Bitcoin Core 29.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/chain.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
38#include <node/txorphanage.h>
40#include <node/warnings.h>
41#include <policy/feerate.h>
42#include <policy/fees.h>
43#include <policy/packages.h>
44#include <policy/policy.h>
45#include <primitives/block.h>
47#include <protocol.h>
48#include <random.h>
49#include <scheduler.h>
50#include <script/script.h>
51#include <serialize.h>
52#include <span.h>
53#include <streams.h>
54#include <sync.h>
55#include <tinyformat.h>
56#include <txmempool.h>
57#include <uint256.h>
58#include <util/check.h>
59#include <util/strencodings.h>
60#include <util/time.h>
61#include <util/trace.h>
62#include <validation.h>
63
64#include <algorithm>
65#include <array>
66#include <atomic>
67#include <compare>
68#include <cstddef>
69#include <deque>
70#include <exception>
71#include <functional>
72#include <future>
73#include <initializer_list>
74#include <iterator>
75#include <limits>
76#include <list>
77#include <map>
78#include <memory>
79#include <optional>
80#include <queue>
81#include <ranges>
82#include <ratio>
83#include <set>
84#include <span>
85#include <typeinfo>
86#include <utility>
87
88using namespace util::hex_literals;
89
90TRACEPOINT_SEMAPHORE(net, inbound_message);
91TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
92
95static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
96static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
98static constexpr auto HEADERS_RESPONSE_TIME{2min};
104static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
106static constexpr auto STALE_CHECK_INTERVAL{10min};
108static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
110static constexpr auto MINIMUM_CONNECT_TIME{30s};
112static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
115static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
118static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
120static constexpr auto PING_INTERVAL{2min};
122static const unsigned int MAX_LOCATOR_SZ = 101;
124static const unsigned int MAX_INV_SZ = 50000;
126static const unsigned int MAX_GETDATA_SZ = 1000;
128static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
131static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
133static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
136static const int MAX_CMPCTBLOCK_DEPTH = 5;
138static const int MAX_BLOCKTXN_DEPTH = 10;
139static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
144static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
146static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
148static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
150static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
152static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
154static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
156static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
158static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
160static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
170static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
174static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
175static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
176static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
178static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
180static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
182static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
184static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
186static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
188static constexpr size_t MAX_ADDR_TO_SEND{1000};
191static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
197static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
198
199// Internal stuff
200namespace {
202struct QueuedBlock {
204 const CBlockIndex* pindex;
206 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
207};
208
221struct Peer {
223 const NodeId m_id{0};
224
238 const ServiceFlags m_our_services;
240 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
241
243 const bool m_is_inbound;
244
246 Mutex m_misbehavior_mutex;
248 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
249
251 Mutex m_block_inv_mutex;
255 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
259 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
264 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
265
267 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
268
270 std::atomic<int> m_starting_height{-1};
271
273 std::atomic<uint64_t> m_ping_nonce_sent{0};
275 std::atomic<std::chrono::microseconds> m_ping_start{0us};
277 std::atomic<bool> m_ping_queued{false};
278
280 std::atomic<bool> m_wtxid_relay{false};
287 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
288
289 struct TxRelay {
290 mutable RecursiveMutex m_bloom_filter_mutex;
292 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
294 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
295
296 mutable RecursiveMutex m_tx_inventory_mutex;
300 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
305 std::set<Wtxid> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
309 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
312 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
315 uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
316
318 std::atomic<CAmount> m_fee_filter_received{0};
319 };
320
321 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
322 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
323 {
324 LOCK(m_tx_relay_mutex);
325 Assume(!m_tx_relay);
326 m_tx_relay = std::make_unique<Peer::TxRelay>();
327 return m_tx_relay.get();
328 };
329
330 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
331 {
332 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
333 };
334
336 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
346 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
361 std::atomic_bool m_addr_relay_enabled{false};
363 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
365 mutable Mutex m_addr_send_times_mutex;
367 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
369 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
372 std::atomic_bool m_wants_addrv2{false};
374 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
377 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
379 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
381 std::atomic<uint64_t> m_addr_rate_limited{0};
383 std::atomic<uint64_t> m_addr_processed{0};
384
386 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
387
389 Mutex m_getdata_requests_mutex;
391 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
392
395
397 Mutex m_headers_sync_mutex;
400 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
401
403 std::atomic<bool> m_sent_sendheaders{false};
404
406 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
407
409 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
410
413 std::atomic<std::chrono::seconds> m_time_offset{0s};
414
415 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
416 : m_id{id}
417 , m_our_services{our_services}
418 , m_is_inbound{is_inbound}
419 {}
420
421private:
422 mutable Mutex m_tx_relay_mutex;
423
425 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
426};
427
428using PeerRef = std::shared_ptr<Peer>;
429
436struct CNodeState {
438 const CBlockIndex* pindexBestKnownBlock{nullptr};
440 uint256 hashLastUnknownBlock{};
442 const CBlockIndex* pindexLastCommonBlock{nullptr};
444 const CBlockIndex* pindexBestHeaderSent{nullptr};
446 bool fSyncStarted{false};
448 std::chrono::microseconds m_stalling_since{0us};
449 std::list<QueuedBlock> vBlocksInFlight;
451 std::chrono::microseconds m_downloading_since{0us};
453 bool fPreferredDownload{false};
455 bool m_requested_hb_cmpctblocks{false};
457 bool m_provides_cmpctblocks{false};
458
483 struct ChainSyncTimeoutState {
485 std::chrono::seconds m_timeout{0s};
487 const CBlockIndex* m_work_header{nullptr};
489 bool m_sent_getheaders{false};
491 bool m_protect{false};
492 };
493
494 ChainSyncTimeoutState m_chain_sync;
495
497 int64_t m_last_block_announcement{0};
498};
499
500class PeerManagerImpl final : public PeerManager
501{
502public:
503 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
504 BanMan* banman, ChainstateManager& chainman,
505 CTxMemPool& pool, node::Warnings& warnings, Options opts);
506
508 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
509 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
510 void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
511 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
512 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
513 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
514 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
515 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516 void BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state) override
517 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
518 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
519 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
520
522 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
523 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
524 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
525 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
526 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
527 bool SendMessages(CNode* pto) override
528 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
529
531 void StartScheduledTasks(CScheduler& scheduler) override;
532 void CheckForStaleTipAndEvictPeers() override;
533 std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
534 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
535 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536 std::vector<node::TxOrphanage::OrphanInfo> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
537 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
538 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539 void RelayTransaction(const Txid& txid, const Wtxid& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 void SetBestBlock(int height, std::chrono::seconds time) override
541 {
542 m_best_height = height;
543 m_best_block_time = time;
544 };
545 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
546 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
547 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
548 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
549 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
550 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
551
552private:
554 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
555
557 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
558
560 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
561
564 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
565
568 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
569
572 void Misbehaving(Peer& peer, const std::string& message);
573
582 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
583 bool via_compact_block, const std::string& message = "")
584 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
585
592 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
593
605 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
606 bool first_time_failure)
607 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
608
611 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
612 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
613
617 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
618 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
619
631 bool ProcessOrphanTx(Peer& peer)
632 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
633
641 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
642 std::vector<CBlockHeader>&& headers,
643 bool via_compact_block)
644 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
647 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
649 arith_uint256 GetAntiDoSWorkThreshold();
653 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
655 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
674 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
675 std::vector<CBlockHeader>& headers)
676 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
688 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
689 const CBlockIndex* chain_start_header,
690 std::vector<CBlockHeader>& headers)
691 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
692
695 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
696
701 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
703 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
705 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
706 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
707
708 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
709
711 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
712 template <typename... Args>
713 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
714 {
715 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
716 }
717
719 void PushNodeVersion(CNode& pnode, const Peer& peer);
720
725 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
726
728 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
729
731 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
732
740 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
741
743 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
744
746
748
749 const CChainParams& m_chainparams;
750 CConnman& m_connman;
751 AddrMan& m_addrman;
753 BanMan* const m_banman;
754 ChainstateManager& m_chainman;
755 CTxMemPool& m_mempool;
756
765 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
766 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
767
768 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
769
771 std::atomic<int> m_best_height{-1};
773 std::atomic<std::chrono::seconds> m_best_block_time{0s};
774
776 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
777
778 node::Warnings& m_warnings;
779 TimeOffsets m_outbound_time_offsets{m_warnings};
780
781 const Options m_opts;
782
783 bool RejectIncomingTxs(const CNode& peer) const;
784
787 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
788
791 mutable Mutex m_peer_mutex;
798 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
799
801 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
802
804 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
806 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
807
808 uint32_t GetFetchFlags(const Peer& peer) const;
809
810 std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
811
813 int nSyncStarted GUARDED_BY(cs_main) = 0;
814
816 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
817
824 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
825
827 std::atomic<int> m_wtxid_relay_peers{0};
828
830 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
831
833 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
834
836 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
837
844 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
845 std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
846
847
848 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
849 Mutex m_most_recent_block_mutex;
850 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
851 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
852 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
853 std::unique_ptr<const std::map<GenTxid, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
854
855 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
857 Mutex m_headers_presync_mutex;
865 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
867 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
869 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
871 std::atomic_bool m_headers_presync_should_signal{false};
872
874 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
875
877 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
878
880 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
881
889 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
890
891 /* Mark a block as in flight
892 * Returns false, still setting pit, if the block was already in flight from the same peer
893 * pit will only be valid as long as the same cs_main lock is being held
894 */
895 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
896
897 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
898
902 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
903
905 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
906
934 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
935
936 /* Multimap used to preserve insertion order */
937 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
938 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
939
941 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
942
944 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
946
947 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
948 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
950
952 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
953
955 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
956 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
957
964 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
965
967 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
968
970 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
971
972 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
973
977 std::vector<std::pair<Wtxid, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
979 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
980
982 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
984 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
985 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
986
991 int64_t ApproximateBestBlockDepth() const;
992
999 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1000 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1001 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1002 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1003
1019 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1020 BlockFilterType filter_type, uint32_t start_height,
1021 const uint256& stop_hash, uint32_t max_height_diff,
1022 const CBlockIndex*& stop_index,
1023 BlockFilterIndex*& filter_index);
1024
1034 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1035
1045 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1046
1056 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1057
1064 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1065
1066 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1067 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1068
1069 void LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block);
1070};
1071
1072const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1073{
1074 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1075 if (it == m_node_states.end())
1076 return nullptr;
1077 return &it->second;
1078}
1079
1080CNodeState* PeerManagerImpl::State(NodeId pnode)
1081{
1082 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1083}
1084
1090static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1091{
1092 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1093}
1094
1095void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1096{
1097 assert(peer.m_addr_known);
1098 peer.m_addr_known->insert(addr.GetKey());
1099}
1100
1101void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1102{
1103 // Known checking here is only to save space from duplicates.
1104 // Before sending, we'll filter it again for known addresses that were
1105 // added after addresses were pushed.
1106 assert(peer.m_addr_known);
1107 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1108 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1109 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1110 } else {
1111 peer.m_addrs_to_send.push_back(addr);
1112 }
1113 }
1114}
1115
1116static void AddKnownTx(Peer& peer, const uint256& hash)
1117{
1118 auto tx_relay = peer.GetTxRelay();
1119 if (!tx_relay) return;
1120
1121 LOCK(tx_relay->m_tx_inventory_mutex);
1122 tx_relay->m_tx_inventory_known_filter.insert(hash);
1123}
1124
1126static bool CanServeBlocks(const Peer& peer)
1127{
1128 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1129}
1130
1133static bool IsLimitedPeer(const Peer& peer)
1134{
1135 return (!(peer.m_their_services & NODE_NETWORK) &&
1136 (peer.m_their_services & NODE_NETWORK_LIMITED));
1137}
1138
1140static bool CanServeWitnesses(const Peer& peer)
1141{
1142 return peer.m_their_services & NODE_WITNESS;
1143}
1144
1145std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1146 std::chrono::seconds average_interval)
1147{
1148 if (m_next_inv_to_inbounds.load() < now) {
1149 // If this function were called from multiple threads simultaneously
1150 // it would possible that both update the next send variable, and return a different result to their caller.
1151 // This is not possible in practice as only the net processing thread invokes this function.
1152 m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1153 }
1154 return m_next_inv_to_inbounds;
1155}
1156
1157bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1158{
1159 return mapBlocksInFlight.count(hash);
1160}
1161
1162bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1163{
1164 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1165 auto [nodeid, block_it] = range.first->second;
1166 PeerRef peer{GetPeerRef(nodeid)};
1167 if (peer && !peer->m_is_inbound) return true;
1168 }
1169
1170 return false;
1171}
1172
1173void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1174{
1175 auto range = mapBlocksInFlight.equal_range(hash);
1176 if (range.first == range.second) {
1177 // Block was not requested from any peer
1178 return;
1179 }
1180
1181 // We should not have requested too many of this block
1182 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1183
1184 while (range.first != range.second) {
1185 const auto& [node_id, list_it]{range.first->second};
1186
1187 if (from_peer && *from_peer != node_id) {
1188 range.first++;
1189 continue;
1190 }
1191
1192 CNodeState& state = *Assert(State(node_id));
1193
1194 if (state.vBlocksInFlight.begin() == list_it) {
1195 // First block on the queue was received, update the start download time for the next one
1196 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1197 }
1198 state.vBlocksInFlight.erase(list_it);
1199
1200 if (state.vBlocksInFlight.empty()) {
1201 // Last validated block on the queue for this peer was received.
1202 m_peers_downloading_from--;
1203 }
1204 state.m_stalling_since = 0us;
1205
1206 range.first = mapBlocksInFlight.erase(range.first);
1207 }
1208}
1209
1210bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1211{
1212 const uint256& hash{block.GetBlockHash()};
1213
1214 CNodeState *state = State(nodeid);
1215 assert(state != nullptr);
1216
1217 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1218
1219 // Short-circuit most stuff in case it is from the same node
1220 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1221 if (range.first->second.first == nodeid) {
1222 if (pit) {
1223 *pit = &range.first->second.second;
1224 }
1225 return false;
1226 }
1227 }
1228
1229 // Make sure it's not being fetched already from same peer.
1230 RemoveBlockRequest(hash, nodeid);
1231
1232 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1233 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1234 if (state->vBlocksInFlight.size() == 1) {
1235 // We're starting a block download (batch) from this peer.
1236 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1237 m_peers_downloading_from++;
1238 }
1239 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1240 if (pit) {
1241 *pit = &itInFlight->second.second;
1242 }
1243 return true;
1244}
1245
1246void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1247{
1249
1250 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1251 // mempool will not contain the transactions necessary to reconstruct the
1252 // compact block.
1253 if (m_opts.ignore_incoming_txs) return;
1254
1255 CNodeState* nodestate = State(nodeid);
1256 PeerRef peer{GetPeerRef(nodeid)};
1257 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1258 // Don't request compact blocks if the peer has not signalled support
1259 return;
1260 }
1261
1262 int num_outbound_hb_peers = 0;
1263 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1264 if (*it == nodeid) {
1265 lNodesAnnouncingHeaderAndIDs.erase(it);
1266 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1267 return;
1268 }
1269 PeerRef peer_ref{GetPeerRef(*it)};
1270 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1271 }
1272 if (peer && peer->m_is_inbound) {
1273 // If we're adding an inbound HB peer, make sure we're not removing
1274 // our last outbound HB peer in the process.
1275 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1276 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1277 if (remove_peer && !remove_peer->m_is_inbound) {
1278 // Put the HB outbound peer in the second slot, so that it
1279 // doesn't get removed.
1280 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1281 }
1282 }
1283 }
1284 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1286 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1287 // As per BIP152, we only get 3 of our peers to announce
1288 // blocks using compact encodings.
1289 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1290 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1291 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1292 pnodeStop->m_bip152_highbandwidth_to = false;
1293 return true;
1294 });
1295 lNodesAnnouncingHeaderAndIDs.pop_front();
1296 }
1297 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1298 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1299 pfrom->m_bip152_highbandwidth_to = true;
1300 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1301 return true;
1302 });
1303}
1304
1305bool PeerManagerImpl::TipMayBeStale()
1306{
1308 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1309 if (m_last_tip_update.load() == 0s) {
1310 m_last_tip_update = GetTime<std::chrono::seconds>();
1311 }
1312 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1313}
1314
1315int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1316{
1317 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1318}
1319
1320bool PeerManagerImpl::CanDirectFetch()
1321{
1322 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1323}
1324
1325static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1326{
1327 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1328 return true;
1329 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1330 return true;
1331 return false;
1332}
1333
1334void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1335 CNodeState *state = State(nodeid);
1336 assert(state != nullptr);
1337
1338 if (!state->hashLastUnknownBlock.IsNull()) {
1339 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1340 if (pindex && pindex->nChainWork > 0) {
1341 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1342 state->pindexBestKnownBlock = pindex;
1343 }
1344 state->hashLastUnknownBlock.SetNull();
1345 }
1346 }
1347}
1348
1349void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1350 CNodeState *state = State(nodeid);
1351 assert(state != nullptr);
1352
1353 ProcessBlockAvailability(nodeid);
1354
1355 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1356 if (pindex && pindex->nChainWork > 0) {
1357 // An actually better block was announced.
1358 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1359 state->pindexBestKnownBlock = pindex;
1360 }
1361 } else {
1362 // An unknown block was announced; just assume that the latest one is the best one.
1363 state->hashLastUnknownBlock = hash;
1364 }
1365}
1366
1367// Logic for calculating which blocks to download from a given peer, given our current tip.
1368void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1369{
1370 if (count == 0)
1371 return;
1372
1373 vBlocks.reserve(vBlocks.size() + count);
1374 CNodeState *state = State(peer.m_id);
1375 assert(state != nullptr);
1376
1377 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1378 ProcessBlockAvailability(peer.m_id);
1379
1380 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1381 // This peer has nothing interesting.
1382 return;
1383 }
1384
1385 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1386 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1387 // so downloading blocks from it would be futile.
1388 const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1389 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1390 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1391 return;
1392 }
1393
1394 // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1395 // Guessing wrong in either direction is not a problem.
1396 // Also reset pindexLastCommonBlock after a snapshot was loaded, so that blocks after the snapshot will be prioritised for download.
1397 if (state->pindexLastCommonBlock == nullptr ||
1398 (snap_base && state->pindexLastCommonBlock->nHeight < snap_base->nHeight)) {
1399 state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1400 }
1401
1402 // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1403 // of its current tip anymore. Go back enough to fix that.
1404 state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1405 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1406 return;
1407
1408 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1409 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1410 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1411 // download that next block if the window were 1 larger.
1412 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1413
1414 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1415}
1416
1417void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1418{
1419 Assert(from_tip);
1420 Assert(target_block);
1421
1422 if (vBlocks.size() >= count) {
1423 return;
1424 }
1425
1426 vBlocks.reserve(count);
1427 CNodeState *state = Assert(State(peer.m_id));
1428
1429 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1430 // This peer can't provide us the complete series of blocks leading up to the
1431 // assumeutxo snapshot base.
1432 //
1433 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1434 // will eventually crash when we try to reorg to it. Let other logic
1435 // deal with whether we disconnect this peer.
1436 //
1437 // TODO at some point in the future, we might choose to request what blocks
1438 // this peer does have from the historical chain, despite it not having a
1439 // complete history beneath the snapshot base.
1440 return;
1441 }
1442
1443 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1444}
1445
1446void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1447{
1448 std::vector<const CBlockIndex*> vToFetch;
1449 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1450 bool is_limited_peer = IsLimitedPeer(peer);
1451 NodeId waitingfor = -1;
1452 while (pindexWalk->nHeight < nMaxHeight) {
1453 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1454 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1455 // as iterating over ~100 CBlockIndex* entries anyway.
1456 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1457 vToFetch.resize(nToFetch);
1458 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1459 vToFetch[nToFetch - 1] = pindexWalk;
1460 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1461 vToFetch[i - 1] = vToFetch[i]->pprev;
1462 }
1463
1464 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1465 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1466 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1467 // already part of our chain (and therefore don't need it even if pruned).
1468 for (const CBlockIndex* pindex : vToFetch) {
1469 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1470 // We consider the chain that this peer is on invalid.
1471 return;
1472 }
1473
1474 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1475 // We wouldn't download this block or its descendants from this peer.
1476 return;
1477 }
1478
1479 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1480 if (activeChain && pindex->HaveNumChainTxs()) {
1481 state->pindexLastCommonBlock = pindex;
1482 }
1483 continue;
1484 }
1485
1486 // Is block in-flight?
1487 if (IsBlockRequested(pindex->GetBlockHash())) {
1488 if (waitingfor == -1) {
1489 // This is the first already-in-flight block.
1490 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1491 }
1492 continue;
1493 }
1494
1495 // The block is not already downloaded, and not yet in flight.
1496 if (pindex->nHeight > nWindowEnd) {
1497 // We reached the end of the window.
1498 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1499 // We aren't able to fetch anything, but we would be if the download window was one larger.
1500 if (nodeStaller) *nodeStaller = waitingfor;
1501 }
1502 return;
1503 }
1504
1505 // Don't request blocks that go further than what limited peers can provide
1506 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1507 continue;
1508 }
1509
1510 vBlocks.push_back(pindex);
1511 if (vBlocks.size() == count) {
1512 return;
1513 }
1514 }
1515 }
1516}
1517
1518} // namespace
1519
1520void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1521{
1522 uint64_t my_services{peer.m_our_services};
1523 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1524 uint64_t nonce = pnode.GetLocalNonce();
1525 const int nNodeStartingHeight{m_best_height};
1526 NodeId nodeid = pnode.GetId();
1527 CAddress addr = pnode.addr;
1528
1529 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1530 uint64_t your_services{addr.nServices};
1531
1532 const bool tx_relay{!RejectIncomingTxs(pnode)};
1533 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1534 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1535 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1536 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1537
1538 if (fLogIPs) {
1539 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1540 } else {
1541 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1542 }
1543}
1544
1545void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1546{
1547 LOCK(cs_main);
1548 CNodeState *state = State(node);
1549 if (state) state->m_last_block_announcement = time_in_seconds;
1550}
1551
1552void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1553{
1554 NodeId nodeid = node.GetId();
1555 {
1556 LOCK(cs_main); // For m_node_states
1557 m_node_states.try_emplace(m_node_states.end(), nodeid);
1558 }
1559 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1560
1562 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1563 }
1564
1565 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1566 {
1567 LOCK(m_peer_mutex);
1568 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1569 }
1570}
1571
1572void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1573{
1574 std::set<Txid> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1575
1576 for (const auto& txid : unbroadcast_txids) {
1577 CTransactionRef tx = m_mempool.get(txid);
1578
1579 if (tx != nullptr) {
1580 RelayTransaction(txid, tx->GetWitnessHash());
1581 } else {
1582 m_mempool.RemoveUnbroadcastTx(txid, true);
1583 }
1584 }
1585
1586 // Schedule next run for 10-15 minutes in the future.
1587 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1588 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1589 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1590}
1591
1592void PeerManagerImpl::FinalizeNode(const CNode& node)
1593{
1594 NodeId nodeid = node.GetId();
1595 {
1596 LOCK(cs_main);
1597 {
1598 // We remove the PeerRef from g_peer_map here, but we don't always
1599 // destruct the Peer. Sometimes another thread is still holding a
1600 // PeerRef, so the refcount is >= 1. Be careful not to do any
1601 // processing here that assumes Peer won't be changed before it's
1602 // destructed.
1603 PeerRef peer = RemovePeer(nodeid);
1604 assert(peer != nullptr);
1605 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1606 assert(m_wtxid_relay_peers >= 0);
1607 }
1608 CNodeState *state = State(nodeid);
1609 assert(state != nullptr);
1610
1611 if (state->fSyncStarted)
1612 nSyncStarted--;
1613
1614 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1615 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1616 while (range.first != range.second) {
1617 auto [node_id, list_it] = range.first->second;
1618 if (node_id != nodeid) {
1619 range.first++;
1620 } else {
1621 range.first = mapBlocksInFlight.erase(range.first);
1622 }
1623 }
1624 }
1625 {
1626 LOCK(m_tx_download_mutex);
1627 m_txdownloadman.DisconnectedPeer(nodeid);
1628 }
1629 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1630 m_num_preferred_download_peers -= state->fPreferredDownload;
1631 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1632 assert(m_peers_downloading_from >= 0);
1633 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1634 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1635
1636 m_node_states.erase(nodeid);
1637
1638 if (m_node_states.empty()) {
1639 // Do a consistency check after the last peer is removed.
1640 assert(mapBlocksInFlight.empty());
1641 assert(m_num_preferred_download_peers == 0);
1642 assert(m_peers_downloading_from == 0);
1643 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1644 assert(m_wtxid_relay_peers == 0);
1645 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1646 }
1647 } // cs_main
1648 if (node.fSuccessfullyConnected &&
1649 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1650 // Only change visible addrman state for full outbound peers. We don't
1651 // call Connected() for feeler connections since they don't have
1652 // fSuccessfullyConnected set.
1653 m_addrman.Connected(node.addr);
1654 }
1655 {
1656 LOCK(m_headers_presync_mutex);
1657 m_headers_presync_stats.erase(nodeid);
1658 }
1659 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1660}
1661
1662bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1663{
1664 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1665 return !(GetDesirableServiceFlags(services) & (~services));
1666}
1667
1668ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1669{
1670 if (services & NODE_NETWORK_LIMITED) {
1671 // Limited peers are desirable when we are close to the tip.
1672 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1674 }
1675 }
1677}
1678
1679PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1680{
1681 LOCK(m_peer_mutex);
1682 auto it = m_peer_map.find(id);
1683 return it != m_peer_map.end() ? it->second : nullptr;
1684}
1685
1686PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1687{
1688 PeerRef ret;
1689 LOCK(m_peer_mutex);
1690 auto it = m_peer_map.find(id);
1691 if (it != m_peer_map.end()) {
1692 ret = std::move(it->second);
1693 m_peer_map.erase(it);
1694 }
1695 return ret;
1696}
1697
1698bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1699{
1700 {
1701 LOCK(cs_main);
1702 const CNodeState* state = State(nodeid);
1703 if (state == nullptr)
1704 return false;
1705 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1706 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1707 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1708 if (queue.pindex)
1709 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1710 }
1711 }
1712
1713 PeerRef peer = GetPeerRef(nodeid);
1714 if (peer == nullptr) return false;
1715 stats.their_services = peer->m_their_services;
1716 stats.m_starting_height = peer->m_starting_height;
1717 // It is common for nodes with good ping times to suddenly become lagged,
1718 // due to a new block arriving or other large transfer.
1719 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1720 // since pingtime does not update until the ping is complete, which might take a while.
1721 // So, if a ping is taking an unusually long time in flight,
1722 // the caller can immediately detect that this is happening.
1723 auto ping_wait{0us};
1724 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1725 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1726 }
1727
1728 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1729 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1730 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1731 } else {
1732 stats.m_relay_txs = false;
1733 stats.m_fee_filter_received = 0;
1734 }
1735
1736 stats.m_ping_wait = ping_wait;
1737 stats.m_addr_processed = peer->m_addr_processed.load();
1738 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1739 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1740 {
1741 LOCK(peer->m_headers_sync_mutex);
1742 if (peer->m_headers_sync) {
1743 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1744 }
1745 }
1746 stats.time_offset = peer->m_time_offset;
1747
1748 return true;
1749}
1750
1751std::vector<node::TxOrphanage::OrphanInfo> PeerManagerImpl::GetOrphanTransactions()
1752{
1753 LOCK(m_tx_download_mutex);
1754 return m_txdownloadman.GetOrphanTransactions();
1755}
1756
1757PeerManagerInfo PeerManagerImpl::GetInfo() const
1758{
1759 return PeerManagerInfo{
1760 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1761 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1762 };
1763}
1764
1765void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1766{
1767 if (m_opts.max_extra_txs <= 0)
1768 return;
1769 if (!vExtraTxnForCompact.size())
1770 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1771 vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1772 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1773}
1774
1775void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1776{
1777 LOCK(peer.m_misbehavior_mutex);
1778
1779 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1780 peer.m_should_discourage = true;
1781 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1782 TRACEPOINT(net, misbehaving_connection,
1783 peer.m_id,
1784 message.c_str()
1785 );
1786}
1787
1788void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1789 bool via_compact_block, const std::string& message)
1790{
1791 PeerRef peer{GetPeerRef(nodeid)};
1792 switch (state.GetResult()) {
1794 break;
1796 // We didn't try to process the block because the header chain may have
1797 // too little work.
1798 break;
1799 // The node is providing invalid data:
1802 if (!via_compact_block) {
1803 if (peer) Misbehaving(*peer, message);
1804 return;
1805 }
1806 break;
1808 {
1809 // Discourage outbound (but not inbound) peers if on an invalid chain.
1810 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1811 if (peer && !via_compact_block && !peer->m_is_inbound) {
1812 if (peer) Misbehaving(*peer, message);
1813 return;
1814 }
1815 break;
1816 }
1819 if (peer) Misbehaving(*peer, message);
1820 return;
1821 // Conflicting (but not necessarily invalid) data or different policy:
1823 if (peer) Misbehaving(*peer, message);
1824 return;
1826 break;
1827 }
1828 if (message != "") {
1829 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1830 }
1831}
1832
1833bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1834{
1836 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1837 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1838 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1839 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1840}
1841
1842std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1843{
1844 if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1845
1846 // Ensure this peer exists and hasn't been disconnected
1847 PeerRef peer = GetPeerRef(peer_id);
1848 if (peer == nullptr) return "Peer does not exist";
1849
1850 // Ignore pre-segwit peers
1851 if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1852
1853 LOCK(cs_main);
1854
1855 // Forget about all prior requests
1856 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1857
1858 // Mark block as in-flight
1859 if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1860
1861 // Construct message to request the block
1862 const uint256& hash{block_index.GetBlockHash()};
1863 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1864
1865 // Send block request message to the peer
1866 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1867 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1868 return true;
1869 });
1870
1871 if (!success) return "Peer not fully connected";
1872
1873 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1874 hash.ToString(), peer_id);
1875 return std::nullopt;
1876}
1877
1878std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1879 BanMan* banman, ChainstateManager& chainman,
1880 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1881{
1882 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1883}
1884
1885PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1886 BanMan* banman, ChainstateManager& chainman,
1887 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1888 : m_rng{opts.deterministic_rng},
1889 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1890 m_chainparams(chainman.GetParams()),
1891 m_connman(connman),
1892 m_addrman(addrman),
1893 m_banman(banman),
1894 m_chainman(chainman),
1895 m_mempool(pool),
1896 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.deterministic_rng}),
1897 m_warnings{warnings},
1898 m_opts{opts}
1899{
1900 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1901 // This argument can go away after Erlay support is complete.
1902 if (opts.reconcile_txs) {
1903 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1904 }
1905}
1906
1907void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1908{
1909 // Stale tip checking and peer eviction are on two different timers, but we
1910 // don't want them to get out of sync due to drift in the scheduler, so we
1911 // combine them in one function and schedule at the quicker (peer-eviction)
1912 // timer.
1913 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1914 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1915
1916 // schedule next run for 10-15 minutes in the future
1917 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1918 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1919}
1920
1921void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1922{
1923 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1924 // m_tx_download_mutex waits on the mempool mutex.
1925 AssertLockNotHeld(m_mempool.cs);
1926 AssertLockNotHeld(m_tx_download_mutex);
1927
1928 if (!is_ibd) {
1929 LOCK(m_tx_download_mutex);
1930 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1931 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1932 // see them again.
1933 m_txdownloadman.ActiveTipChange();
1934 }
1935}
1936
1943void PeerManagerImpl::BlockConnected(
1944 ChainstateRole role,
1945 const std::shared_ptr<const CBlock>& pblock,
1946 const CBlockIndex* pindex)
1947{
1948 // Update this for all chainstate roles so that we don't mistakenly see peers
1949 // helping us do background IBD as having a stale tip.
1950 m_last_tip_update = GetTime<std::chrono::seconds>();
1951
1952 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1953 auto stalling_timeout = m_block_stalling_timeout.load();
1954 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1955 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1956 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1957 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1958 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1959 }
1960 }
1961
1962 // The following task can be skipped since we don't maintain a mempool for
1963 // the ibd/background chainstate.
1964 if (role == ChainstateRole::BACKGROUND) {
1965 return;
1966 }
1967 LOCK(m_tx_download_mutex);
1968 m_txdownloadman.BlockConnected(pblock);
1969}
1970
1971void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1972{
1973 LOCK(m_tx_download_mutex);
1974 m_txdownloadman.BlockDisconnected();
1975}
1976
1981void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1982{
1983 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
1984
1985 LOCK(cs_main);
1986
1987 if (pindex->nHeight <= m_highest_fast_announce)
1988 return;
1989 m_highest_fast_announce = pindex->nHeight;
1990
1991 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1992
1993 uint256 hashBlock(pblock->GetHash());
1994 const std::shared_future<CSerializedNetMsg> lazy_ser{
1995 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
1996
1997 {
1998 auto most_recent_block_txs = std::make_unique<std::map<GenTxid, CTransactionRef>>();
1999 for (const auto& tx : pblock->vtx) {
2000 most_recent_block_txs->emplace(tx->GetHash(), tx);
2001 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2002 }
2003
2004 LOCK(m_most_recent_block_mutex);
2005 m_most_recent_block_hash = hashBlock;
2006 m_most_recent_block = pblock;
2007 m_most_recent_compact_block = pcmpctblock;
2008 m_most_recent_block_txs = std::move(most_recent_block_txs);
2009 }
2010
2011 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2013
2015 return;
2016 ProcessBlockAvailability(pnode->GetId());
2017 CNodeState &state = *State(pnode->GetId());
2018 // If the peer has, or we announced to them the previous block already,
2019 // but we don't think they have this one, go ahead and announce it
2020 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2021
2022 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2023 hashBlock.ToString(), pnode->GetId());
2024
2025 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2026 PushMessage(*pnode, ser_cmpctblock.Copy());
2027 state.pindexBestHeaderSent = pindex;
2028 }
2029 });
2030}
2031
2036void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2037{
2038 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2039
2040 // Don't relay inventory during initial block download.
2041 if (fInitialDownload) return;
2042
2043 // Find the hashes of all blocks that weren't previously in the best chain.
2044 std::vector<uint256> vHashes;
2045 const CBlockIndex *pindexToAnnounce = pindexNew;
2046 while (pindexToAnnounce != pindexFork) {
2047 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2048 pindexToAnnounce = pindexToAnnounce->pprev;
2049 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2050 // Limit announcements in case of a huge reorganization.
2051 // Rely on the peer's synchronization mechanism in that case.
2052 break;
2053 }
2054 }
2055
2056 {
2057 LOCK(m_peer_mutex);
2058 for (auto& it : m_peer_map) {
2059 Peer& peer = *it.second;
2060 LOCK(peer.m_block_inv_mutex);
2061 for (const uint256& hash : vHashes | std::views::reverse) {
2062 peer.m_blocks_for_headers_relay.push_back(hash);
2063 }
2064 }
2065 }
2066
2067 m_connman.WakeMessageHandler();
2068}
2069
2074void PeerManagerImpl::BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state)
2075{
2076 LOCK(cs_main);
2077
2078 const uint256 hash(block->GetHash());
2079 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2080
2081 // If the block failed validation, we know where it came from and we're still connected
2082 // to that peer, maybe punish.
2083 if (state.IsInvalid() &&
2084 it != mapBlockSource.end() &&
2085 State(it->second.first)) {
2086 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2087 }
2088 // Check that:
2089 // 1. The block is valid
2090 // 2. We're not in initial block download
2091 // 3. This is currently the best block we're aware of. We haven't updated
2092 // the tip yet so we have no way to check this directly here. Instead we
2093 // just check that there are currently no other blocks in flight.
2094 else if (state.IsValid() &&
2095 !m_chainman.IsInitialBlockDownload() &&
2096 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2097 if (it != mapBlockSource.end()) {
2098 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2099 }
2100 }
2101 if (it != mapBlockSource.end())
2102 mapBlockSource.erase(it);
2103}
2104
2106//
2107// Messages
2108//
2109
2110bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2111{
2112 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2113}
2114
2115void PeerManagerImpl::SendPings()
2116{
2117 LOCK(m_peer_mutex);
2118 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2119}
2120
2121void PeerManagerImpl::RelayTransaction(const Txid& txid, const Wtxid& wtxid)
2122{
2123 LOCK(m_peer_mutex);
2124 for(auto& it : m_peer_map) {
2125 Peer& peer = *it.second;
2126 auto tx_relay = peer.GetTxRelay();
2127 if (!tx_relay) continue;
2128
2129 LOCK(tx_relay->m_tx_inventory_mutex);
2130 // Only queue transactions for announcement once the version handshake
2131 // is completed. The time of arrival for these transactions is
2132 // otherwise at risk of leaking to a spy, if the spy is able to
2133 // distinguish transactions received during the handshake from the rest
2134 // in the announcement.
2135 if (tx_relay->m_next_inv_send_time == 0s) continue;
2136
2137 const uint256& hash{peer.m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256()};
2138 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2139 tx_relay->m_tx_inventory_to_send.insert(wtxid);
2140 }
2141 }
2142}
2143
2144void PeerManagerImpl::RelayAddress(NodeId originator,
2145 const CAddress& addr,
2146 bool fReachable)
2147{
2148 // We choose the same nodes within a given 24h window (if the list of connected
2149 // nodes does not change) and we don't relay to nodes that already know an
2150 // address. So within 24h we will likely relay a given address once. This is to
2151 // prevent a peer from unjustly giving their address better propagation by sending
2152 // it to us repeatedly.
2153
2154 if (!fReachable && !addr.IsRelayable()) return;
2155
2156 // Relay to a limited number of other nodes
2157 // Use deterministic randomness to send to the same nodes for 24 hours
2158 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2159 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2160 const auto current_time{GetTime<std::chrono::seconds>()};
2161 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2162 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2164 .Write(hash_addr)
2165 .Write(time_addr)};
2166
2167 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2168 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2169
2170 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2171 assert(nRelayNodes <= best.size());
2172
2173 LOCK(m_peer_mutex);
2174
2175 for (auto& [id, peer] : m_peer_map) {
2176 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2177 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2178 for (unsigned int i = 0; i < nRelayNodes; i++) {
2179 if (hashKey > best[i].first) {
2180 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2181 best[i] = std::make_pair(hashKey, peer.get());
2182 break;
2183 }
2184 }
2185 }
2186 };
2187
2188 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2189 PushAddress(*best[i].second, addr);
2190 }
2191}
2192
2193void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2194{
2195 std::shared_ptr<const CBlock> a_recent_block;
2196 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2197 {
2198 LOCK(m_most_recent_block_mutex);
2199 a_recent_block = m_most_recent_block;
2200 a_recent_compact_block = m_most_recent_compact_block;
2201 }
2202
2203 bool need_activate_chain = false;
2204 {
2205 LOCK(cs_main);
2206 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2207 if (pindex) {
2208 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2209 pindex->IsValid(BLOCK_VALID_TREE)) {
2210 // If we have the block and all of its parents, but have not yet validated it,
2211 // we might be in the middle of connecting it (ie in the unlock of cs_main
2212 // before ActivateBestChain but after AcceptBlock).
2213 // In this case, we need to run ActivateBestChain prior to checking the relay
2214 // conditions below.
2215 need_activate_chain = true;
2216 }
2217 }
2218 } // release cs_main before calling ActivateBestChain
2219 if (need_activate_chain) {
2221 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2222 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2223 }
2224 }
2225
2226 const CBlockIndex* pindex{nullptr};
2227 const CBlockIndex* tip{nullptr};
2228 bool can_direct_fetch{false};
2229 FlatFilePos block_pos{};
2230 {
2231 LOCK(cs_main);
2232 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2233 if (!pindex) {
2234 return;
2235 }
2236 if (!BlockRequestAllowed(pindex)) {
2237 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2238 return;
2239 }
2240 // disconnect node in case we have reached the outbound limit for serving historical blocks
2241 if (m_connman.OutboundTargetReached(true) &&
2242 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2243 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2244 ) {
2245 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2246 pfrom.fDisconnect = true;
2247 return;
2248 }
2249 tip = m_chainman.ActiveChain().Tip();
2250 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2252 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2253 )) {
2254 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2255 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2256 pfrom.fDisconnect = true;
2257 return;
2258 }
2259 // Pruned nodes may have deleted the block, so check whether
2260 // it's available before trying to send.
2261 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2262 return;
2263 }
2264 can_direct_fetch = CanDirectFetch();
2265 block_pos = pindex->GetBlockPos();
2266 }
2267
2268 std::shared_ptr<const CBlock> pblock;
2269 if (a_recent_block && a_recent_block->GetHash() == inv.hash) {
2270 pblock = a_recent_block;
2271 } else if (inv.IsMsgWitnessBlk()) {
2272 // Fast-path: in this case it is possible to serve the block directly from disk,
2273 // as the network format matches the format on disk
2274 std::vector<std::byte> block_data;
2275 if (!m_chainman.m_blockman.ReadRawBlock(block_data, block_pos)) {
2276 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2277 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2278 } else {
2279 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2280 }
2281 pfrom.fDisconnect = true;
2282 return;
2283 }
2284 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{block_data});
2285 // Don't set pblock as we've sent the block
2286 } else {
2287 // Send block from disk
2288 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2289 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos, inv.hash)) {
2290 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2291 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2292 } else {
2293 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2294 }
2295 pfrom.fDisconnect = true;
2296 return;
2297 }
2298 pblock = pblockRead;
2299 }
2300 if (pblock) {
2301 if (inv.IsMsgBlk()) {
2302 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2303 } else if (inv.IsMsgWitnessBlk()) {
2304 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2305 } else if (inv.IsMsgFilteredBlk()) {
2306 bool sendMerkleBlock = false;
2307 CMerkleBlock merkleBlock;
2308 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2309 LOCK(tx_relay->m_bloom_filter_mutex);
2310 if (tx_relay->m_bloom_filter) {
2311 sendMerkleBlock = true;
2312 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2313 }
2314 }
2315 if (sendMerkleBlock) {
2316 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2317 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2318 // This avoids hurting performance by pointlessly requiring a round-trip
2319 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2320 // they must either disconnect and retry or request the full block.
2321 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2322 // however we MUST always provide at least what the remote peer needs
2323 for (const auto& [tx_idx, _] : merkleBlock.vMatchedTxn)
2324 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[tx_idx]));
2325 }
2326 // else
2327 // no response
2328 } else if (inv.IsMsgCmpctBlk()) {
2329 // If a peer is asking for old blocks, we're almost guaranteed
2330 // they won't have a useful mempool to match against a compact block,
2331 // and we don't feel like constructing the object for them, so
2332 // instead we respond with the full, non-compact block.
2333 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2334 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == inv.hash) {
2335 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2336 } else {
2337 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2338 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2339 }
2340 } else {
2341 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2342 }
2343 }
2344 }
2345
2346 {
2347 LOCK(peer.m_block_inv_mutex);
2348 // Trigger the peer node to send a getblocks request for the next batch of inventory
2349 if (inv.hash == peer.m_continuation_block) {
2350 // Send immediately. This must send even if redundant,
2351 // and we want it right after the last block so they don't
2352 // wait for other stuff first.
2353 std::vector<CInv> vInv;
2354 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2355 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2356 peer.m_continuation_block.SetNull();
2357 }
2358 }
2359}
2360
2361CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2362{
2363 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2364 auto txinfo{std::visit(
2366 return m_mempool.info_for_relay(id, tx_relay.m_last_inv_sequence);
2367 },
2368 gtxid)};
2369 if (txinfo.tx) {
2370 return std::move(txinfo.tx);
2371 }
2372
2373 // Or it might be from the most recent block
2374 {
2375 LOCK(m_most_recent_block_mutex);
2376 if (m_most_recent_block_txs != nullptr) {
2377 auto it = m_most_recent_block_txs->find(gtxid);
2378 if (it != m_most_recent_block_txs->end()) return it->second;
2379 }
2380 }
2381
2382 return {};
2383}
2384
2385void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2386{
2388
2389 auto tx_relay = peer.GetTxRelay();
2390
2391 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2392 std::vector<CInv> vNotFound;
2393
2394 // Process as many TX items from the front of the getdata queue as
2395 // possible, since they're common and it's efficient to batch process
2396 // them.
2397 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2398 if (interruptMsgProc) return;
2399 // The send buffer provides backpressure. If there's no space in
2400 // the buffer, pause processing until the next call.
2401 if (pfrom.fPauseSend) break;
2402
2403 const CInv &inv = *it++;
2404
2405 if (tx_relay == nullptr) {
2406 // Ignore GETDATA requests for transactions from block-relay-only
2407 // peers and peers that asked us not to announce transactions.
2408 continue;
2409 }
2410
2411 if (auto tx{FindTxForGetData(*tx_relay, ToGenTxid(inv))}) {
2412 // WTX and WITNESS_TX imply we serialize with witness
2413 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2414 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2415 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2416 } else {
2417 vNotFound.push_back(inv);
2418 }
2419 }
2420
2421 // Only process one BLOCK item per call, since they're uncommon and can be
2422 // expensive to process.
2423 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2424 const CInv &inv = *it++;
2425 if (inv.IsGenBlkMsg()) {
2426 ProcessGetBlockData(pfrom, peer, inv);
2427 }
2428 // else: If the first item on the queue is an unknown type, we erase it
2429 // and continue processing the queue on the next call.
2430 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2431 // result in never making progress and this thread using 100% allocated CPU. See
2432 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2433 }
2434
2435 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2436
2437 if (!vNotFound.empty()) {
2438 // Let the peer know that we didn't find what it asked for, so it doesn't
2439 // have to wait around forever.
2440 // SPV clients care about this message: it's needed when they are
2441 // recursively walking the dependencies of relevant unconfirmed
2442 // transactions. SPV clients want to do that because they want to know
2443 // about (and store and rebroadcast and risk analyze) the dependencies
2444 // of transactions relevant to them, without having to download the
2445 // entire memory pool.
2446 // Also, other nodes can use these messages to automatically request a
2447 // transaction from some other peer that announced it, and stop
2448 // waiting for us to respond.
2449 // In normal operation, we often send NOTFOUND messages for parents of
2450 // transactions that we relay; if a peer is missing a parent, they may
2451 // assume we have them and request the parents from us.
2452 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2453 }
2454}
2455
2456uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2457{
2458 uint32_t nFetchFlags = 0;
2459 if (CanServeWitnesses(peer)) {
2460 nFetchFlags |= MSG_WITNESS_FLAG;
2461 }
2462 return nFetchFlags;
2463}
2464
2465void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2466{
2467 BlockTransactions resp(req);
2468 unsigned int tx_requested_size = 0;
2469 for (size_t i = 0; i < req.indexes.size(); i++) {
2470 if (req.indexes[i] >= block.vtx.size()) {
2471 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2472 return;
2473 }
2474 resp.txn[i] = block.vtx[req.indexes[i]];
2475 tx_requested_size += resp.txn[i]->GetTotalSize();
2476 }
2477
2478 LogDebug(BCLog::CMPCTBLOCK, "Peer %d sent us a GETBLOCKTXN for block %s, sending a BLOCKTXN with %u txns. (%u bytes)\n", pfrom.GetId(), block.GetHash().ToString(), resp.txn.size(), tx_requested_size);
2479 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2480}
2481
2482bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2483{
2484 // Do these headers have proof-of-work matching what's claimed?
2485 if (!HasValidProofOfWork(headers, consensusParams)) {
2486 Misbehaving(peer, "header with invalid proof of work");
2487 return false;
2488 }
2489
2490 // Are these headers connected to each other?
2491 if (!CheckHeadersAreContinuous(headers)) {
2492 Misbehaving(peer, "non-continuous headers sequence");
2493 return false;
2494 }
2495 return true;
2496}
2497
2498arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2499{
2500 arith_uint256 near_chaintip_work = 0;
2501 LOCK(cs_main);
2502 if (m_chainman.ActiveChain().Tip() != nullptr) {
2503 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2504 // Use a 144 block buffer, so that we'll accept headers that fork from
2505 // near our tip.
2506 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2507 }
2508 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2509}
2510
2517void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2518 const std::vector<CBlockHeader>& headers)
2519{
2520 // Try to fill in the missing headers.
2521 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2522 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2523 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2524 headers[0].GetHash().ToString(),
2525 headers[0].hashPrevBlock.ToString(),
2526 best_header->nHeight,
2527 pfrom.GetId());
2528 }
2529
2530 // Set hashLastUnknownBlock for this peer, so that if we
2531 // eventually get the headers - even from a different peer -
2532 // we can use this peer to download.
2533 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2534}
2535
2536bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2537{
2538 uint256 hashLastBlock;
2539 for (const CBlockHeader& header : headers) {
2540 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2541 return false;
2542 }
2543 hashLastBlock = header.GetHash();
2544 }
2545 return true;
2546}
2547
2548bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2549{
2550 if (peer.m_headers_sync) {
2551 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2552 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2553 if (result.success) peer.m_last_getheaders_timestamp = {};
2554 if (result.request_more) {
2555 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2556 // If we were instructed to ask for a locator, it should not be empty.
2557 Assume(!locator.vHave.empty());
2558 // We can only be instructed to request more if processing was successful.
2559 Assume(result.success);
2560 if (!locator.vHave.empty()) {
2561 // It should be impossible for the getheaders request to fail,
2562 // because we just cleared the last getheaders timestamp.
2563 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2564 Assume(sent_getheaders);
2565 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2566 locator.vHave.front().ToString(), pfrom.GetId());
2567 }
2568 }
2569
2570 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2571 peer.m_headers_sync.reset(nullptr);
2572
2573 // Delete this peer's entry in m_headers_presync_stats.
2574 // If this is m_headers_presync_bestpeer, it will be replaced later
2575 // by the next peer that triggers the else{} branch below.
2576 LOCK(m_headers_presync_mutex);
2577 m_headers_presync_stats.erase(pfrom.GetId());
2578 } else {
2579 // Build statistics for this peer's sync.
2580 HeadersPresyncStats stats;
2581 stats.first = peer.m_headers_sync->GetPresyncWork();
2582 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2583 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2584 peer.m_headers_sync->GetPresyncTime()};
2585 }
2586
2587 // Update statistics in stats.
2588 LOCK(m_headers_presync_mutex);
2589 m_headers_presync_stats[pfrom.GetId()] = stats;
2590 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2591 bool best_updated = false;
2592 if (best_it == m_headers_presync_stats.end()) {
2593 // If the cached best peer is outdated, iterate over all remaining ones (including
2594 // newly updated one) to find the best one.
2595 NodeId peer_best{-1};
2596 const HeadersPresyncStats* stat_best{nullptr};
2597 for (const auto& [peer, stat] : m_headers_presync_stats) {
2598 if (!stat_best || stat > *stat_best) {
2599 peer_best = peer;
2600 stat_best = &stat;
2601 }
2602 }
2603 m_headers_presync_bestpeer = peer_best;
2604 best_updated = (peer_best == pfrom.GetId());
2605 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2606 // pfrom was and remains the best peer, or pfrom just became best.
2607 m_headers_presync_bestpeer = pfrom.GetId();
2608 best_updated = true;
2609 }
2610 if (best_updated && stats.second.has_value()) {
2611 // If the best peer updated, and it is in its first phase, signal.
2612 m_headers_presync_should_signal = true;
2613 }
2614 }
2615
2616 if (result.success) {
2617 // We only overwrite the headers passed in if processing was
2618 // successful.
2619 headers.swap(result.pow_validated_headers);
2620 }
2621
2622 return result.success;
2623 }
2624 // Either we didn't have a sync in progress, or something went wrong
2625 // processing these headers, or we are returning headers to the caller to
2626 // process.
2627 return false;
2628}
2629
2630bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2631{
2632 // Calculate the claimed total work on this chain.
2633 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2634
2635 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2636 // before we'll store it)
2637 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2638
2639 // Avoid DoS via low-difficulty-headers by only processing if the headers
2640 // are part of a chain with sufficient work.
2641 if (total_work < minimum_chain_work) {
2642 // Only try to sync with this peer if their headers message was full;
2643 // otherwise they don't have more headers after this so no point in
2644 // trying to sync their too-little-work chain.
2645 if (headers.size() == m_opts.max_headers_result) {
2646 // Note: we could advance to the last header in this set that is
2647 // known to us, rather than starting at the first header (which we
2648 // may already have); however this is unlikely to matter much since
2649 // ProcessHeadersMessage() already handles the case where all
2650 // headers in a received message are already known and are
2651 // ancestors of m_best_header or chainActive.Tip(), by skipping
2652 // this logic in that case. So even if the first header in this set
2653 // of headers is known, some header in this set must be new, so
2654 // advancing to the first unknown header would be a small effect.
2655 LOCK(peer.m_headers_sync_mutex);
2656 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2657 chain_start_header, minimum_chain_work));
2658
2659 // Now a HeadersSyncState object for tracking this synchronization
2660 // is created, process the headers using it as normal. Failures are
2661 // handled inside of IsContinuationOfLowWorkHeadersSync.
2662 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2663 } else {
2664 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2665 }
2666
2667 // The peer has not yet given us a chain that meets our work threshold,
2668 // so we want to prevent further processing of the headers in any case.
2669 headers = {};
2670 return true;
2671 }
2672
2673 return false;
2674}
2675
2676bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2677{
2678 if (header == nullptr) {
2679 return false;
2680 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2681 return true;
2682 } else if (m_chainman.ActiveChain().Contains(header)) {
2683 return true;
2684 }
2685 return false;
2686}
2687
2688bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2689{
2690 const auto current_time = NodeClock::now();
2691
2692 // Only allow a new getheaders message to go out if we don't have a recent
2693 // one already in-flight
2694 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2695 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2696 peer.m_last_getheaders_timestamp = current_time;
2697 return true;
2698 }
2699 return false;
2700}
2701
2702/*
2703 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2704 * We require that the given tip have at least as much work as our tip, and for
2705 * our current tip to be "close to synced" (see CanDirectFetch()).
2706 */
2707void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2708{
2709 LOCK(cs_main);
2710 CNodeState *nodestate = State(pfrom.GetId());
2711
2712 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2713 std::vector<const CBlockIndex*> vToFetch;
2714 const CBlockIndex* pindexWalk{&last_header};
2715 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2716 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2717 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2718 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2719 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2720 // We don't have this block, and it's not yet in flight.
2721 vToFetch.push_back(pindexWalk);
2722 }
2723 pindexWalk = pindexWalk->pprev;
2724 }
2725 // If pindexWalk still isn't on our main chain, we're looking at a
2726 // very large reorg at a time we think we're close to caught up to
2727 // the main chain -- this shouldn't really happen. Bail out on the
2728 // direct fetch and rely on parallel download instead.
2729 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2730 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2731 last_header.GetBlockHash().ToString(),
2732 last_header.nHeight);
2733 } else {
2734 std::vector<CInv> vGetData;
2735 // Download as much as possible, from earliest to latest.
2736 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2737 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2738 // Can't download any more from this peer
2739 break;
2740 }
2741 uint32_t nFetchFlags = GetFetchFlags(peer);
2742 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2743 BlockRequested(pfrom.GetId(), *pindex);
2744 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2745 pindex->GetBlockHash().ToString(), pfrom.GetId());
2746 }
2747 if (vGetData.size() > 1) {
2748 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2749 last_header.GetBlockHash().ToString(),
2750 last_header.nHeight);
2751 }
2752 if (vGetData.size() > 0) {
2753 if (!m_opts.ignore_incoming_txs &&
2754 nodestate->m_provides_cmpctblocks &&
2755 vGetData.size() == 1 &&
2756 mapBlocksInFlight.size() == 1 &&
2757 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2758 // In any case, we want to download using a compact block, not a regular one
2759 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2760 }
2761 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2762 }
2763 }
2764 }
2765}
2766
2772void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2773 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2774{
2775 LOCK(cs_main);
2776 CNodeState *nodestate = State(pfrom.GetId());
2777
2778 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2779
2780 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2781 // because it is set in UpdateBlockAvailability. Some nullptr checks
2782 // are still present, however, as belt-and-suspenders.
2783
2784 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2785 nodestate->m_last_block_announcement = GetTime();
2786 }
2787
2788 // If we're in IBD, we want outbound peers that will serve us a useful
2789 // chain. Disconnect peers that are on chains with insufficient work.
2790 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2791 // If the peer has no more headers to give us, then we know we have
2792 // their tip.
2793 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2794 // This peer has too little work on their headers chain to help
2795 // us sync -- disconnect if it is an outbound disconnection
2796 // candidate.
2797 // Note: We compare their tip to the minimum chain work (rather than
2798 // m_chainman.ActiveChain().Tip()) because we won't start block download
2799 // until we have a headers chain that has at least
2800 // the minimum chain work, even if a peer has a chain past our tip,
2801 // as an anti-DoS measure.
2802 if (pfrom.IsOutboundOrBlockRelayConn()) {
2803 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2804 pfrom.fDisconnect = true;
2805 }
2806 }
2807 }
2808
2809 // If this is an outbound full-relay peer, check to see if we should protect
2810 // it from the bad/lagging chain logic.
2811 // Note that outbound block-relay peers are excluded from this protection, and
2812 // thus always subject to eviction under the bad/lagging chain logic.
2813 // See ChainSyncTimeoutState.
2814 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2815 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2816 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2817 nodestate->m_chain_sync.m_protect = true;
2818 ++m_outbound_peers_with_protect_from_disconnect;
2819 }
2820 }
2821}
2822
2823void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2824 std::vector<CBlockHeader>&& headers,
2825 bool via_compact_block)
2826{
2827 size_t nCount = headers.size();
2828
2829 if (nCount == 0) {
2830 // Nothing interesting. Stop asking this peers for more headers.
2831 // If we were in the middle of headers sync, receiving an empty headers
2832 // message suggests that the peer suddenly has nothing to give us
2833 // (perhaps it reorged to our chain). Clear download state for this peer.
2834 LOCK(peer.m_headers_sync_mutex);
2835 if (peer.m_headers_sync) {
2836 peer.m_headers_sync.reset(nullptr);
2837 LOCK(m_headers_presync_mutex);
2838 m_headers_presync_stats.erase(pfrom.GetId());
2839 }
2840 // A headers message with no headers cannot be an announcement, so assume
2841 // it is a response to our last getheaders request, if there is one.
2842 peer.m_last_getheaders_timestamp = {};
2843 return;
2844 }
2845
2846 // Before we do any processing, make sure these pass basic sanity checks.
2847 // We'll rely on headers having valid proof-of-work further down, as an
2848 // anti-DoS criteria (note: this check is required before passing any
2849 // headers into HeadersSyncState).
2850 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2851 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2852 // just return. (Note that even if a header is announced via compact
2853 // block, the header itself should be valid, so this type of error can
2854 // always be punished.)
2855 return;
2856 }
2857
2858 const CBlockIndex *pindexLast = nullptr;
2859
2860 // We'll set already_validated_work to true if these headers are
2861 // successfully processed as part of a low-work headers sync in progress
2862 // (either in PRESYNC or REDOWNLOAD phase).
2863 // If true, this will mean that any headers returned to us (ie during
2864 // REDOWNLOAD) can be validated without further anti-DoS checks.
2865 bool already_validated_work = false;
2866
2867 // If we're in the middle of headers sync, let it do its magic.
2868 bool have_headers_sync = false;
2869 {
2870 LOCK(peer.m_headers_sync_mutex);
2871
2872 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2873
2874 // The headers we passed in may have been:
2875 // - untouched, perhaps if no headers-sync was in progress, or some
2876 // failure occurred
2877 // - erased, such as if the headers were successfully processed and no
2878 // additional headers processing needs to take place (such as if we
2879 // are still in PRESYNC)
2880 // - replaced with headers that are now ready for validation, such as
2881 // during the REDOWNLOAD phase of a low-work headers sync.
2882 // So just check whether we still have headers that we need to process,
2883 // or not.
2884 if (headers.empty()) {
2885 return;
2886 }
2887
2888 have_headers_sync = !!peer.m_headers_sync;
2889 }
2890
2891 // Do these headers connect to something in our block index?
2892 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2893 bool headers_connect_blockindex{chain_start_header != nullptr};
2894
2895 if (!headers_connect_blockindex) {
2896 // This could be a BIP 130 block announcement, use
2897 // special logic for handling headers that don't connect, as this
2898 // could be benign.
2899 HandleUnconnectingHeaders(pfrom, peer, headers);
2900 return;
2901 }
2902
2903 // If headers connect, assume that this is in response to any outstanding getheaders
2904 // request we may have sent, and clear out the time of our last request. Non-connecting
2905 // headers cannot be a response to a getheaders request.
2906 peer.m_last_getheaders_timestamp = {};
2907
2908 // If the headers we received are already in memory and an ancestor of
2909 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2910 // use any more memory (and we are not leaking information that could be
2911 // used to fingerprint us).
2912 const CBlockIndex *last_received_header{nullptr};
2913 {
2914 LOCK(cs_main);
2915 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2916 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2917 already_validated_work = true;
2918 }
2919 }
2920
2921 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2922 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2923 // on startup).
2925 already_validated_work = true;
2926 }
2927
2928 // At this point, the headers connect to something in our block index.
2929 // Do anti-DoS checks to determine if we should process or store for later
2930 // processing.
2931 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2932 chain_start_header, headers)) {
2933 // If we successfully started a low-work headers sync, then there
2934 // should be no headers to process any further.
2935 Assume(headers.empty());
2936 return;
2937 }
2938
2939 // At this point, we have a set of headers with sufficient work on them
2940 // which can be processed.
2941
2942 // If we don't have the last header, then this peer will have given us
2943 // something new (if these headers are valid).
2944 bool received_new_header{last_received_header == nullptr};
2945
2946 // Now process all the headers.
2948 const bool processed{m_chainman.ProcessNewBlockHeaders(headers,
2949 /*min_pow_checked=*/true,
2950 state, &pindexLast)};
2951 if (!processed) {
2952 if (state.IsInvalid()) {
2953 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2954 return;
2955 }
2956 }
2957 assert(pindexLast);
2958
2959 if (processed && received_new_header) {
2960 LogBlockHeader(*pindexLast, pfrom, /*via_compact_block=*/false);
2961 }
2962
2963 // Consider fetching more headers if we are not using our headers-sync mechanism.
2964 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2965 // Headers message had its maximum size; the peer may have more headers.
2966 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2967 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2968 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2969 }
2970 }
2971
2972 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2973
2974 // Consider immediately downloading blocks.
2975 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2976
2977 return;
2978}
2979
2980std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2981 bool first_time_failure)
2982{
2983 AssertLockNotHeld(m_peer_mutex);
2984 AssertLockHeld(g_msgproc_mutex);
2985 AssertLockHeld(m_tx_download_mutex);
2986
2987 PeerRef peer{GetPeerRef(nodeid)};
2988
2989 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
2990 ptx->GetHash().ToString(),
2991 ptx->GetWitnessHash().ToString(),
2992 nodeid,
2993 state.ToString());
2994
2995 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
2996
2997 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
2998 AddToCompactExtraTransactions(ptx);
2999 }
3000 for (const Txid& parent_txid : unique_parents) {
3001 if (peer) AddKnownTx(*peer, parent_txid.ToUint256());
3002 }
3003
3004 return package_to_validate;
3005}
3006
3007void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3008{
3009 AssertLockNotHeld(m_peer_mutex);
3010 AssertLockHeld(g_msgproc_mutex);
3011 AssertLockHeld(m_tx_download_mutex);
3012
3013 m_txdownloadman.MempoolAcceptedTx(tx);
3014
3015 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3016 nodeid,
3017 tx->GetHash().ToString(),
3018 tx->GetWitnessHash().ToString(),
3019 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3020
3021 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3022
3023 for (const CTransactionRef& removedTx : replaced_transactions) {
3024 AddToCompactExtraTransactions(removedTx);
3025 }
3026}
3027
3028void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3029{
3030 AssertLockNotHeld(m_peer_mutex);
3031 AssertLockHeld(g_msgproc_mutex);
3032 AssertLockHeld(m_tx_download_mutex);
3033
3034 const auto& package = package_to_validate.m_txns;
3035 const auto& senders = package_to_validate.m_senders;
3036
3037 if (package_result.m_state.IsInvalid()) {
3038 m_txdownloadman.MempoolRejectedPackage(package);
3039 }
3040 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3041 if (!Assume(package.size() == 2)) return;
3042
3043 // Iterate backwards to erase in-package descendants from the orphanage before they become
3044 // relevant in AddChildrenToWorkSet.
3045 auto package_iter = package.rbegin();
3046 auto senders_iter = senders.rbegin();
3047 while (package_iter != package.rend()) {
3048 const auto& tx = *package_iter;
3049 const NodeId nodeid = *senders_iter;
3050 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3051
3052 // It is not guaranteed that a result exists for every transaction.
3053 if (it_result != package_result.m_tx_results.end()) {
3054 const auto& tx_result = it_result->second;
3055 switch (tx_result.m_result_type) {
3057 {
3058 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3059 break;
3060 }
3063 {
3064 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3065 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3066 // This should be updated if package submission is ever used for transactions
3067 // that haven't already been validated before.
3068 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3069 break;
3070 }
3072 {
3073 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3074 Assume(false);
3075 break;
3076 }
3077 }
3078 }
3079 package_iter++;
3080 senders_iter++;
3081 }
3082}
3083
3084// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3085// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3086bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3087{
3088 AssertLockHeld(g_msgproc_mutex);
3089 LOCK2(::cs_main, m_tx_download_mutex);
3090
3091 CTransactionRef porphanTx = nullptr;
3092
3093 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3094 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3095 const TxValidationState& state = result.m_state;
3096 const Txid& orphanHash = porphanTx->GetHash();
3097 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3098
3100 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3101 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3102 return true;
3103 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3104 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3105 orphanHash.ToString(),
3106 orphan_wtxid.ToString(),
3107 peer.m_id,
3108 state.ToString());
3109
3110 if (Assume(state.IsInvalid() &&
3114 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3115 }
3116 return true;
3117 }
3118 }
3119
3120 return false;
3121}
3122
3123bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3124 BlockFilterType filter_type, uint32_t start_height,
3125 const uint256& stop_hash, uint32_t max_height_diff,
3126 const CBlockIndex*& stop_index,
3127 BlockFilterIndex*& filter_index)
3128{
3129 const bool supported_filter_type =
3130 (filter_type == BlockFilterType::BASIC &&
3131 (peer.m_our_services & NODE_COMPACT_FILTERS));
3132 if (!supported_filter_type) {
3133 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3134 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3135 node.fDisconnect = true;
3136 return false;
3137 }
3138
3139 {
3140 LOCK(cs_main);
3141 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3142
3143 // Check that the stop block exists and the peer would be allowed to fetch it.
3144 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3145 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3146 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3147 node.fDisconnect = true;
3148 return false;
3149 }
3150 }
3151
3152 uint32_t stop_height = stop_index->nHeight;
3153 if (start_height > stop_height) {
3154 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3155 "start height %d and stop height %d, %s\n",
3156 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3157 node.fDisconnect = true;
3158 return false;
3159 }
3160 if (stop_height - start_height >= max_height_diff) {
3161 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3162 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3163 node.fDisconnect = true;
3164 return false;
3165 }
3166
3167 filter_index = GetBlockFilterIndex(filter_type);
3168 if (!filter_index) {
3169 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3170 return false;
3171 }
3172
3173 return true;
3174}
3175
3176void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3177{
3178 uint8_t filter_type_ser;
3179 uint32_t start_height;
3180 uint256 stop_hash;
3181
3182 vRecv >> filter_type_ser >> start_height >> stop_hash;
3183
3184 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3185
3186 const CBlockIndex* stop_index;
3187 BlockFilterIndex* filter_index;
3188 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3189 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3190 return;
3191 }
3192
3193 std::vector<BlockFilter> filters;
3194 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3195 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3196 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3197 return;
3198 }
3199
3200 for (const auto& filter : filters) {
3201 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3202 }
3203}
3204
3205void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3206{
3207 uint8_t filter_type_ser;
3208 uint32_t start_height;
3209 uint256 stop_hash;
3210
3211 vRecv >> filter_type_ser >> start_height >> stop_hash;
3212
3213 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3214
3215 const CBlockIndex* stop_index;
3216 BlockFilterIndex* filter_index;
3217 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3218 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3219 return;
3220 }
3221
3222 uint256 prev_header;
3223 if (start_height > 0) {
3224 const CBlockIndex* const prev_block =
3225 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3226 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3227 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3228 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3229 return;
3230 }
3231 }
3232
3233 std::vector<uint256> filter_hashes;
3234 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3235 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3236 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3237 return;
3238 }
3239
3240 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3241 filter_type_ser,
3242 stop_index->GetBlockHash(),
3243 prev_header,
3244 filter_hashes);
3245}
3246
3247void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3248{
3249 uint8_t filter_type_ser;
3250 uint256 stop_hash;
3251
3252 vRecv >> filter_type_ser >> stop_hash;
3253
3254 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3255
3256 const CBlockIndex* stop_index;
3257 BlockFilterIndex* filter_index;
3258 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3259 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3260 stop_index, filter_index)) {
3261 return;
3262 }
3263
3264 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3265
3266 // Populate headers.
3267 const CBlockIndex* block_index = stop_index;
3268 for (int i = headers.size() - 1; i >= 0; i--) {
3269 int height = (i + 1) * CFCHECKPT_INTERVAL;
3270 block_index = block_index->GetAncestor(height);
3271
3272 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3273 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3274 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3275 return;
3276 }
3277 }
3278
3279 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3280 filter_type_ser,
3281 stop_index->GetBlockHash(),
3282 headers);
3283}
3284
3285void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3286{
3287 bool new_block{false};
3288 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3289 if (new_block) {
3290 node.m_last_block_time = GetTime<std::chrono::seconds>();
3291 // In case this block came from a different peer than we requested
3292 // from, we can erase the block request now anyway (as we just stored
3293 // this block to disk).
3294 LOCK(cs_main);
3295 RemoveBlockRequest(block->GetHash(), std::nullopt);
3296 } else {
3297 LOCK(cs_main);
3298 mapBlockSource.erase(block->GetHash());
3299 }
3300}
3301
3302void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3303{
3304 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3305 bool fBlockRead{false};
3306 {
3307 LOCK(cs_main);
3308
3309 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3310 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3311 bool requested_block_from_this_peer{false};
3312
3313 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3314 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3315
3316 while (range_flight.first != range_flight.second) {
3317 auto [node_id, block_it] = range_flight.first->second;
3318 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3319 requested_block_from_this_peer = true;
3320 break;
3321 }
3322 range_flight.first++;
3323 }
3324
3325 if (!requested_block_from_this_peer) {
3326 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3327 return;
3328 }
3329
3330 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3331
3332 // We should not have gotten this far in compact block processing unless it's attached to a known header
3333 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(partialBlock.header.hashPrevBlock))};
3334 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn,
3335 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
3336 if (status == READ_STATUS_INVALID) {
3337 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3338 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3339 return;
3340 } else if (status == READ_STATUS_FAILED) {
3341 if (first_in_flight) {
3342 // Might have collided, fall back to getdata now :(
3343 std::vector<CInv> invs;
3344 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3345 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3346 } else {
3347 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3348 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3349 return;
3350 }
3351 } else {
3352 // Block is okay for further processing
3353 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3354 fBlockRead = true;
3355 // mapBlockSource is used for potentially punishing peers and
3356 // updating which peers send us compact blocks, so the race
3357 // between here and cs_main in ProcessNewBlock is fine.
3358 // BIP 152 permits peers to relay compact blocks after validating
3359 // the header only; we should not punish peers if the block turns
3360 // out to be invalid.
3361 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3362 }
3363 } // Don't hold cs_main when we call into ProcessNewBlock
3364 if (fBlockRead) {
3365 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3366 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3367 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3368 // disk-space attacks), but this should be safe due to the
3369 // protections in the compact block handler -- see related comment
3370 // in compact block optimistic reconstruction handling.
3371 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3372 }
3373 return;
3374}
3375
3376void PeerManagerImpl::LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block) {
3377 // To prevent log spam, this function should only be called after it was determined that a
3378 // header is both new and valid.
3379 //
3380 // These messages are valuable for detecting potential selfish mining behavior;
3381 // if multiple displacing headers are seen near simultaneously across many
3382 // nodes in the network, this might be an indication of selfish mining.
3383 // In addition it can be used to identify peers which send us a header, but
3384 // don't followup with a complete and valid (compact) block.
3385 // Having this log by default when not in IBD ensures broad availability of
3386 // this data in case investigation is merited.
3387 const auto msg = strprintf(
3388 "Saw new %sheader hash=%s height=%d peer=%d%s",
3389 via_compact_block ? "cmpctblock " : "",
3390 index.GetBlockHash().ToString(),
3391 index.nHeight,
3392 peer.GetId(),
3393 peer.LogIP(fLogIPs)
3394 );
3395 if (m_chainman.IsInitialBlockDownload()) {
3397 } else {
3398 LogInfo("%s", msg);
3399 }
3400}
3401
3402void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3403 const std::chrono::microseconds time_received,
3404 const std::atomic<bool>& interruptMsgProc)
3405{
3406 AssertLockHeld(g_msgproc_mutex);
3407
3408 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3409
3410 PeerRef peer = GetPeerRef(pfrom.GetId());
3411 if (peer == nullptr) return;
3412
3413 if (msg_type == NetMsgType::VERSION) {
3414 if (pfrom.nVersion != 0) {
3415 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3416 return;
3417 }
3418
3419 int64_t nTime;
3420 CService addrMe;
3421 uint64_t nNonce = 1;
3422 ServiceFlags nServices;
3423 int nVersion;
3424 std::string cleanSubVer;
3425 int starting_height = -1;
3426 bool fRelay = true;
3427
3428 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3429 if (nTime < 0) {
3430 nTime = 0;
3431 }
3432 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3433 vRecv >> CNetAddr::V1(addrMe);
3434 if (!pfrom.IsInboundConn())
3435 {
3436 // Overwrites potentially existing services. In contrast to this,
3437 // unvalidated services received via gossip relay in ADDR/ADDRV2
3438 // messages are only ever added but cannot replace existing ones.
3439 m_addrman.SetServices(pfrom.addr, nServices);
3440 }
3441 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3442 {
3443 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3444 nServices,
3445 GetDesirableServiceFlags(nServices),
3446 pfrom.DisconnectMsg(fLogIPs));
3447 pfrom.fDisconnect = true;
3448 return;
3449 }
3450
3451 if (nVersion < MIN_PEER_PROTO_VERSION) {
3452 // disconnect from peers older than this proto version
3453 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3454 pfrom.fDisconnect = true;
3455 return;
3456 }
3457
3458 if (!vRecv.empty()) {
3459 // The version message includes information about the sending node which we don't use:
3460 // - 8 bytes (service bits)
3461 // - 16 bytes (ipv6 address)
3462 // - 2 bytes (port)
3463 vRecv.ignore(26);
3464 vRecv >> nNonce;
3465 }
3466 if (!vRecv.empty()) {
3467 std::string strSubVer;
3468 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3469 cleanSubVer = SanitizeString(strSubVer);
3470 }
3471 if (!vRecv.empty()) {
3472 vRecv >> starting_height;
3473 }
3474 if (!vRecv.empty())
3475 vRecv >> fRelay;
3476 // Disconnect if we connected to ourself
3477 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3478 {
3479 LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3480 pfrom.fDisconnect = true;
3481 return;
3482 }
3483
3484 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3485 {
3486 SeenLocal(addrMe);
3487 }
3488
3489 // Inbound peers send us their version message when they connect.
3490 // We send our version message in response.
3491 if (pfrom.IsInboundConn()) {
3492 PushNodeVersion(pfrom, *peer);
3493 }
3494
3495 // Change version
3496 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3497 pfrom.SetCommonVersion(greatest_common_version);
3498 pfrom.nVersion = nVersion;
3499
3500 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3501 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3502 }
3503
3504 // Signal ADDRv2 support (BIP155).
3505 if (greatest_common_version >= 70016) {
3506 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3507 // implementations reject messages they don't know. As a courtesy, don't send
3508 // it to nodes with a version before 70016, as no software is known to support
3509 // BIP155 that doesn't announce at least that protocol version number.
3510 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3511 }
3512
3513 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3514 peer->m_their_services = nServices;
3515 pfrom.SetAddrLocal(addrMe);
3516 {
3517 LOCK(pfrom.m_subver_mutex);
3518 pfrom.cleanSubVer = cleanSubVer;
3519 }
3520 peer->m_starting_height = starting_height;
3521
3522 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3523 // - this isn't an outbound block-relay-only connection, and
3524 // - this isn't an outbound feeler connection, and
3525 // - fRelay=true (the peer wishes to receive transaction announcements)
3526 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3527 // the peer may turn on transaction relay later.
3528 if (!pfrom.IsBlockOnlyConn() &&
3529 !pfrom.IsFeelerConn() &&
3530 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3531 auto* const tx_relay = peer->SetTxRelay();
3532 {
3533 LOCK(tx_relay->m_bloom_filter_mutex);
3534 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3535 }
3536 if (fRelay) pfrom.m_relays_txs = true;
3537 }
3538
3539 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3540 // Per BIP-330, we announce txreconciliation support if:
3541 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3542 // - transaction relay is supported per the peer's VERSION message
3543 // - this is not a block-relay-only connection and not a feeler
3544 // - this is not an addr fetch connection;
3545 // - we are not in -blocksonly mode.
3546 const auto* tx_relay = peer->GetTxRelay();
3547 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3548 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3549 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3550 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3551 TXRECONCILIATION_VERSION, recon_salt);
3552 }
3553 }
3554
3555 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3556
3557 // Potentially mark this peer as a preferred download peer.
3558 {
3559 LOCK(cs_main);
3560 CNodeState* state = State(pfrom.GetId());
3561 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3562 m_num_preferred_download_peers += state->fPreferredDownload;
3563 }
3564
3565 // Attempt to initialize address relay for outbound peers and use result
3566 // to decide whether to send GETADDR, so that we don't send it to
3567 // inbound or outbound block-relay-only peers.
3568 bool send_getaddr{false};
3569 if (!pfrom.IsInboundConn()) {
3570 send_getaddr = SetupAddressRelay(pfrom, *peer);
3571 }
3572 if (send_getaddr) {
3573 // Do a one-time address fetch to help populate/update our addrman.
3574 // If we're starting up for the first time, our addrman may be pretty
3575 // empty, so this mechanism is important to help us connect to the network.
3576 // We skip this for block-relay-only peers. We want to avoid
3577 // potentially leaking addr information and we do not want to
3578 // indicate to the peer that we will participate in addr relay.
3579 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3580 peer->m_getaddr_sent = true;
3581 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3582 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3583 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3584 }
3585
3586 if (!pfrom.IsInboundConn()) {
3587 // For non-inbound connections, we update the addrman to record
3588 // connection success so that addrman will have an up-to-date
3589 // notion of which peers are online and available.
3590 //
3591 // While we strive to not leak information about block-relay-only
3592 // connections via the addrman, not moving an address to the tried
3593 // table is also potentially detrimental because new-table entries
3594 // are subject to eviction in the event of addrman collisions. We
3595 // mitigate the information-leak by never calling
3596 // AddrMan::Connected() on block-relay-only peers; see
3597 // FinalizeNode().
3598 //
3599 // This moves an address from New to Tried table in Addrman,
3600 // resolves tried-table collisions, etc.
3601 m_addrman.Good(pfrom.addr);
3602 }
3603
3604 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3605 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3606 cleanSubVer, pfrom.nVersion,
3607 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3608 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3609
3610 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3611 if (!pfrom.IsInboundConn()) {
3612 // Don't use timedata samples from inbound peers to make it
3613 // harder for others to create false warnings about our clock being out of sync.
3614 m_outbound_time_offsets.Add(peer->m_time_offset);
3615 m_outbound_time_offsets.WarnIfOutOfSync();
3616 }
3617
3618 // If the peer is old enough to have the old alert system, send it the final alert.
3619 if (greatest_common_version <= 70012) {
3620 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3621 MakeAndPushMessage(pfrom, "alert", finalAlert);
3622 }
3623
3624 // Feeler connections exist only to verify if address is online.
3625 if (pfrom.IsFeelerConn()) {
3626 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3627 pfrom.fDisconnect = true;
3628 }
3629 return;
3630 }
3631
3632 if (pfrom.nVersion == 0) {
3633 // Must have a version message before anything else
3634 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3635 return;
3636 }
3637
3638 if (msg_type == NetMsgType::VERACK) {
3639 if (pfrom.fSuccessfullyConnected) {
3640 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3641 return;
3642 }
3643
3644 // Log successful connections unconditionally for outbound, but not for inbound as those
3645 // can be triggered by an attacker at high rate.
3647 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3648 LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3649 pfrom.ConnectionTypeAsString(),
3650 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3651 pfrom.nVersion.load(), peer->m_starting_height,
3652 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3653 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3654 }
3655
3657 // Tell our peer we are willing to provide version 2 cmpctblocks.
3658 // However, we do not request new block announcements using
3659 // cmpctblock messages.
3660 // We send this to non-NODE NETWORK peers as well, because
3661 // they may wish to request compact blocks from us
3662 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3663 }
3664
3665 if (m_txreconciliation) {
3666 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3667 // We could have optimistically pre-registered/registered the peer. In that case,
3668 // we should forget about the reconciliation state here if this wasn't followed
3669 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3670 m_txreconciliation->ForgetPeer(pfrom.GetId());
3671 }
3672 }
3673
3674 if (auto tx_relay = peer->GetTxRelay()) {
3675 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3676 // version handshake is completed as
3677 // `TxRelay::m_next_inv_send_time` is first initialised in
3678 // `SendMessages` after the verack is received. Any transactions
3679 // received during the version handshake would otherwise
3680 // immediately be advertised without random delay, potentially
3681 // leaking the time of arrival to a spy.
3683 tx_relay->m_tx_inventory_mutex,
3684 return tx_relay->m_tx_inventory_to_send.empty() &&
3685 tx_relay->m_next_inv_send_time == 0s));
3686 }
3687
3688 {
3689 LOCK2(::cs_main, m_tx_download_mutex);
3690 const CNodeState* state = State(pfrom.GetId());
3691 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3692 .m_preferred = state->fPreferredDownload,
3693 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3694 .m_wtxid_relay = peer->m_wtxid_relay,
3695 });
3696 }
3697
3698 pfrom.fSuccessfullyConnected = true;
3699 return;
3700 }
3701
3702 if (msg_type == NetMsgType::SENDHEADERS) {
3703 peer->m_prefers_headers = true;
3704 return;
3705 }
3706
3707 if (msg_type == NetMsgType::SENDCMPCT) {
3708 bool sendcmpct_hb{false};
3709 uint64_t sendcmpct_version{0};
3710 vRecv >> sendcmpct_hb >> sendcmpct_version;
3711
3712 // Only support compact block relay with witnesses
3713 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3714
3715 LOCK(cs_main);
3716 CNodeState* nodestate = State(pfrom.GetId());
3717 nodestate->m_provides_cmpctblocks = true;
3718 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3719 // save whether peer selects us as BIP152 high-bandwidth peer
3720 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3721 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3722 return;
3723 }
3724
3725 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3726 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3727 if (msg_type == NetMsgType::WTXIDRELAY) {
3728 if (pfrom.fSuccessfullyConnected) {
3729 // Disconnect peers that send a wtxidrelay message after VERACK.
3730 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3731 pfrom.fDisconnect = true;
3732 return;
3733 }
3734 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3735 if (!peer->m_wtxid_relay) {
3736 peer->m_wtxid_relay = true;
3737 m_wtxid_relay_peers++;
3738 } else {
3739 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3740 }
3741 } else {
3742 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3743 }
3744 return;
3745 }
3746
3747 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3748 // between VERSION and VERACK.
3749 if (msg_type == NetMsgType::SENDADDRV2) {
3750 if (pfrom.fSuccessfullyConnected) {
3751 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3752 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3753 pfrom.fDisconnect = true;
3754 return;
3755 }
3756 peer->m_wants_addrv2 = true;
3757 return;
3758 }
3759
3760 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3761 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3762 // from switching announcement protocols after the connection is up.
3763 if (msg_type == NetMsgType::SENDTXRCNCL) {
3764 if (!m_txreconciliation) {
3765 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3766 return;
3767 }
3768
3769 if (pfrom.fSuccessfullyConnected) {
3770 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3771 pfrom.fDisconnect = true;
3772 return;
3773 }
3774
3775 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3776 if (RejectIncomingTxs(pfrom)) {
3777 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3778 pfrom.fDisconnect = true;
3779 return;
3780 }
3781
3782 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3783 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3784 // eliminates them, so that this flag fully represents what we are looking for.
3785 const auto* tx_relay = peer->GetTxRelay();
3786 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3787 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3788 pfrom.fDisconnect = true;
3789 return;
3790 }
3791
3792 uint32_t peer_txreconcl_version;
3793 uint64_t remote_salt;
3794 vRecv >> peer_txreconcl_version >> remote_salt;
3795
3796 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3797 peer_txreconcl_version, remote_salt);
3798 switch (result) {
3800 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3801 break;
3803 break;
3805 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3806 pfrom.fDisconnect = true;
3807 return;
3809 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3810 pfrom.fDisconnect = true;
3811 return;
3812 }
3813 return;
3814 }
3815
3816 if (!pfrom.fSuccessfullyConnected) {
3817 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3818 return;
3819 }
3820
3821 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3822 const auto ser_params{
3823 msg_type == NetMsgType::ADDRV2 ?
3824 // Set V2 param so that the CNetAddr and CAddress
3825 // unserialize methods know that an address in v2 format is coming.
3828 };
3829
3830 std::vector<CAddress> vAddr;
3831
3832 vRecv >> ser_params(vAddr);
3833
3834 if (!SetupAddressRelay(pfrom, *peer)) {
3835 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3836 return;
3837 }
3838
3839 if (vAddr.size() > MAX_ADDR_TO_SEND)
3840 {
3841 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3842 return;
3843 }
3844
3845 // Store the new addresses
3846 std::vector<CAddress> vAddrOk;
3847 const auto current_a_time{Now<NodeSeconds>()};
3848
3849 // Update/increment addr rate limiting bucket.
3850 const auto current_time{GetTime<std::chrono::microseconds>()};
3851 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3852 // Don't increment bucket if it's already full
3853 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3854 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3855 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3856 }
3857 peer->m_addr_token_timestamp = current_time;
3858
3859 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3860 uint64_t num_proc = 0;
3861 uint64_t num_rate_limit = 0;
3862 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3863 for (CAddress& addr : vAddr)
3864 {
3865 if (interruptMsgProc)
3866 return;
3867
3868 // Apply rate limiting.
3869 if (peer->m_addr_token_bucket < 1.0) {
3870 if (rate_limited) {
3871 ++num_rate_limit;
3872 continue;
3873 }
3874 } else {
3875 peer->m_addr_token_bucket -= 1.0;
3876 }
3877 // We only bother storing full nodes, though this may include
3878 // things which we would not make an outbound connection to, in
3879 // part because we may make feeler connections to them.
3880 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3881 continue;
3882
3883 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3884 addr.nTime = current_a_time - 5 * 24h;
3885 }
3886 AddAddressKnown(*peer, addr);
3887 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3888 // Do not process banned/discouraged addresses beyond remembering we received them
3889 continue;
3890 }
3891 ++num_proc;
3892 const bool reachable{g_reachable_nets.Contains(addr)};
3893 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3894 // Relay to a limited number of other nodes
3895 RelayAddress(pfrom.GetId(), addr, reachable);
3896 }
3897 // Do not store addresses outside our network
3898 if (reachable) {
3899 vAddrOk.push_back(addr);
3900 }
3901 }
3902 peer->m_addr_processed += num_proc;
3903 peer->m_addr_rate_limited += num_rate_limit;
3904 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3905 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3906
3907 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3908 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3909
3910 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3911 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3912 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3913 pfrom.fDisconnect = true;
3914 }
3915 return;
3916 }
3917
3918 if (msg_type == NetMsgType::INV) {
3919 std::vector<CInv> vInv;
3920 vRecv >> vInv;
3921 if (vInv.size() > MAX_INV_SZ)
3922 {
3923 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3924 return;
3925 }
3926
3927 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3928
3929 LOCK2(cs_main, m_tx_download_mutex);
3930
3931 const auto current_time{GetTime<std::chrono::microseconds>()};
3932 uint256* best_block{nullptr};
3933
3934 for (CInv& inv : vInv) {
3935 if (interruptMsgProc) return;
3936
3937 // Ignore INVs that don't match wtxidrelay setting.
3938 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3939 // This is fine as no INV messages are involved in that process.
3940 if (peer->m_wtxid_relay) {
3941 if (inv.IsMsgTx()) continue;
3942 } else {
3943 if (inv.IsMsgWtx()) continue;
3944 }
3945
3946 if (inv.IsMsgBlk()) {
3947 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3948 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3949
3950 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3951 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3952 // Headers-first is the primary method of announcement on
3953 // the network. If a node fell back to sending blocks by
3954 // inv, it may be for a re-org, or because we haven't
3955 // completed initial headers sync. The final block hash
3956 // provided should be the highest, so send a getheaders and
3957 // then fetch the blocks we need to catch up.
3958 best_block = &inv.hash;
3959 }
3960 } else if (inv.IsGenTxMsg()) {
3961 if (reject_tx_invs) {
3962 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
3963 pfrom.fDisconnect = true;
3964 return;
3965 }
3966 const GenTxid gtxid = ToGenTxid(inv);
3967 AddKnownTx(*peer, inv.hash);
3968
3969 if (!m_chainman.IsInitialBlockDownload()) {
3970 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
3971 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3972 }
3973 } else {
3974 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3975 }
3976 }
3977
3978 if (best_block != nullptr) {
3979 // If we haven't started initial headers-sync with this peer, then
3980 // consider sending a getheaders now. On initial startup, there's a
3981 // reliability vs bandwidth tradeoff, where we are only trying to do
3982 // initial headers sync with one peer at a time, with a long
3983 // timeout (at which point, if the sync hasn't completed, we will
3984 // disconnect the peer and then choose another). In the meantime,
3985 // as new blocks are found, we are willing to add one new peer per
3986 // block to sync with as well, to sync quicker in the case where
3987 // our initial peer is unresponsive (but less bandwidth than we'd
3988 // use if we turned on sync with all peers).
3989 CNodeState& state{*Assert(State(pfrom.GetId()))};
3990 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
3991 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
3992 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
3993 m_chainman.m_best_header->nHeight, best_block->ToString(),
3994 pfrom.GetId());
3995 }
3996 if (!state.fSyncStarted) {
3997 peer->m_inv_triggered_getheaders_before_sync = true;
3998 // Update the last block hash that triggered a new headers
3999 // sync, so that we don't turn on headers sync with more
4000 // than 1 new peer every new block.
4001 m_last_block_inv_triggering_headers_sync = *best_block;
4002 }
4003 }
4004 }
4005
4006 return;
4007 }
4008
4009 if (msg_type == NetMsgType::GETDATA) {
4010 std::vector<CInv> vInv;
4011 vRecv >> vInv;
4012 if (vInv.size() > MAX_INV_SZ)
4013 {
4014 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4015 return;
4016 }
4017
4018 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4019
4020 if (vInv.size() > 0) {
4021 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4022 }
4023
4024 {
4025 LOCK(peer->m_getdata_requests_mutex);
4026 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4027 ProcessGetData(pfrom, *peer, interruptMsgProc);
4028 }
4029
4030 return;
4031 }
4032
4033 if (msg_type == NetMsgType::GETBLOCKS) {
4034 CBlockLocator locator;
4035 uint256 hashStop;
4036 vRecv >> locator >> hashStop;
4037
4038 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4039 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4040 pfrom.fDisconnect = true;
4041 return;
4042 }
4043
4044 // We might have announced the currently-being-connected tip using a
4045 // compact block, which resulted in the peer sending a getblocks
4046 // request, which we would otherwise respond to without the new block.
4047 // To avoid this situation we simply verify that we are on our best
4048 // known chain now. This is super overkill, but we handle it better
4049 // for getheaders requests, and there are no known nodes which support
4050 // compact blocks but still use getblocks to request blocks.
4051 {
4052 std::shared_ptr<const CBlock> a_recent_block;
4053 {
4054 LOCK(m_most_recent_block_mutex);
4055 a_recent_block = m_most_recent_block;
4056 }
4058 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4059 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4060 }
4061 }
4062
4063 LOCK(cs_main);
4064
4065 // Find the last block the caller has in the main chain
4066 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4067
4068 // Send the rest of the chain
4069 if (pindex)
4070 pindex = m_chainman.ActiveChain().Next(pindex);
4071 int nLimit = 500;
4072 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4073 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4074 {
4075 if (pindex->GetBlockHash() == hashStop)
4076 {
4077 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4078 break;
4079 }
4080 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4081 // for some reasonable time window (1 hour) that block relay might require.
4082 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4083 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4084 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4085 break;
4086 }
4087 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4088 if (--nLimit <= 0) {
4089 // When this block is requested, we'll send an inv that'll
4090 // trigger the peer to getblocks the next batch of inventory.
4091 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4092 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4093 break;
4094 }
4095 }
4096 return;
4097 }
4098
4099 if (msg_type == NetMsgType::GETBLOCKTXN) {
4101 vRecv >> req;
4102
4103 std::shared_ptr<const CBlock> recent_block;
4104 {
4105 LOCK(m_most_recent_block_mutex);
4106 if (m_most_recent_block_hash == req.blockhash)
4107 recent_block = m_most_recent_block;
4108 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4109 }
4110 if (recent_block) {
4111 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4112 return;
4113 }
4114
4115 FlatFilePos block_pos{};
4116 {
4117 LOCK(cs_main);
4118
4119 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4120 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4121 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4122 return;
4123 }
4124
4125 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4126 block_pos = pindex->GetBlockPos();
4127 }
4128 }
4129
4130 if (!block_pos.IsNull()) {
4131 CBlock block;
4132 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos, req.blockhash)};
4133 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4134 // pruned after we release cs_main above, so this read should never fail.
4135 assert(ret);
4136
4137 SendBlockTransactions(pfrom, *peer, block, req);
4138 return;
4139 }
4140
4141 // If an older block is requested (should never happen in practice,
4142 // but can happen in tests) send a block response instead of a
4143 // blocktxn response. Sending a full block response instead of a
4144 // small blocktxn response is preferable in the case where a peer
4145 // might maliciously send lots of getblocktxn requests to trigger
4146 // expensive disk reads, because it will require the peer to
4147 // actually receive all the data read from disk over the network.
4148 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4150 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4151 // The message processing loop will go around again (without pausing) and we'll respond then
4152 return;
4153 }
4154
4155 if (msg_type == NetMsgType::GETHEADERS) {
4156 CBlockLocator locator;
4157 uint256 hashStop;
4158 vRecv >> locator >> hashStop;
4159
4160 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4161 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4162 pfrom.fDisconnect = true;
4163 return;
4164 }
4165
4166 if (m_chainman.m_blockman.LoadingBlocks()) {
4167 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4168 return;
4169 }
4170
4171 LOCK(cs_main);
4172
4173 // Don't serve headers from our active chain until our chainwork is at least
4174 // the minimum chain work. This prevents us from starting a low-work headers
4175 // sync that will inevitably be aborted by our peer.
4176 if (m_chainman.ActiveTip() == nullptr ||
4177 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4178 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4179 // Just respond with an empty headers message, to tell the peer to
4180 // go away but not treat us as unresponsive.
4181 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4182 return;
4183 }
4184
4185 CNodeState *nodestate = State(pfrom.GetId());
4186 const CBlockIndex* pindex = nullptr;
4187 if (locator.IsNull())
4188 {
4189 // If locator is null, return the hashStop block
4190 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4191 if (!pindex) {
4192 return;
4193 }
4194
4195 if (!BlockRequestAllowed(pindex)) {
4196 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4197 return;
4198 }
4199 }
4200 else
4201 {
4202 // Find the last block the caller has in the main chain
4203 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4204 if (pindex)
4205 pindex = m_chainman.ActiveChain().Next(pindex);
4206 }
4207
4208 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4209 std::vector<CBlock> vHeaders;
4210 int nLimit = m_opts.max_headers_result;
4211 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4212 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4213 {
4214 vHeaders.emplace_back(pindex->GetBlockHeader());
4215 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4216 break;
4217 }
4218 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4219 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4220 // headers message). In both cases it's safe to update
4221 // pindexBestHeaderSent to be our tip.
4222 //
4223 // It is important that we simply reset the BestHeaderSent value here,
4224 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4225 // the currently-being-connected tip using a compact block, which
4226 // resulted in the peer sending a headers request, which we respond to
4227 // without the new block. By resetting the BestHeaderSent, we ensure we
4228 // will re-announce the new block via headers (or compact blocks again)
4229 // in the SendMessages logic.
4230 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4231 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4232 return;
4233 }
4234
4235 if (msg_type == NetMsgType::TX) {
4236 if (RejectIncomingTxs(pfrom)) {
4237 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4238 pfrom.fDisconnect = true;
4239 return;
4240 }
4241
4242 // Stop processing the transaction early if we are still in IBD since we don't
4243 // have enough information to validate it yet. Sending unsolicited transactions
4244 // is not considered a protocol violation, so don't punish the peer.
4245 if (m_chainman.IsInitialBlockDownload()) return;
4246
4247 CTransactionRef ptx;
4248 vRecv >> TX_WITH_WITNESS(ptx);
4249
4250 const Txid& txid = ptx->GetHash();
4251 const Wtxid& wtxid = ptx->GetWitnessHash();
4252
4253 const uint256& hash = peer->m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256();
4254 AddKnownTx(*peer, hash);
4255
4256 LOCK2(cs_main, m_tx_download_mutex);
4257
4258 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4259 if (!should_validate) {
4261 // Always relay transactions received from peers with forcerelay
4262 // permission, even if they were already in the mempool, allowing
4263 // the node to function as a gateway for nodes hidden behind it.
4264 if (!m_mempool.exists(txid)) {
4265 LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4266 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4267 } else {
4268 LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4269 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4270 RelayTransaction(txid, wtxid);
4271 }
4272 }
4273
4274 if (package_to_validate) {
4275 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4276 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4277 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4278 ProcessPackageResult(package_to_validate.value(), package_result);
4279 }
4280 return;
4281 }
4282
4283 // ReceivedTx should not be telling us to validate the tx and a package.
4284 Assume(!package_to_validate.has_value());
4285
4286 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4287 const TxValidationState& state = result.m_state;
4288
4290 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4291 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4292 }
4293 if (state.IsInvalid()) {
4294 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4295 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4296 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4297 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4298 ProcessPackageResult(package_to_validate.value(), package_result);
4299 }
4300 }
4301
4302 return;
4303 }
4304
4305 if (msg_type == NetMsgType::CMPCTBLOCK)
4306 {
4307 // Ignore cmpctblock received while importing
4308 if (m_chainman.m_blockman.LoadingBlocks()) {
4309 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4310 return;
4311 }
4312
4313 CBlockHeaderAndShortTxIDs cmpctblock;
4314 vRecv >> cmpctblock;
4315
4316 bool received_new_header = false;
4317 const auto blockhash = cmpctblock.header.GetHash();
4318
4319 {
4320 LOCK(cs_main);
4321
4322 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4323 if (!prev_block) {
4324 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4325 if (!m_chainman.IsInitialBlockDownload()) {
4326 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4327 }
4328 return;
4329 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4330 // If we get a low-work header in a compact block, we can ignore it.
4331 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4332 return;
4333 }
4334
4335 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4336 received_new_header = true;
4337 }
4338 }
4339
4340 const CBlockIndex *pindex = nullptr;
4342 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4343 if (state.IsInvalid()) {
4344 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4345 return;
4346 }
4347 }
4348
4349 // If AcceptBlockHeader returned true, it set pindex
4350 Assert(pindex);
4351 if (received_new_header) {
4352 LogBlockHeader(*pindex, pfrom, /*via_compact_block=*/true);
4353 }
4354
4355 bool fProcessBLOCKTXN = false;
4356
4357 // If we end up treating this as a plain headers message, call that as well
4358 // without cs_main.
4359 bool fRevertToHeaderProcessing = false;
4360
4361 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4362 // below)
4363 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4364 bool fBlockReconstructed = false;
4365
4366 {
4367 LOCK(cs_main);
4368 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4369
4370 CNodeState *nodestate = State(pfrom.GetId());
4371
4372 // If this was a new header with more work than our tip, update the
4373 // peer's last block announcement time
4374 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4375 nodestate->m_last_block_announcement = GetTime();
4376 }
4377
4378 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4379 return;
4380
4381 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4382 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4383 bool requested_block_from_this_peer{false};
4384
4385 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4386 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4387
4388 while (range_flight.first != range_flight.second) {
4389 if (range_flight.first->second.first == pfrom.GetId()) {
4390 requested_block_from_this_peer = true;
4391 break;
4392 }
4393 range_flight.first++;
4394 }
4395
4396 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4397 pindex->nTx != 0) { // We had this block at some point, but pruned it
4398 if (requested_block_from_this_peer) {
4399 // We requested this block for some reason, but our mempool will probably be useless
4400 // so we just grab the block via normal getdata
4401 std::vector<CInv> vInv(1);
4402 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4403 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4404 }
4405 return;
4406 }
4407
4408 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4409 if (!already_in_flight && !CanDirectFetch()) {
4410 return;
4411 }
4412
4413 // We want to be a bit conservative just to be extra careful about DoS
4414 // possibilities in compact block processing...
4415 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4416 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4417 requested_block_from_this_peer) {
4418 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4419 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4420 if (!(*queuedBlockIt)->partialBlock)
4421 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4422 else {
4423 // The block was already in flight using compact blocks from the same peer
4424 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4425 return;
4426 }
4427 }
4428
4429 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4430 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4431 if (status == READ_STATUS_INVALID) {
4432 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4433 Misbehaving(*peer, "invalid compact block");
4434 return;
4435 } else if (status == READ_STATUS_FAILED) {
4436 if (first_in_flight) {
4437 // Duplicate txindexes, the block is now in-flight, so just request it
4438 std::vector<CInv> vInv(1);
4439 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4440 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4441 } else {
4442 // Give up for this peer and wait for other peer(s)
4443 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4444 }
4445 return;
4446 }
4447
4449 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4450 if (!partialBlock.IsTxAvailable(i))
4451 req.indexes.push_back(i);
4452 }
4453 if (req.indexes.empty()) {
4454 fProcessBLOCKTXN = true;
4455 } else if (first_in_flight) {
4456 // We will try to round-trip any compact blocks we get on failure,
4457 // as long as it's first...
4458 req.blockhash = pindex->GetBlockHash();
4459 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4460 } else if (pfrom.m_bip152_highbandwidth_to &&
4461 (!pfrom.IsInboundConn() ||
4462 IsBlockRequestedFromOutbound(blockhash) ||
4463 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4464 // ... or it's a hb relay peer and:
4465 // - peer is outbound, or
4466 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4467 // - it's not the final parallel download slot (which we may reserve for first outbound)
4468 req.blockhash = pindex->GetBlockHash();
4469 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4470 } else {
4471 // Give up for this peer and wait for other peer(s)
4472 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4473 }
4474 } else {
4475 // This block is either already in flight from a different
4476 // peer, or this peer has too many blocks outstanding to
4477 // download from.
4478 // Optimistically try to reconstruct anyway since we might be
4479 // able to without any round trips.
4480 PartiallyDownloadedBlock tempBlock(&m_mempool);
4481 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4482 if (status != READ_STATUS_OK) {
4483 // TODO: don't ignore failures
4484 return;
4485 }
4486 std::vector<CTransactionRef> dummy;
4487 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock))};
4488 status = tempBlock.FillBlock(*pblock, dummy,
4489 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
4490 if (status == READ_STATUS_OK) {
4491 fBlockReconstructed = true;
4492 }
4493 }
4494 } else {
4495 if (requested_block_from_this_peer) {
4496 // We requested this block, but its far into the future, so our
4497 // mempool will probably be useless - request the block normally
4498 std::vector<CInv> vInv(1);
4499 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4500 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4501 return;
4502 } else {
4503 // If this was an announce-cmpctblock, we want the same treatment as a header message
4504 fRevertToHeaderProcessing = true;
4505 }
4506 }
4507 } // cs_main
4508
4509 if (fProcessBLOCKTXN) {
4511 txn.blockhash = blockhash;
4512 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4513 }
4514
4515 if (fRevertToHeaderProcessing) {
4516 // Headers received from HB compact block peers are permitted to be
4517 // relayed before full validation (see BIP 152), so we don't want to disconnect
4518 // the peer if the header turns out to be for an invalid block.
4519 // Note that if a peer tries to build on an invalid chain, that
4520 // will be detected and the peer will be disconnected/discouraged.
4521 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4522 }
4523
4524 if (fBlockReconstructed) {
4525 // If we got here, we were able to optimistically reconstruct a
4526 // block that is in flight from some other peer.
4527 {
4528 LOCK(cs_main);
4529 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4530 }
4531 // Setting force_processing to true means that we bypass some of
4532 // our anti-DoS protections in AcceptBlock, which filters
4533 // unrequested blocks that might be trying to waste our resources
4534 // (eg disk space). Because we only try to reconstruct blocks when
4535 // we're close to caught up (via the CanDirectFetch() requirement
4536 // above, combined with the behavior of not requesting blocks until
4537 // we have a chain with at least the minimum chain work), and we ignore
4538 // compact blocks with less work than our tip, it is safe to treat
4539 // reconstructed compact blocks as having been requested.
4540 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4541 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4542 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4543 // Clear download state for this block, which is in
4544 // process from some other peer. We do this after calling
4545 // ProcessNewBlock so that a malleated cmpctblock announcement
4546 // can't be used to interfere with block relay.
4547 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4548 }
4549 }
4550 return;
4551 }
4552
4553 if (msg_type == NetMsgType::BLOCKTXN)
4554 {
4555 // Ignore blocktxn received while importing
4556 if (m_chainman.m_blockman.LoadingBlocks()) {
4557 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4558 return;
4559 }
4560
4561 BlockTransactions resp;
4562 vRecv >> resp;
4563
4564 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4565 }
4566
4567 if (msg_type == NetMsgType::HEADERS)
4568 {
4569 // Ignore headers received while importing
4570 if (m_chainman.m_blockman.LoadingBlocks()) {
4571 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4572 return;
4573 }
4574
4575 std::vector<CBlockHeader> headers;
4576
4577 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4578 unsigned int nCount = ReadCompactSize(vRecv);
4579 if (nCount > m_opts.max_headers_result) {
4580 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4581 return;
4582 }
4583 headers.resize(nCount);
4584 for (unsigned int n = 0; n < nCount; n++) {
4585 vRecv >> headers[n];
4586 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4587 }
4588
4589 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4590
4591 // Check if the headers presync progress needs to be reported to validation.
4592 // This needs to be done without holding the m_headers_presync_mutex lock.
4593 if (m_headers_presync_should_signal.exchange(false)) {
4594 HeadersPresyncStats stats;
4595 {
4596 LOCK(m_headers_presync_mutex);
4597 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4598 if (it != m_headers_presync_stats.end()) stats = it->second;
4599 }
4600 if (stats.second) {
4601 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4602 }
4603 }
4604
4605 return;
4606 }
4607
4608 if (msg_type == NetMsgType::BLOCK)
4609 {
4610 // Ignore block received while importing
4611 if (m_chainman.m_blockman.LoadingBlocks()) {
4612 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4613 return;
4614 }
4615
4616 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4617 vRecv >> TX_WITH_WITNESS(*pblock);
4618
4619 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4620
4621 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4622
4623 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4624 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4625 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4626 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4627 Misbehaving(*peer, "mutated block");
4628 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4629 return;
4630 }
4631
4632 bool forceProcessing = false;
4633 const uint256 hash(pblock->GetHash());
4634 bool min_pow_checked = false;
4635 {
4636 LOCK(cs_main);
4637 // Always process the block if we requested it, since we may
4638 // need it even when it's not a candidate for a new best tip.
4639 forceProcessing = IsBlockRequested(hash);
4640 RemoveBlockRequest(hash, pfrom.GetId());
4641 // mapBlockSource is only used for punishing peers and setting
4642 // which peers send us compact blocks, so the race between here and
4643 // cs_main in ProcessNewBlock is fine.
4644 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4645
4646 // Check claimed work on this block against our anti-dos thresholds.
4647 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4648 min_pow_checked = true;
4649 }
4650 }
4651 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4652 return;
4653 }
4654
4655 if (msg_type == NetMsgType::GETADDR) {
4656 // This asymmetric behavior for inbound and outbound connections was introduced
4657 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4658 // to users' AddrMan and later request them by sending getaddr messages.
4659 // Making nodes which are behind NAT and can only make outgoing connections ignore
4660 // the getaddr message mitigates the attack.
4661 if (!pfrom.IsInboundConn()) {
4662 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4663 return;
4664 }
4665
4666 // Since this must be an inbound connection, SetupAddressRelay will
4667 // never fail.
4668 Assume(SetupAddressRelay(pfrom, *peer));
4669
4670 // Only send one GetAddr response per connection to reduce resource waste
4671 // and discourage addr stamping of INV announcements.
4672 if (peer->m_getaddr_recvd) {
4673 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4674 return;
4675 }
4676 peer->m_getaddr_recvd = true;
4677
4678 peer->m_addrs_to_send.clear();
4679 std::vector<CAddress> vAddr;
4681 vAddr = m_connman.GetAddressesUnsafe(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4682 } else {
4683 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4684 }
4685 for (const CAddress &addr : vAddr) {
4686 PushAddress(*peer, addr);
4687 }
4688 return;
4689 }
4690
4691 if (msg_type == NetMsgType::MEMPOOL) {
4692 // Only process received mempool messages if we advertise NODE_BLOOM
4693 // or if the peer has mempool permissions.
4694 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4695 {
4697 {
4698 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4699 pfrom.fDisconnect = true;
4700 }
4701 return;
4702 }
4703
4704 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4705 {
4707 {
4708 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4709 pfrom.fDisconnect = true;
4710 }
4711 return;
4712 }
4713
4714 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4715 LOCK(tx_relay->m_tx_inventory_mutex);
4716 tx_relay->m_send_mempool = true;
4717 }
4718 return;
4719 }
4720
4721 if (msg_type == NetMsgType::PING) {
4722 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4723 uint64_t nonce = 0;
4724 vRecv >> nonce;
4725 // Echo the message back with the nonce. This allows for two useful features:
4726 //
4727 // 1) A remote node can quickly check if the connection is operational
4728 // 2) Remote nodes can measure the latency of the network thread. If this node
4729 // is overloaded it won't respond to pings quickly and the remote node can
4730 // avoid sending us more work, like chain download requests.
4731 //
4732 // The nonce stops the remote getting confused between different pings: without
4733 // it, if the remote node sends a ping once per second and this node takes 5
4734 // seconds to respond to each, the 5th ping the remote sends would appear to
4735 // return very quickly.
4736 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4737 }
4738 return;
4739 }
4740
4741 if (msg_type == NetMsgType::PONG) {
4742 const auto ping_end = time_received;
4743 uint64_t nonce = 0;
4744 size_t nAvail = vRecv.in_avail();
4745 bool bPingFinished = false;
4746 std::string sProblem;
4747
4748 if (nAvail >= sizeof(nonce)) {
4749 vRecv >> nonce;
4750
4751 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4752 if (peer->m_ping_nonce_sent != 0) {
4753 if (nonce == peer->m_ping_nonce_sent) {
4754 // Matching pong received, this ping is no longer outstanding
4755 bPingFinished = true;
4756 const auto ping_time = ping_end - peer->m_ping_start.load();
4757 if (ping_time.count() >= 0) {
4758 // Let connman know about this successful ping-pong
4759 pfrom.PongReceived(ping_time);
4760 } else {
4761 // This should never happen
4762 sProblem = "Timing mishap";
4763 }
4764 } else {
4765 // Nonce mismatches are normal when pings are overlapping
4766 sProblem = "Nonce mismatch";
4767 if (nonce == 0) {
4768 // This is most likely a bug in another implementation somewhere; cancel this ping
4769 bPingFinished = true;
4770 sProblem = "Nonce zero";
4771 }
4772 }
4773 } else {
4774 sProblem = "Unsolicited pong without ping";
4775 }
4776 } else {
4777 // This is most likely a bug in another implementation somewhere; cancel this ping
4778 bPingFinished = true;
4779 sProblem = "Short payload";
4780 }
4781
4782 if (!(sProblem.empty())) {
4783 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4784 pfrom.GetId(),
4785 sProblem,
4786 peer->m_ping_nonce_sent,
4787 nonce,
4788 nAvail);
4789 }
4790 if (bPingFinished) {
4791 peer->m_ping_nonce_sent = 0;
4792 }
4793 return;
4794 }
4795
4796 if (msg_type == NetMsgType::FILTERLOAD) {
4797 if (!(peer->m_our_services & NODE_BLOOM)) {
4798 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4799 pfrom.fDisconnect = true;
4800 return;
4801 }
4802 CBloomFilter filter;
4803 vRecv >> filter;
4804
4805 if (!filter.IsWithinSizeConstraints())
4806 {
4807 // There is no excuse for sending a too-large filter
4808 Misbehaving(*peer, "too-large bloom filter");
4809 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4810 {
4811 LOCK(tx_relay->m_bloom_filter_mutex);
4812 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4813 tx_relay->m_relay_txs = true;
4814 }
4815 pfrom.m_bloom_filter_loaded = true;
4816 pfrom.m_relays_txs = true;
4817 }
4818 return;
4819 }
4820
4821 if (msg_type == NetMsgType::FILTERADD) {
4822 if (!(peer->m_our_services & NODE_BLOOM)) {
4823 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4824 pfrom.fDisconnect = true;
4825 return;
4826 }
4827 std::vector<unsigned char> vData;
4828 vRecv >> vData;
4829
4830 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4831 // and thus, the maximum size any matched object can have) in a filteradd message
4832 bool bad = false;
4833 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4834 bad = true;
4835 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4836 LOCK(tx_relay->m_bloom_filter_mutex);
4837 if (tx_relay->m_bloom_filter) {
4838 tx_relay->m_bloom_filter->insert(vData);
4839 } else {
4840 bad = true;
4841 }
4842 }
4843 if (bad) {
4844 Misbehaving(*peer, "bad filteradd message");
4845 }
4846 return;
4847 }
4848
4849 if (msg_type == NetMsgType::FILTERCLEAR) {
4850 if (!(peer->m_our_services & NODE_BLOOM)) {
4851 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4852 pfrom.fDisconnect = true;
4853 return;
4854 }
4855 auto tx_relay = peer->GetTxRelay();
4856 if (!tx_relay) return;
4857
4858 {
4859 LOCK(tx_relay->m_bloom_filter_mutex);
4860 tx_relay->m_bloom_filter = nullptr;
4861 tx_relay->m_relay_txs = true;
4862 }
4863 pfrom.m_bloom_filter_loaded = false;
4864 pfrom.m_relays_txs = true;
4865 return;
4866 }
4867
4868 if (msg_type == NetMsgType::FEEFILTER) {
4869 CAmount newFeeFilter = 0;
4870 vRecv >> newFeeFilter;
4871 if (MoneyRange(newFeeFilter)) {
4872 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4873 tx_relay->m_fee_filter_received = newFeeFilter;
4874 }
4875 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4876 }
4877 return;
4878 }
4879
4880 if (msg_type == NetMsgType::GETCFILTERS) {
4881 ProcessGetCFilters(pfrom, *peer, vRecv);
4882 return;
4883 }
4884
4885 if (msg_type == NetMsgType::GETCFHEADERS) {
4886 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4887 return;
4888 }
4889
4890 if (msg_type == NetMsgType::GETCFCHECKPT) {
4891 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4892 return;
4893 }
4894
4895 if (msg_type == NetMsgType::NOTFOUND) {
4896 std::vector<CInv> vInv;
4897 vRecv >> vInv;
4898 std::vector<GenTxid> tx_invs;
4900 for (CInv &inv : vInv) {
4901 if (inv.IsGenTxMsg()) {
4902 tx_invs.emplace_back(ToGenTxid(inv));
4903 }
4904 }
4905 }
4906 LOCK(m_tx_download_mutex);
4907 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4908 return;
4909 }
4910
4911 // Ignore unknown commands for extensibility
4912 LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4913 return;
4914}
4915
4916bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4917{
4918 {
4919 LOCK(peer.m_misbehavior_mutex);
4920
4921 // There's nothing to do if the m_should_discourage flag isn't set
4922 if (!peer.m_should_discourage) return false;
4923
4924 peer.m_should_discourage = false;
4925 } // peer.m_misbehavior_mutex
4926
4928 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4929 LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4930 return false;
4931 }
4932
4933 if (pnode.IsManualConn()) {
4934 // We never disconnect or discourage manual peers for bad behavior
4935 LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4936 return false;
4937 }
4938
4939 if (pnode.addr.IsLocal()) {
4940 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4941 // all peers on the same local address)
4942 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4943 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4944 pnode.fDisconnect = true;
4945 return true;
4946 }
4947
4948 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4949 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4950 if (m_banman) m_banman->Discourage(pnode.addr);
4951 m_connman.DisconnectNode(pnode.addr);
4952 return true;
4953}
4954
4955bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4956{
4957 AssertLockNotHeld(m_tx_download_mutex);
4958 AssertLockHeld(g_msgproc_mutex);
4959
4960 PeerRef peer = GetPeerRef(pfrom->GetId());
4961 if (peer == nullptr) return false;
4962
4963 // For outbound connections, ensure that the initial VERSION message
4964 // has been sent first before processing any incoming messages
4965 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
4966
4967 {
4968 LOCK(peer->m_getdata_requests_mutex);
4969 if (!peer->m_getdata_requests.empty()) {
4970 ProcessGetData(*pfrom, *peer, interruptMsgProc);
4971 }
4972 }
4973
4974 const bool processed_orphan = ProcessOrphanTx(*peer);
4975
4976 if (pfrom->fDisconnect)
4977 return false;
4978
4979 if (processed_orphan) return true;
4980
4981 // this maintains the order of responses
4982 // and prevents m_getdata_requests to grow unbounded
4983 {
4984 LOCK(peer->m_getdata_requests_mutex);
4985 if (!peer->m_getdata_requests.empty()) return true;
4986 }
4987
4988 // Don't bother if send buffer is too full to respond anyway
4989 if (pfrom->fPauseSend) return false;
4990
4991 auto poll_result{pfrom->PollMessage()};
4992 if (!poll_result) {
4993 // No message to process
4994 return false;
4995 }
4996
4997 CNetMessage& msg{poll_result->first};
4998 bool fMoreWork = poll_result->second;
4999
5000 TRACEPOINT(net, inbound_message,
5001 pfrom->GetId(),
5002 pfrom->m_addr_name.c_str(),
5003 pfrom->ConnectionTypeAsString().c_str(),
5004 msg.m_type.c_str(),
5005 msg.m_recv.size(),
5006 msg.m_recv.data()
5007 );
5008
5009 if (m_opts.capture_messages) {
5010 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5011 }
5012
5013 try {
5014 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5015 if (interruptMsgProc) return false;
5016 {
5017 LOCK(peer->m_getdata_requests_mutex);
5018 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5019 }
5020 // Does this peer has an orphan ready to reconsider?
5021 // (Note: we may have provided a parent for an orphan provided
5022 // by another peer that was already processed; in that case,
5023 // the extra work may not be noticed, possibly resulting in an
5024 // unnecessary 100ms delay)
5025 LOCK(m_tx_download_mutex);
5026 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5027 } catch (const std::exception& e) {
5028 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5029 } catch (...) {
5030 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5031 }
5032
5033 return fMoreWork;
5034}
5035
5036void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5037{
5039
5040 CNodeState &state = *State(pto.GetId());
5041
5042 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5043 // This is an outbound peer subject to disconnection if they don't
5044 // announce a block with as much work as the current tip within
5045 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5046 // their chain has more work than ours, we should sync to it,
5047 // unless it's invalid, in which case we should find that out and
5048 // disconnect from them elsewhere).
5049 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5050 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5051 if (state.m_chain_sync.m_timeout != 0s) {
5052 state.m_chain_sync.m_timeout = 0s;
5053 state.m_chain_sync.m_work_header = nullptr;
5054 state.m_chain_sync.m_sent_getheaders = false;
5055 }
5056 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5057 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5058 // AND
5059 // we are noticing this for the first time (m_timeout is 0)
5060 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5061 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5062 // Either way, set a new timeout based on our current tip.
5063 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5064 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5065 state.m_chain_sync.m_sent_getheaders = false;
5066 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5067 // No evidence yet that our peer has synced to a chain with work equal to that
5068 // of our tip, when we first detected it was behind. Send a single getheaders
5069 // message to give the peer a chance to update us.
5070 if (state.m_chain_sync.m_sent_getheaders) {
5071 // They've run out of time to catch up!
5072 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5073 pto.fDisconnect = true;
5074 } else {
5075 assert(state.m_chain_sync.m_work_header);
5076 // Here, we assume that the getheaders message goes out,
5077 // because it'll either go out or be skipped because of a
5078 // getheaders in-flight already, in which case the peer should
5079 // still respond to us with a sufficiently high work chain tip.
5080 MaybeSendGetHeaders(pto,
5081 GetLocator(state.m_chain_sync.m_work_header->pprev),
5082 peer);
5083 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5084 state.m_chain_sync.m_sent_getheaders = true;
5085 // Bump the timeout to allow a response, which could clear the timeout
5086 // (if the response shows the peer has synced), reset the timeout (if
5087 // the peer syncs to the required work but not to our tip), or result
5088 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5089 // has not sufficiently progressed)
5090 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5091 }
5092 }
5093 }
5094}
5095
5096void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5097{
5098 // If we have any extra block-relay-only peers, disconnect the youngest unless
5099 // it's given us a block -- in which case, compare with the second-youngest, and
5100 // out of those two, disconnect the peer who least recently gave us a block.
5101 // The youngest block-relay-only peer would be the extra peer we connected
5102 // to temporarily in order to sync our tip; see net.cpp.
5103 // Note that we use higher nodeid as a measure for most recent connection.
5104 if (m_connman.GetExtraBlockRelayCount() > 0) {
5105 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5106
5107 m_connman.ForEachNode([&](CNode* pnode) {
5108 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5109 if (pnode->GetId() > youngest_peer.first) {
5110 next_youngest_peer = youngest_peer;
5111 youngest_peer.first = pnode->GetId();
5112 youngest_peer.second = pnode->m_last_block_time;
5113 }
5114 });
5115 NodeId to_disconnect = youngest_peer.first;
5116 if (youngest_peer.second > next_youngest_peer.second) {
5117 // Our newest block-relay-only peer gave us a block more recently;
5118 // disconnect our second youngest.
5119 to_disconnect = next_youngest_peer.first;
5120 }
5121 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5123 // Make sure we're not getting a block right now, and that
5124 // we've been connected long enough for this eviction to happen
5125 // at all.
5126 // Note that we only request blocks from a peer if we learn of a
5127 // valid headers chain with at least as much work as our tip.
5128 CNodeState *node_state = State(pnode->GetId());
5129 if (node_state == nullptr ||
5130 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5131 pnode->fDisconnect = true;
5132 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5133 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5134 return true;
5135 } else {
5136 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5137 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5138 }
5139 return false;
5140 });
5141 }
5142
5143 // Check whether we have too many outbound-full-relay peers
5144 if (m_connman.GetExtraFullOutboundCount() > 0) {
5145 // If we have more outbound-full-relay peers than we target, disconnect one.
5146 // Pick the outbound-full-relay peer that least recently announced
5147 // us a new block, with ties broken by choosing the more recent
5148 // connection (higher node id)
5149 // Protect peers from eviction if we don't have another connection
5150 // to their network, counting both outbound-full-relay and manual peers.
5151 NodeId worst_peer = -1;
5152 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5153
5154 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5155 AssertLockHeld(::cs_main);
5156
5157 // Only consider outbound-full-relay peers that are not already
5158 // marked for disconnection
5159 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5160 CNodeState *state = State(pnode->GetId());
5161 if (state == nullptr) return; // shouldn't be possible, but just in case
5162 // Don't evict our protected peers
5163 if (state->m_chain_sync.m_protect) return;
5164 // If this is the only connection on a particular network that is
5165 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5166 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5167 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5168 worst_peer = pnode->GetId();
5169 oldest_block_announcement = state->m_last_block_announcement;
5170 }
5171 });
5172 if (worst_peer != -1) {
5173 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5175
5176 // Only disconnect a peer that has been connected to us for
5177 // some reasonable fraction of our check-frequency, to give
5178 // it time for new information to have arrived.
5179 // Also don't disconnect any peer we're trying to download a
5180 // block from.
5181 CNodeState &state = *State(pnode->GetId());
5182 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5183 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5184 pnode->fDisconnect = true;
5185 return true;
5186 } else {
5187 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5188 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5189 return false;
5190 }
5191 });
5192 if (disconnected) {
5193 // If we disconnected an extra peer, that means we successfully
5194 // connected to at least one peer after the last time we
5195 // detected a stale tip. Don't try any more extra peers until
5196 // we next detect a stale tip, to limit the load we put on the
5197 // network from these extra connections.
5198 m_connman.SetTryNewOutboundPeer(false);
5199 }
5200 }
5201 }
5202}
5203
5204void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5205{
5206 LOCK(cs_main);
5207
5208 auto now{GetTime<std::chrono::seconds>()};
5209
5210 EvictExtraOutboundPeers(now);
5211
5212 if (now > m_stale_tip_check_time) {
5213 // Check whether our tip is stale, and if so, allow using an extra
5214 // outbound peer
5215 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5216 LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5217 count_seconds(now - m_last_tip_update.load()));
5218 m_connman.SetTryNewOutboundPeer(true);
5219 } else if (m_connman.GetTryNewOutboundPeer()) {
5220 m_connman.SetTryNewOutboundPeer(false);
5221 }
5222 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5223 }
5224
5225 if (!m_initial_sync_finished && CanDirectFetch()) {
5226 m_connman.StartExtraBlockRelayPeers();
5227 m_initial_sync_finished = true;
5228 }
5229}
5230
5231void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5232{
5233 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5234 peer.m_ping_nonce_sent &&
5235 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5236 {
5237 // The ping timeout is using mocktime. To disable the check during
5238 // testing, increase -peertimeout.
5239 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5240 node_to.fDisconnect = true;
5241 return;
5242 }
5243
5244 bool pingSend = false;
5245
5246 if (peer.m_ping_queued) {
5247 // RPC ping request by user
5248 pingSend = true;
5249 }
5250
5251 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5252 // Ping automatically sent as a latency probe & keepalive.
5253 pingSend = true;
5254 }
5255
5256 if (pingSend) {
5257 uint64_t nonce;
5258 do {
5260 } while (nonce == 0);
5261 peer.m_ping_queued = false;
5262 peer.m_ping_start = now;
5263 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5264 peer.m_ping_nonce_sent = nonce;
5265 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5266 } else {
5267 // Peer is too old to support ping command with nonce, pong will never arrive.
5268 peer.m_ping_nonce_sent = 0;
5269 MakeAndPushMessage(node_to, NetMsgType::PING);
5270 }
5271 }
5272}
5273
5274void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5275{
5276 // Nothing to do for non-address-relay peers
5277 if (!peer.m_addr_relay_enabled) return;
5278
5279 LOCK(peer.m_addr_send_times_mutex);
5280 // Periodically advertise our local address to the peer.
5281 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5282 peer.m_next_local_addr_send < current_time) {
5283 // If we've sent before, clear the bloom filter for the peer, so that our
5284 // self-announcement will actually go out.
5285 // This might be unnecessary if the bloom filter has already rolled
5286 // over since our last self-announcement, but there is only a small
5287 // bandwidth cost that we can incur by doing this (which happens
5288 // once a day on average).
5289 if (peer.m_next_local_addr_send != 0us) {
5290 peer.m_addr_known->reset();
5291 }
5292 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5293 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5294 PushAddress(peer, local_addr);
5295 }
5296 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5297 }
5298
5299 // We sent an `addr` message to this peer recently. Nothing more to do.
5300 if (current_time <= peer.m_next_addr_send) return;
5301
5302 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5303
5304 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5305 // Should be impossible since we always check size before adding to
5306 // m_addrs_to_send. Recover by trimming the vector.
5307 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5308 }
5309
5310 // Remove addr records that the peer already knows about, and add new
5311 // addrs to the m_addr_known filter on the same pass.
5312 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5313 bool ret = peer.m_addr_known->contains(addr.GetKey());
5314 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5315 return ret;
5316 };
5317 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5318 peer.m_addrs_to_send.end());
5319
5320 // No addr messages to send
5321 if (peer.m_addrs_to_send.empty()) return;
5322
5323 if (peer.m_wants_addrv2) {
5324 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5325 } else {
5326 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5327 }
5328 peer.m_addrs_to_send.clear();
5329
5330 // we only send the big addr message once
5331 if (peer.m_addrs_to_send.capacity() > 40) {
5332 peer.m_addrs_to_send.shrink_to_fit();
5333 }
5334}
5335
5336void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5337{
5338 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5339 // initial-headers-sync with this peer. Receiving headers announcements for
5340 // new blocks while trying to sync their headers chain is problematic,
5341 // because of the state tracking done.
5342 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5343 LOCK(cs_main);
5344 CNodeState &state = *State(node.GetId());
5345 if (state.pindexBestKnownBlock != nullptr &&
5346 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5347 // Tell our peer we prefer to receive headers rather than inv's
5348 // We send this to non-NODE NETWORK peers as well, because even
5349 // non-NODE NETWORK peers can announce blocks (such as pruning
5350 // nodes)
5351 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5352 peer.m_sent_sendheaders = true;
5353 }
5354 }
5355}
5356
5357void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5358{
5359 if (m_opts.ignore_incoming_txs) return;
5360 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5361 // peers with the forcerelay permission should not filter txs to us
5363 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5364 // transactions to us, regardless of feefilter state.
5365 if (pto.IsBlockOnlyConn()) return;
5366
5367 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5368
5369 if (m_chainman.IsInitialBlockDownload()) {
5370 // Received tx-inv messages are discarded when the active
5371 // chainstate is in IBD, so tell the peer to not send them.
5372 currentFilter = MAX_MONEY;
5373 } else {
5374 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5375 if (peer.m_fee_filter_sent == MAX_FILTER) {
5376 // Send the current filter if we sent MAX_FILTER previously
5377 // and made it out of IBD.
5378 peer.m_next_send_feefilter = 0us;
5379 }
5380 }
5381 if (current_time > peer.m_next_send_feefilter) {
5382 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5383 // We always have a fee filter of at least the min relay fee
5384 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5385 if (filterToSend != peer.m_fee_filter_sent) {
5386 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5387 peer.m_fee_filter_sent = filterToSend;
5388 }
5389 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5390 }
5391 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5392 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5393 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5394 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5395 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5396 }
5397}
5398
5399namespace {
5400class CompareInvMempoolOrder
5401{
5402 const CTxMemPool* m_mempool;
5403public:
5404 explicit CompareInvMempoolOrder(CTxMemPool* mempool) : m_mempool{mempool} {}
5405
5406 bool operator()(std::set<Wtxid>::iterator a, std::set<Wtxid>::iterator b)
5407 {
5408 /* As std::make_heap produces a max-heap, we want the entries with the
5409 * fewest ancestors/highest fee to sort later. */
5410 return m_mempool->CompareDepthAndScore(*b, *a);
5411 }
5412};
5413} // namespace
5414
5415bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5416{
5417 // block-relay-only peers may never send txs to us
5418 if (peer.IsBlockOnlyConn()) return true;
5419 if (peer.IsFeelerConn()) return true;
5420 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5421 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5422 return false;
5423}
5424
5425bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5426{
5427 // We don't participate in addr relay with outbound block-relay-only
5428 // connections to prevent providing adversaries with the additional
5429 // information of addr traffic to infer the link.
5430 if (node.IsBlockOnlyConn()) return false;
5431
5432 if (!peer.m_addr_relay_enabled.exchange(true)) {
5433 // During version message processing (non-block-relay-only outbound peers)
5434 // or on first addr-related message we have received (inbound peers), initialize
5435 // m_addr_known.
5436 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5437 }
5438
5439 return true;
5440}
5441
5442bool PeerManagerImpl::SendMessages(CNode* pto)
5443{
5444 AssertLockNotHeld(m_tx_download_mutex);
5445 AssertLockHeld(g_msgproc_mutex);
5446
5447 PeerRef peer = GetPeerRef(pto->GetId());
5448 if (!peer) return false;
5449 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5450
5451 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5452 // disconnect misbehaving peers even before the version handshake is complete.
5453 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5454
5455 // Initiate version handshake for outbound connections
5456 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5457 PushNodeVersion(*pto, *peer);
5458 peer->m_outbound_version_message_sent = true;
5459 }
5460
5461 // Don't send anything until the version handshake is complete
5462 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5463 return true;
5464
5465 const auto current_time{GetTime<std::chrono::microseconds>()};
5466
5467 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5468 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5469 pto->fDisconnect = true;
5470 return true;
5471 }
5472
5473 MaybeSendPing(*pto, *peer, current_time);
5474
5475 // MaybeSendPing may have marked peer for disconnection
5476 if (pto->fDisconnect) return true;
5477
5478 MaybeSendAddr(*pto, *peer, current_time);
5479
5480 MaybeSendSendHeaders(*pto, *peer);
5481
5482 {
5483 LOCK(cs_main);
5484
5485 CNodeState &state = *State(pto->GetId());
5486
5487 // Start block sync
5488 if (m_chainman.m_best_header == nullptr) {
5489 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5490 }
5491
5492 // Determine whether we might try initial headers sync or parallel
5493 // block download from this peer -- this mostly affects behavior while
5494 // in IBD (once out of IBD, we sync from all peers).
5495 bool sync_blocks_and_headers_from_peer = false;
5496 if (state.fPreferredDownload) {
5497 sync_blocks_and_headers_from_peer = true;
5498 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5499 // Typically this is an inbound peer. If we don't have any outbound
5500 // peers, or if we aren't downloading any blocks from such peers,
5501 // then allow block downloads from this peer, too.
5502 // We prefer downloading blocks from outbound peers to avoid
5503 // putting undue load on (say) some home user who is just making
5504 // outbound connections to the network, but if our only source of
5505 // the latest blocks is from an inbound peer, we have to be sure to
5506 // eventually download it (and not just wait indefinitely for an
5507 // outbound peer to have it).
5508 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5509 sync_blocks_and_headers_from_peer = true;
5510 }
5511 }
5512
5513 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5514 // Only actively request headers from a single peer, unless we're close to today.
5515 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5516 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5517 /* If possible, start at the block preceding the currently
5518 best known header. This ensures that we always get a
5519 non-empty list of headers back as long as the peer
5520 is up-to-date. With a non-empty response, we can initialise
5521 the peer's known best block. This wouldn't be possible
5522 if we requested starting at m_chainman.m_best_header and
5523 got back an empty response. */
5524 if (pindexStart->pprev)
5525 pindexStart = pindexStart->pprev;
5526 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5527 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5528
5529 state.fSyncStarted = true;
5530 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5531 (
5532 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5533 // to maintain precision
5534 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5535 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5536 );
5537 nSyncStarted++;
5538 }
5539 }
5540 }
5541
5542 //
5543 // Try sending block announcements via headers
5544 //
5545 {
5546 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5547 // list of block hashes we're relaying, and our peer wants
5548 // headers announcements, then find the first header
5549 // not yet known to our peer but would connect, and send.
5550 // If no header would connect, or if we have too many
5551 // blocks, or if the peer doesn't want headers, just
5552 // add all to the inv queue.
5553 LOCK(peer->m_block_inv_mutex);
5554 std::vector<CBlock> vHeaders;
5555 bool fRevertToInv = ((!peer->m_prefers_headers &&
5556 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5557 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5558 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5559 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5560
5561 if (!fRevertToInv) {
5562 bool fFoundStartingHeader = false;
5563 // Try to find first header that our peer doesn't have, and
5564 // then send all headers past that one. If we come across any
5565 // headers that aren't on m_chainman.ActiveChain(), give up.
5566 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5567 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5568 assert(pindex);
5569 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5570 // Bail out if we reorged away from this block
5571 fRevertToInv = true;
5572 break;
5573 }
5574 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5575 // This means that the list of blocks to announce don't
5576 // connect to each other.
5577 // This shouldn't really be possible to hit during
5578 // regular operation (because reorgs should take us to
5579 // a chain that has some block not on the prior chain,
5580 // which should be caught by the prior check), but one
5581 // way this could happen is by using invalidateblock /
5582 // reconsiderblock repeatedly on the tip, causing it to
5583 // be added multiple times to m_blocks_for_headers_relay.
5584 // Robustly deal with this rare situation by reverting
5585 // to an inv.
5586 fRevertToInv = true;
5587 break;
5588 }
5589 pBestIndex = pindex;
5590 if (fFoundStartingHeader) {
5591 // add this to the headers message
5592 vHeaders.emplace_back(pindex->GetBlockHeader());
5593 } else if (PeerHasHeader(&state, pindex)) {
5594 continue; // keep looking for the first new block
5595 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5596 // Peer doesn't have this header but they do have the prior one.
5597 // Start sending headers.
5598 fFoundStartingHeader = true;
5599 vHeaders.emplace_back(pindex->GetBlockHeader());
5600 } else {
5601 // Peer doesn't have this header or the prior one -- nothing will
5602 // connect, so bail out.
5603 fRevertToInv = true;
5604 break;
5605 }
5606 }
5607 }
5608 if (!fRevertToInv && !vHeaders.empty()) {
5609 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5610 // We only send up to 1 block as header-and-ids, as otherwise
5611 // probably means we're doing an initial-ish-sync or they're slow
5612 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5613 vHeaders.front().GetHash().ToString(), pto->GetId());
5614
5615 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5616 {
5617 LOCK(m_most_recent_block_mutex);
5618 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5619 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5620 }
5621 }
5622 if (cached_cmpctblock_msg.has_value()) {
5623 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5624 } else {
5625 CBlock block;
5626 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5627 assert(ret);
5628 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5629 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5630 }
5631 state.pindexBestHeaderSent = pBestIndex;
5632 } else if (peer->m_prefers_headers) {
5633 if (vHeaders.size() > 1) {
5634 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5635 vHeaders.size(),
5636 vHeaders.front().GetHash().ToString(),
5637 vHeaders.back().GetHash().ToString(), pto->GetId());
5638 } else {
5639 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5640 vHeaders.front().GetHash().ToString(), pto->GetId());
5641 }
5642 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5643 state.pindexBestHeaderSent = pBestIndex;
5644 } else
5645 fRevertToInv = true;
5646 }
5647 if (fRevertToInv) {
5648 // If falling back to using an inv, just try to inv the tip.
5649 // The last entry in m_blocks_for_headers_relay was our tip at some point
5650 // in the past.
5651 if (!peer->m_blocks_for_headers_relay.empty()) {
5652 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5653 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5654 assert(pindex);
5655
5656 // Warn if we're announcing a block that is not on the main chain.
5657 // This should be very rare and could be optimized out.
5658 // Just log for now.
5659 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5660 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5661 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5662 }
5663
5664 // If the peer's chain has this block, don't inv it back.
5665 if (!PeerHasHeader(&state, pindex)) {
5666 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5667 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5668 pto->GetId(), hashToAnnounce.ToString());
5669 }
5670 }
5671 }
5672 peer->m_blocks_for_headers_relay.clear();
5673 }
5674
5675 //
5676 // Message: inventory
5677 //
5678 std::vector<CInv> vInv;
5679 {
5680 LOCK(peer->m_block_inv_mutex);
5681 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5682
5683 // Add blocks
5684 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5685 vInv.emplace_back(MSG_BLOCK, hash);
5686 if (vInv.size() == MAX_INV_SZ) {
5687 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5688 vInv.clear();
5689 }
5690 }
5691 peer->m_blocks_for_inv_relay.clear();
5692 }
5693
5694 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5695 LOCK(tx_relay->m_tx_inventory_mutex);
5696 // Check whether periodic sends should happen
5697 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5698 if (tx_relay->m_next_inv_send_time < current_time) {
5699 fSendTrickle = true;
5700 if (pto->IsInboundConn()) {
5701 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5702 } else {
5703 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5704 }
5705 }
5706
5707 // Time to send but the peer has requested we not relay transactions.
5708 if (fSendTrickle) {
5709 LOCK(tx_relay->m_bloom_filter_mutex);
5710 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5711 }
5712
5713 // Respond to BIP35 mempool requests
5714 if (fSendTrickle && tx_relay->m_send_mempool) {
5715 auto vtxinfo = m_mempool.infoAll();
5716 tx_relay->m_send_mempool = false;
5717 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5718
5719 LOCK(tx_relay->m_bloom_filter_mutex);
5720
5721 for (const auto& txinfo : vtxinfo) {
5722 const Txid& txid{txinfo.tx->GetHash()};
5723 const Wtxid& wtxid{txinfo.tx->GetWitnessHash()};
5724 const auto inv = peer->m_wtxid_relay ?
5725 CInv{MSG_WTX, wtxid.ToUint256()} :
5726 CInv{MSG_TX, txid.ToUint256()};
5727 tx_relay->m_tx_inventory_to_send.erase(wtxid);
5728
5729 // Don't send transactions that peers will not put into their mempool
5730 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5731 continue;
5732 }
5733 if (tx_relay->m_bloom_filter) {
5734 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5735 }
5736 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5737 vInv.push_back(inv);
5738 if (vInv.size() == MAX_INV_SZ) {
5739 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5740 vInv.clear();
5741 }
5742 }
5743 }
5744
5745 // Determine transactions to relay
5746 if (fSendTrickle) {
5747 // Produce a vector with all candidates for sending
5748 std::vector<std::set<Wtxid>::iterator> vInvTx;
5749 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5750 for (std::set<Wtxid>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5751 vInvTx.push_back(it);
5752 }
5753 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5754 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5755 // A heap is used so that not all items need sorting if only a few are being sent.
5756 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
5757 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5758 // No reason to drain out at many times the network's capacity,
5759 // especially since we have many peers and some will draw much shorter delays.
5760 unsigned int nRelayedTransactions = 0;
5761 LOCK(tx_relay->m_bloom_filter_mutex);
5762 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5763 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5764 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5765 // Fetch the top element from the heap
5766 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5767 std::set<Wtxid>::iterator it = vInvTx.back();
5768 vInvTx.pop_back();
5769 auto wtxid = *it;
5770 // Remove it from the to-be-sent set
5771 tx_relay->m_tx_inventory_to_send.erase(it);
5772 // Not in the mempool anymore? don't bother sending it.
5773 auto txinfo = m_mempool.info(wtxid);
5774 if (!txinfo.tx) {
5775 continue;
5776 }
5777 // `TxRelay::m_tx_inventory_known_filter` contains either txids or wtxids
5778 // depending on whether our peer supports wtxid-relay. Therefore, first
5779 // construct the inv and then use its hash for the filter check.
5780 const auto inv = peer->m_wtxid_relay ?
5781 CInv{MSG_WTX, wtxid.ToUint256()} :
5782 CInv{MSG_TX, txinfo.tx->GetHash().ToUint256()};
5783 // Check if not in the filter already
5784 if (tx_relay->m_tx_inventory_known_filter.contains(inv.hash)) {
5785 continue;
5786 }
5787 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5788 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5789 continue;
5790 }
5791 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5792 // Send
5793 vInv.push_back(inv);
5794 nRelayedTransactions++;
5795 if (vInv.size() == MAX_INV_SZ) {
5796 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5797 vInv.clear();
5798 }
5799 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5800 }
5801
5802 // Ensure we'll respond to GETDATA requests for anything we've just announced
5803 LOCK(m_mempool.cs);
5804 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5805 }
5806 }
5807 if (!vInv.empty())
5808 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5809
5810 // Detect whether we're stalling
5811 auto stalling_timeout = m_block_stalling_timeout.load();
5812 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5813 // Stalling only triggers when the block download window cannot move. During normal steady state,
5814 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5815 // should only happen during initial block download.
5816 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
5817 pto->fDisconnect = true;
5818 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5819 // bandwidth is insufficient.
5820 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5821 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5822 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5823 }
5824 return true;
5825 }
5826 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5827 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5828 // We compensate for other peers to prevent killing off peers due to our own downstream link
5829 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5830 // to unreasonably increase our timeout.
5831 if (state.vBlocksInFlight.size() > 0) {
5832 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5833 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5834 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5835 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
5836 pto->fDisconnect = true;
5837 return true;
5838 }
5839 }
5840 // Check for headers sync timeouts
5841 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5842 // Detect whether this is a stalling initial-headers-sync peer
5843 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5844 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5845 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5846 // and we have others we could be using instead.
5847 // Note: If all our peers are inbound, then we won't
5848 // disconnect our sync peer for stalling; we have bigger
5849 // problems if we can't get any outbound peers.
5851 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
5852 pto->fDisconnect = true;
5853 return true;
5854 } else {
5855 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
5856 // Reset the headers sync state so that we have a
5857 // chance to try downloading from a different peer.
5858 // Note: this will also result in at least one more
5859 // getheaders message to be sent to
5860 // this peer (eventually).
5861 state.fSyncStarted = false;
5862 nSyncStarted--;
5863 peer->m_headers_sync_timeout = 0us;
5864 }
5865 }
5866 } else {
5867 // After we've caught up once, reset the timeout so we can't trigger
5868 // disconnect later.
5869 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5870 }
5871 }
5872
5873 // Check that outbound peers have reasonable chains
5874 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5875 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5876
5877 //
5878 // Message: getdata (blocks)
5879 //
5880 std::vector<CInv> vGetData;
5881 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5882 std::vector<const CBlockIndex*> vToDownload;
5883 NodeId staller = -1;
5884 auto get_inflight_budget = [&state]() {
5885 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5886 };
5887
5888 // If a snapshot chainstate is in use, we want to find its next blocks
5889 // before the background chainstate to prioritize getting to network tip.
5890 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5891 if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5892 // If the background tip is not an ancestor of the snapshot block,
5893 // we need to start requesting blocks from their last common ancestor.
5894 const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5895 TryDownloadingHistoricalBlocks(
5896 *peer,
5897 get_inflight_budget(),
5898 vToDownload, from_tip,
5899 Assert(m_chainman.GetSnapshotBaseBlock()));
5900 }
5901 for (const CBlockIndex *pindex : vToDownload) {
5902 uint32_t nFetchFlags = GetFetchFlags(*peer);
5903 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5904 BlockRequested(pto->GetId(), *pindex);
5905 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5906 pindex->nHeight, pto->GetId());
5907 }
5908 if (state.vBlocksInFlight.empty() && staller != -1) {
5909 if (State(staller)->m_stalling_since == 0us) {
5910 State(staller)->m_stalling_since = current_time;
5911 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5912 }
5913 }
5914 }
5915
5916 //
5917 // Message: getdata (transactions)
5918 //
5919 {
5920 LOCK(m_tx_download_mutex);
5921 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5922 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.ToUint256());
5923 if (vGetData.size() >= MAX_GETDATA_SZ) {
5924 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5925 vGetData.clear();
5926 }
5927 }
5928 }
5929
5930 if (!vGetData.empty())
5931 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5932 } // release cs_main
5933 MaybeSendFeefilter(*pto, *peer, current_time);
5934 return true;
5935}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:93
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:126
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:50
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:141
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:160
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:111
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:107
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:115
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:97
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:121
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:106
#define Assume(val)
Assume is the identity function.
Definition: check.h:118
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:141
bool IsValid(enum BlockStatus nUpTo) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:295
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:147
CBlockHeader GetBlockHeader() const
Definition: chain.h:230
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:165
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:259
uint256 GetBlockHash() const
Definition: chain.h:243
int64_t GetBlockTime() const
Definition: chain.h:266
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:170
NodeSeconds Time() const
Definition: chain.h:261
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:115
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:153
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:208
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:417
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:433
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:453
int Height() const
Return the maximal height in the chain.
Definition: chain.h:462
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:447
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:69
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:81
Definition: net.h:1054
void ForEachNode(const NodeFn &func)
Definition: net.h:1153
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3919
bool GetNetworkActive() const
Definition: net.h:1138
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2417
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3505
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3516
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2422
int GetExtraBlockRelayCount() const
Definition: net.cpp:2467
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2238
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3738
void StartExtraBlockRelayPeers()
Definition: net.cpp:2428
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3638
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3932
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3621
int GetExtraFullOutboundCount() const
Definition: net.cpp:2453
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:372
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1996
bool GetUseAddrmanOutgoing() const
Definition: net.h:1139
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per virtualbyte: CAmount / vB the feerate is represented internally as FeeFrac.
Definition: feerate.h:35
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:63
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:127
std::vector< std::pair< unsigned int, Txid > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:139
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:466
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:428
bool IsLocal() const
Definition: netaddress.cpp:402
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:481
Transport protocol agnostic message container.
Definition: net.h:233
Information about a peer.
Definition: net.h:675
bool IsFeelerConn() const
Definition: net.h:805
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:708
bool ExpectServicesFromConn() const
Definition: net.h:817
std::atomic< int > nVersion
Definition: net.h:718
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:853
bool IsInboundConn() const
Definition: net.h:813
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:726
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:762
NodeId GetId() const
Definition: net.h:896
bool IsManualConn() const
Definition: net.h:781
const std::string m_addr_name
Definition: net.h:713
std::string ConnectionTypeAsString() const
Definition: net.h:950
void SetCommonVersion(int greatest_common_version)
Definition: net.h:921
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:848
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:857
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:850
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:969
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:730
bool IsAddrFetchConn() const
Definition: net.h:809
uint64_t GetLocalNonce() const
Definition: net.h:900
const CAddress addr
Definition: net.h:710
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:599
bool IsBlockOnlyConn() const
Definition: net.h:801
int GetCommonVersion() const
Definition: net.h:926
bool IsFullOutboundConn() const
Definition: net.h:777
Mutex m_subver_mutex
Definition: net.h:719
std::atomic_bool fPauseSend
Definition: net.h:739
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3853
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:861
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:709
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:679
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:717
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:868
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:714
std::atomic_bool fDisconnect
Definition: net.h:733
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:874
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:899
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:281
TxMempoolInfo info_for_relay(const T &id, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.h:656
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:367
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:1108
CTransactionRef get(const Txid &hash) const
Definition: txmempool.cpp:879
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:1045
const Options m_opts
Definition: txmempool.h:421
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:858
TxMempoolInfo info(const T &id) const
Definition: txmempool.h:647
void RemoveUnbroadcastTx(const Txid &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:1051
bool CompareDepthAndScore(const Wtxid &hasha, const Wtxid &hashb) const
Definition: txmempool.cpp:796
bool exists(const Txid &txid) const
Definition: txmempool.h:630
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:699
std::set< Txid > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:681
unsigned long size() const
Definition: txmempool.h:612
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void BlockConnected(ChainstateRole role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void BlockChecked(const std::shared_ptr< const CBlock > &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
Provides an interface for creating and interacting with one or two chainstates: an IBD chainstate gen...
Definition: validation.h:898
SnapshotCompletionResult MaybeCompleteSnapshotValidation() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(Chainstate ActiveChainstate)() const
Once the background validation chainstate has reached the height which is the base of the UTXO snapsh...
Definition: validation.h:1122
const CBlockIndex * GetBackgroundSyncTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The tip of the background sync chain.
Definition: validation.h:1133
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1031
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1125
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool BackgroundSyncInProgress() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The state of a background sync (for net processing)
Definition: validation.h:1128
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:1009
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1123
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1037
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
bool empty() const
Definition: streams.h:165
size_type size() const
Definition: streams.h:164
void ignore(size_t num_ignore)
Definition: streams.h:219
int in_avail() const
Definition: streams.h:199
Fast randomness source.
Definition: random.h:386
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:404
bool IsWtxid() const
const uint256 & ToUint256() const LIFETIMEBOUND
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1013
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing, bool segwit_active)
bool IsTxAvailable(size_t index) const
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< std::pair< Wtxid, CTransactionRef > > &extra_txn)
virtual std::optional< std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
virtual std::vector< node::TxOrphanage::OrphanInfo > GetOrphanTransactions()=0
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:131
bool IsValid() const
Definition: validation.h:105
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool LoadingBlocks() const
Definition: blockstorage.h:355
bool ReadRawBlock(std::vector< std::byte > &block, const FlatFilePos &pos) const
bool ReadBlock(CBlock &block, const FlatFilePos &pos, const std::optional< uint256 > &expected_hash) const
Functions for disk access for blocks.
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:349
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
const uint256 & ToUint256() const LIFETIMEBOUND
256-bit opaque blob.
Definition: uint256.h:196
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
ChainstateRole
This enum describes the various roles a specific Chainstate instance can take.
Definition: chain.h:25
bool fLogIPs
Definition: logging.cpp:47
#define LogInfo(...)
Definition: logging.h:356
#define LogError(...)
Definition: logging.h:358
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:328
#define LogDebug(category,...)
Definition: logging.h:381
#define LogPrintf(...)
Definition: logging.h:361
unsigned int nonce
Definition: miner_tests.cpp:76
@ TXPACKAGES
Definition: logging.h:96
@ VALIDATION
Definition: logging.h:87
@ MEMPOOLREJ
Definition: logging.h:82
@ CMPCTBLOCK
Definition: logging.h:78
@ MEMPOOL
Definition: logging.h:68
@ NET
Definition: logging.h:66
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:29
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Definition: messages.h:20
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:384
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:245
bool fListen
Definition: net.cpp:116
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:119
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:239
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4025
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:317
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:66
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:58
int64_t NodeId
Definition: net.h:98
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:743
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:66
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:196
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:423
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" command for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" command and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:493
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:330
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:83
int64_t nPowTargetSpacing
Definition: params.h:119
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:121
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:126
const ResultType m_result_type
Result type.
Definition: validation.h:135
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:138
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:141
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:232
PackageValidationState m_state
Definition: validation.h:233
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:240
std::chrono::seconds median_outbound_time_offset
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:57
std::string ToString() const
Definition: txdownloadman.h:79
#define AssertLockNotHeld(cs)
Definition: sync.h:142
#define LOCK2(cs1, cs2)
Definition: sync.h:260
#define LOCK(cs)
Definition: sync.h:259
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:290
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:104
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define GUARDED_BY(x)
Definition: threadsafety.h:39
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:50
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:42
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:40
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:77
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:84
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:71