return false;
1305}
1306
1307void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1308 CNodeState *state = State(nodeid);
1309 assert(state != nullptr);
1310
1311 if (!state->hashLastUnknownBlock.IsNull()) {
1312 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1313 if (pindex && pindex->nChainWork > 0) {
1314 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1315 state->pindexBestKnownBlock = pindex;
1316 }
1317 state->hashLastUnknownBlock.SetNull();
1318 }
1319 }
1320}
1321
1322void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1323 CNodeState *state = State(nodeid);
1324 assert(state != nullptr);
1325
1326 ProcessBlockAvailability(nodeid);
1327
1328 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1329 if (pindex && pindex->nChainWork > 0) {
1330 // An actually better block was announced.
1331 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1332 state->pindexBestKnownBlock = pindex;
1333 }
1334 } else {
1335 // An unknown block was announced; just assume that the latest one is the best one.
1336 state->hashLastUnknownBlock = hash;
1337 }
1338}
1339
1340// Logic for calculating which blocks to download from a given peer, given our current tip.
1341void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1342{
1343 if (count == 0)
1344 return;
1345
1346 vBlocks.reserve(vBlocks.size() + count);
1347 CNodeState *state = State(peer.m_id);
1348 assert(state != nullptr);
1349
1350 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1351 ProcessBlockAvailability(peer.m_id);
1352
1353 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1354 // This peer has nothing interesting.
1355 return;
1356 }
1357
1358 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1359 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1360 // so downloading blocks from it would be futile.
1361 const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1362 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1363 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1364 return;
1365 }
1366
1367 // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1368 // Guessing wrong in either direction is not a problem.
1369 // Also reset pindexLastCommonBlock after a snapshot was loaded, so that blocks after the snapshot will be prioritised for download.
1370 if (state->pindexLastCommonBlock == nullptr ||
1371 (snap_base && state->pindexLastCommonBlock->nHeight < snap_base->nHeight)) {
1372 state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1373 }
1374
1375 // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1376 // of its current tip anymore. Go back enough to fix that.
1377 state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1378 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1379 return;
1380
1381 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1382 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1383 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1384 // download that next block if the window were 1 larger.
1385 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1386
1387 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1388}
1389
1390void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1391{
1392 Assert(from_tip);
1393 Assert(target_block);
1394
1395 if (vBlocks.size() >= count) {
1396 return;
1397 }
1398
1399 vBlocks.reserve(count);
1400 CNodeState *state = Assert(State(peer.m_id));
1401
1402 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1403 // This peer can't provide us the complete series of blocks leading up to the
1404 // assumeutxo snapshot base.
1405 //
1406 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1407 // will eventually crash when we try to reorg to it. Let other logic
1408 // deal with whether we disconnect this peer.
1409 //
1410 // TODO at some point in the future, we might choose to request what blocks
1411 // this peer does have from the historical chain, despite it not having a
1412 // complete history beneath the snapshot base.
1413 return;
1414 }
1415
1416 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1417}
1418
1419void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1420{
1421 std::vector<const CBlockIndex*> vToFetch;
1422 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1423 bool is_limited_peer = IsLimitedPeer(peer);
1424 NodeId waitingfor = -1;
1425 while (pindexWalk->nHeight < nMaxHeight) {
1426 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1427 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1428 // as iterating over ~100 CBlockIndex* entries anyway.
1429 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1430 vToFetch.resize(nToFetch);
1431 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1432 vToFetch[nToFetch - 1] = pindexWalk;
1433 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1434 vToFetch[i - 1] = vToFetch[i]->pprev;
1435 }
1436
1437 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1438 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1439 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1440 // already part of our chain (and therefore don't need it even if pruned).
1441 for (const CBlockIndex* pindex : vToFetch) {
1442 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1443 // We consider the chain that this peer is on invalid.
1444 return;
1445 }
1446
1447 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1448 // We wouldn't download this block or its descendants from this peer.
1449 return;
1450 }
1451
1452 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1453 if (activeChain && pindex->HaveNumChainTxs()) {
1454 state->pindexLastCommonBlock = pindex;
1455 }
1456 continue;
1457 }
1458
1459 // Is block in-flight?
1460 if (IsBlockRequested(pindex->GetBlockHash())) {
1461 if (waitingfor == -1) {
1462 // This is the first already-in-flight block.
1463 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1464 }
1465 continue;
1466 }
1467
1468 // The block is not already downloaded, and not yet in flight.
1469 if (pindex->nHeight > nWindowEnd) {
1470 // We reached the end of the window.
1471 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1472 // We aren't able to fetch anything, but we would be if the download window was one larger.
1473 if (nodeStaller) *nodeStaller = waitingfor;
1474 }
1475 return;
1476 }
1477
1478 // Don't request blocks that go further than what limited peers can provide
1479 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1480 continue;
1481 }
1482
1483 vBlocks.push_back(pindex);
1484 if (vBlocks.size() == count) {
1485 return;
1486 }
1487 }
1488 }
1489}
1490
1491} // namespace
1492
1493void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1494{
1495 uint64_t my_services{peer.m_our_services};
1496 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1497 uint64_t nonce = pnode.GetLocalNonce();
1498 const int nNodeStartingHeight{m_best_height};
1499 NodeId nodeid = pnode.GetId();
1500 CAddress addr = pnode.addr;
1501
1502 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1503 uint64_t your_services{addr.nServices};
1504
1505 const bool tx_relay{!RejectIncomingTxs(pnode)};
1506 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1507 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1508 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1509 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1510
1511 if (fLogIPs) {
1512 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1513 } else {
1514 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1515 }
1516}
1517
1518void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1519{
1520 LOCK(cs_main);
1521 CNodeState *state = State(node);
1522 if (state) state->m_last_block_announcement = time_in_seconds;
1523}
1524
1525void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1526{
1527 NodeId nodeid = node.GetId();
1528 {
1529 LOCK(cs_main); // For m_node_states
1530 m_node_states.try_emplace(m_node_states.end(), nodeid);
1531 }
1532 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1533
1535 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1536 }
1537
1538 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1539 {
1540 LOCK(m_peer_mutex);
1541 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1542 }
1543}
1544
1545void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1546{
1547 std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1548
1549 for (const auto& txid : unbroadcast_txids) {
1550 CTransactionRef tx = m_mempool.get(txid);
1551
1552 if (tx != nullptr) {
1553 RelayTransaction(txid, tx->GetWitnessHash());
1554 } else {
1555 m_mempool.RemoveUnbroadcastTx(txid, true);
1556 }
1557 }
1558
1559 // Schedule next run for 10-15 minutes in the future.
1560 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1561 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1562 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1563}
1564
1565void PeerManagerImpl::FinalizeNode(const CNode& node)
1566{
1567 NodeId nodeid = node.GetId();
1568 {
1569 LOCK(cs_main);
1570 {
1571 // We remove the PeerRef from g_peer_map here, but we don't always
1572 // destruct the Peer. Sometimes another thread is still holding a
1573 // PeerRef, so the refcount is >= 1. Be careful not to do any
1574 // processing here that assumes Peer won't be changed before it's
1575 // destructed.
1576 PeerRef peer = RemovePeer(nodeid);
1577 assert(peer != nullptr);
1578 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1579 assert(m_wtxid_relay_peers >= 0);
1580 }
1581 CNodeState *state = State(nodeid);
1582 assert(state != nullptr);
1583
1584 if (state->fSyncStarted)
1585 nSyncStarted--;
1586
1587 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1588 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1589 while (range.first != range.second) {
1590 auto [node_id, list_it] = range.first->second;
1591 if (node_id != nodeid) {
1592 range.first++;
1593 } else {
1594 range.first = mapBlocksInFlight.erase(range.first);
1595 }
1596 }
1597 }
1598 {
1599 LOCK(m_tx_download_mutex);
1600 m_txdownloadman.DisconnectedPeer(nodeid);
1601 }
1602 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1603 m_num_preferred_download_peers -= state->fPreferredDownload;
1604 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1605 assert(m_peers_downloading_from >= 0);
1606 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1607 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1608
1609 m_node_states.erase(nodeid);
1610
1611 if (m_node_states.empty()) {
1612 // Do a consistency check after the last peer is removed.
1613 assert(mapBlocksInFlight.empty());
1614 assert(m_num_preferred_download_peers == 0);
1615 assert(m_peers_downloading_from == 0);
1616 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1617 assert(m_wtxid_relay_peers == 0);
1618 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1619 }
1620 } // cs_main
1621 if (node.fSuccessfullyConnected &&
1622 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1623 // Only change visible addrman state for full outbound peers. We don't
1624 // call Connected() for feeler connections since they don't have
1625 // fSuccessfullyConnected set.
1626 m_addrman.Connected(node.addr);
1627 }
1628 {
1629 LOCK(m_headers_presync_mutex);
1630 m_headers_presync_stats.erase(nodeid);
1631 }
1632 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1633}
1634
1635bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1636{
1637 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1638 return !(GetDesirableServiceFlags(services) & (~services));
1639}
1640
1641ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1642{
1643 if (services & NODE_NETWORK_LIMITED) {
1644 // Limited peers are desirable when we are close to the tip.
1645 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1647 }
1648 }
1650}
1651
1652PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1653{
1654 LOCK(m_peer_mutex);
1655 auto it = m_peer_map.find(id);
1656 return it != m_peer_map.end() ? it->second : nullptr;
1657}
1658
1659PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1660{
1661 PeerRef ret;
1662 LOCK(m_peer_mutex);
1663 auto it = m_peer_map.find(id);
1664 if (it != m_peer_map.end()) {
1665 ret = std::move(it->second);
1666 m_peer_map.erase(it);
1667 }
1668 return ret;
1669}
1670
1671bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1672{
1673 {
1674 LOCK(cs_main);
1675 const CNodeState* state = State(nodeid);
1676 if (state == nullptr)
1677 return false;
1678 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1679 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1680 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1681 if (queue.pindex)
1682 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1683 }
1684 }
1685
1686 PeerRef peer = GetPeerRef(nodeid);
1687 if (peer == nullptr) return false;
1688 stats.their_services = peer->m_their_services;
1689 stats.m_starting_height = peer->m_starting_height;
1690 // It is common for nodes with good ping times to suddenly become lagged,
1691 // due to a new block arriving or other large transfer.
1692 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1693 // since pingtime does not update until the ping is complete, which might take a while.
1694 // So, if a ping is taking an unusually long time in flight,
1695 // the caller can immediately detect that this is happening.
1696 auto ping_wait{0us};
1697 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1698 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1699 }
1700
1701 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1702 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1703 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1704 } else {
1705 stats.m_relay_txs = false;
1706 stats.m_fee_filter_received = 0;
1707 }
1708
1709 stats.m_ping_wait = ping_wait;
1710 stats.m_addr_processed = peer->m_addr_processed.load();
1711 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1712 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1713 {
1714 LOCK(peer->m_headers_sync_mutex);
1715 if (peer->m_headers_sync) {
1716 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1717 }
1718 }
1719 stats.time_offset = peer->m_time_offset;
1720
1721 return true;
1722}
1723
1724std::vector<TxOrphanage::OrphanTxBase> PeerManagerImpl::GetOrphanTransactions()
1725{
1726 LOCK(m_tx_download_mutex);
1727 return m_txdownloadman.GetOrphanTransactions();
1728}
1729
1731{
1732 return PeerManagerInfo{
1733 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1734 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1735 };
1736}
1737
1738void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1739{
1740 if (m_opts.max_extra_txs <= 0)
1741 return;
1742 if (!vExtraTxnForCompact.size())
1743 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1744 vExtraTxnForCompact[vExtraTxnForCompactIt] = tx;
1745 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1746}
1747
1748void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1749{
1750 LOCK(peer.m_misbehavior_mutex);
1751
1752 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1753 peer.m_should_discourage = true;
1754 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1755}
1756
1757void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1758 bool via_compact_block, const std::string& message)
1759{
1760 PeerRef peer{GetPeerRef(nodeid)};
1761 switch (state.GetResult()) {
1763 break;
1765 // We didn't try to process the block because the header chain may have
1766 // too little work.
1767 break;
1768 // The node is providing invalid data:
1771 if (!via_compact_block) {
1772 if (peer) Misbehaving(*peer, message);
1773 return;
1774 }
1775 break;
1777 {
1778 // Discourage outbound (but not inbound) peers if on an invalid chain.
1779 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1780 if (peer && !via_compact_block && !peer->m_is_inbound) {
1781 if (peer) Misbehaving(*peer, message);
1782 return;
1783 }
1784 break;
1785 }
1789 if (peer) Misbehaving(*peer, message);
1790 return;
1791 // Conflicting (but not necessarily invalid) data or different policy:
1793 if (peer) Misbehaving(*peer, message);
1794 return;
1796 break;
1797 }
1798 if (message != "") {
1799 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1800 }
1801}
1802
1803void PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1804{
1805 PeerRef peer{GetPeerRef(nodeid)};
1806 switch (state.GetResult()) {
1808 break;
1809 // The node is providing invalid data:
1811 if (peer) Misbehaving(*peer, "");
1812 return;
1813 // Conflicting (but not necessarily invalid) data or different policy:
1825 break;
1826 }
1827}
1828
1829bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1830{
1832 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1833 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1834 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1835 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1836}
1837
1838std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1839{
1840 if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1841
1842 // Ensure this peer exists and hasn't been disconnected
1843 PeerRef peer = GetPeerRef(peer_id);
1844 if (peer == nullptr) return "Peer does not exist";
1845
1846 // Ignore pre-segwit peers
1847 if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1848
1849 LOCK(cs_main);
1850
1851 // Forget about all prior requests
1852 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1853
1854 // Mark block as in-flight
1855 if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1856
1857 // Construct message to request the block
1858 const uint256& hash{block_index.GetBlockHash()};
1859 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1860
1861 // Send block request message to the peer
1862 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1863 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1864 return true;
1865 });
1866
1867 if (!success) return "Peer not fully connected";
1868
1869 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1870 hash.ToString(), peer_id);
1871 return std::nullopt;
1872}
1873
1874std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1875 BanMan* banman, ChainstateManager& chainman,
1876 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1877{
1878 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1879}
1880
1881PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1882 BanMan* banman, ChainstateManager& chainman,
1883 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1884 : m_rng{opts.deterministic_rng},
1885 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1886 m_chainparams(chainman.GetParams()),
1887 m_connman(connman),
1888 m_addrman(addrman),
1889 m_banman(banman),
1890 m_chainman(chainman),
1891 m_mempool(pool),
1892 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.max_orphan_txs, opts.deterministic_rng}),
1893 m_warnings{warnings},
1894 m_opts{opts}
1895{
1896 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1897 // This argument can go away after Erlay support is complete.
1898 if (opts.reconcile_txs) {
1899 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1900 }
1901}
1902
1903void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1904{
1905 // Stale tip checking and peer eviction are on two different timers, but we
1906 // don't want them to get out of sync due to drift in the scheduler, so we
1907 // combine them in one function and schedule at the quicker (peer-eviction)
1908 // timer.
1909 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1910 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1911
1912 // schedule next run for 10-15 minutes in the future
1913 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1914 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1915}
1916
1917void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1918{
1919 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1920 // m_tx_download_mutex waits on the mempool mutex.
1921 AssertLockNotHeld(m_mempool.cs);
1922 AssertLockNotHeld(m_tx_download_mutex);
1923
1924 if (!is_ibd) {
1925 LOCK(m_tx_download_mutex);
1926 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1927 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1928 // see them again.
1929 m_txdownloadman.ActiveTipChange();
1930 }
1931}
1932
1939void PeerManagerImpl::BlockConnected(
1940 ChainstateRole role,
1941 const std::shared_ptr<const CBlock>& pblock,
1942 const CBlockIndex* pindex)
1943{
1944 // Update this for all chainstate roles so that we don't mistakenly see peers
1945 // helping us do background IBD as having a stale tip.
1946 m_last_tip_update = GetTime<std::chrono::seconds>();
1947
1948 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1949 auto stalling_timeout = m_block_stalling_timeout.load();
1950 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1951 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1952 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1953 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1954 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1955 }
1956 }
1957
1958 // The following task can be skipped since we don't maintain a mempool for
1959 // the ibd/background chainstate.
1960 if (role == ChainstateRole::BACKGROUND) {
1961 return;
1962 }
1963 LOCK(m_tx_download_mutex);
1964 m_txdownloadman.BlockConnected(pblock);
1965}
1966
1967void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1968{
1969 LOCK(m_tx_download_mutex);
1970 m_txdownloadman.BlockDisconnected();
1971}
1972
1977void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1978{
1979 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
1980
1981 LOCK(cs_main);
1982
1983 if (pindex->nHeight <= m_highest_fast_announce)
1984 return;
1985 m_highest_fast_announce = pindex->nHeight;
1986
1987 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1988
1989 uint256 hashBlock(pblock->GetHash());
1990 const std::shared_future<CSerializedNetMsg> lazy_ser{
1991 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
1992
1993 {
1994 auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
1995 for (const auto& tx : pblock->vtx) {
1996 most_recent_block_txs->emplace(tx->GetHash(), tx);
1997 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
1998 }
1999
2000 LOCK(m_most_recent_block_mutex);
2001 m_most_recent_block_hash = hashBlock;
2002 m_most_recent_block = pblock;
2003 m_most_recent_compact_block = pcmpctblock;
2004 m_most_recent_block_txs = std::move(most_recent_block_txs);
2005 }
2006
2007 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2009
2011 return;
2012 ProcessBlockAvailability(pnode->GetId());
2013 CNodeState &state = *State(pnode->GetId());
2014 // If the peer has, or we announced to them the previous block already,
2015 // but we don't think they have this one, go ahead and announce it
2016 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2017
2018 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2019 hashBlock.ToString(), pnode->GetId());
2020
2021 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2022 PushMessage(*pnode, ser_cmpctblock.Copy());
2023 state.pindexBestHeaderSent = pindex;
2024 }
2025 });
2026}
2027
2032void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2033{
2034 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2035
2036 // Don't relay inventory during initial block download.
2037 if (fInitialDownload) return;
2038
2039 // Find the hashes of all blocks that weren't previously in the best chain.
2040 std::vector<uint256> vHashes;
2041 const CBlockIndex *pindexToAnnounce = pindexNew;
2042 while (pindexToAnnounce != pindexFork) {
2043 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2044 pindexToAnnounce = pindexToAnnounce->pprev;
2045 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2046 // Limit announcements in case of a huge reorganization.
2047 // Rely on the peer's synchronization mechanism in that case.
2048 break;
2049 }
2050 }
2051
2052 {
2053 LOCK(m_peer_mutex);
2054 for (auto& it : m_peer_map) {
2055 Peer& peer = *it.second;
2056 LOCK(peer.m_block_inv_mutex);
2057 for (const uint256& hash : vHashes | std::views::reverse) {
2058 peer.m_blocks_for_headers_relay.push_back(hash);
2059 }
2060 }
2061 }
2062
2063 m_connman.WakeMessageHandler();
2064}
2065
2070void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2071{
2072 LOCK(cs_main);
2073
2074 const uint256 hash(block.GetHash());
2075 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2076
2077 // If the block failed validation, we know where it came from and we're still connected
2078 // to that peer, maybe punish.
2079 if (state.IsInvalid() &&
2080 it != mapBlockSource.end() &&
2081 State(it->second.first)) {
2082 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2083 }
2084 // Check that:
2085 // 1. The block is valid
2086 // 2. We're not in initial block download
2087 // 3. This is currently the best block we're aware of. We haven't updated
2088 // the tip yet so we have no way to check this directly here. Instead we
2089 // just check that there are currently no other blocks in flight.
2090 else if (state.IsValid() &&
2091 !m_chainman.IsInitialBlockDownload() &&
2092 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2093 if (it != mapBlockSource.end()) {
2094 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2095 }
2096 }
2097 if (it != mapBlockSource.end())
2098 mapBlockSource.erase(it);
2099}
2100
2102//
2103// Messages
2104//
2105
2106bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2107{
2108 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2109}
2110
2111void PeerManagerImpl::SendPings()
2112{
2113 LOCK(m_peer_mutex);
2114 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2115}
2116
2117void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2118{
2119 LOCK(m_peer_mutex);
2120 for(auto& it : m_peer_map) {
2121 Peer& peer = *it.second;
2122 auto tx_relay = peer.GetTxRelay();
2123 if (!tx_relay) continue;
2124
2125 LOCK(tx_relay->m_tx_inventory_mutex);
2126 // Only queue transactions for announcement once the version handshake
2127 // is completed. The time of arrival for these transactions is
2128 // otherwise at risk of leaking to a spy, if the spy is able to
2129 // distinguish transactions received during the handshake from the rest
2130 // in the announcement.
2131 if (tx_relay->m_next_inv_send_time == 0s) continue;
2132
2133 const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2134 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2135 tx_relay->m_tx_inventory_to_send.insert(hash);
2136 }
2137 };
2138}
2139
2140void PeerManagerImpl::RelayAddress(NodeId originator,
2141 const CAddress& addr,
2142 bool fReachable)
2143{
2144 // We choose the same nodes within a given 24h window (if the list of connected
2145 // nodes does not change) and we don't relay to nodes that already know an
2146 // address. So within 24h we will likely relay a given address once. This is to
2147 // prevent a peer from unjustly giving their address better propagation by sending
2148 // it to us repeatedly.
2149
2150 if (!fReachable && !addr.IsRelayable()) return;
2151
2152 // Relay to a limited number of other nodes
2153 // Use deterministic randomness to send to the same nodes for 24 hours
2154 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2155 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2156 const auto current_time{GetTime<std::chrono::seconds>()};
2157 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2158 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2160 .Write(hash_addr)
2161 .Write(time_addr)};
2162
2163 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2164 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2165
2166 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2167 assert(nRelayNodes <= best.size());
2168
2169 LOCK(m_peer_mutex);
2170
2171 for (auto& [id, peer] : m_peer_map) {
2172 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2173 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2174 for (unsigned int i = 0; i < nRelayNodes; i++) {
2175 if (hashKey > best[i].first) {
2176 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2177 best[i] = std::make_pair(hashKey, peer.get());
2178 break;
2179 }
2180 }
2181 }
2182 };
2183
2184 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2185 PushAddress(*best[i].second, addr);
2186 }
2187}
2188
2189void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2190{
2191 std::shared_ptr<const CBlock> a_recent_block;
2192 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2193 {
2194 LOCK(m_most_recent_block_mutex);
2195 a_recent_block = m_most_recent_block;
2196 a_recent_compact_block = m_most_recent_compact_block;
2197 }
2198
2199 bool need_activate_chain = false;
2200 {
2201 LOCK(cs_main);
2202 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2203 if (pindex) {
2204 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2205 pindex->IsValid(BLOCK_VALID_TREE)) {
2206 // If we have the block and all of its parents, but have not yet validated it,
2207 // we might be in the middle of connecting it (ie in the unlock of cs_main
2208 // before ActivateBestChain but after AcceptBlock).
2209 // In this case, we need to run ActivateBestChain prior to checking the relay
2210 // conditions below.
2211 need_activate_chain = true;
2212 }
2213 }
2214 } // release cs_main before calling ActivateBestChain
2215 if (need_activate_chain) {
2217 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2218 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2219 }
2220 }
2221
2222 const CBlockIndex* pindex{nullptr};
2223 const CBlockIndex* tip{nullptr};
2224 bool can_direct_fetch{false};
2225 FlatFilePos block_pos{};
2226 {
2227 LOCK(cs_main);
2228 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2229 if (!pindex) {
2230 return;
2231 }
2232 if (!BlockRequestAllowed(pindex)) {
2233 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2234 return;
2235 }
2236 // disconnect node in case we have reached the outbound limit for serving historical blocks
2237 if (m_connman.OutboundTargetReached(true) &&
2238 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2239 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2240 ) {
2241 LogDebug(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId());
2242 pfrom.fDisconnect = true;
2243 return;
2244 }
2245 tip = m_chainman.ActiveChain().Tip();
2246 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2248 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2249 )) {
2250 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, disconnect peer=%d\n", pfrom.GetId());
2251 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2252 pfrom.fDisconnect = true;
2253 return;
2254 }
2255 // Pruned nodes may have deleted the block, so check whether
2256 // it's available before trying to send.
2257 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2258 return;
2259 }
2260 can_direct_fetch = CanDirectFetch();
2261 block_pos = pindex->GetBlockPos();
2262 }
2263
2264 std::shared_ptr<const CBlock> pblock;
2265 if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
2266 pblock = a_recent_block;
2267 } else if (inv.IsMsgWitnessBlk()) {
2268 // Fast-path: in this case it is possible to serve the block directly from disk,
2269 // as the network format matches the format on disk
2270 std::vector<uint8_t> block_data;
2271 if (!m_chainman.m_blockman.ReadRawBlockFromDisk(block_data, block_pos)) {
2272 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2273 LogDebug(BCLog::NET, "Block was pruned before it could be read, disconnect peer=%s\n", pfrom.GetId());
2274 } else {
2275 LogError("Cannot load block from disk, disconnect peer=%d\n", pfrom.GetId());
2276 }
2277 pfrom.fDisconnect = true;
2278 return;
2279 }
2280 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, Span{block_data});
2281 // Don't set pblock as we've sent the block
2282 } else {
2283 // Send block from disk
2284 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2285 if (!m_chainman.m_blockman.ReadBlockFromDisk(*pblockRead, block_pos)) {
2286 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2287 LogDebug(BCLog::NET, "Block was pruned before it could be read, disconnect peer=%s\n", pfrom.GetId());
2288 } else {
2289 LogError("Cannot load block from disk, disconnect peer=%d\n", pfrom.GetId());
2290 }
2291 pfrom.fDisconnect = true;
2292 return;
2293 }
2294 pblock = pblockRead;
2295 }
2296 if (pblock) {
2297 if (inv.IsMsgBlk()) {
2298 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2299 } else if (inv.IsMsgWitnessBlk()) {
2300 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2301 } else if (inv.IsMsgFilteredBlk()) {
2302 bool sendMerkleBlock = false;
2303 CMerkleBlock merkleBlock;
2304 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2305 LOCK(tx_relay->m_bloom_filter_mutex);
2306 if (tx_relay->m_bloom_filter) {
2307 sendMerkleBlock = true;
2308 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2309 }
2310 }
2311 if (sendMerkleBlock) {
2312 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2313 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2314 // This avoids hurting performance by pointlessly requiring a round-trip
2315 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2316 // they must either disconnect and retry or request the full block.
2317 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2318 // however we MUST always provide at least what the remote peer needs
2319 typedef std::pair<unsigned int, uint256> PairType;
2320 for (PairType& pair : merkleBlock.vMatchedTxn)
2321 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2322 }
2323 // else
2324 // no response
2325 } else if (inv.IsMsgCmpctBlk()) {
2326 // If a peer is asking for old blocks, we're almost guaranteed
2327 // they won't have a useful mempool to match against a compact block,
2328 // and we don't feel like constructing the object for them, so
2329 // instead we respond with the full, non-compact block.
2330 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2331 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
2332 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2333 } else {
2334 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2335 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2336 }
2337 } else {
2338 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2339 }
2340 }
2341 }
2342
2343 {
2344 LOCK(peer.m_block_inv_mutex);
2345 // Trigger the peer node to send a getblocks request for the next batch of inventory
2346 if (inv.hash == peer.m_continuation_block) {
2347 // Send immediately. This must send even if redundant,
2348 // and we want it right after the last block so they don't
2349 // wait for other stuff first.
2350 std::vector<CInv> vInv;
2351 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2352 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2353 peer.m_continuation_block.SetNull();
2354 }
2355 }
2356}
2357
2358CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2359{
2360 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2361 auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2362 if (txinfo.tx) {
2363 return std::move(txinfo.tx);
2364 }
2365
2366 // Or it might be from the most recent block
2367 {
2368 LOCK(m_most_recent_block_mutex);
2369 if (m_most_recent_block_txs != nullptr) {
2370 auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2371 if (it != m_most_recent_block_txs->end()) return it->second;
2372 }
2373 }
2374
2375 return {};
2376}
2377
2378void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2379{
2381
2382 auto tx_relay = peer.GetTxRelay();
2383
2384 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2385 std::vector<CInv> vNotFound;
2386
2387 // Process as many TX items from the front of the getdata queue as
2388 // possible, since they're common and it's efficient to batch process
2389 // them.
2390 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2391 if (interruptMsgProc) return;
2392 // The send buffer provides backpressure. If there's no space in
2393 // the buffer, pause processing until the next call.
2394 if (pfrom.fPauseSend) break;
2395
2396 const CInv &inv = *it++;
2397
2398 if (tx_relay == nullptr) {
2399 // Ignore GETDATA requests for transactions from block-relay-only
2400 // peers and peers that asked us not to announce transactions.
2401 continue;
2402 }
2403
2404 CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2405 if (tx) {
2406 // WTX and WITNESS_TX imply we serialize with witness
2407 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2408 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2409 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2410 } else {
2411 vNotFound.push_back(inv);
2412 }
2413 }
2414
2415 // Only process one BLOCK item per call, since they're uncommon and can be
2416 // expensive to process.
2417 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2418 const CInv &inv = *it++;
2419 if (inv.IsGenBlkMsg()) {
2420 ProcessGetBlockData(pfrom, peer, inv);
2421 }
2422 // else: If the first item on the queue is an unknown type, we erase it
2423 // and continue processing the queue on the next call.
2424 }
2425
2426 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2427
2428 if (!vNotFound.empty()) {
2429 // Let the peer know that we didn't find what it asked for, so it doesn't
2430 // have to wait around forever.
2431 // SPV clients care about this message: it's needed when they are
2432 // recursively walking the dependencies of relevant unconfirmed
2433 // transactions. SPV clients want to do that because they want to know
2434 // about (and store and rebroadcast and risk analyze) the dependencies
2435 // of transactions relevant to them, without having to download the
2436 // entire memory pool.
2437 // Also, other nodes can use these messages to automatically request a
2438 // transaction from some other peer that announced it, and stop
2439 // waiting for us to respond.
2440 // In normal operation, we often send NOTFOUND messages for parents of
2441 // transactions that we relay; if a peer is missing a parent, they may
2442 // assume we have them and request the parents from us.
2443 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2444 }
2445}
2446
2447uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2448{
2449 uint32_t nFetchFlags = 0;
2450 if (CanServeWitnesses(peer)) {
2451 nFetchFlags |= MSG_WITNESS_FLAG;
2452 }
2453 return nFetchFlags;
2454}
2455
2456void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2457{
2458 BlockTransactions resp(req);
2459 for (size_t i = 0; i < req.indexes.size(); i++) {
2460 if (req.indexes[i] >= block.vtx.size()) {
2461 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2462 return;
2463 }
2464 resp.txn[i] = block.vtx[req.indexes[i]];
2465 }
2466
2467 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2468}
2469
2470bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2471{
2472 // Do these headers have proof-of-work matching what's claimed?
2473 if (!HasValidProofOfWork(headers, consensusParams)) {
2474 Misbehaving(peer, "header with invalid proof of work");
2475 return false;
2476 }
2477
2478 // Are these headers connected to each other?
2479 if (!CheckHeadersAreContinuous(headers)) {
2480 Misbehaving(peer, "non-continuous headers sequence");
2481 return false;
2482 }
2483 return true;
2484}
2485
2486arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2487{
2488 arith_uint256 near_chaintip_work = 0;
2489 LOCK(cs_main);
2490 if (m_chainman.ActiveChain().Tip() != nullptr) {
2491 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2492 // Use a 144 block buffer, so that we'll accept headers that fork from
2493 // near our tip.
2494 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2495 }
2496 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2497}
2498
2505void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2506 const std::vector<CBlockHeader>& headers)
2507{
2508 // Try to fill in the missing headers.
2509 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2510 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2511 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2512 headers[0].GetHash().ToString(),
2513 headers[0].hashPrevBlock.ToString(),
2514 best_header->nHeight,
2515 pfrom.GetId());
2516 }
2517
2518 // Set hashLastUnknownBlock for this peer, so that if we
2519 // eventually get the headers - even from a different peer -
2520 // we can use this peer to download.
2521 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2522}
2523
2524bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2525{
2526 uint256 hashLastBlock;
2527 for (const CBlockHeader& header : headers) {
2528 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2529 return false;
2530 }
2531 hashLastBlock = header.GetHash();
2532 }
2533 return true;
2534}
2535
2536bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2537{
2538 if (peer.m_headers_sync) {
2539 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2540 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2541 if (result.success) peer.m_last_getheaders_timestamp = {};
2542 if (result.request_more) {
2543 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2544 // If we were instructed to ask for a locator, it should not be empty.
2545 Assume(!locator.vHave.empty());
2546 // We can only be instructed to request more if processing was successful.
2547 Assume(result.success);
2548 if (!locator.vHave.empty()) {
2549 // It should be impossible for the getheaders request to fail,
2550 // because we just cleared the last getheaders timestamp.
2551 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2552 Assume(sent_getheaders);
2553 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2554 locator.vHave.front().ToString(), pfrom.GetId());
2555 }
2556 }
2557
2558 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2559 peer.m_headers_sync.reset(nullptr);
2560
2561 // Delete this peer's entry in m_headers_presync_stats.
2562 // If this is m_headers_presync_bestpeer, it will be replaced later
2563 // by the next peer that triggers the else{} branch below.
2564 LOCK(m_headers_presync_mutex);
2565 m_headers_presync_stats.erase(pfrom.GetId());
2566 } else {
2567 // Build statistics for this peer's sync.
2568 HeadersPresyncStats stats;
2569 stats.first = peer.m_headers_sync->GetPresyncWork();
2570 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2571 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2572 peer.m_headers_sync->GetPresyncTime()};
2573 }
2574
2575 // Update statistics in stats.
2576 LOCK(m_headers_presync_mutex);
2577 m_headers_presync_stats[pfrom.GetId()] = stats;
2578 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2579 bool best_updated = false;
2580 if (best_it == m_headers_presync_stats.end()) {
2581 // If the cached best peer is outdated, iterate over all remaining ones (including
2582 // newly updated one) to find the best one.
2583 NodeId peer_best{-1};
2584 const HeadersPresyncStats* stat_best{nullptr};
2585 for (const auto& [peer, stat] : m_headers_presync_stats) {
2586 if (!stat_best || stat > *stat_best) {
2587 peer_best = peer;
2588 stat_best = &stat;
2589 }
2590 }
2591 m_headers_presync_bestpeer = peer_best;
2592 best_updated = (peer_best == pfrom.GetId());
2593 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2594 // pfrom was and remains the best peer, or pfrom just became best.
2595 m_headers_presync_bestpeer = pfrom.GetId();
2596 best_updated = true;
2597 }
2598 if (best_updated && stats.second.has_value()) {
2599 // If the best peer updated, and it is in its first phase, signal.
2600 m_headers_presync_should_signal = true;
2601 }
2602 }
2603
2604 if (result.success) {
2605 // We only overwrite the headers passed in if processing was
2606 // successful.
2607 headers.swap(result.pow_validated_headers);
2608 }
2609
2610 return result.success;
2611 }
2612 // Either we didn't have a sync in progress, or something went wrong
2613 // processing these headers, or we are returning headers to the caller to
2614 // process.
2615 return false;
2616}
2617
2618bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2619{
2620 // Calculate the claimed total work on this chain.
2621 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2622
2623 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2624 // before we'll store it)
2625 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2626
2627 // Avoid DoS via low-difficulty-headers by only processing if the headers
2628 // are part of a chain with sufficient work.
2629 if (total_work < minimum_chain_work) {
2630 // Only try to sync with this peer if their headers message was full;
2631 // otherwise they don't have more headers after this so no point in
2632 // trying to sync their too-little-work chain.
2633 if (headers.size() == m_opts.max_headers_result) {
2634 // Note: we could advance to the last header in this set that is
2635 // known to us, rather than starting at the first header (which we
2636 // may already have); however this is unlikely to matter much since
2637 // ProcessHeadersMessage() already handles the case where all
2638 // headers in a received message are already known and are
2639 // ancestors of m_best_header or chainActive.Tip(), by skipping
2640 // this logic in that case. So even if the first header in this set
2641 // of headers is known, some header in this set must be new, so
2642 // advancing to the first unknown header would be a small effect.
2643 LOCK(peer.m_headers_sync_mutex);
2644 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2645 chain_start_header, minimum_chain_work));
2646
2647 // Now a HeadersSyncState object for tracking this synchronization
2648 // is created, process the headers using it as normal. Failures are
2649 // handled inside of IsContinuationOfLowWorkHeadersSync.
2650 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2651 } else {
2652 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2653 }
2654
2655 // The peer has not yet given us a chain that meets our work threshold,
2656 // so we want to prevent further processing of the headers in any case.
2657 headers = {};
2658 return true;
2659 }
2660
2661 return false;
2662}
2663
2664bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2665{
2666 if (header == nullptr) {
2667 return false;
2668 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2669 return true;
2670 } else if (m_chainman.ActiveChain().Contains(header)) {
2671 return true;
2672 }
2673 return false;
2674}
2675
2676bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2677{
2678 const auto current_time = NodeClock::now();
2679
2680 // Only allow a new getheaders message to go out if we don't have a recent
2681 // one already in-flight
2682 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2683 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2684 peer.m_last_getheaders_timestamp = current_time;
2685 return true;
2686 }
2687 return false;
2688}
2689
2690/*
2691 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2692 * We require that the given tip have at least as much work as our tip, and for
2693 * our current tip to be "close to synced" (see CanDirectFetch()).
2694 */
2695void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2696{
2697 LOCK(cs_main);
2698 CNodeState *nodestate = State(pfrom.GetId());
2699
2700 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2701 std::vector<const CBlockIndex*> vToFetch;
2702 const CBlockIndex* pindexWalk{&last_header};
2703 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2704 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2705 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2706 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2707 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2708 // We don't have this block, and it's not yet in flight.
2709 vToFetch.push_back(pindexWalk);
2710 }
2711 pindexWalk = pindexWalk->pprev;
2712 }
2713 // If pindexWalk still isn't on our main chain, we're looking at a
2714 // very large reorg at a time we think we're close to caught up to
2715 // the main chain -- this shouldn't really happen. Bail out on the
2716 // direct fetch and rely on parallel download instead.
2717 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2718 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2719 last_header.GetBlockHash().ToString(),
2720 last_header.nHeight);
2721 } else {
2722 std::vector<CInv> vGetData;
2723 // Download as much as possible, from earliest to latest.
2724 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2725 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2726 // Can't download any more from this peer
2727 break;
2728 }
2729 uint32_t nFetchFlags = GetFetchFlags(peer);
2730 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2731 BlockRequested(pfrom.GetId(), *pindex);
2732 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2733 pindex->GetBlockHash().ToString(), pfrom.GetId());
2734 }
2735 if (vGetData.size() > 1) {
2736 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2737 last_header.GetBlockHash().ToString(),
2738 last_header.nHeight);
2739 }
2740 if (vGetData.size() > 0) {
2741 if (!m_opts.ignore_incoming_txs &&
2742 nodestate->m_provides_cmpctblocks &&
2743 vGetData.size() == 1 &&
2744 mapBlocksInFlight.size() == 1 &&
2745 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2746 // In any case, we want to download using a compact block, not a regular one
2747 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2748 }
2749 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2750 }
2751 }
2752 }
2753}
2754
2760void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2761 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2762{
2763 LOCK(cs_main);
2764 CNodeState *nodestate = State(pfrom.GetId());
2765
2766 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2767
2768 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2769 // because it is set in UpdateBlockAvailability. Some nullptr checks
2770 // are still present, however, as belt-and-suspenders.
2771
2772 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2773 nodestate->m_last_block_announcement = GetTime();
2774 }
2775
2776 // If we're in IBD, we want outbound peers that will serve us a useful
2777 // chain. Disconnect peers that are on chains with insufficient work.
2778 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2779 // If the peer has no more headers to give us, then we know we have
2780 // their tip.
2781 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2782 // This peer has too little work on their headers chain to help
2783 // us sync -- disconnect if it is an outbound disconnection
2784 // candidate.
2785 // Note: We compare their tip to the minimum chain work (rather than
2786 // m_chainman.ActiveChain().Tip()) because we won't start block download
2787 // until we have a headers chain that has at least
2788 // the minimum chain work, even if a peer has a chain past our tip,
2789 // as an anti-DoS measure.
2790 if (pfrom.IsOutboundOrBlockRelayConn()) {
2791 LogPrintf("Disconnecting outbound peer %d -- headers chain has insufficient work\n", pfrom.GetId());
2792 pfrom.fDisconnect = true;
2793 }
2794 }
2795 }
2796
2797 // If this is an outbound full-relay peer, check to see if we should protect
2798 // it from the bad/lagging chain logic.
2799 // Note that outbound block-relay peers are excluded from this protection, and
2800 // thus always subject to eviction under the bad/lagging chain logic.
2801 // See ChainSyncTimeoutState.
2802 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2803 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2804 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2805 nodestate->m_chain_sync.m_protect = true;
2806 ++m_outbound_peers_with_protect_from_disconnect;
2807 }
2808 }
2809}
2810
2811void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2812 std::vector<CBlockHeader>&& headers,
2813 bool via_compact_block)
2814{
2815 size_t nCount = headers.size();
2816
2817 if (nCount == 0) {
2818 // Nothing interesting. Stop asking this peers for more headers.
2819 // If we were in the middle of headers sync, receiving an empty headers
2820 // message suggests that the peer suddenly has nothing to give us
2821 // (perhaps it reorged to our chain). Clear download state for this peer.
2822 LOCK(peer.m_headers_sync_mutex);
2823 if (peer.m_headers_sync) {
2824 peer.m_headers_sync.reset(nullptr);
2825 LOCK(m_headers_presync_mutex);
2826 m_headers_presync_stats.erase(pfrom.GetId());
2827 }
2828 // A headers message with no headers cannot be an announcement, so assume
2829 // it is a response to our last getheaders request, if there is one.
2830 peer.m_last_getheaders_timestamp = {};
2831 return;
2832 }
2833
2834 // Before we do any processing, make sure these pass basic sanity checks.
2835 // We'll rely on headers having valid proof-of-work further down, as an
2836 // anti-DoS criteria (note: this check is required before passing any
2837 // headers into HeadersSyncState).
2838 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2839 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2840 // just return. (Note that even if a header is announced via compact
2841 // block, the header itself should be valid, so this type of error can
2842 // always be punished.)
2843 return;
2844 }
2845
2846 const CBlockIndex *pindexLast = nullptr;
2847
2848 // We'll set already_validated_work to true if these headers are
2849 // successfully processed as part of a low-work headers sync in progress
2850 // (either in PRESYNC or REDOWNLOAD phase).
2851 // If true, this will mean that any headers returned to us (ie during
2852 // REDOWNLOAD) can be validated without further anti-DoS checks.
2853 bool already_validated_work = false;
2854
2855 // If we're in the middle of headers sync, let it do its magic.
2856 bool have_headers_sync = false;
2857 {
2858 LOCK(peer.m_headers_sync_mutex);
2859
2860 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2861
2862 // The headers we passed in may have been:
2863 // - untouched, perhaps if no headers-sync was in progress, or some
2864 // failure occurred
2865 // - erased, such as if the headers were successfully processed and no
2866 // additional headers processing needs to take place (such as if we
2867 // are still in PRESYNC)
2868 // - replaced with headers that are now ready for validation, such as
2869 // during the REDOWNLOAD phase of a low-work headers sync.
2870 // So just check whether we still have headers that we need to process,
2871 // or not.
2872 if (headers.empty()) {
2873 return;
2874 }
2875
2876 have_headers_sync = !!peer.m_headers_sync;
2877 }
2878
2879 // Do these headers connect to something in our block index?
2880 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2881 bool headers_connect_blockindex{chain_start_header != nullptr};
2882
2883 if (!headers_connect_blockindex) {
2884 // This could be a BIP 130 block announcement, use
2885 // special logic for handling headers that don't connect, as this
2886 // could be benign.
2887 HandleUnconnectingHeaders(pfrom, peer, headers);
2888 return;
2889 }
2890
2891 // If headers connect, assume that this is in response to any outstanding getheaders
2892 // request we may have sent, and clear out the time of our last request. Non-connecting
2893 // headers cannot be a response to a getheaders request.
2894 peer.m_last_getheaders_timestamp = {};
2895
2896 // If the headers we received are already in memory and an ancestor of
2897 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2898 // use any more memory (and we are not leaking information that could be
2899 // used to fingerprint us).
2900 const CBlockIndex *last_received_header{nullptr};
2901 {
2902 LOCK(cs_main);
2903 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2904 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2905 already_validated_work = true;
2906 }
2907 }
2908
2909 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2910 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2911 // on startup).
2913 already_validated_work = true;
2914 }
2915
2916 // At this point, the headers connect to something in our block index.
2917 // Do anti-DoS checks to determine if we should process or store for later
2918 // processing.
2919 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2920 chain_start_header, headers)) {
2921 // If we successfully started a low-work headers sync, then there
2922 // should be no headers to process any further.
2923 Assume(headers.empty());
2924 return;
2925 }
2926
2927 // At this point, we have a set of headers with sufficient work on them
2928 // which can be processed.
2929
2930 // If we don't have the last header, then this peer will have given us
2931 // something new (if these headers are valid).
2932 bool received_new_header{last_received_header == nullptr};
2933
2934 // Now process all the headers.
2936 if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2937 if (state.IsInvalid()) {
2938 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2939 return;
2940 }
2941 }
2942 assert(pindexLast);
2943
2944 // Consider fetching more headers if we are not using our headers-sync mechanism.
2945 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2946 // Headers message had its maximum size; the peer may have more headers.
2947 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2948 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2949 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2950 }
2951 }
2952
2953 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2954
2955 // Consider immediately downloading blocks.
2956 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2957
2958 return;
2959}
2960
2961std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2962 bool first_time_failure)
2963{
2964 AssertLockNotHeld(m_peer_mutex);
2965 AssertLockHeld(g_msgproc_mutex);
2966 AssertLockHeld(m_tx_download_mutex);
2967
2968 PeerRef peer{GetPeerRef(nodeid)};
2969
2970 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
2971 ptx->GetHash().ToString(),
2972 ptx->GetWitnessHash().ToString(),
2973 nodeid,
2974 state.ToString());
2975
2976 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
2977
2978 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
2979 AddToCompactExtraTransactions(ptx);
2980 }
2981 for (const uint256& parent_txid : unique_parents) {
2982 if (peer) AddKnownTx(*peer, parent_txid);
2983 }
2984
2985 MaybePunishNodeForTx(nodeid, state);
2986
2987 return package_to_validate;
2988}
2989
2990void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
2991{
2992 AssertLockNotHeld(m_peer_mutex);
2993 AssertLockHeld(g_msgproc_mutex);
2994 AssertLockHeld(m_tx_download_mutex);
2995
2996 m_txdownloadman.MempoolAcceptedTx(tx);
2997
2998 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
2999 nodeid,
3000 tx->GetHash().ToString(),
3001 tx->GetWitnessHash().ToString(),
3002 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3003
3004 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3005
3006 for (const CTransactionRef& removedTx : replaced_transactions) {
3007 AddToCompactExtraTransactions(removedTx);
3008 }
3009}
3010
3011void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3012{
3013 AssertLockNotHeld(m_peer_mutex);
3014 AssertLockHeld(g_msgproc_mutex);
3015 AssertLockHeld(m_tx_download_mutex);
3016
3017 const auto& package = package_to_validate.m_txns;
3018 const auto& senders = package_to_validate.m_senders;
3019
3020 if (package_result.m_state.IsInvalid()) {
3021 m_txdownloadman.MempoolRejectedPackage(package);
3022 }
3023 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3024 if (!Assume(package.size() == 2)) return;
3025
3026 // Iterate backwards to erase in-package descendants from the orphanage before they become
3027 // relevant in AddChildrenToWorkSet.
3028 auto package_iter = package.rbegin();
3029 auto senders_iter = senders.rbegin();
3030 while (package_iter != package.rend()) {
3031 const auto& tx = *package_iter;
3032 const NodeId nodeid = *senders_iter;
3033 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3034
3035 // It is not guaranteed that a result exists for every transaction.
3036 if (it_result != package_result.m_tx_results.end()) {
3037 const auto& tx_result = it_result->second;
3038 switch (tx_result.m_result_type) {
3040 {
3041 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3042 break;
3043 }
3046 {
3047 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3048 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3049 // This should be updated if package submission is ever used for transactions
3050 // that haven't already been validated before.
3051 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3052 break;
3053 }
3055 {
3056 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3057 Assume(false);
3058 break;
3059 }
3060 }
3061 }
3062 package_iter++;
3063 senders_iter++;
3064 }
3065}
3066
3067bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3068{
3069 AssertLockHeld(g_msgproc_mutex);
3070 LOCK2(::cs_main, m_tx_download_mutex);
3071
3072 CTransactionRef porphanTx = nullptr;
3073
3074 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3075 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3076 const TxValidationState& state = result.m_state;
3077 const Txid& orphanHash = porphanTx->GetHash();
3078 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3079
3081 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3082 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3083 return true;
3084 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3085 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3086 orphanHash.ToString(),
3087 orphan_wtxid.ToString(),
3088 peer.m_id,
3089 state.ToString());
3090
3091 if (Assume(state.IsInvalid() &&
3095 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3096 }
3097 return true;
3098 }
3099 }
3100
3101 return false;
3102}
3103
3104bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3105 BlockFilterType filter_type, uint32_t start_height,
3106 const uint256& stop_hash, uint32_t max_height_diff,
3107 const CBlockIndex*& stop_index,
3108 BlockFilterIndex*& filter_index)
3109{
3110 const bool supported_filter_type =
3111 (filter_type == BlockFilterType::BASIC &&
3112 (peer.m_our_services & NODE_COMPACT_FILTERS));
3113 if (!supported_filter_type) {
3114 LogDebug(BCLog::NET, "peer %d requested unsupported block filter type: %d\n",
3115 node.GetId(), static_cast<uint8_t>(filter_type));
3116 node.fDisconnect = true;
3117 return false;
3118 }
3119
3120 {
3121 LOCK(cs_main);
3122 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3123
3124 // Check that the stop block exists and the peer would be allowed to fetch it.
3125 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3126 LogDebug(BCLog::NET, "peer %d requested invalid block hash: %s\n",
3127 node.GetId(), stop_hash.ToString());
3128 node.fDisconnect = true;
3129 return false;
3130 }
3131 }
3132
3133 uint32_t stop_height = stop_index->nHeight;
3134 if (start_height > stop_height) {
3135 LogDebug(BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with "
3136 "start height %d and stop height %d\n",
3137 node.GetId(), start_height, stop_height);
3138 node.fDisconnect = true;
3139 return false;
3140 }
3141 if (stop_height - start_height >= max_height_diff) {
3142 LogDebug(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n",
3143 node.GetId(), stop_height - start_height + 1, max_height_diff);
3144 node.fDisconnect = true;
3145 return false;
3146 }
3147
3148 filter_index = GetBlockFilterIndex(filter_type);
3149 if (!filter_index) {
3150 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3151 return false;
3152 }
3153
3154 return true;
3155}
3156
3157void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3158{
3159 uint8_t filter_type_ser;
3160 uint32_t start_height;
3161 uint256 stop_hash;
3162
3163 vRecv >> filter_type_ser >> start_height >> stop_hash;
3164
3165 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3166
3167 const CBlockIndex* stop_index;
3168 BlockFilterIndex* filter_index;
3169 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3170 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3171 return;
3172 }
3173
3174 std::vector<BlockFilter> filters;
3175 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3176 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3177 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3178 return;
3179 }
3180
3181 for (const auto& filter : filters) {
3182 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3183 }
3184}
3185
3186void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3187{
3188 uint8_t filter_type_ser;
3189 uint32_t start_height;
3190 uint256 stop_hash;
3191
3192 vRecv >> filter_type_ser >> start_height >> stop_hash;
3193
3194 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3195
3196 const CBlockIndex* stop_index;
3197 BlockFilterIndex* filter_index;
3198 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3199 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3200 return;
3201 }
3202
3203 uint256 prev_header;
3204 if (start_height > 0) {
3205 const CBlockIndex* const prev_block =
3206 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3207 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3208 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3209 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3210 return;
3211 }
3212 }
3213
3214 std::vector<uint256> filter_hashes;
3215 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3216 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3217 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3218 return;
3219 }
3220
3221 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3222 filter_type_ser,
3223 stop_index->GetBlockHash(),
3224 prev_header,
3225 filter_hashes);
3226}
3227
3228void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3229{
3230 uint8_t filter_type_ser;
3231 uint256 stop_hash;
3232
3233 vRecv >> filter_type_ser >> stop_hash;
3234
3235 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3236
3237 const CBlockIndex* stop_index;
3238 BlockFilterIndex* filter_index;
3239 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3240 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3241 stop_index, filter_index)) {
3242 return;
3243 }
3244
3245 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3246
3247 // Populate headers.
3248 const CBlockIndex* block_index = stop_index;
3249 for (int i = headers.size() - 1; i >= 0; i--) {
3250 int height = (i + 1) * CFCHECKPT_INTERVAL;
3251 block_index = block_index->GetAncestor(height);
3252
3253 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3254 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3255 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3256 return;
3257 }
3258 }
3259
3260 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3261 filter_type_ser,
3262 stop_index->GetBlockHash(),
3263 headers);
3264}
3265
3266void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3267{
3268 bool new_block{false};
3269 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3270 if (new_block) {
3271 node.m_last_block_time = GetTime<std::chrono::seconds>();
3272 // In case this block came from a different peer than we requested
3273 // from, we can erase the block request now anyway (as we just stored
3274 // this block to disk).
3275 LOCK(cs_main);
3276 RemoveBlockRequest(block->GetHash(), std::nullopt);
3277 } else {
3278 LOCK(cs_main);
3279 mapBlockSource.erase(block->GetHash());
3280 }
3281}
3282
3283void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3284{
3285 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3286 bool fBlockRead{false};
3287 {
3288 LOCK(cs_main);
3289
3290 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3291 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3292 bool requested_block_from_this_peer{false};
3293
3294 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3295 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3296
3297 while (range_flight.first != range_flight.second) {
3298 auto [node_id, block_it] = range_flight.first->second;
3299 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3300 requested_block_from_this_peer = true;
3301 break;
3302 }
3303 range_flight.first++;
3304 }
3305
3306 if (!requested_block_from_this_peer) {
3307 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3308 return;
3309 }
3310
3311 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3312 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3313 if (status == READ_STATUS_INVALID) {
3314 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3315 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3316 return;
3317 } else if (status == READ_STATUS_FAILED) {
3318 if (first_in_flight) {
3319 // Might have collided, fall back to getdata now :(
3320 std::vector<CInv> invs;
3321 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3322 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3323 } else {
3324 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3325 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3326 return;
3327 }
3328 } else {
3329 // Block is either okay, or possibly we received
3330 // READ_STATUS_CHECKBLOCK_FAILED.
3331 // Note that CheckBlock can only fail for one of a few reasons:
3332 // 1. bad-proof-of-work (impossible here, because we've already
3333 // accepted the header)
3334 // 2. merkleroot doesn't match the transactions given (already
3335 // caught in FillBlock with READ_STATUS_FAILED, so
3336 // impossible here)
3337 // 3. the block is otherwise invalid (eg invalid coinbase,
3338 // block is too big, too many legacy sigops, etc).
3339 // So if CheckBlock failed, #3 is the only possibility.
3340 // Under BIP 152, we don't discourage the peer unless proof of work is
3341 // invalid (we don't require all the stateless checks to have
3342 // been run). This is handled below, so just treat this as
3343 // though the block was successfully read, and rely on the
3344 // handling in ProcessNewBlock to ensure the block index is
3345 // updated, etc.
3346 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3347 fBlockRead = true;
3348 // mapBlockSource is used for potentially punishing peers and
3349 // updating which peers send us compact blocks, so the race
3350 // between here and cs_main in ProcessNewBlock is fine.
3351 // BIP 152 permits peers to relay compact blocks after validating
3352 // the header only; we should not punish peers if the block turns
3353 // out to be invalid.
3354 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3355 }
3356 } // Don't hold cs_main when we call into ProcessNewBlock
3357 if (fBlockRead) {
3358 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3359 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3360 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3361 // disk-space attacks), but this should be safe due to the
3362 // protections in the compact block handler -- see related comment
3363 // in compact block optimistic reconstruction handling.
3364 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3365 }
3366 return;
3367}
3368
3369void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3370 const std::chrono::microseconds time_received,
3371 const std::atomic<bool>& interruptMsgProc)
3372{
3373 AssertLockHeld(g_msgproc_mutex);
3374
3375 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3376
3377 PeerRef peer = GetPeerRef(pfrom.GetId());
3378 if (peer == nullptr) return;
3379
3380 if (msg_type == NetMsgType::VERSION) {
3381 if (pfrom.nVersion != 0) {
3382 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3383 return;
3384 }
3385
3386 int64_t nTime;
3387 CService addrMe;
3388 uint64_t nNonce = 1;
3389 ServiceFlags nServices;
3390 int nVersion;
3391 std::string cleanSubVer;
3392 int starting_height = -1;
3393 bool fRelay = true;
3394
3395 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3396 if (nTime < 0) {
3397 nTime = 0;
3398 }
3399 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3400 vRecv >> CNetAddr::V1(addrMe);
3401 if (!pfrom.IsInboundConn())
3402 {
3403 // Overwrites potentially existing services. In contrast to this,
3404 // unvalidated services received via gossip relay in ADDR/ADDRV2
3405 // messages are only ever added but cannot replace existing ones.
3406 m_addrman.SetServices(pfrom.addr, nServices);
3407 }
3408 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3409 {
3410 LogDebug(BCLog::NET, "peer=%d does not offer the expected services (%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices));
3411 pfrom.fDisconnect = true;
3412 return;
3413 }
3414
3415 if (nVersion < MIN_PEER_PROTO_VERSION) {
3416 // disconnect from peers older than this proto version
3417 LogDebug(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion);
3418 pfrom.fDisconnect = true;
3419 return;
3420 }
3421
3422 if (!vRecv.empty()) {
3423 // The version message includes information about the sending node which we don't use:
3424 // - 8 bytes (service bits)
3425 // - 16 bytes (ipv6 address)
3426 // - 2 bytes (port)
3427 vRecv.ignore(26);
3428 vRecv >> nNonce;
3429 }
3430 if (!vRecv.empty()) {
3431 std::string strSubVer;
3432 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3433 cleanSubVer = SanitizeString(strSubVer);
3434 }
3435 if (!vRecv.empty()) {
3436 vRecv >> starting_height;
3437 }
3438 if (!vRecv.empty())
3439 vRecv >> fRelay;
3440 // Disconnect if we connected to ourself
3441 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3442 {
3443 LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3444 pfrom.fDisconnect = true;
3445 return;
3446 }
3447
3448 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3449 {
3450 SeenLocal(addrMe);
3451 }
3452
3453 // Inbound peers send us their version message when they connect.
3454 // We send our version message in response.
3455 if (pfrom.IsInboundConn()) {
3456 PushNodeVersion(pfrom, *peer);
3457 }
3458
3459 // Change version
3460 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3461 pfrom.SetCommonVersion(greatest_common_version);
3462 pfrom.nVersion = nVersion;
3463
3464 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3465 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3466 }
3467
3468 // Signal ADDRv2 support (BIP155).
3469 if (greatest_common_version >= 70016) {
3470 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3471 // implementations reject messages they don't know. As a courtesy, don't send
3472 // it to nodes with a version before 70016, as no software is known to support
3473 // BIP155 that doesn't announce at least that protocol version number.
3474 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3475 }
3476
3477 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3478 peer->m_their_services = nServices;
3479 pfrom.SetAddrLocal(addrMe);
3480 {
3481 LOCK(pfrom.m_subver_mutex);
3482 pfrom.cleanSubVer = cleanSubVer;
3483 }
3484 peer->m_starting_height = starting_height;
3485
3486 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3487 // - this isn't an outbound block-relay-only connection, and
3488 // - this isn't an outbound feeler connection, and
3489 // - fRelay=true (the peer wishes to receive transaction announcements)
3490 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3491 // the peer may turn on transaction relay later.
3492 if (!pfrom.IsBlockOnlyConn() &&
3493 !pfrom.IsFeelerConn() &&
3494 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3495 auto* const tx_relay = peer->SetTxRelay();
3496 {
3497 LOCK(tx_relay->m_bloom_filter_mutex);
3498 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3499 }
3500 if (fRelay) pfrom.m_relays_txs = true;
3501 }
3502
3503 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3504 // Per BIP-330, we announce txreconciliation support if:
3505 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3506 // - transaction relay is supported per the peer's VERSION message
3507 // - this is not a block-relay-only connection and not a feeler
3508 // - this is not an addr fetch connection;
3509 // - we are not in -blocksonly mode.
3510 const auto* tx_relay = peer->GetTxRelay();
3511 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3512 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3513 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3514 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3515 TXRECONCILIATION_VERSION, recon_salt);
3516 }
3517 }
3518
3519 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3520
3521 // Potentially mark this peer as a preferred download peer.
3522 {
3523 LOCK(cs_main);
3524 CNodeState* state = State(pfrom.GetId());
3525 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3526 m_num_preferred_download_peers += state->fPreferredDownload;
3527 }
3528
3529 // Attempt to initialize address relay for outbound peers and use result
3530 // to decide whether to send GETADDR, so that we don't send it to
3531 // inbound or outbound block-relay-only peers.
3532 bool send_getaddr{false};
3533 if (!pfrom.IsInboundConn()) {
3534 send_getaddr = SetupAddressRelay(pfrom, *peer);
3535 }
3536 if (send_getaddr) {
3537 // Do a one-time address fetch to help populate/update our addrman.
3538 // If we're starting up for the first time, our addrman may be pretty
3539 // empty, so this mechanism is important to help us connect to the network.
3540 // We skip this for block-relay-only peers. We want to avoid
3541 // potentially leaking addr information and we do not want to
3542 // indicate to the peer that we will participate in addr relay.
3543 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3544 peer->m_getaddr_sent = true;
3545 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3546 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3547 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3548 }
3549
3550 if (!pfrom.IsInboundConn()) {
3551 // For non-inbound connections, we update the addrman to record
3552 // connection success so that addrman will have an up-to-date
3553 // notion of which peers are online and available.
3554 //
3555 // While we strive to not leak information about block-relay-only
3556 // connections via the addrman, not moving an address to the tried
3557 // table is also potentially detrimental because new-table entries
3558 // are subject to eviction in the event of addrman collisions. We
3559 // mitigate the information-leak by never calling
3560 // AddrMan::Connected() on block-relay-only peers; see
3561 // FinalizeNode().
3562 //
3563 // This moves an address from New to Tried table in Addrman,
3564 // resolves tried-table collisions, etc.
3565 m_addrman.Good(pfrom.addr);
3566 }
3567
3568 std::string remoteAddr;
3569 if (fLogIPs)
3570 remoteAddr = ", peeraddr=" + pfrom.addr.ToStringAddrPort();
3571
3572 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3573 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3574 cleanSubVer, pfrom.nVersion,
3575 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3576 remoteAddr, (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3577
3578 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3579 if (!pfrom.IsInboundConn()) {
3580 // Don't use timedata samples from inbound peers to make it
3581 // harder for others to create false warnings about our clock being out of sync.
3582 m_outbound_time_offsets.Add(peer->m_time_offset);
3583 m_outbound_time_offsets.WarnIfOutOfSync();
3584 }
3585
3586 // If the peer is old enough to have the old alert system, send it the final alert.
3587 if (greatest_common_version <= 70012) {
3588 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3589 MakeAndPushMessage(pfrom, "alert", finalAlert);
3590 }
3591
3592 // Feeler connections exist only to verify if address is online.
3593 if (pfrom.IsFeelerConn()) {
3594 LogDebug(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId());
3595 pfrom.fDisconnect = true;
3596 }
3597 return;
3598 }
3599
3600 if (pfrom.nVersion == 0) {
3601 // Must have a version message before anything else
3602 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3603 return;
3604 }
3605
3606 if (msg_type == NetMsgType::VERACK) {
3607 if (pfrom.fSuccessfullyConnected) {
3608 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3609 return;
3610 }
3611
3612 // Log successful connections unconditionally for outbound, but not for inbound as those
3613 // can be triggered by an attacker at high rate.
3615 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3616 LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3617 pfrom.ConnectionTypeAsString(),
3618 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3619 pfrom.nVersion.load(), peer->m_starting_height,
3620 pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : ""),
3621 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3622 }
3623
3625 // Tell our peer we are willing to provide version 2 cmpctblocks.
3626 // However, we do not request new block announcements using
3627 // cmpctblock messages.
3628 // We send this to non-NODE NETWORK peers as well, because
3629 // they may wish to request compact blocks from us
3630 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3631 }
3632
3633 if (m_txreconciliation) {
3634 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3635 // We could have optimistically pre-registered/registered the peer. In that case,
3636 // we should forget about the reconciliation state here if this wasn't followed
3637 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3638 m_txreconciliation->ForgetPeer(pfrom.GetId());
3639 }
3640 }
3641
3642 if (auto tx_relay = peer->GetTxRelay()) {
3643 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3644 // version handshake is completed as
3645 // `TxRelay::m_next_inv_send_time` is first initialised in
3646 // `SendMessages` after the verack is received. Any transactions
3647 // received during the version handshake would otherwise
3648 // immediately be advertised without random delay, potentially
3649 // leaking the time of arrival to a spy.
3651 tx_relay->m_tx_inventory_mutex,
3652 return tx_relay->m_tx_inventory_to_send.empty() &&
3653 tx_relay->m_next_inv_send_time == 0s));
3654 }
3655
3656 {
3657 LOCK2(::cs_main, m_tx_download_mutex);
3658 const CNodeState* state = State(pfrom.GetId());
3659 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3660 .m_preferred = state->fPreferredDownload,
3661 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3662 .m_wtxid_relay = peer->m_wtxid_relay,
3663 });
3664 }
3665
3666 pfrom.fSuccessfullyConnected = true;
3667 return;
3668 }
3669
3670 if (msg_type == NetMsgType::SENDHEADERS) {
3671 peer->m_prefers_headers = true;
3672 return;
3673 }
3674
3675 if (msg_type == NetMsgType::SENDCMPCT) {
3676 bool sendcmpct_hb{false};
3677 uint64_t sendcmpct_version{0};
3678 vRecv >> sendcmpct_hb >> sendcmpct_version;
3679
3680 // Only support compact block relay with witnesses
3681 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3682
3683 LOCK(cs_main);
3684 CNodeState* nodestate = State(pfrom.GetId());
3685 nodestate->m_provides_cmpctblocks = true;
3686 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3687 // save whether peer selects us as BIP152 high-bandwidth peer
3688 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3689 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3690 return;
3691 }
3692
3693 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3694 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3695 if (msg_type == NetMsgType::WTXIDRELAY) {
3696 if (pfrom.fSuccessfullyConnected) {
3697 // Disconnect peers that send a wtxidrelay message after VERACK.
3698 LogDebug(BCLog::NET, "wtxidrelay received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3699 pfrom.fDisconnect = true;
3700 return;
3701 }
3702 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3703 if (!peer->m_wtxid_relay) {
3704 peer->m_wtxid_relay = true;
3705 m_wtxid_relay_peers++;
3706 } else {
3707 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3708 }
3709 } else {
3710 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3711 }
3712 return;
3713 }
3714
3715 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3716 // between VERSION and VERACK.
3717 if (msg_type == NetMsgType::SENDADDRV2) {
3718 if (pfrom.fSuccessfullyConnected) {
3719 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3720 LogDebug(BCLog::NET, "sendaddrv2 received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3721 pfrom.fDisconnect = true;
3722 return;
3723 }
3724 peer->m_wants_addrv2 = true;
3725 return;
3726 }
3727
3728 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3729 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3730 // from switching announcement protocols after the connection is up.
3731 if (msg_type == NetMsgType::SENDTXRCNCL) {
3732 if (!m_txreconciliation) {
3733 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3734 return;
3735 }
3736
3737 if (pfrom.fSuccessfullyConnected) {
3738 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received after verack from peer=%d; disconnecting\n", pfrom.GetId());
3739 pfrom.fDisconnect = true;
3740 return;
3741 }
3742
3743 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3744 if (RejectIncomingTxs(pfrom)) {
3745 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d to which we indicated no tx relay; disconnecting\n", pfrom.GetId());
3746 pfrom.fDisconnect = true;
3747 return;
3748 }
3749
3750 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3751 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3752 // eliminates them, so that this flag fully represents what we are looking for.
3753 const auto* tx_relay = peer->GetTxRelay();
3754 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3755 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "sendtxrcncl received from peer=%d which indicated no tx relay to us; disconnecting\n", pfrom.GetId());
3756 pfrom.fDisconnect = true;
3757 return;
3758 }
3759
3760 uint32_t peer_txreconcl_version;
3761 uint64_t remote_salt;
3762 vRecv >> peer_txreconcl_version >> remote_salt;
3763
3764 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3765 peer_txreconcl_version, remote_salt);
3766 switch (result) {
3768 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3769 break;
3771 break;
3773 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d (sendtxrcncl received from already registered peer); disconnecting\n", pfrom.GetId());
3774 pfrom.fDisconnect = true;
3775 return;
3777 LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "txreconciliation protocol violation from peer=%d; disconnecting\n", pfrom.GetId());
3778 pfrom.fDisconnect = true;
3779 return;
3780 }
3781 return;
3782 }
3783
3784 if (!pfrom.fSuccessfullyConnected) {
3785 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3786 return;
3787 }
3788
3789 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3790 const auto ser_params{
3791 msg_type == NetMsgType::ADDRV2 ?
3792 // Set V2 param so that the CNetAddr and CAddress
3793 // unserialize methods know that an address in v2 format is coming.
3796 };
3797
3798 std::vector<CAddress> vAddr;
3799
3800 vRecv >> ser_params(vAddr);
3801
3802 if (!SetupAddressRelay(pfrom, *peer)) {
3803 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3804 return;
3805 }
3806
3807 if (vAddr.size() > MAX_ADDR_TO_SEND)
3808 {
3809 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3810 return;
3811 }
3812
3813 // Store the new addresses
3814 std::vector<CAddress> vAddrOk;
3815 const auto current_a_time{Now<NodeSeconds>()};
3816
3817 // Update/increment addr rate limiting bucket.
3818 const auto current_time{GetTime<std::chrono::microseconds>()};
3819 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3820 // Don't increment bucket if it's already full
3821 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3822 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3823 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3824 }
3825 peer->m_addr_token_timestamp = current_time;
3826
3827 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3828 uint64_t num_proc = 0;
3829 uint64_t num_rate_limit = 0;
3830 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3831 for (CAddress& addr : vAddr)
3832 {
3833 if (interruptMsgProc)
3834 return;
3835
3836 // Apply rate limiting.
3837 if (peer->m_addr_token_bucket < 1.0) {
3838 if (rate_limited) {
3839 ++num_rate_limit;
3840 continue;
3841 }
3842 } else {
3843 peer->m_addr_token_bucket -= 1.0;
3844 }
3845 // We only bother storing full nodes, though this may include
3846 // things which we would not make an outbound connection to, in
3847 // part because we may make feeler connections to them.
3848 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3849 continue;
3850
3851 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3852 addr.nTime = current_a_time - 5 * 24h;
3853 }
3854 AddAddressKnown(*peer, addr);
3855 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3856 // Do not process banned/discouraged addresses beyond remembering we received them
3857 continue;
3858 }
3859 ++num_proc;
3860 const bool reachable{g_reachable_nets.Contains(addr)};
3861 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3862 // Relay to a limited number of other nodes
3863 RelayAddress(pfrom.GetId(), addr, reachable);
3864 }
3865 // Do not store addresses outside our network
3866 if (reachable) {
3867 vAddrOk.push_back(addr);
3868 }
3869 }
3870 peer->m_addr_processed += num_proc;
3871 peer->m_addr_rate_limited += num_rate_limit;
3872 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3873 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3874
3875 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3876 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3877
3878 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3879 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3880 LogDebug(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId());
3881 pfrom.fDisconnect = true;
3882 }
3883 return;
3884 }
3885
3886 if (msg_type == NetMsgType::INV) {
3887 std::vector<CInv> vInv;
3888 vRecv >> vInv;
3889 if (vInv.size() > MAX_INV_SZ)
3890 {
3891 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3892 return;
3893 }
3894
3895 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3896
3897 LOCK2(cs_main, m_tx_download_mutex);
3898
3899 const auto current_time{GetTime<std::chrono::microseconds>()};
3900 uint256* best_block{nullptr};
3901
3902 for (CInv& inv : vInv) {
3903 if (interruptMsgProc) return;
3904
3905 // Ignore INVs that don't match wtxidrelay setting.
3906 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3907 // This is fine as no INV messages are involved in that process.
3908 if (peer->m_wtxid_relay) {
3909 if (inv.IsMsgTx()) continue;
3910 } else {
3911 if (inv.IsMsgWtx()) continue;
3912 }
3913
3914 if (inv.IsMsgBlk()) {
3915 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3916 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3917
3918 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3919 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3920 // Headers-first is the primary method of announcement on
3921 // the network. If a node fell back to sending blocks by
3922 // inv, it may be for a re-org, or because we haven't
3923 // completed initial headers sync. The final block hash
3924 // provided should be the highest, so send a getheaders and
3925 // then fetch the blocks we need to catch up.
3926 best_block = &inv.hash;
3927 }
3928 } else if (inv.IsGenTxMsg()) {
3929 if (reject_tx_invs) {
3930 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, disconnecting peer=%d\n", inv.hash.ToString(), pfrom.GetId());
3931 pfrom.fDisconnect = true;
3932 return;
3933 }
3934 const GenTxid gtxid = ToGenTxid(inv);
3935 AddKnownTx(*peer, inv.hash);
3936
3937 if (!m_chainman.IsInitialBlockDownload()) {
3938 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time, /*p2p_inv=*/true)};
3939 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3940 }
3941 } else {
3942 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3943 }
3944 }
3945
3946 if (best_block != nullptr) {
3947 // If we haven't started initial headers-sync with this peer, then
3948 // consider sending a getheaders now. On initial startup, there's a
3949 // reliability vs bandwidth tradeoff, where we are only trying to do
3950 // initial headers sync with one peer at a time, with a long
3951 // timeout (at which point, if the sync hasn't completed, we will
3952 // disconnect the peer and then choose another). In the meantime,
3953 // as new blocks are found, we are willing to add one new peer per
3954 // block to sync with as well, to sync quicker in the case where
3955 // our initial peer is unresponsive (but less bandwidth than we'd
3956 // use if we turned on sync with all peers).
3957 CNodeState& state{*Assert(State(pfrom.GetId()))};
3958 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
3959 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
3960 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
3961 m_chainman.m_best_header->nHeight, best_block->ToString(),
3962 pfrom.GetId());
3963 }
3964 if (!state.fSyncStarted) {
3965 peer->m_inv_triggered_getheaders_before_sync = true;
3966 // Update the last block hash that triggered a new headers
3967 // sync, so that we don't turn on headers sync with more
3968 // than 1 new peer every new block.
3969 m_last_block_inv_triggering_headers_sync = *best_block;
3970 }
3971 }
3972 }
3973
3974 return;
3975 }
3976
3977 if (msg_type == NetMsgType::GETDATA) {
3978 std::vector<CInv> vInv;
3979 vRecv >> vInv;
3980 if (vInv.size() > MAX_INV_SZ)
3981 {
3982 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
3983 return;
3984 }
3985
3986 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
3987
3988 if (vInv.size() > 0) {
3989 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
3990 }
3991
3992 {
3993 LOCK(peer->m_getdata_requests_mutex);
3994 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
3995 ProcessGetData(pfrom, *peer, interruptMsgProc);
3996 }
3997
3998 return;
3999 }
4000
4001 if (msg_type == NetMsgType::GETBLOCKS) {
4002 CBlockLocator locator;
4003 uint256 hashStop;
4004 vRecv >> locator >> hashStop;
4005
4006 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4007 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4008 pfrom.fDisconnect = true;
4009 return;
4010 }
4011
4012 // We might have announced the currently-being-connected tip using a
4013 // compact block, which resulted in the peer sending a getblocks
4014 // request, which we would otherwise respond to without the new block.
4015 // To avoid this situation we simply verify that we are on our best
4016 // known chain now. This is super overkill, but we handle it better
4017 // for getheaders requests, and there are no known nodes which support
4018 // compact blocks but still use getblocks to request blocks.
4019 {
4020 std::shared_ptr<const CBlock> a_recent_block;
4021 {
4022 LOCK(m_most_recent_block_mutex);
4023 a_recent_block = m_most_recent_block;
4024 }
4026 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4027 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4028 }
4029 }
4030
4031 LOCK(cs_main);
4032
4033 // Find the last block the caller has in the main chain
4034 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4035
4036 // Send the rest of the chain
4037 if (pindex)
4038 pindex = m_chainman.ActiveChain().Next(pindex);
4039 int nLimit = 500;
4040 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4041 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4042 {
4043 if (pindex->GetBlockHash() == hashStop)
4044 {
4045 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4046 break;
4047 }
4048 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4049 // for some reasonable time window (1 hour) that block relay might require.
4050 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4051 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4052 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4053 break;
4054 }
4055 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4056 if (--nLimit <= 0) {
4057 // When this block is requested, we'll send an inv that'll
4058 // trigger the peer to getblocks the next batch of inventory.
4059 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4060 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4061 break;
4062 }
4063 }
4064 return;
4065 }
4066
4067 if (msg_type == NetMsgType::GETBLOCKTXN) {
4069 vRecv >> req;
4070
4071 std::shared_ptr<const CBlock> recent_block;
4072 {
4073 LOCK(m_most_recent_block_mutex);
4074 if (m_most_recent_block_hash == req.blockhash)
4075 recent_block = m_most_recent_block;
4076 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4077 }
4078 if (recent_block) {
4079 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4080 return;
4081 }
4082
4083 FlatFilePos block_pos{};
4084 {
4085 LOCK(cs_main);
4086
4087 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4088 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4089 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4090 return;
4091 }
4092
4093 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4094 block_pos = pindex->GetBlockPos();
4095 }
4096 }
4097
4098 if (!block_pos.IsNull()) {
4099 CBlock block;
4100 const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, block_pos)};
4101 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4102 // pruned after we release cs_main above, so this read should never fail.
4103 assert(ret);
4104
4105 SendBlockTransactions(pfrom, *peer, block, req);
4106 return;
4107 }
4108
4109 // If an older block is requested (should never happen in practice,
4110 // but can happen in tests) send a block response instead of a
4111 // blocktxn response. Sending a full block response instead of a
4112 // small blocktxn response is preferable in the case where a peer
4113 // might maliciously send lots of getblocktxn requests to trigger
4114 // expensive disk reads, because it will require the peer to
4115 // actually receive all the data read from disk over the network.
4116 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4118 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4119 // The message processing loop will go around again (without pausing) and we'll respond then
4120 return;
4121 }
4122
4123 if (msg_type == NetMsgType::GETHEADERS) {
4124 CBlockLocator locator;
4125 uint256 hashStop;
4126 vRecv >> locator >> hashStop;
4127
4128 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4129 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
4130 pfrom.fDisconnect = true;
4131 return;
4132 }
4133
4134 if (m_chainman.m_blockman.LoadingBlocks()) {
4135 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4136 return;
4137 }
4138
4139 LOCK(cs_main);
4140
4141 // Note that if we were to be on a chain that forks from the checkpointed
4142 // chain, then serving those headers to a peer that has seen the
4143 // checkpointed chain would cause that peer to disconnect us. Requiring
4144 // that our chainwork exceed the minimum chain work is a protection against
4145 // being fed a bogus chain when we started up for the first time and
4146 // getting partitioned off the honest network for serving that chain to
4147 // others.
4148 if (m_chainman.ActiveTip() == nullptr ||
4149 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4150 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4151 // Just respond with an empty headers message, to tell the peer to
4152 // go away but not treat us as unresponsive.
4153 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4154 return;
4155 }
4156
4157 CNodeState *nodestate = State(pfrom.GetId());
4158 const CBlockIndex* pindex = nullptr;
4159 if (locator.IsNull())
4160 {
4161 // If locator is null, return the hashStop block
4162 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4163 if (!pindex) {
4164 return;
4165 }
4166
4167 if (!BlockRequestAllowed(pindex)) {
4168 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4169 return;
4170 }
4171 }
4172 else
4173 {
4174 // Find the last block the caller has in the main chain
4175 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4176 if (pindex)
4177 pindex = m_chainman.ActiveChain().Next(pindex);
4178 }
4179
4180 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4181 std::vector<CBlock> vHeaders;
4182 int nLimit = m_opts.max_headers_result;
4183 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4184 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4185 {
4186 vHeaders.emplace_back(pindex->GetBlockHeader());
4187 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4188 break;
4189 }
4190 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4191 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4192 // headers message). In both cases it's safe to update
4193 // pindexBestHeaderSent to be our tip.
4194 //
4195 // It is important that we simply reset the BestHeaderSent value here,
4196 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4197 // the currently-being-connected tip using a compact block, which
4198 // resulted in the peer sending a headers request, which we respond to
4199 // without the new block. By resetting the BestHeaderSent, we ensure we
4200 // will re-announce the new block via headers (or compact blocks again)
4201 // in the SendMessages logic.
4202 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4203 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4204 return;
4205 }
4206
4207 if (msg_type == NetMsgType::TX) {
4208 if (RejectIncomingTxs(pfrom)) {
4209 LogDebug(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId());
4210 pfrom.fDisconnect = true;
4211 return;
4212 }
4213
4214 // Stop processing the transaction early if we are still in IBD since we don't
4215 // have enough information to validate it yet. Sending unsolicited transactions
4216 // is not considered a protocol violation, so don't punish the peer.
4217 if (m_chainman.IsInitialBlockDownload()) return;
4218
4219 CTransactionRef ptx;
4220 vRecv >> TX_WITH_WITNESS(ptx);
4221 const CTransaction& tx = *ptx;
4222
4223 const uint256& txid = ptx->GetHash();
4224 const uint256& wtxid = ptx->GetWitnessHash();
4225
4226 const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4227 AddKnownTx(*peer, hash);
4228
4229 LOCK2(cs_main, m_tx_download_mutex);
4230
4231 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4232 if (!should_validate) {
4234 // Always relay transactions received from peers with forcerelay
4235 // permission, even if they were already in the mempool, allowing
4236 // the node to function as a gateway for nodes hidden behind it.
4237 if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
4238 LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4239 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4240 } else {
4241 LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4242 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4243 RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4244 }
4245 }
4246
4247 if (package_to_validate) {
4248 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4249 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4250 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4251 ProcessPackageResult(package_to_validate.value(), package_result);
4252 }
4253 return;
4254 }
4255
4256 // ReceivedTx should not be telling us to validate the tx and a package.
4257 Assume(!package_to_validate.has_value());
4258
4259 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4260 const TxValidationState& state = result.m_state;
4261
4263 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4264 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4265 }
4266 if (state.IsInvalid()) {
4267 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4268 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4269 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4270 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4271 ProcessPackageResult(package_to_validate.value(), package_result);
4272 }
4273 }
4274
4275 return;
4276 }
4277
4278 if (msg_type == NetMsgType::CMPCTBLOCK)
4279 {
4280 // Ignore cmpctblock received while importing
4281 if (m_chainman.m_blockman.LoadingBlocks()) {
4282 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4283 return;
4284 }
4285
4286 CBlockHeaderAndShortTxIDs cmpctblock;
4287 vRecv >> cmpctblock;
4288
4289 bool received_new_header = false;
4290 const auto blockhash = cmpctblock.header.GetHash();
4291
4292 {
4293 LOCK(cs_main);
4294
4295 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4296 if (!prev_block) {
4297 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4298 if (!m_chainman.IsInitialBlockDownload()) {
4299 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4300 }
4301 return;
4302 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4303 // If we get a low-work header in a compact block, we can ignore it.
4304 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4305 return;
4306 }
4307
4308 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4309 received_new_header = true;
4310 }
4311 }
4312
4313 const CBlockIndex *pindex = nullptr;
4315 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4316 if (state.IsInvalid()) {
4317 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4318 return;
4319 }
4320 }
4321
4322 if (received_new_header) {
4323 LogInfo("Saw new cmpctblock header hash=%s peer=%d\n",
4324 blockhash.ToString(), pfrom.GetId());
4325 }
4326
4327 bool fProcessBLOCKTXN = false;
4328
4329 // If we end up treating this as a plain headers message, call that as well
4330 // without cs_main.
4331 bool fRevertToHeaderProcessing = false;
4332
4333 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4334 // below)
4335 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4336 bool fBlockReconstructed = false;
4337
4338 {
4339 LOCK(cs_main);
4340 // If AcceptBlockHeader returned true, it set pindex
4341 assert(pindex);
4342 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4343
4344 CNodeState *nodestate = State(pfrom.GetId());
4345
4346 // If this was a new header with more work than our tip, update the
4347 // peer's last block announcement time
4348 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4349 nodestate->m_last_block_announcement = GetTime();
4350 }
4351
4352 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4353 return;
4354
4355 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4356 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4357 bool requested_block_from_this_peer{false};
4358
4359 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4360 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4361
4362 while (range_flight.first != range_flight.second) {
4363 if (range_flight.first->second.first == pfrom.GetId()) {
4364 requested_block_from_this_peer = true;
4365 break;
4366 }
4367 range_flight.first++;
4368 }
4369
4370 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4371 pindex->nTx != 0) { // We had this block at some point, but pruned it
4372 if (requested_block_from_this_peer) {
4373 // We requested this block for some reason, but our mempool will probably be useless
4374 // so we just grab the block via normal getdata
4375 std::vector<CInv> vInv(1);
4376 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4377 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4378 }
4379 return;
4380 }
4381
4382 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4383 if (!already_in_flight && !CanDirectFetch()) {
4384 return;
4385 }
4386
4387 // We want to be a bit conservative just to be extra careful about DoS
4388 // possibilities in compact block processing...
4389 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4390 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4391 requested_block_from_this_peer) {
4392 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4393 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4394 if (!(*queuedBlockIt)->partialBlock)
4395 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4396 else {
4397 // The block was already in flight using compact blocks from the same peer
4398 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4399 return;
4400 }
4401 }
4402
4403 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4404 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4405 if (status == READ_STATUS_INVALID) {
4406 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4407 Misbehaving(*peer, "invalid compact block");
4408 return;
4409 } else if (status == READ_STATUS_FAILED) {
4410 if (first_in_flight) {
4411 // Duplicate txindexes, the block is now in-flight, so just request it
4412 std::vector<CInv> vInv(1);
4413 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4414 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4415 } else {
4416 // Give up for this peer and wait for other peer(s)
4417 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4418 }
4419 return;
4420 }
4421
4423 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4424 if (!partialBlock.IsTxAvailable(i))
4425 req.indexes.push_back(i);
4426 }
4427 if (req.indexes.empty()) {
4428 fProcessBLOCKTXN = true;
4429 } else if (first_in_flight) {
4430 // We will try to round-trip any compact blocks we get on failure,
4431 // as long as it's first...
4432 req.blockhash = pindex->GetBlockHash();
4433 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4434 } else if (pfrom.m_bip152_highbandwidth_to &&
4435 (!pfrom.IsInboundConn() ||
4436 IsBlockRequestedFromOutbound(blockhash) ||
4437 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4438 // ... or it's a hb relay peer and:
4439 // - peer is outbound, or
4440 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4441 // - it's not the final parallel download slot (which we may reserve for first outbound)
4442 req.blockhash = pindex->GetBlockHash();
4443 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4444 } else {
4445 // Give up for this peer and wait for other peer(s)
4446 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4447 }
4448 } else {
4449 // This block is either already in flight from a different
4450 // peer, or this peer has too many blocks outstanding to
4451 // download from.
4452 // Optimistically try to reconstruct anyway since we might be
4453 // able to without any round trips.
4454 PartiallyDownloadedBlock tempBlock(&m_mempool);
4455 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4456 if (status != READ_STATUS_OK) {
4457 // TODO: don't ignore failures
4458 return;
4459 }
4460 std::vector<CTransactionRef> dummy;
4461 status = tempBlock.FillBlock(*pblock, dummy);
4462 if (status == READ_STATUS_OK) {
4463 fBlockReconstructed = true;
4464 }
4465 }
4466 } else {
4467 if (requested_block_from_this_peer) {
4468 // We requested this block, but its far into the future, so our
4469 // mempool will probably be useless - request the block normally
4470 std::vector<CInv> vInv(1);
4471 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4472 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4473 return;
4474 } else {
4475 // If this was an announce-cmpctblock, we want the same treatment as a header message
4476 fRevertToHeaderProcessing = true;
4477 }
4478 }
4479 } // cs_main
4480
4481 if (fProcessBLOCKTXN) {
4483 txn.blockhash = blockhash;
4484 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4485 }
4486
4487 if (fRevertToHeaderProcessing) {
4488 // Headers received from HB compact block peers are permitted to be
4489 // relayed before full validation (see BIP 152), so we don't want to disconnect
4490 // the peer if the header turns out to be for an invalid block.
4491 // Note that if a peer tries to build on an invalid chain, that
4492 // will be detected and the peer will be disconnected/discouraged.
4493 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4494 }
4495
4496 if (fBlockReconstructed) {
4497 // If we got here, we were able to optimistically reconstruct a
4498 // block that is in flight from some other peer.
4499 {
4500 LOCK(cs_main);
4501 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4502 }
4503 // Setting force_processing to true means that we bypass some of
4504 // our anti-DoS protections in AcceptBlock, which filters
4505 // unrequested blocks that might be trying to waste our resources
4506 // (eg disk space). Because we only try to reconstruct blocks when
4507 // we're close to caught up (via the CanDirectFetch() requirement
4508 // above, combined with the behavior of not requesting blocks until
4509 // we have a chain with at least the minimum chain work), and we ignore
4510 // compact blocks with less work than our tip, it is safe to treat
4511 // reconstructed compact blocks as having been requested.
4512 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4513 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4514 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4515 // Clear download state for this block, which is in
4516 // process from some other peer. We do this after calling
4517 // ProcessNewBlock so that a malleated cmpctblock announcement
4518 // can't be used to interfere with block relay.
4519 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4520 }
4521 }
4522 return;
4523 }
4524
4525 if (msg_type == NetMsgType::BLOCKTXN)
4526 {
4527 // Ignore blocktxn received while importing
4528 if (m_chainman.m_blockman.LoadingBlocks()) {
4529 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4530 return;
4531 }
4532
4533 BlockTransactions resp;
4534 vRecv >> resp;
4535
4536 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4537 }
4538
4539 if (msg_type == NetMsgType::HEADERS)
4540 {
4541 // Ignore headers received while importing
4542 if (m_chainman.m_blockman.LoadingBlocks()) {
4543 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4544 return;
4545 }
4546
4547 std::vector<CBlockHeader> headers;
4548
4549 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4550 unsigned int nCount = ReadCompactSize(vRecv);
4551 if (nCount > m_opts.max_headers_result) {
4552 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4553 return;
4554 }
4555 headers.resize(nCount);
4556 for (unsigned int n = 0; n < nCount; n++) {
4557 vRecv >> headers[n];
4558 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4559 }
4560
4561 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4562
4563 // Check if the headers presync progress needs to be reported to validation.
4564 // This needs to be done without holding the m_headers_presync_mutex lock.
4565 if (m_headers_presync_should_signal.exchange(false)) {
4566 HeadersPresyncStats stats;
4567 {
4568 LOCK(m_headers_presync_mutex);
4569 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4570 if (it != m_headers_presync_stats.end()) stats = it->second;
4571 }
4572 if (stats.second) {
4573 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4574 }
4575 }
4576
4577 return;
4578 }
4579
4580 if (msg_type == NetMsgType::BLOCK)
4581 {
4582 // Ignore block received while importing
4583 if (m_chainman.m_blockman.LoadingBlocks()) {
4584 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4585 return;
4586 }
4587
4588 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4589 vRecv >> TX_WITH_WITNESS(*pblock);
4590
4591 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4592
4593 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4594
4595 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4596 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4597 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4598 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4599 Misbehaving(*peer, "mutated block");
4600 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4601 return;
4602 }
4603
4604 bool forceProcessing = false;
4605 const uint256 hash(pblock->GetHash());
4606 bool min_pow_checked = false;
4607 {
4608 LOCK(cs_main);
4609 // Always process the block if we requested it, since we may
4610 // need it even when it's not a candidate for a new best tip.
4611 forceProcessing = IsBlockRequested(hash);
4612 RemoveBlockRequest(hash, pfrom.GetId());
4613 // mapBlockSource is only used for punishing peers and setting
4614 // which peers send us compact blocks, so the race between here and
4615 // cs_main in ProcessNewBlock is fine.
4616 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4617
4618 // Check claimed work on this block against our anti-dos thresholds.
4619 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4620 min_pow_checked = true;
4621 }
4622 }
4623 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4624 return;
4625 }
4626
4627 if (msg_type == NetMsgType::GETADDR) {
4628 // This asymmetric behavior for inbound and outbound connections was introduced
4629 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4630 // to users' AddrMan and later request them by sending getaddr messages.
4631 // Making nodes which are behind NAT and can only make outgoing connections ignore
4632 // the getaddr message mitigates the attack.
4633 if (!pfrom.IsInboundConn()) {
4634 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4635 return;
4636 }
4637
4638 // Since this must be an inbound connection, SetupAddressRelay will
4639 // never fail.
4640 Assume(SetupAddressRelay(pfrom, *peer));
4641
4642 // Only send one GetAddr response per connection to reduce resource waste
4643 // and discourage addr stamping of INV announcements.
4644 if (peer->m_getaddr_recvd) {
4645 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4646 return;
4647 }
4648 peer->m_getaddr_recvd = true;
4649
4650 peer->m_addrs_to_send.clear();
4651 std::vector<CAddress> vAddr;
4653 vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4654 } else {
4655 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4656 }
4657 for (const CAddress &addr : vAddr) {
4658 PushAddress(*peer, addr);
4659 }
4660 return;
4661 }
4662
4663 if (msg_type == NetMsgType::MEMPOOL) {
4664 // Only process received mempool messages if we advertise NODE_BLOOM
4665 // or if the peer has mempool permissions.
4666 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4667 {
4669 {
4670 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, disconnect peer=%d\n", pfrom.GetId());
4671 pfrom.fDisconnect = true;
4672 }
4673 return;
4674 }
4675
4676 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4677 {
4679 {
4680 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, disconnect peer=%d\n", pfrom.GetId());
4681 pfrom.fDisconnect = true;
4682 }
4683 return;
4684 }
4685
4686 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4687 LOCK(tx_relay->m_tx_inventory_mutex);
4688 tx_relay->m_send_mempool = true;
4689 }
4690 return;
4691 }
4692
4693 if (msg_type == NetMsgType::PING) {
4694 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4695 uint64_t nonce = 0;
4696 vRecv >> nonce;
4697 // Echo the message back with the nonce. This allows for two useful features:
4698 //
4699 // 1) A remote node can quickly check if the connection is operational
4700 // 2) Remote nodes can measure the latency of the network thread. If this node
4701 // is overloaded it won't respond to pings quickly and the remote node can
4702 // avoid sending us more work, like chain download requests.
4703 //
4704 // The nonce stops the remote getting confused between different pings: without
4705 // it, if the remote node sends a ping once per second and this node takes 5
4706 // seconds to respond to each, the 5th ping the remote sends would appear to
4707 // return very quickly.
4708 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4709 }
4710 return;
4711 }
4712
4713 if (msg_type == NetMsgType::PONG) {
4714 const auto ping_end = time_received;
4715 uint64_t nonce = 0;
4716 size_t nAvail = vRecv.in_avail();
4717 bool bPingFinished = false;
4718 std::string sProblem;
4719
4720 if (nAvail >= sizeof(nonce)) {
4721 vRecv >> nonce;
4722
4723 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4724 if (peer->m_ping_nonce_sent != 0) {
4725 if (nonce == peer->m_ping_nonce_sent) {
4726 // Matching pong received, this ping is no longer outstanding
4727 bPingFinished = true;
4728 const auto ping_time = ping_end - peer->m_ping_start.load();
4729 if (ping_time.count() >= 0) {
4730 // Let connman know about this successful ping-pong
4731 pfrom.PongReceived(ping_time);
4732 } else {
4733 // This should never happen
4734 sProblem = "Timing mishap";
4735 }
4736 } else {
4737 // Nonce mismatches are normal when pings are overlapping
4738 sProblem = "Nonce mismatch";
4739 if (nonce == 0) {
4740 // This is most likely a bug in another implementation somewhere; cancel this ping
4741 bPingFinished = true;
4742 sProblem = "Nonce zero";
4743 }
4744 }
4745 } else {
4746 sProblem = "Unsolicited pong without ping";
4747 }
4748 } else {
4749 // This is most likely a bug in another implementation somewhere; cancel this ping
4750 bPingFinished = true;
4751 sProblem = "Short payload";
4752 }
4753
4754 if (!(sProblem.empty())) {
4755 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4756 pfrom.GetId(),
4757 sProblem,
4758 peer->m_ping_nonce_sent,
4759 nonce,
4760 nAvail);
4761 }
4762 if (bPingFinished) {
4763 peer->m_ping_nonce_sent = 0;
4764 }
4765 return;
4766 }
4767
4768 if (msg_type == NetMsgType::FILTERLOAD) {
4769 if (!(peer->m_our_services & NODE_BLOOM)) {
4770 LogDebug(BCLog::NET, "filterload received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4771 pfrom.fDisconnect = true;
4772 return;
4773 }
4774 CBloomFilter filter;
4775 vRecv >> filter;
4776
4777 if (!filter.IsWithinSizeConstraints())
4778 {
4779 // There is no excuse for sending a too-large filter
4780 Misbehaving(*peer, "too-large bloom filter");
4781 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4782 {
4783 LOCK(tx_relay->m_bloom_filter_mutex);
4784 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4785 tx_relay->m_relay_txs = true;
4786 }
4787 pfrom.m_bloom_filter_loaded = true;
4788 pfrom.m_relays_txs = true;
4789 }
4790 return;
4791 }
4792
4793 if (msg_type == NetMsgType::FILTERADD) {
4794 if (!(peer->m_our_services & NODE_BLOOM)) {
4795 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4796 pfrom.fDisconnect = true;
4797 return;
4798 }
4799 std::vector<unsigned char> vData;
4800 vRecv >> vData;
4801
4802 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4803 // and thus, the maximum size any matched object can have) in a filteradd message
4804 bool bad = false;
4805 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4806 bad = true;
4807 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4808 LOCK(tx_relay->m_bloom_filter_mutex);
4809 if (tx_relay->m_bloom_filter) {
4810 tx_relay->m_bloom_filter->insert(vData);
4811 } else {
4812 bad = true;
4813 }
4814 }
4815 if (bad) {
4816 Misbehaving(*peer, "bad filteradd message");
4817 }
4818 return;
4819 }
4820
4821 if (msg_type == NetMsgType::FILTERCLEAR) {
4822 if (!(peer->m_our_services & NODE_BLOOM)) {
4823 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services from peer=%d; disconnecting\n", pfrom.GetId());
4824 pfrom.fDisconnect = true;
4825 return;
4826 }
4827 auto tx_relay = peer->GetTxRelay();
4828 if (!tx_relay) return;
4829
4830 {
4831 LOCK(tx_relay->m_bloom_filter_mutex);
4832 tx_relay->m_bloom_filter = nullptr;
4833 tx_relay->m_relay_txs = true;
4834 }
4835 pfrom.m_bloom_filter_loaded = false;
4836 pfrom.m_relays_txs = true;
4837 return;
4838 }
4839
4840 if (msg_type == NetMsgType::FEEFILTER) {
4841 CAmount newFeeFilter = 0;
4842 vRecv >> newFeeFilter;
4843 if (MoneyRange(newFeeFilter)) {
4844 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4845 tx_relay->m_fee_filter_received = newFeeFilter;
4846 }
4847 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4848 }
4849 return;
4850 }
4851
4852 if (msg_type == NetMsgType::GETCFILTERS) {
4853 ProcessGetCFilters(pfrom, *peer, vRecv);
4854 return;
4855 }
4856
4857 if (msg_type == NetMsgType::GETCFHEADERS) {
4858 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4859 return;
4860 }
4861
4862 if (msg_type == NetMsgType::GETCFCHECKPT) {
4863 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4864 return;
4865 }
4866
4867 if (msg_type == NetMsgType::NOTFOUND) {
4868 std::vector<CInv> vInv;
4869 vRecv >> vInv;
4870 std::vector<uint256> tx_invs;
4872 for (CInv &inv : vInv) {
4873 if (inv.IsGenTxMsg()) {
4874 tx_invs.emplace_back(inv.hash);
4875 }
4876 }
4877 }
4878 LOCK(m_tx_download_mutex);
4879 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4880 return;
4881 }
4882
4883 // Ignore unknown commands for extensibility
4884 LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4885 return;
4886}
4887
4888bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4889{
4890 {
4891 LOCK(peer.m_misbehavior_mutex);
4892
4893 // There's nothing to do if the m_should_discourage flag isn't set
4894 if (!peer.m_should_discourage) return false;
4895
4896 peer.m_should_discourage = false;
4897 } // peer.m_misbehavior_mutex
4898
4900 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4901 LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4902 return false;
4903 }
4904
4905 if (pnode.IsManualConn()) {
4906 // We never disconnect or discourage manual peers for bad behavior
4907 LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4908 return false;
4909 }
4910
4911 if (pnode.addr.IsLocal()) {
4912 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4913 // all peers on the same local address)
4914 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4915 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4916 pnode.fDisconnect = true;
4917 return true;
4918 }
4919
4920 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4921 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4922 if (m_banman) m_banman->Discourage(pnode.addr);
4923 m_connman.DisconnectNode(pnode.addr);
4924 return true;
4925}
4926
4927bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4928{
4929 AssertLockNotHeld(m_tx_download_mutex);
4930 AssertLockHeld(g_msgproc_mutex);
4931
4932 PeerRef peer = GetPeerRef(pfrom->GetId());
4933 if (peer == nullptr) return false;
4934
4935 // For outbound connections, ensure that the initial VERSION message
4936 // has been sent first before processing any incoming messages
4937 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
4938
4939 {
4940 LOCK(peer->m_getdata_requests_mutex);
4941 if (!peer->m_getdata_requests.empty()) {
4942 ProcessGetData(*pfrom, *peer, interruptMsgProc);
4943 }
4944 }
4945
4946 const bool processed_orphan = ProcessOrphanTx(*peer);
4947
4948 if (pfrom->fDisconnect)
4949 return false;
4950
4951 if (processed_orphan) return true;
4952
4953 // this maintains the order of responses
4954 // and prevents m_getdata_requests to grow unbounded
4955 {
4956 LOCK(peer->m_getdata_requests_mutex);
4957 if (!peer->m_getdata_requests.empty()) return true;
4958 }
4959
4960 // Don't bother if send buffer is too full to respond anyway
4961 if (pfrom->fPauseSend) return false;
4962
4963 auto poll_result{pfrom->PollMessage()};
4964 if (!poll_result) {
4965 // No message to process
4966 return false;
4967 }
4968
4969 CNetMessage& msg{poll_result->first};
4970 bool fMoreWork = poll_result->second;
4971
4972 TRACEPOINT(net, inbound_message,
4973 pfrom->GetId(),
4974 pfrom->m_addr_name.c_str(),
4975 pfrom->ConnectionTypeAsString().c_str(),
4976 msg.m_type.c_str(),
4977 msg.m_recv.size(),
4978 msg.m_recv.data()
4979 );
4980
4981 if (m_opts.capture_messages) {
4982 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
4983 }
4984
4985 try {
4986 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
4987 if (interruptMsgProc) return false;
4988 {
4989 LOCK(peer->m_getdata_requests_mutex);
4990 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
4991 }
4992 // Does this peer has an orphan ready to reconsider?
4993 // (Note: we may have provided a parent for an orphan provided
4994 // by another peer that was already processed; in that case,
4995 // the extra work may not be noticed, possibly resulting in an
4996 // unnecessary 100ms delay)
4997 LOCK(m_tx_download_mutex);
4998 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
4999 } catch (const std::exception& e) {
5000 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5001 } catch (...) {
5002 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5003 }
5004
5005 return fMoreWork;
5006}
5007
5008void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5009{
5011
5012 CNodeState &state = *State(pto.GetId());
5013
5014 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5015 // This is an outbound peer subject to disconnection if they don't
5016 // announce a block with as much work as the current tip within
5017 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5018 // their chain has more work than ours, we should sync to it,
5019 // unless it's invalid, in which case we should find that out and
5020 // disconnect from them elsewhere).
5021 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5022 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5023 if (state.m_chain_sync.m_timeout != 0s) {
5024 state.m_chain_sync.m_timeout = 0s;
5025 state.m_chain_sync.m_work_header = nullptr;
5026 state.m_chain_sync.m_sent_getheaders = false;
5027 }
5028 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5029 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5030 // AND
5031 // we are noticing this for the first time (m_timeout is 0)
5032 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5033 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5034 // Either way, set a new timeout based on our current tip.
5035 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5036 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5037 state.m_chain_sync.m_sent_getheaders = false;
5038 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5039 // No evidence yet that our peer has synced to a chain with work equal to that
5040 // of our tip, when we first detected it was behind. Send a single getheaders
5041 // message to give the peer a chance to update us.
5042 if (state.m_chain_sync.m_sent_getheaders) {
5043 // They've run out of time to catch up!
5044 LogPrintf("Disconnecting outbound peer %d for old chain, best known block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>");
5045 pto.fDisconnect = true;
5046 } else {
5047 assert(state.m_chain_sync.m_work_header);
5048 // Here, we assume that the getheaders message goes out,
5049 // because it'll either go out or be skipped because of a
5050 // getheaders in-flight already, in which case the peer should
5051 // still respond to us with a sufficiently high work chain tip.
5052 MaybeSendGetHeaders(pto,
5053 GetLocator(state.m_chain_sync.m_work_header->pprev),
5054 peer);
5055 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5056 state.m_chain_sync.m_sent_getheaders = true;
5057 // Bump the timeout to allow a response, which could clear the timeout
5058 // (if the response shows the peer has synced), reset the timeout (if
5059 // the peer syncs to the required work but not to our tip), or result
5060 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5061 // has not sufficiently progressed)
5062 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5063 }
5064 }
5065 }
5066}
5067
5068void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5069{
5070 // If we have any extra block-relay-only peers, disconnect the youngest unless
5071 // it's given us a block -- in which case, compare with the second-youngest, and
5072 // out of those two, disconnect the peer who least recently gave us a block.
5073 // The youngest block-relay-only peer would be the extra peer we connected
5074 // to temporarily in order to sync our tip; see net.cpp.
5075 // Note that we use higher nodeid as a measure for most recent connection.
5076 if (m_connman.GetExtraBlockRelayCount() > 0) {
5077 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5078
5079 m_connman.ForEachNode([&](CNode* pnode) {
5080 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5081 if (pnode->GetId() > youngest_peer.first) {
5082 next_youngest_peer = youngest_peer;
5083 youngest_peer.first = pnode->GetId();
5084 youngest_peer.second = pnode->m_last_block_time;
5085 }
5086 });
5087 NodeId to_disconnect = youngest_peer.first;
5088 if (youngest_peer.second > next_youngest_peer.second) {
5089 // Our newest block-relay-only peer gave us a block more recently;
5090 // disconnect our second youngest.
5091 to_disconnect = next_youngest_peer.first;
5092 }
5093 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5095 // Make sure we're not getting a block right now, and that
5096 // we've been connected long enough for this eviction to happen
5097 // at all.
5098 // Note that we only request blocks from a peer if we learn of a
5099 // valid headers chain with at least as much work as our tip.
5100 CNodeState *node_state = State(pnode->GetId());
5101 if (node_state == nullptr ||
5102 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5103 pnode->fDisconnect = true;
5104 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5105 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5106 return true;
5107 } else {
5108 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5109 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5110 }
5111 return false;
5112 });
5113 }
5114
5115 // Check whether we have too many outbound-full-relay peers
5116 if (m_connman.GetExtraFullOutboundCount() > 0) {
5117 // If we have more outbound-full-relay peers than we target, disconnect one.
5118 // Pick the outbound-full-relay peer that least recently announced
5119 // us a new block, with ties broken by choosing the more recent
5120 // connection (higher node id)
5121 // Protect peers from eviction if we don't have another connection
5122 // to their network, counting both outbound-full-relay and manual peers.
5123 NodeId worst_peer = -1;
5124 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5125
5126 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5127 AssertLockHeld(::cs_main);
5128
5129 // Only consider outbound-full-relay peers that are not already
5130 // marked for disconnection
5131 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5132 CNodeState *state = State(pnode->GetId());
5133 if (state == nullptr) return; // shouldn't be possible, but just in case
5134 // Don't evict our protected peers
5135 if (state->m_chain_sync.m_protect) return;
5136 // If this is the only connection on a particular network that is
5137 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5138 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5139 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5140 worst_peer = pnode->GetId();
5141 oldest_block_announcement = state->m_last_block_announcement;
5142 }
5143 });
5144 if (worst_peer != -1) {
5145 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5147
5148 // Only disconnect a peer that has been connected to us for
5149 // some reasonable fraction of our check-frequency, to give
5150 // it time for new information to have arrived.
5151 // Also don't disconnect any peer we're trying to download a
5152 // block from.
5153 CNodeState &state = *State(pnode->GetId());
5154 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5155 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5156 pnode->fDisconnect = true;
5157 return true;
5158 } else {
5159 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5160 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5161 return false;
5162 }
5163 });
5164 if (disconnected) {
5165 // If we disconnected an extra peer, that means we successfully
5166 // connected to at least one peer after the last time we
5167 // detected a stale tip. Don't try any more extra peers until
5168 // we next detect a stale tip, to limit the load we put on the
5169 // network from these extra connections.
5170 m_connman.SetTryNewOutboundPeer(false);
5171 }
5172 }
5173 }
5174}
5175
5176void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5177{
5178 LOCK(cs_main);
5179
5180 auto now{GetTime<std::chrono::seconds>()};
5181
5182 EvictExtraOutboundPeers(now);
5183
5184 if (now > m_stale_tip_check_time) {
5185 // Check whether our tip is stale, and if so, allow using an extra
5186 // outbound peer
5187 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5188 LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5189 count_seconds(now - m_last_tip_update.load()));
5190 m_connman.SetTryNewOutboundPeer(true);
5191 } else if (m_connman.GetTryNewOutboundPeer()) {
5192 m_connman.SetTryNewOutboundPeer(false);
5193 }
5194 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5195 }
5196
5197 if (!m_initial_sync_finished && CanDirectFetch()) {
5198 m_connman.StartExtraBlockRelayPeers();
5199 m_initial_sync_finished = true;
5200 }
5201}
5202
5203void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5204{
5205 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5206 peer.m_ping_nonce_sent &&
5207 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5208 {
5209 // The ping timeout is using mocktime. To disable the check during
5210 // testing, increase -peertimeout.
5211 LogDebug(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
5212 node_to.fDisconnect = true;
5213 return;
5214 }
5215
5216 bool pingSend = false;
5217
5218 if (peer.m_ping_queued) {
5219 // RPC ping request by user
5220 pingSend = true;
5221 }
5222
5223 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5224 // Ping automatically sent as a latency probe & keepalive.
5225 pingSend = true;
5226 }
5227
5228 if (pingSend) {
5229 uint64_t nonce;
5230 do {
5232 } while (nonce == 0);
5233 peer.m_ping_queued = false;
5234 peer.m_ping_start = now;
5235 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5236 peer.m_ping_nonce_sent = nonce;
5237 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5238 } else {
5239 // Peer is too old to support ping command with nonce, pong will never arrive.
5240 peer.m_ping_nonce_sent = 0;
5241 MakeAndPushMessage(node_to, NetMsgType::PING);
5242 }
5243 }
5244}
5245
5246void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5247{
5248 // Nothing to do for non-address-relay peers
5249 if (!peer.m_addr_relay_enabled) return;
5250
5251 LOCK(peer.m_addr_send_times_mutex);
5252 // Periodically advertise our local address to the peer.
5253 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5254 peer.m_next_local_addr_send < current_time) {
5255 // If we've sent before, clear the bloom filter for the peer, so that our
5256 // self-announcement will actually go out.
5257 // This might be unnecessary if the bloom filter has already rolled
5258 // over since our last self-announcement, but there is only a small
5259 // bandwidth cost that we can incur by doing this (which happens
5260 // once a day on average).
5261 if (peer.m_next_local_addr_send != 0us) {
5262 peer.m_addr_known->reset();
5263 }
5264 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5265 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5266 PushAddress(peer, local_addr);
5267 }
5268 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5269 }
5270
5271 // We sent an `addr` message to this peer recently. Nothing more to do.
5272 if (current_time <= peer.m_next_addr_send) return;
5273
5274 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5275
5276 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5277 // Should be impossible since we always check size before adding to
5278 // m_addrs_to_send. Recover by trimming the vector.
5279 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5280 }
5281
5282 // Remove addr records that the peer already knows about, and add new
5283 // addrs to the m_addr_known filter on the same pass.
5284 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5285 bool ret = peer.m_addr_known->contains(addr.GetKey());
5286 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5287 return ret;
5288 };
5289 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5290 peer.m_addrs_to_send.end());
5291
5292 // No addr messages to send
5293 if (peer.m_addrs_to_send.empty()) return;
5294
5295 if (peer.m_wants_addrv2) {
5296 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5297 } else {
5298 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5299 }
5300 peer.m_addrs_to_send.clear();
5301
5302 // we only send the big addr message once
5303 if (peer.m_addrs_to_send.capacity() > 40) {
5304 peer.m_addrs_to_send.shrink_to_fit();
5305 }
5306}
5307
5308void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5309{
5310 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5311 // initial-headers-sync with this peer. Receiving headers announcements for
5312 // new blocks while trying to sync their headers chain is problematic,
5313 // because of the state tracking done.
5314 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5315 LOCK(cs_main);
5316 CNodeState &state = *State(node.GetId());
5317 if (state.pindexBestKnownBlock != nullptr &&
5318 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5319 // Tell our peer we prefer to receive headers rather than inv's
5320 // We send this to non-NODE NETWORK peers as well, because even
5321 // non-NODE NETWORK peers can announce blocks (such as pruning
5322 // nodes)
5323 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5324 peer.m_sent_sendheaders = true;
5325 }
5326 }
5327}
5328
5329void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5330{
5331 if (m_opts.ignore_incoming_txs) return;
5332 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5333 // peers with the forcerelay permission should not filter txs to us
5335 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5336 // transactions to us, regardless of feefilter state.
5337 if (pto.IsBlockOnlyConn()) return;
5338
5339 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5340
5341 if (m_chainman.IsInitialBlockDownload()) {
5342 // Received tx-inv messages are discarded when the active
5343 // chainstate is in IBD, so tell the peer to not send them.
5344 currentFilter = MAX_MONEY;
5345 } else {
5346 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5347 if (peer.m_fee_filter_sent == MAX_FILTER) {
5348 // Send the current filter if we sent MAX_FILTER previously
5349 // and made it out of IBD.
5350 peer.m_next_send_feefilter = 0us;
5351 }
5352 }
5353 if (current_time > peer.m_next_send_feefilter) {
5354 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5355 // We always have a fee filter of at least the min relay fee
5356 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5357 if (filterToSend != peer.m_fee_filter_sent) {
5358 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5359 peer.m_fee_filter_sent = filterToSend;
5360 }
5361 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5362 }
5363 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5364 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5365 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5366 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5367 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5368 }
5369}
5370
5371namespace {
5372class CompareInvMempoolOrder
5373{
5374 CTxMemPool* mp;
5375 bool m_wtxid_relay;
5376public:
5377 explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5378 {
5379 mp = _mempool;
5380 m_wtxid_relay = use_wtxid;
5381 }
5382
5383 bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5384 {
5385 /* As std::make_heap produces a max-heap, we want the entries with the
5386 * fewest ancestors/highest fee to sort later. */
5387 return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5388 }
5389};
5390} // namespace
5391
5392bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5393{
5394 // block-relay-only peers may never send txs to us
5395 if (peer.IsBlockOnlyConn()) return true;
5396 if (peer.IsFeelerConn()) return true;
5397 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5398 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5399 return false;
5400}
5401
5402bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5403{
5404 // We don't participate in addr relay with outbound block-relay-only
5405 // connections to prevent providing adversaries with the additional
5406 // information of addr traffic to infer the link.
5407 if (node.IsBlockOnlyConn()) return false;
5408
5409 if (!peer.m_addr_relay_enabled.exchange(true)) {
5410 // During version message processing (non-block-relay-only outbound peers)
5411 // or on first addr-related message we have received (inbound peers), initialize
5412 // m_addr_known.
5413 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5414 }
5415
5416 return true;
5417}
5418
5419bool PeerManagerImpl::SendMessages(CNode* pto)
5420{
5421 AssertLockNotHeld(m_tx_download_mutex);
5422 AssertLockHeld(g_msgproc_mutex);
5423
5424 PeerRef peer = GetPeerRef(pto->GetId());
5425 if (!peer) return false;
5426 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5427
5428 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5429 // disconnect misbehaving peers even before the version handshake is complete.
5430 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5431
5432 // Initiate version handshake for outbound connections
5433 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5434 PushNodeVersion(*pto, *peer);
5435 peer->m_outbound_version_message_sent = true;
5436 }
5437
5438 // Don't send anything until the version handshake is complete
5439 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5440 return true;
5441
5442 const auto current_time{GetTime<std::chrono::microseconds>()};
5443
5444 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5445 LogDebug(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId());
5446 pto->fDisconnect = true;
5447 return true;
5448 }
5449
5450 MaybeSendPing(*pto, *peer, current_time);
5451
5452 // MaybeSendPing may have marked peer for disconnection
5453 if (pto->fDisconnect) return true;
5454
5455 MaybeSendAddr(*pto, *peer, current_time);
5456
5457 MaybeSendSendHeaders(*pto, *peer);
5458
5459 {
5460 LOCK(cs_main);
5461
5462 CNodeState &state = *State(pto->GetId());
5463
5464 // Start block sync
5465 if (m_chainman.m_best_header == nullptr) {
5466 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5467 }
5468
5469 // Determine whether we might try initial headers sync or parallel
5470 // block download from this peer -- this mostly affects behavior while
5471 // in IBD (once out of IBD, we sync from all peers).
5472 bool sync_blocks_and_headers_from_peer = false;
5473 if (state.fPreferredDownload) {
5474 sync_blocks_and_headers_from_peer = true;
5475 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5476 // Typically this is an inbound peer. If we don't have any outbound
5477 // peers, or if we aren't downloading any blocks from such peers,
5478 // then allow block downloads from this peer, too.
5479 // We prefer downloading blocks from outbound peers to avoid
5480 // putting undue load on (say) some home user who is just making
5481 // outbound connections to the network, but if our only source of
5482 // the latest blocks is from an inbound peer, we have to be sure to
5483 // eventually download it (and not just wait indefinitely for an
5484 // outbound peer to have it).
5485 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5486 sync_blocks_and_headers_from_peer = true;
5487 }
5488 }
5489
5490 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5491 // Only actively request headers from a single peer, unless we're close to today.
5492 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5493 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5494 /* If possible, start at the block preceding the currently
5495 best known header. This ensures that we always get a
5496 non-empty list of headers back as long as the peer
5497 is up-to-date. With a non-empty response, we can initialise
5498 the peer's known best block. This wouldn't be possible
5499 if we requested starting at m_chainman.m_best_header and
5500 got back an empty response. */
5501 if (pindexStart->pprev)
5502 pindexStart = pindexStart->pprev;
5503 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5504 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5505
5506 state.fSyncStarted = true;
5507 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5508 (
5509 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5510 // to maintain precision
5511 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5512 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5513 );
5514 nSyncStarted++;
5515 }
5516 }
5517 }
5518
5519 //
5520 // Try sending block announcements via headers
5521 //
5522 {
5523 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5524 // list of block hashes we're relaying, and our peer wants
5525 // headers announcements, then find the first header
5526 // not yet known to our peer but would connect, and send.
5527 // If no header would connect, or if we have too many
5528 // blocks, or if the peer doesn't want headers, just
5529 // add all to the inv queue.
5530 LOCK(peer->m_block_inv_mutex);
5531 std::vector<CBlock> vHeaders;
5532 bool fRevertToInv = ((!peer->m_prefers_headers &&
5533 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5534 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5535 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5536 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5537
5538 if (!fRevertToInv) {
5539 bool fFoundStartingHeader = false;
5540 // Try to find first header that our peer doesn't have, and
5541 // then send all headers past that one. If we come across any
5542 // headers that aren't on m_chainman.ActiveChain(), give up.
5543 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5544 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5545 assert(pindex);
5546 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5547 // Bail out if we reorged away from this block
5548 fRevertToInv = true;
5549 break;
5550 }
5551 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5552 // This means that the list of blocks to announce don't
5553 // connect to each other.
5554 // This shouldn't really be possible to hit during
5555 // regular operation (because reorgs should take us to
5556 // a chain that has some block not on the prior chain,
5557 // which should be caught by the prior check), but one
5558 // way this could happen is by using invalidateblock /
5559 // reconsiderblock repeatedly on the tip, causing it to
5560 // be added multiple times to m_blocks_for_headers_relay.
5561 // Robustly deal with this rare situation by reverting
5562 // to an inv.
5563 fRevertToInv = true;
5564 break;
5565 }
5566 pBestIndex = pindex;
5567 if (fFoundStartingHeader) {
5568 // add this to the headers message
5569 vHeaders.emplace_back(pindex->GetBlockHeader());
5570 } else if (PeerHasHeader(&state, pindex)) {
5571 continue; // keep looking for the first new block
5572 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5573 // Peer doesn't have this header but they do have the prior one.
5574 // Start sending headers.
5575 fFoundStartingHeader = true;
5576 vHeaders.emplace_back(pindex->GetBlockHeader());
5577 } else {
5578 // Peer doesn't have this header or the prior one -- nothing will
5579 // connect, so bail out.
5580 fRevertToInv = true;
5581 break;
5582 }
5583 }
5584 }
5585 if (!fRevertToInv && !vHeaders.empty()) {
5586 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5587 // We only send up to 1 block as header-and-ids, as otherwise
5588 // probably means we're doing an initial-ish-sync or they're slow
5589 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5590 vHeaders.front().GetHash().ToString(), pto->GetId());
5591
5592 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5593 {
5594 LOCK(m_most_recent_block_mutex);
5595 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5596 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5597 }
5598 }
5599 if (cached_cmpctblock_msg.has_value()) {
5600 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5601 } else {
5602 CBlock block;
5603 const bool ret{m_chainman.m_blockman.ReadBlockFromDisk(block, *pBestIndex)};
5604 assert(ret);
5605 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5606 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5607 }
5608 state.pindexBestHeaderSent = pBestIndex;
5609 } else if (peer->m_prefers_headers) {
5610 if (vHeaders.size() > 1) {
5611 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5612 vHeaders.size(),
5613 vHeaders.front().GetHash().ToString(),
5614 vHeaders.back().GetHash().ToString(), pto->GetId());
5615 } else {
5616 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5617 vHeaders.front().GetHash().ToString(), pto->GetId());
5618 }
5619 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5620 state.pindexBestHeaderSent = pBestIndex;
5621 } else
5622 fRevertToInv = true;
5623 }
5624 if (fRevertToInv) {
5625 // If falling back to using an inv, just try to inv the tip.
5626 // The last entry in m_blocks_for_headers_relay was our tip at some point
5627 // in the past.
5628 if (!peer->m_blocks_for_headers_relay.empty()) {
5629 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5630 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5631 assert(pindex);
5632
5633 // Warn if we're announcing a block that is not on the main chain.
5634 // This should be very rare and could be optimized out.
5635 // Just log for now.
5636 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5637 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5638 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5639 }
5640
5641 // If the peer's chain has this block, don't inv it back.
5642 if (!PeerHasHeader(&state, pindex)) {
5643 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5644 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5645 pto->GetId(), hashToAnnounce.ToString());
5646 }
5647 }
5648 }
5649 peer->m_blocks_for_headers_relay.clear();
5650 }
5651
5652 //
5653 // Message: inventory
5654 //
5655 std::vector<CInv> vInv;
5656 {
5657 LOCK(peer->m_block_inv_mutex);
5658 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5659
5660 // Add blocks
5661 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5662 vInv.emplace_back(MSG_BLOCK, hash);
5663 if (vInv.size() == MAX_INV_SZ) {
5664 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5665 vInv.clear();
5666 }
5667 }
5668 peer->m_blocks_for_inv_relay.clear();
5669 }
5670
5671 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5672 LOCK(tx_relay->m_tx_inventory_mutex);
5673 // Check whether periodic sends should happen
5674 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5675 if (tx_relay->m_next_inv_send_time < current_time) {
5676 fSendTrickle = true;
5677 if (pto->IsInboundConn()) {
5678 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5679 } else {
5680 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5681 }
5682 }
5683
5684 // Time to send but the peer has requested we not relay transactions.
5685 if (fSendTrickle) {
5686 LOCK(tx_relay->m_bloom_filter_mutex);
5687 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5688 }
5689
5690 // Respond to BIP35 mempool requests
5691 if (fSendTrickle && tx_relay->m_send_mempool) {
5692 auto vtxinfo = m_mempool.infoAll();
5693 tx_relay->m_send_mempool = false;
5694 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5695
5696 LOCK(tx_relay->m_bloom_filter_mutex);
5697
5698 for (const auto& txinfo : vtxinfo) {
5699 CInv inv{
5700 peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5701 peer->m_wtxid_relay ?
5702 txinfo.tx->GetWitnessHash().ToUint256() :
5703 txinfo.tx->GetHash().ToUint256(),
5704 };
5705 tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5706
5707 // Don't send transactions that peers will not put into their mempool
5708 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5709 continue;
5710 }
5711 if (tx_relay->m_bloom_filter) {
5712 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5713 }
5714 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5715 vInv.push_back(inv);
5716 if (vInv.size() == MAX_INV_SZ) {
5717 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5718 vInv.clear();
5719 }
5720 }
5721 }
5722
5723 // Determine transactions to relay
5724 if (fSendTrickle) {
5725 // Produce a vector with all candidates for sending
5726 std::vector<std::set<uint256>::iterator> vInvTx;
5727 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5728 for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5729 vInvTx.push_back(it);
5730 }
5731 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5732 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5733 // A heap is used so that not all items need sorting if only a few are being sent.
5734 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5735 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5736 // No reason to drain out at many times the network's capacity,
5737 // especially since we have many peers and some will draw much shorter delays.
5738 unsigned int nRelayedTransactions = 0;
5739 LOCK(tx_relay->m_bloom_filter_mutex);
5740 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5741 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5742 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5743 // Fetch the top element from the heap
5744 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5745 std::set<uint256>::iterator it = vInvTx.back();
5746 vInvTx.pop_back();
5747 uint256 hash = *it;
5748 CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5749 // Remove it from the to-be-sent set
5750 tx_relay->m_tx_inventory_to_send.erase(it);
5751 // Check if not in the filter already
5752 if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
5753 continue;
5754 }
5755 // Not in the mempool anymore? don't bother sending it.
5756 auto txinfo = m_mempool.info(ToGenTxid(inv));
5757 if (!txinfo.tx) {
5758 continue;
5759 }
5760 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5761 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5762 continue;
5763 }
5764 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5765 // Send
5766 vInv.push_back(inv);
5767 nRelayedTransactions++;
5768 if (vInv.size() == MAX_INV_SZ) {
5769 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5770 vInv.clear();
5771 }
5772 tx_relay->m_tx_inventory_known_filter.insert(hash);
5773 }
5774
5775 // Ensure we'll respond to GETDATA requests for anything we've just announced
5776 LOCK(m_mempool.cs);
5777 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5778 }
5779 }
5780 if (!vInv.empty())
5781 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5782
5783 // Detect whether we're stalling
5784 auto stalling_timeout = m_block_stalling_timeout.load();
5785 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5786 // Stalling only triggers when the block download window cannot move. During normal steady state,
5787 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5788 // should only happen during initial block download.
5789 LogPrintf("Peer=%d%s is stalling block download, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5790 pto->fDisconnect = true;
5791 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5792 // bandwidth is insufficient.
5793 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5794 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5795 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5796 }
5797 return true;
5798 }
5799 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5800 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5801 // We compensate for other peers to prevent killing off peers due to our own downstream link
5802 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5803 // to unreasonably increase our timeout.
5804 if (state.vBlocksInFlight.size() > 0) {
5805 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5806 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5807 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5808 LogPrintf("Timeout downloading block %s from peer=%d%s, disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5809 pto->fDisconnect = true;
5810 return true;
5811 }
5812 }
5813 // Check for headers sync timeouts
5814 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5815 // Detect whether this is a stalling initial-headers-sync peer
5816 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5817 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5818 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5819 // and we have others we could be using instead.
5820 // Note: If all our peers are inbound, then we won't
5821 // disconnect our sync peer for stalling; we have bigger
5822 // problems if we can't get any outbound peers.
5824 LogPrintf("Timeout downloading headers from peer=%d%s, disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5825 pto->fDisconnect = true;
5826 return true;
5827 } else {
5828 LogPrintf("Timeout downloading headers from noban peer=%d%s, not disconnecting\n", pto->GetId(), fLogIPs ? strprintf(" peeraddr=%s", pto->addr.ToStringAddrPort()) : "");
5829 // Reset the headers sync state so that we have a
5830 // chance to try downloading from a different peer.
5831 // Note: this will also result in at least one more
5832 // getheaders message to be sent to
5833 // this peer (eventually).
5834 state.fSyncStarted = false;
5835 nSyncStarted--;
5836 peer->m_headers_sync_timeout = 0us;
5837 }
5838 }
5839 } else {
5840 // After we've caught up once, reset the timeout so we can't trigger
5841 // disconnect later.
5842 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5843 }
5844 }
5845
5846 // Check that outbound peers have reasonable chains
5847 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5848 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5849
5850 //
5851 // Message: getdata (blocks)
5852 //
5853 std::vector<CInv> vGetData;
5854 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5855 std::vector<const CBlockIndex*> vToDownload;
5856 NodeId staller = -1;
5857 auto get_inflight_budget = [&state]() {
5858 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5859 };
5860
5861 // If a snapshot chainstate is in use, we want to find its next blocks
5862 // before the background chainstate to prioritize getting to network tip.
5863 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5864 if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5865 // If the background tip is not an ancestor of the snapshot block,
5866 // we need to start requesting blocks from their last common ancestor.
5867 const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5868 TryDownloadingHistoricalBlocks(
5869 *peer,
5870 get_inflight_budget(),
5871 vToDownload, from_tip,
5872 Assert(m_chainman.GetSnapshotBaseBlock()));
5873 }
5874 for (const CBlockIndex *pindex : vToDownload) {
5875 uint32_t nFetchFlags = GetFetchFlags(*peer);
5876 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5877 BlockRequested(pto->GetId(), *pindex);
5878 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5879 pindex->nHeight, pto->GetId());
5880 }
5881 if (state.vBlocksInFlight.empty() && staller != -1) {
5882 if (State(staller)->m_stalling_since == 0us) {
5883 State(staller)->m_stalling_since = current_time;
5884 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5885 }
5886 }
5887 }
5888
5889 //
5890 // Message: getdata (transactions)
5891 //
5892 {
5893 LOCK(m_tx_download_mutex);
5894 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5895 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5896 if (vGetData.size() >= MAX_GETDATA_SZ) {
5897 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5898 vGetData.clear();
5899 }
5900 }
5901 }
5902
5903 if (!vGetData.empty())
5904 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5905 } // release cs_main
5906 MaybeSendFeefilter(*pto, *peer, current_time);
5907 return true;
5908}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:93
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:131
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:50
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:146
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:165
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:111
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:107
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:115
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous, checkpoint.
Definition: chain.h:97
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:121
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:85
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:59
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:141
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:147
CBlockHeader GetBlockHeader() const
Definition: chain.h:230
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:165
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:259
uint256 GetBlockHash() const
Definition: chain.h:243
int64_t GetBlockTime() const
Definition: chain.h:266
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:170
bool IsValid(enum BlockStatus nUpTo=BLOCK_VALID_TRANSACTIONS) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:295
NodeSeconds Time() const
Definition: chain.h:261
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:120
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:153
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:208
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:417
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:433
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:453
int Height() const
Return the maximal height in the chain.
Definition: chain.h:462
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:447
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:81
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:93
Definition: net.h:1036
void ForEachNode(const NodeFn &func)
Definition: net.h:1135
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3854
bool GetNetworkActive() const
Definition: net.h:1120
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2359
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2364
int GetExtraBlockRelayCount() const
Definition: net.cpp:2409
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2180
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3673
void StartExtraBlockRelayPeers()
Definition: net.cpp:2370
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3573
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3867
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3556
int GetExtraFullOutboundCount() const
Definition: net.cpp:2395
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3440
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:369
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1959
bool GetUseAddrmanOutgoing() const
Definition: net.h:1121
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per kilovirtualbyte: CAmount / kvB.
Definition: feerate.h:33
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:63
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:126
std::vector< std::pair< unsigned int, uint256 > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:138
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:466
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:428
bool IsLocal() const
Definition: netaddress.cpp:402
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:481
Transport protocol agnostic message container.
Definition: net.h:231
Information about a peer.
Definition: net.h:673
bool IsFeelerConn() const
Definition: net.h:803
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
bool ExpectServicesFromConn() const
Definition: net.h:815
std::atomic< int > nVersion
Definition: net.h:716
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:851
bool IsInboundConn() const
Definition: net.h:811
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:724
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:760
NodeId GetId() const
Definition: net.h:894
bool IsManualConn() const
Definition: net.h:779
const std::string m_addr_name
Definition: net.h:711
std::string ConnectionTypeAsString() const
Definition: net.h:948
void SetCommonVersion(int greatest_common_version)
Definition: net.h:919
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:855
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:951
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
bool IsAddrFetchConn() const
Definition: net.h:807
uint64_t GetLocalNonce() const
Definition: net.h:898
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:589
bool IsBlockOnlyConn() const
Definition: net.h:799
int GetCommonVersion() const
Definition: net.h:924
bool IsFullOutboundConn() const
Definition: net.h:775
Mutex m_subver_mutex
Definition: net.h:717
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3788
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:859
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
std::string ToStringAddrPort() const
Definition: netaddress.cpp:905
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:897
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
The basic transaction that is broadcasted on the network and contained in blocks.
Definition: transaction.h:296
const Wtxid & GetWitnessHash() const LIFETIMEBOUND
Definition: transaction.h:344
const Txid & GetHash() const LIFETIMEBOUND
Definition: transaction.h:343
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:304
void RemoveUnbroadcastTx(const uint256 &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:1069
std::set< uint256 > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:687
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:390
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:1126
CTransactionRef get(const uint256 &hash) const
Definition: txmempool.cpp:884
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:1063
const Options m_opts
Definition: txmempool.h:439
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:863
TxMempoolInfo info(const GenTxid &gtxid) const
Definition: txmempool.cpp:893
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:705
TxMempoolInfo info_for_relay(const GenTxid &gtxid, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.cpp:902
bool exists(const GenTxid &gtxid) const
Definition: txmempool.h:647
unsigned long size() const
Definition: txmempool.h:629
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void BlockConnected(ChainstateRole role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
virtual void BlockChecked(const CBlock &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
Provides an interface for creating and interacting with one or two chainstates: an IBD chainstate gen...
Definition: validation.h:866
SnapshotCompletionResult MaybeCompleteSnapshotValidation() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(Chainstate ActiveChainstate)() const
Once the background validation chainstate has reached the height which is the base of the UTXO snapsh...
Definition: validation.h:1110
const CBlockIndex * GetBackgroundSyncTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The tip of the background sync chain.
Definition: validation.h:1121
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1001
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1113
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool BackgroundSyncInProgress() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The state of a background sync (for net processing)
Definition: validation.h:1116
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:979
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1111
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1007
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
bool empty() const
Definition: streams.h:182
size_type size() const
Definition: streams.h:181
void ignore(size_t num_ignore)
Definition: streams.h:236
int in_avail() const
Definition: streams.h:216
Fast randomness source.
Definition: random.h:377
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:395
A generic txid reference (txid or wtxid).
Definition: transaction.h:428
bool IsWtxid() const
Definition: transaction.h:436
const uint256 & GetHash() const LIFETIMEBOUND
Definition: transaction.h:437
static GenTxid Txid(const uint256 &hash)
Definition: transaction.h:434
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:995
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< CTransactionRef > &extra_txn)
bool IsTxAvailable(size_t index) const
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing)
virtual std::optional< std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual std::vector< TxOrphanage::OrphanTxBase > GetOrphanTransactions()=0
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
bool IsValid() const
Definition: validation.h:106
Result GetResult() const
Definition: validation.h:109
std::string ToString() const
Definition: validation.h:112
bool IsInvalid() const
Definition: validation.h:107
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:47
bool ReadBlockFromDisk(CBlock &block, const FlatFilePos &pos) const
Functions for disk access for blocks.
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool ReadRawBlockFromDisk(std::vector< uint8_t > &block, const FlatFilePos &pos) const
bool LoadingBlocks() const
Definition: blockstorage.h:362
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:356
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
256-bit opaque blob.
Definition: uint256.h:190
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_CHECKPOINT
the block failed to meet one of our checkpoints
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_MEMPOOL_POLICY
violated mempool's fee/size/descendant/RBF/etc limits
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_PREMATURE_SPEND
transaction spends a coinbase too early, or violates locktime/sequence locks
@ TX_INPUTS_NOT_STANDARD
inputs (covered by txid) failed policy rules
@ TX_WITNESS_STRIPPED
Transaction is missing a witness.
@ TX_CONFLICT
Tx already in mempool or conflicts with a tx in the chain (if it conflicts with another tx in mempool...
@ TX_NOT_STANDARD
otherwise didn't meet our local policy rules
@ TX_WITNESS_MUTATED
Transaction might have a witness prior to SegWit activation, or witness may have been malleated (whic...
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
@ TX_CONSENSUS
invalid by consensus rules
@ TX_RECONSIDERABLE
fails some policy, but might be acceptable if submitted in a (different) package
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
ChainstateRole
This enum describes the various roles a specific Chainstate instance can take.
Definition: chain.h:25
bool fLogIPs
Definition: logging.cpp:45
#define LogPrintLevel(category, level,...)
Definition: logging.h:272
#define LogInfo(...)
Definition: logging.h:261
#define LogError(...)
Definition: logging.h:263
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:233
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ TXPACKAGES
Definition: logging.h:73
@ MEMPOOLREJ
Definition: logging.h:59
@ MEMPOOL
Definition: logging.h:45
@ NET
Definition: logging.h:43
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:28
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Functions to serialize / deserialize common bitcoin types.
Definition: common-types.h:44
Definition: messages.h:20
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:427
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:233
bool fListen
Definition: net.cpp:119
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:122
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:242
std::function< void(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:3955
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:314
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:65
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
int64_t NodeId
Definition: net.h:97
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:719
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:57
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:196
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:423
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" command for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" command and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:500
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:337
constexpr auto MakeUCharSpan(V &&v) -> decltype(UCharSpanCast(Span{std::forward< V >(v)}))
Like the Span constructor, but for (const) unsigned char member types only.
Definition: span.h:297
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:74
int64_t nPowTargetSpacing
Definition: params.h:117
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:119
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:123
const ResultType m_result_type
Result type.
Definition: validation.h:132
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:135
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:138
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:24
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:229
PackageValidationState m_state
Definition: validation.h:230
std::map< uint256, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:237
std::chrono::seconds median_outbound_time_offset
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:59
std::string ToString() const
Definition: txdownloadman.h:81
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK2(cs1, cs2)
Definition: sync.h:258
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
#define GUARDED_BY(x)
Definition: threadsafety.h:38
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:48
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:41
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:39
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:47
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:58
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:56
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1165
#define TRACEPOINT(context,...)
Definition: trace.h:49
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it)
Definition: txmempool.cpp:847
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:68