Bitcoin Core 29.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-2022 The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <banman.h>
10#include <blockencodings.h>
11#include <blockfilter.h>
12#include <chainparams.h>
13#include <consensus/amount.h>
15#include <deploymentstatus.h>
16#include <hash.h>
17#include <headerssync.h>
19#include <kernel/chain.h>
21#include <logging.h>
22#include <merkleblock.h>
23#include <netbase.h>
24#include <netmessagemaker.h>
25#include <node/blockstorage.h>
26#include <node/timeoffsets.h>
27#include <node/txdownloadman.h>
29#include <node/warnings.h>
30#include <policy/fees.h>
31#include <policy/policy.h>
32#include <policy/settings.h>
33#include <primitives/block.h>
35#include <random.h>
36#include <scheduler.h>
37#include <streams.h>
38#include <sync.h>
39#include <tinyformat.h>
40#include <txmempool.h>
41#include <txorphanage.h>
42#include <txrequest.h>
43#include <util/check.h>
44#include <util/strencodings.h>
45#include <util/time.h>
46#include <util/trace.h>
47#include <validation.h>
48
49#include <algorithm>
50#include <atomic>
51#include <future>
52#include <memory>
53#include <optional>
54#include <ranges>
55#include <typeinfo>
56#include <utility>
57
58using namespace util::hex_literals;
59
60TRACEPOINT_SEMAPHORE(net, inbound_message);
61TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
62
65static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
66static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
68static constexpr auto HEADERS_RESPONSE_TIME{2min};
74static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
76static constexpr auto STALE_CHECK_INTERVAL{10min};
78static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
80static constexpr auto MINIMUM_CONNECT_TIME{30s};
82static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
85static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
88static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
90static constexpr auto PING_INTERVAL{2min};
92static const unsigned int MAX_LOCATOR_SZ = 101;
94static const unsigned int MAX_INV_SZ = 50000;
96static const unsigned int MAX_GETDATA_SZ = 1000;
98static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
101static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
103static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
106static const int MAX_CMPCTBLOCK_DEPTH = 5;
108static const int MAX_BLOCKTXN_DEPTH = 10;
109static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
114static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
116static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
118static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
120static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
122static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
124static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
126static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
128static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
130static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
140static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
144static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
145static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
146static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
148static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
150static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
152static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
154static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
156static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
158static constexpr size_t MAX_ADDR_TO_SEND{1000};
161static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
167static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
168
169// Internal stuff
170namespace {
172struct QueuedBlock {
174 const CBlockIndex* pindex;
176 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
177};
178
191struct Peer {
193 const NodeId m_id{0};
194
208 const ServiceFlags m_our_services;
210 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
211
213 const bool m_is_inbound;
214
216 Mutex m_misbehavior_mutex;
218 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
219
221 Mutex m_block_inv_mutex;
225 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
229 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
234 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
235
237 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
238
240 std::atomic<int> m_starting_height{-1};
241
243 std::atomic<uint64_t> m_ping_nonce_sent{0};
245 std::atomic<std::chrono::microseconds> m_ping_start{0us};
247 std::atomic<bool> m_ping_queued{false};
248
250 std::atomic<bool> m_wtxid_relay{false};
257 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
258
259 struct TxRelay {
260 mutable RecursiveMutex m_bloom_filter_mutex;
262 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
264 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
265
266 mutable RecursiveMutex m_tx_inventory_mutex;
270 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
275 std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
279 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
282 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
285 uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
286
288 std::atomic<CAmount> m_fee_filter_received{0};
289 };
290
291 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
292 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
293 {
294 LOCK(m_tx_relay_mutex);
295 Assume(!m_tx_relay);
296 m_tx_relay = std::make_unique<Peer::TxRelay>();
297 return m_tx_relay.get();
298 };
299
300 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
301 {
302 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
303 };
304
306 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
316 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
331 std::atomic_bool m_addr_relay_enabled{false};
333 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
335 mutable Mutex m_addr_send_times_mutex;
337 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
339 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
342 std::atomic_bool m_wants_addrv2{false};
344 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
347 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
349 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
351 std::atomic<uint64_t> m_addr_rate_limited{0};
353 std::atomic<uint64_t> m_addr_processed{0};
354
356 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
357
359 Mutex m_getdata_requests_mutex;
361 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
362
365
367 Mutex m_headers_sync_mutex;
370 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
371
373 std::atomic<bool> m_sent_sendheaders{false};
374
376 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
377
379 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
380
383 std::atomic<std::chrono::seconds> m_time_offset{0s};
384
385 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
386 : m_id{id}
387 , m_our_services{our_services}
388 , m_is_inbound{is_inbound}
389 {}
390
391private:
392 mutable Mutex m_tx_relay_mutex;
393
395 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
396};
397
398using PeerRef = std::shared_ptr<Peer>;
399
406struct CNodeState {
408 const CBlockIndex* pindexBestKnownBlock{nullptr};
410 uint256 hashLastUnknownBlock{};
412 const CBlockIndex* pindexLastCommonBlock{nullptr};
414 const CBlockIndex* pindexBestHeaderSent{nullptr};
416 bool fSyncStarted{false};
418 std::chrono::microseconds m_stalling_since{0us};
419 std::list<QueuedBlock> vBlocksInFlight;
421 std::chrono::microseconds m_downloading_since{0us};
423 bool fPreferredDownload{false};
425 bool m_requested_hb_cmpctblocks{false};
427 bool m_provides_cmpctblocks{false};
428
453 struct ChainSyncTimeoutState {
455 std::chrono::seconds m_timeout{0s};
457 const CBlockIndex* m_work_header{nullptr};
459 bool m_sent_getheaders{false};
461 bool m_protect{false};
462 };
463
464 ChainSyncTimeoutState m_chain_sync;
465
467 int64_t m_last_block_announcement{0};
468};
469
470class PeerManagerImpl final : public PeerManager
471{
472public:
473 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
474 BanMan* banman, ChainstateManager& chainman,
475 CTxMemPool& pool, node::Warnings& warnings, Options opts);
476
478 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
479 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
480 void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
481 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
482 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
483 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
484 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
485 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
486 void BlockChecked(const CBlock& block, const BlockValidationState& state) override
487 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
488 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
489 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
490
492 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
493 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
494 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
495 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
496 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
497 bool SendMessages(CNode* pto) override
498 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
499
501 void StartScheduledTasks(CScheduler& scheduler) override;
502 void CheckForStaleTipAndEvictPeers() override;
503 std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
504 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
505 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
506 std::vector<TxOrphanage::OrphanTxBase> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
507 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
508 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
509 void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
510 void SetBestBlock(int height, std::chrono::seconds time) override
511 {
512 m_best_height = height;
513 m_best_block_time = time;
514 };
515 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
516 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
517 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
518 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
519 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
520 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
521
522private:
524 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
525
527 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
528
530 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
531
534 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
535
538 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539
542 void Misbehaving(Peer& peer, const std::string& message);
543
552 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
553 bool via_compact_block, const std::string& message = "")
554 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
555
559 void MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
560 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
561
568 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
569
581 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
582 bool first_time_failure)
583 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
584
587 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
588 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
589
593 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
594 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
595
607 bool ProcessOrphanTx(Peer& peer)
608 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
609
617 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
618 std::vector<CBlockHeader>&& headers,
619 bool via_compact_block)
620 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
623 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
625 arith_uint256 GetAntiDoSWorkThreshold();
629 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
631 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
650 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
651 std::vector<CBlockHeader>& headers)
652 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
664 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
665 const CBlockIndex* chain_start_header,
666 std::vector<CBlockHeader>& headers)
667 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
668
671 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
672
677 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
679 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
681 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
682 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
683
684 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
685
687 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
688 template <typename... Args>
689 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
690 {
691 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
692 }
693
695 void PushNodeVersion(CNode& pnode, const Peer& peer);
696
701 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
702
704 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
705
707 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
708
716 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
717
719 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
720
722
724
725 const CChainParams& m_chainparams;
726 CConnman& m_connman;
727 AddrMan& m_addrman;
729 BanMan* const m_banman;
730 ChainstateManager& m_chainman;
731 CTxMemPool& m_mempool;
732
741 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
742 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
743
744 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
745
747 std::atomic<int> m_best_height{-1};
749 std::atomic<std::chrono::seconds> m_best_block_time{0s};
750
752 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
753
754 node::Warnings& m_warnings;
755 TimeOffsets m_outbound_time_offsets{m_warnings};
756
757 const Options m_opts;
758
759 bool RejectIncomingTxs(const CNode& peer) const;
760
763 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
764
767 mutable Mutex m_peer_mutex;
774 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
775
777 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
778
780 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
782 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
783
784 uint32_t GetFetchFlags(const Peer& peer) const;
785
786 std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
787
789 int nSyncStarted GUARDED_BY(cs_main) = 0;
790
792 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
793
800 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
801
803 std::atomic<int> m_wtxid_relay_peers{0};
804
806 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
807
809 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
810
812 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
813
820 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
821 std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
822
823
824 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
825 Mutex m_most_recent_block_mutex;
826 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
827 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
828 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
829 std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
830
831 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
833 Mutex m_headers_presync_mutex;
841 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
843 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
845 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
847 std::atomic_bool m_headers_presync_should_signal{false};
848
850 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
851
853 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
854
856 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
857
865 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
866
867 /* Mark a block as in flight
868 * Returns false, still setting pit, if the block was already in flight from the same peer
869 * pit will only be valid as long as the same cs_main lock is being held
870 */
871 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
872
873 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
874
878 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
879
881 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
882
910 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
911
912 /* Multimap used to preserve insertion order */
913 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
914 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
915
917 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
918
920 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
922
923 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
924 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
926
928 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
929
931 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
932 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
933
940 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
941
943 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
944
946 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
947
948 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
949
953 std::vector<CTransactionRef> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
955 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
956
958 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
960 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
961 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
962
967 int64_t ApproximateBestBlockDepth() const;
968
975 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
976 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
977 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
978 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
979
995 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
996 BlockFilterType filter_type, uint32_t start_height,
997 const uint256& stop_hash, uint32_t max_height_diff,
998 const CBlockIndex*& stop_index,
999 BlockFilterIndex*& filter_index);
1000
1010 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1011
1021 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1022
1032 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1033
1040 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1041
1042 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1043 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1044};
1045
1046const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1047{
1048 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1049 if (it == m_node_states.end())
1050 return nullptr;
1051 return &it->second;
1052}
1053
1054CNodeState* PeerManagerImpl::State(NodeId pnode)
1055{
1056 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1057}
1058
1064static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1065{
1066 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1067}
1068
1069void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1070{
1071 assert(peer.m_addr_known);
1072 peer.m_addr_known->insert(addr.GetKey());
1073}
1074
1075void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1076{
1077 // Known checking here is only to save space from duplicates.
1078 // Before sending, we'll filter it again for known addresses that were
1079 // added after addresses were pushed.
1080 assert(peer.m_addr_known);
1081 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1082 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1083 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1084 } else {
1085 peer.m_addrs_to_send.push_back(addr);
1086 }
1087 }
1088}
1089
1090static void AddKnownTx(Peer& peer, const uint256& hash)
1091{
1092 auto tx_relay = peer.GetTxRelay();
1093 if (!tx_relay) return;
1094
1095 LOCK(tx_relay->m_tx_inventory_mutex);
1096 tx_relay->m_tx_inventory_known_filter.insert(hash);
1097}
1098
1100static bool CanServeBlocks(const Peer& peer)
1101{
1102 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1103}
1104
1107static bool IsLimitedPeer(const Peer& peer)
1108{
1109 return (!(peer.m_their_services & NODE_NETWORK) &&
1110 (peer.m_their_services & NODE_NETWORK_LIMITED));
1111}
1112
1114static bool CanServeWitnesses(const Peer& peer)
1115{
1116 return peer.m_their_services & NODE_WITNESS;
1117}
1118
1119std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1120 std::chrono::seconds average_interval)
1121{
1122 if (m_next_inv_to_inbounds.load() < now) {
1123 // If this function were called from multiple threads simultaneously
1124 // it would possible that both update the next send variable, and return a different result to their caller.
1125 // This is not possible in practice as only the net processing thread invokes this function.
1126 m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1127 }
1128 return m_next_inv_to_inbounds;
1129}
1130
1131bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1132{
1133 return mapBlocksInFlight.count(hash);
1134}
1135
1136bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1137{
1138 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1139 auto [nodeid, block_it] = range.first->second;
1140 PeerRef peer{GetPeerRef(nodeid)};
1141 if (peer && !peer->m_is_inbound) return true;
1142 }
1143
1144 return false;
1145}
1146
1147void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1148{
1149 auto range = mapBlocksInFlight.equal_range(hash);
1150 if (range.first == range.second) {
1151 // Block was not requested from any peer
1152 return;
1153 }
1154
1155 // We should not have requested too many of this block
1156 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1157
1158 while (range.first != range.second) {
1159 auto [node_id, list_it] = range.first->second;
1160
1161 if (from_peer && *from_peer != node_id) {
1162 range.first++;
1163 continue;
1164 }
1165
1166 CNodeState& state = *Assert(State(node_id));
1167
1168 if (state.vBlocksInFlight.begin() == list_it) {
1169 // First block on the queue was received, update the start download time for the next one
1170 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1171 }
1172 state.vBlocksInFlight.erase(list_it);
1173
1174 if (state.vBlocksInFlight.empty()) {
1175 // Last validated block on the queue for this peer was received.
1176 m_peers_downloading_from--;
1177 }
1178 state.m_stalling_since = 0us;
1179
1180 range.first = mapBlocksInFlight.erase(range.first);
1181 }
1182}
1183
1184bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1185{
1186 const uint256& hash{block.GetBlockHash()};
1187
1188 CNodeState *state = State(nodeid);
1189 assert(state != nullptr);
1190
1191 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1192
1193 // Short-circuit most stuff in case it is from the same node
1194 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1195 if (range.first->second.first == nodeid) {
1196 if (pit) {
1197 *pit = &range.first->second.second;
1198 }
1199 return false;
1200 }
1201 }
1202
1203 // Make sure it's not being fetched already from same peer.
1204 RemoveBlockRequest(hash, nodeid);
1205
1206 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1207 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1208 if (state->vBlocksInFlight.size() == 1) {
1209 // We're starting a block download (batch) from this peer.
1210 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1211 m_peers_downloading_from++;
1212 }
1213 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1214 if (pit) {
1215 *pit = &itInFlight->second.second;
1216 }
1217 return true;
1218}
1219
1220void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1221{
1223
1224 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1225 // mempool will not contain the transactions necessary to reconstruct the
1226 // compact block.
1227 if (m_opts.ignore_incoming_txs) return;
1228
1229 CNodeState* nodestate = State(nodeid);
1230 PeerRef peer{GetPeerRef(nodeid)};
1231 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1232 // Don't request compact blocks if the peer has not signalled support
1233 return;
1234 }
1235
1236 int num_outbound_hb_peers = 0;
1237 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1238 if (*it == nodeid) {
1239 lNodesAnnouncingHeaderAndIDs.erase(it);
1240 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1241 return;
1242 }
1243 PeerRef peer_ref{GetPeerRef(*it)};
1244 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1245 }
1246 if (peer && peer->m_is_inbound) {
1247 // If we're adding an inbound HB peer, make sure we're not removing
1248 // our last outbound HB peer in the process.
1249 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1250 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1251 if (remove_peer && !remove_peer->m_is_inbound) {
1252 // Put the HB outbound peer in the second slot, so that it
1253 // doesn't get removed.
1254 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1255 }
1256 }
1257 }
1258 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1260 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1261 // As per BIP152, we only get 3 of our peers to announce
1262 // blocks using compact encodings.
1263 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1264 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1265 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1266 pnodeStop->m_bip152_highbandwidth_to = false;
1267 return true;
1268 });
1269 lNodesAnnouncingHeaderAndIDs.pop_front();
1270 }
1271 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1272 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1273 pfrom->m_bip152_highbandwidth_to = true;
1274 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1275 return true;
1276 });
1277}
1278
1279bool PeerManagerImpl::TipMayBeStale()
1280{
1282 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1283 if (m_last_tip_update.load() == 0s) {
1284 m_last_tip_update = GetTime<std::chrono::seconds>();
1285 }
1286 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1287}
1288
1289int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1290{
1291 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1292}
1293
1294bool PeerManagerImpl::CanDirectFetch()
1295{
1296 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1297}
1298
1299static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1300{
1301 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1302 return true;
1303 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1304 return true;
1305 return false;
1306}
1307
1308void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1309 CNodeState *state = State(nodeid);
1310 assert(state != nullptr);
1311
1312 if (!state->hashLastUnknownBlock.IsNull()) {
1313 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1314 if (pindex && pindex->nChainWork > 0) {
1315 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1316 state->pindexBestKnownBlock = pindex;
1317 }
1318 state->hashLastUnknownBlock.SetNull();
1319 }
1320 }
1321}
1322
1323void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1324 CNodeState *state = State(nodeid);
1325 assert(state != nullptr);
1326
1327 ProcessBlockAvailability(nodeid);
1328
1329 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1330 if (pindex && pindex->nChainWork > 0) {
1331 // An actually better block was announced.
1332 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1333 state->pindexBestKnownBlock = pindex;
1334 }
1335 } else {
1336 // An unknown block was announced; just assume that the latest one is the best one.
1337 state->hashLastUnknownBlock = hash;
1338 }
1339}
1340
1341// Logic for calculating which blocks to download from a given peer, given our current tip.
1342void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1343{
1344 if (count == 0)
1345 return;
1346
1347 vBlocks.reserve(vBlocks.size() + count);
1348 CNodeState *state = State(peer.m_id);
1349 assert(state != nullptr);
1350
1351 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1352 ProcessBlockAvailability(peer.m_id);
1353
1354 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1355 // This peer has nothing interesting.
1356 return;
1357 }
1358
1359 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1360 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1361 // so downloading blocks from it would be futile.
1362 const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1363 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1364 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1365 return;
1366 }
1367
1368 // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1369 // Guessing wrong in either direction is not a problem.
1370 // Also reset pindexLastCommonBlock after a snapshot was loaded, so that blocks after the snapshot will be prioritised for download.
1371 if (state->pindexLastCommonBlock == nullptr ||
1372 (snap_base && state->pindexLastCommonBlock->nHeight < snap_base->nHeight)) {
1373 state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1374 }
1375
1376 // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1377 // of its current tip anymore. Go back enough to fix that.
1378 state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1379 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1380 return;
1381
1382 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1383 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1384 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1385 // download that next block if the window were 1 larger.
1386 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1387
1388 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1389}
1390
1391void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1392{
1393 Assert(from_tip);
1394 Assert(target_block);
1395
1396 if (vBlocks.size() >= count) {
1397 return;
1398 }
1399
1400 vBlocks.reserve(count);
1401 CNodeState *state = Assert(State(peer.m_id));
1402
1403 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1404 // This peer can't provide us the complete series of blocks leading up to the
1405 // assumeutxo snapshot base.
1406 //
1407 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1408 // will eventually crash when we try to reorg to it. Let other logic
1409 // deal with whether we disconnect this peer.
1410 //
1411 // TODO at some point in the future, we might choose to request what blocks
1412 // this peer does have from the historical chain, despite it not having a
1413 // complete history beneath the snapshot base.
1414 return;
1415 }
1416
1417 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1418}
1419
1420void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1421{
1422 std::vector<const CBlockIndex*> vToFetch;
1423 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1424 bool is_limited_peer = IsLimitedPeer(peer);
1425 NodeId waitingfor = -1;
1426 while (pindexWalk->nHeight < nMaxHeight) {
1427 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1428 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1429 // as iterating over ~100 CBlockIndex* entries anyway.
1430 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1431 vToFetch.resize(nToFetch);
1432 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1433 vToFetch[nToFetch - 1] = pindexWalk;
1434 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1435 vToFetch[i - 1] = vToFetch[i]->pprev;
1436 }
1437
1438 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1439 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1440 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1441 // already part of our chain (and therefore don't need it even if pruned).
1442 for (const CBlockIndex* pindex : vToFetch) {
1443 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1444 // We consider the chain that this peer is on invalid.
1445 return;
1446 }
1447
1448 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1449 // We wouldn't download this block or its descendants from this peer.
1450 return;
1451 }
1452
1453 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1454 if (activeChain && pindex->HaveNumChainTxs()) {
1455 state->pindexLastCommonBlock = pindex;
1456 }
1457 continue;
1458 }
1459
1460 // Is block in-flight?
1461 if (IsBlockRequested(pindex->GetBlockHash())) {
1462 if (waitingfor == -1) {
1463 // This is the first already-in-flight block.
1464 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1465 }
1466 continue;
1467 }
1468
1469 // The block is not already downloaded, and not yet in flight.
1470 if (pindex->nHeight > nWindowEnd) {
1471 // We reached the end of the window.
1472 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1473 // We aren't able to fetch anything, but we would be if the download window was one larger.
1474 if (nodeStaller) *nodeStaller = waitingfor;
1475 }
1476 return;
1477 }
1478
1479 // Don't request blocks that go further than what limited peers can provide
1480 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1481 continue;
1482 }
1483
1484 vBlocks.push_back(pindex);
1485 if (vBlocks.size() == count) {
1486 return;
1487 }
1488 }
1489 }
1490}
1491
1492} // namespace
1493
1494void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1495{
1496 uint64_t my_services{peer.m_our_services};
1497 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1498 uint64_t nonce = pnode.GetLocalNonce();
1499 const int nNodeStartingHeight{m_best_height};
1500 NodeId nodeid = pnode.GetId();
1501 CAddress addr = pnode.addr;
1502
1503 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1504 uint64_t your_services{addr.nServices};
1505
1506 const bool tx_relay{!RejectIncomingTxs(pnode)};
1507 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1508 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1509 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1510 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1511
1512 if (fLogIPs) {
1513 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1514 } else {
1515 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1516 }
1517}
1518
1519void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1520{
1521 LOCK(cs_main);
1522 CNodeState *state = State(node);
1523 if (state) state->m_last_block_announcement = time_in_seconds;
1524}
1525
1526void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1527{
1528 NodeId nodeid = node.GetId();
1529 {
1530 LOCK(cs_main); // For m_node_states
1531 m_node_states.try_emplace(m_node_states.end(), nodeid);
1532 }
1533 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1534
1536 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1537 }
1538
1539 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1540 {
1541 LOCK(m_peer_mutex);
1542 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1543 }
1544}
1545
1546void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1547{
1548 std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1549
1550 for (const auto& txid : unbroadcast_txids) {
1551 CTransactionRef tx = m_mempool.get(txid);
1552
1553 if (tx != nullptr) {
1554 RelayTransaction(txid, tx->GetWitnessHash());
1555 } else {
1556 m_mempool.RemoveUnbroadcastTx(txid, true);
1557 }
1558 }
1559
1560 // Schedule next run for 10-15 minutes in the future.
1561 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1562 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1563 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1564}
1565
1566void PeerManagerImpl::FinalizeNode(const CNode& node)
1567{
1568 NodeId nodeid = node.GetId();
1569 {
1570 LOCK(cs_main);
1571 {
1572 // We remove the PeerRef from g_peer_map here, but we don't always
1573 // destruct the Peer. Sometimes another thread is still holding a
1574 // PeerRef, so the refcount is >= 1. Be careful not to do any
1575 // processing here that assumes Peer won't be changed before it's
1576 // destructed.
1577 PeerRef peer = RemovePeer(nodeid);
1578 assert(peer != nullptr);
1579 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1580 assert(m_wtxid_relay_peers >= 0);
1581 }
1582 CNodeState *state = State(nodeid);
1583 assert(state != nullptr);
1584
1585 if (state->fSyncStarted)
1586 nSyncStarted--;
1587
1588 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1589 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1590 while (range.first != range.second) {
1591 auto [node_id, list_it] = range.first->second;
1592 if (node_id != nodeid) {
1593 range.first++;
1594 } else {
1595 range.first = mapBlocksInFlight.erase(range.first);
1596 }
1597 }
1598 }
1599 {
1600 LOCK(m_tx_download_mutex);
1601 m_txdownloadman.DisconnectedPeer(nodeid);
1602 }
1603 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1604 m_num_preferred_download_peers -= state->fPreferredDownload;
1605 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1606 assert(m_peers_downloading_from >= 0);
1607 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1608 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1609
1610 m_node_states.erase(nodeid);
1611
1612 if (m_node_states.empty()) {
1613 // Do a consistency check after the last peer is removed.
1614 assert(mapBlocksInFlight.empty());
1615 assert(m_num_preferred_download_peers == 0);
1616 assert(m_peers_downloading_from == 0);
1617 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1618 assert(m_wtxid_relay_peers == 0);
1619 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1620 }
1621 } // cs_main
1622 if (node.fSuccessfullyConnected &&
1623 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1624 // Only change visible addrman state for full outbound peers. We don't
1625 // call Connected() for feeler connections since they don't have
1626 // fSuccessfullyConnected set.
1627 m_addrman.Connected(node.addr);
1628 }
1629 {
1630 LOCK(m_headers_presync_mutex);
1631 m_headers_presync_stats.erase(nodeid);
1632 }
1633 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1634}
1635
1636bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1637{
1638 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1639 return !(GetDesirableServiceFlags(services) & (~services));
1640}
1641
1642ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1643{
1644 if (services & NODE_NETWORK_LIMITED) {
1645 // Limited peers are desirable when we are close to the tip.
1646 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1648 }
1649 }
1651}
1652
1653PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1654{
1655 LOCK(m_peer_mutex);
1656 auto it = m_peer_map.find(id);
1657 return it != m_peer_map.end() ? it->second : nullptr;
1658}
1659
1660PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1661{
1662 PeerRef ret;
1663 LOCK(m_peer_mutex);
1664 auto it = m_peer_map.find(id);
1665 if (it != m_peer_map.end()) {
1666 ret = std::move(it->second);
1667 m_peer_map.erase(it);
1668 }
1669 return ret;
1670}
1671
1672bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1673{
1674 {
1675 LOCK(cs_main);
1676 const CNodeState* state = State(nodeid);
1677 if (state == nullptr)
1678 return false;
1679 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1680 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1681 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1682 if (queue.pindex)
1683 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1684 }
1685 }
1686
1687 PeerRef peer = GetPeerRef(nodeid);
1688 if (peer == nullptr) return false;
1689 stats.their_services = peer->m_their_services;
1690 stats.m_starting_height = peer->m_starting_height;
1691 // It is common for nodes with good ping times to suddenly become lagged,
1692 // due to a new block arriving or other large transfer.
1693 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1694 // since pingtime does not update until the ping is complete, which might take a while.
1695 // So, if a ping is taking an unusually long time in flight,
1696 // the caller can immediately detect that this is happening.
1697 auto ping_wait{0us};
1698 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1699 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1700 }
1701
1702 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1703 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1704 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1705 } else {
1706 stats.m_relay_txs = false;
1707 stats.m_fee_filter_received = 0;
1708 }
1709
1710 stats.m_ping_wait = ping_wait;
1711 stats.m_addr_processed = peer->m_addr_processed.load();
1712 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1713 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1714 {
1715 LOCK(peer->m_headers_sync_mutex);
1716 if (peer->m_headers_sync) {
1717 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1718 }
1719 }
1720 stats.time_offset = peer->m_time_offset;
1721
1722 return true;
1723}
1724
1725std::vector<TxOrphanage::OrphanTxBase> PeerManagerImpl::GetOrphanTransactions()
1726{
1727 LOCK(m_tx_download_mutex);
1728 return m_txdownloadman.GetOrphanTransactions();
1729}
1730
1732{
1733 return PeerManagerInfo{
1734 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1735 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1736 };
1737}
1738
1739void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1740{
1741 if (m_opts.max_extra_txs <= 0)
1742 return;
1743 if (!vExtraTxnForCompact.size())
1744 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1745 vExtraTxnForCompact[vExtraTxnForCompactIt] = tx;
1746 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1747}
1748
1749void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1750{
1751 LOCK(peer.m_misbehavior_mutex);
1752
1753 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1754 peer.m_should_discourage = true;
1755 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1756 TRACEPOINT(net, misbehaving_connection,
1757 peer.m_id,
1758 message.c_str()
1759 );
1760}
1761
1762void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1763 bool via_compact_block, const std::string& message)
1764{
1765 PeerRef peer{GetPeerRef(nodeid)};
1766 switch (state.GetResult()) {
1768 break;
1770 // We didn't try to process the block because the header chain may have
1771 // too little work.
1772 break;
1773 // The node is providing invalid data:
1776 if (!via_compact_block) {
1777 if (peer) Misbehaving(*peer, message);
1778 return;
1779 }
1780 break;
1782 {
1783 // Discourage outbound (but not inbound) peers if on an invalid chain.
1784 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1785 if (peer && !via_compact_block && !peer->m_is_inbound) {
1786 if (peer) Misbehaving(*peer, message);
1787 return;
1788 }
1789 break;
1790 }
1794 if (peer) Misbehaving(*peer, message);
1795 return;
1796 // Conflicting (but not necessarily invalid) data or different policy:
1798 if (peer) Misbehaving(*peer, message);
1799 return;
1801 break;
1802 }
1803 if (message != "") {
1804 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1805 }
1806}
1807
1808void PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1809{
1810 PeerRef peer{GetPeerRef(nodeid)};
1811 switch (state.GetResult()) {
1813 break;
1814 // The node is providing invalid data:
1816 if (peer) Misbehaving(*peer, "");
1817 return;
1818 // Conflicting (but not necessarily invalid) data or different policy:
1830 break;
1831 }
1832}
1833
1834bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1835{
1837 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1838 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1839 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1840 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1841}
1842
1843std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1844{
1845 if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1846
1847 // Ensure this peer exists and hasn't been disconnected
1848 PeerRef peer = GetPeerRef(peer_id);
1849 if (peer == nullptr) return "Peer does not exist";
1850
1851 // Ignore pre-segwit peers
1852 if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1853
1854 LOCK(cs_main);
1855
1856 // Forget about all prior requests
1857 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1858
1859 // Mark block as in-flight
1860 if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1861
1862 // Construct message to request the block
1863 const uint256& hash{block_index.GetBlockHash()};
1864 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1865
1866 // Send block request message to the peer
1867 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1868 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1869 return true;
1870 });
1871
1872 if (!success) return "Peer not fully connected";
1873
1874 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1875 hash.ToString(), peer_id);
1876 return std::nullopt;
1877}
1878
1879std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1880 BanMan* banman, ChainstateManager& chainman,
1881 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1882{
1883 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1884}
1885
1886PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1887 BanMan* banman, ChainstateManager& chainman,
1888 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1889 : m_rng{opts.deterministic_rng},
1890 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1891 m_chainparams(chainman.GetParams()),
1892 m_connman(connman),
1893 m_addrman(addrman),
1894 m_banman(banman),
1895 m_chainman(chainman),
1896 m_mempool(pool),
1897 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.max_orphan_txs, opts.deterministic_rng}),
1898 m_warnings{warnings},
1899 m_opts{opts}
1900{
1901 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1902 // This argument can go away after Erlay support is complete.
1903 if (opts.reconcile_txs) {
1904 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1905 }
1906}
1907
1908void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1909{
1910 // Stale tip checking and peer eviction are on two different timers, but we
1911 // don't want them to get out of sync due to drift in the scheduler, so we
1912 // combine them in one function and schedule at the quicker (peer-eviction)
1913 // timer.
1914 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1915 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1916
1917 // schedule next run for 10-15 minutes in the future
1918 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1919 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1920}
1921
1922void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1923{
1924 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1925 // m_tx_download_mutex waits on the mempool mutex.
1926 AssertLockNotHeld(m_mempool.cs);
1927 AssertLockNotHeld(m_tx_download_mutex);
1928
1929 if (!is_ibd) {
1930 LOCK(m_tx_download_mutex);
1931 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1932 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1933 // see them again.
1934 m_txdownloadman.ActiveTipChange();
1935 }
1936}
1937
1944void PeerManagerImpl::BlockConnected(
1945 ChainstateRole role,
1946 const std::shared_ptr<const CBlock>& pblock,
1947 const CBlockIndex* pindex)
1948{
1949 // Update this for all chainstate roles so that we don't mistakenly see peers
1950 // helping us do background IBD as having a stale tip.
1951 m_last_tip_update = GetTime<std::chrono::seconds>();
1952
1953 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1954 auto stalling_timeout = m_block_stalling_timeout.load();
1955 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1956 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1957 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1958 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1959 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1960 }
1961 }
1962
1963 // The following task can be skipped since we don't maintain a mempool for
1964 // the ibd/background chainstate.
1965 if (role == ChainstateRole::BACKGROUND) {
1966 return;
1967 }
1968 LOCK(m_tx_download_mutex);
1969 m_txdownloadman.BlockConnected(pblock);
1970}
1971
1972void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1973{
1974 LOCK(m_tx_download_mutex);
1975 m_txdownloadman.BlockDisconnected();
1976}
1977
1982void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1983{
1984 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
1985
1986 LOCK(cs_main);
1987
1988 if (pindex->nHeight <= m_highest_fast_announce)
1989 return;
1990 m_highest_fast_announce = pindex->nHeight;
1991
1992 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1993
1994 uint256 hashBlock(pblock->GetHash());
1995 const std::shared_future<CSerializedNetMsg> lazy_ser{
1996 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
1997
1998 {
1999 auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
2000 for (const auto& tx : pblock->vtx) {
2001 most_recent_block_txs->emplace(tx->GetHash(), tx);
2002 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2003 }
2004
2005 LOCK(m_most_recent_block_mutex);
2006 m_most_recent_block_hash = hashBlock;
2007 m_most_recent_block = pblock;
2008 m_most_recent_compact_block = pcmpctblock;
2009 m_most_recent_block_txs = std::move(most_recent_block_txs);
2010 }
2011
2012 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2014
2016 return;
2017 ProcessBlockAvailability(pnode->GetId());
2018 CNodeState &state = *State(pnode->GetId());
2019 // If the peer has, or we announced to them the previous block already,
2020 // but we don't think they have this one, go ahead and announce it
2021 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2022
2023 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2024 hashBlock.ToString(), pnode->GetId());
2025
2026 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2027 PushMessage(*pnode, ser_cmpctblock.Copy());
2028 state.pindexBestHeaderSent = pindex;
2029 }
2030 });
2031}
2032
2037void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2038{
2039 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2040
2041 // Don't relay inventory during initial block download.
2042 if (fInitialDownload) return;
2043
2044 // Find the hashes of all blocks that weren't previously in the best chain.
2045 std::vector<uint256> vHashes;
2046 const CBlockIndex *pindexToAnnounce = pindexNew;
2047 while (pindexToAnnounce != pindexFork) {
2048 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2049 pindexToAnnounce = pindexToAnnounce->pprev;
2050 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2051 // Limit announcements in case of a huge reorganization.
2052 // Rely on the peer's synchronization mechanism in that case.
2053 break;
2054 }
2055 }
2056
2057 {
2058 LOCK(m_peer_mutex);
2059 for (auto& it : m_peer_map) {
2060 Peer& peer = *it.second;
2061 LOCK(peer.m_block_inv_mutex);
2062 for (const uint256& hash : vHashes | std::views::reverse) {
2063 peer.m_blocks_for_headers_relay.push_back(hash);
2064 }
2065 }
2066 }
2067
2068 m_connman.WakeMessageHandler();
2069}
2070
2075void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2076{
2077 LOCK(cs_main);
2078
2079 const uint256 hash(block.GetHash());
2080 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2081
2082 // If the block failed validation, we know where it came from and we're still connected
2083 // to that peer, maybe punish.
2084 if (state.IsInvalid() &&
2085 it != mapBlockSource.end() &&
2086 State(it->second.first)) {
2087 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2088 }
2089 // Check that:
2090 // 1. The block is valid
2091 // 2. We're not in initial block download
2092 // 3. This is currently the best block we're aware of. We haven't updated
2093 // the tip yet so we have no way to check this directly here. Instead we
2094 // just check that there are currently no other blocks in flight.
2095 else if (state.IsValid() &&
2096 !m_chainman.IsInitialBlockDownload() &&
2097 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2098 if (it != mapBlockSource.end()) {
2099 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2100 }
2101 }
2102 if (it != mapBlockSource.end())
2103 mapBlockSource.erase(it);
2104}
2105
2107//
2108// Messages
2109//
2110
2111bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2112{
2113 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2114}
2115
2116void PeerManagerImpl::SendPings()
2117{
2118 LOCK(m_peer_mutex);
2119 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2120}
2121
2122void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2123{
2124 LOCK(m_peer_mutex);
2125 for(auto& it : m_peer_map) {
2126 Peer& peer = *it.second;
2127 auto tx_relay = peer.GetTxRelay();
2128 if (!tx_relay) continue;
2129
2130 LOCK(tx_relay->m_tx_inventory_mutex);
2131 // Only queue transactions for announcement once the version handshake
2132 // is completed. The time of arrival for these transactions is
2133 // otherwise at risk of leaking to a spy, if the spy is able to
2134 // distinguish transactions received during the handshake from the rest
2135 // in the announcement.
2136 if (tx_relay->m_next_inv_send_time == 0s) continue;
2137
2138 const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2139 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2140 tx_relay->m_tx_inventory_to_send.insert(hash);
2141 }
2142 };
2143}
2144
2145void PeerManagerImpl::RelayAddress(NodeId originator,
2146 const CAddress& addr,
2147 bool fReachable)
2148{
2149 // We choose the same nodes within a given 24h window (if the list of connected
2150 // nodes does not change) and we don't relay to nodes that already know an
2151 // address. So within 24h we will likely relay a given address once. This is to
2152 // prevent a peer from unjustly giving their address better propagation by sending
2153 // it to us repeatedly.
2154
2155 if (!fReachable && !addr.IsRelayable()) return;
2156
2157 // Relay to a limited number of other nodes
2158 // Use deterministic randomness to send to the same nodes for 24 hours
2159 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2160 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2161 const auto current_time{GetTime<std::chrono::seconds>()};
2162 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2163 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2165 .Write(hash_addr)
2166 .Write(time_addr)};
2167
2168 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2169 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2170
2171 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2172 assert(nRelayNodes <= best.size());
2173
2174 LOCK(m_peer_mutex);
2175
2176 for (auto& [id, peer] : m_peer_map) {
2177 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2178 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2179 for (unsigned int i = 0; i < nRelayNodes; i++) {
2180 if (hashKey > best[i].first) {
2181 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2182 best[i] = std::make_pair(hashKey, peer.get());
2183 break;
2184 }
2185 }
2186 }
2187 };
2188
2189 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2190 PushAddress(*best[i].second, addr);
2191 }
2192}
2193
2194void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2195{
2196 std::shared_ptr<const CBlock> a_recent_block;
2197 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2198 {
2199 LOCK(m_most_recent_block_mutex);
2200 a_recent_block = m_most_recent_block;
2201 a_recent_compact_block = m_most_recent_compact_block;
2202 }
2203
2204 bool need_activate_chain = false;
2205 {
2206 LOCK(cs_main);
2207 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2208 if (pindex) {
2209 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2210 pindex->IsValid(BLOCK_VALID_TREE)) {
2211 // If we have the block and all of its parents, but have not yet validated it,
2212 // we might be in the middle of connecting it (ie in the unlock of cs_main
2213 // before ActivateBestChain but after AcceptBlock).
2214 // In this case, we need to run ActivateBestChain prior to checking the relay
2215 // conditions below.
2216 need_activate_chain = true;
2217 }
2218 }
2219 } // release cs_main before calling ActivateBestChain
2220 if (need_activate_chain) {
2222 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2223 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2224 }
2225 }
2226
2227 const CBlockIndex* pindex{nullptr};
2228 const CBlockIndex* tip{nullptr};
2229 bool can_direct_fetch{false};
2230 FlatFilePos block_pos{};
2231 {
2232 LOCK(cs_main);
2233 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2234 if (!pindex) {
2235 return;
2236 }
2237 if (!BlockRequestAllowed(pindex)) {
2238 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2239 return;
2240 }
2241 // disconnect node in case we have reached the outbound limit for serving historical blocks
2242 if (m_connman.OutboundTargetReached(true) &&
2243 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2244 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2245 ) {
2246 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2247 pfrom.fDisconnect = true;
2248 return;
2249 }
2250 tip = m_chainman.ActiveChain().Tip();
2251 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2253 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2254 )) {
2255 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2256 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2257 pfrom.fDisconnect = true;
2258 return;
2259 }
2260 // Pruned nodes may have deleted the block, so check whether
2261 // it's available before trying to send.
2262 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2263 return;
2264 }
2265 can_direct_fetch = CanDirectFetch();
2266 block_pos = pindex->GetBlockPos();
2267 }
2268
2269 std::shared_ptr<const CBlock> pblock;
2270 if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
2271 pblock = a_recent_block;
2272 } else if (inv.IsMsgWitnessBlk()) {
2273 // Fast-path: in this case it is possible to serve the block directly from disk,
2274 // as the network format matches the format on disk
2275 std::vector<uint8_t> block_data;
2276 if (!m_chainman.m_blockman.ReadRawBlock(block_data, block_pos)) {
2277 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2278 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2279 } else {
2280 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2281 }
2282 pfrom.fDisconnect = true;
2283 return;
2284 }
2285 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, Span{block_data});
2286 // Don't set pblock as we've sent the block
2287 } else {
2288 // Send block from disk
2289 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2290 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos)) {
2291 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2292 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2293 } else {
2294 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2295 }
2296 pfrom.fDisconnect = true;
2297 return;
2298 }
2299 pblock = pblockRead;
2300 }
2301 if (pblock) {
2302 if (inv.IsMsgBlk()) {
2303 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2304 } else if (inv.IsMsgWitnessBlk()) {
2305 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2306 } else if (inv.IsMsgFilteredBlk()) {
2307 bool sendMerkleBlock = false;
2308 CMerkleBlock merkleBlock;
2309 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2310 LOCK(tx_relay->m_bloom_filter_mutex);
2311 if (tx_relay->m_bloom_filter) {
2312 sendMerkleBlock = true;
2313 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2314 }
2315 }
2316 if (sendMerkleBlock) {
2317 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2318 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2319 // This avoids hurting performance by pointlessly requiring a round-trip
2320 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2321 // they must either disconnect and retry or request the full block.
2322 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2323 // however we MUST always provide at least what the remote peer needs
2324 typedef std::pair<unsigned int, uint256> PairType;
2325 for (PairType& pair : merkleBlock.vMatchedTxn)
2326 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2327 }
2328 // else
2329 // no response
2330 } else if (inv.IsMsgCmpctBlk()) {
2331 // If a peer is asking for old blocks, we're almost guaranteed
2332 // they won't have a useful mempool to match against a compact block,
2333 // and we don't feel like constructing the object for them, so
2334 // instead we respond with the full, non-compact block.
2335 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2336 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
2337 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2338 } else {
2339 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2340 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2341 }
2342 } else {
2343 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2344 }
2345 }
2346 }
2347
2348 {
2349 LOCK(peer.m_block_inv_mutex);
2350 // Trigger the peer node to send a getblocks request for the next batch of inventory
2351 if (inv.hash == peer.m_continuation_block) {
2352 // Send immediately. This must send even if redundant,
2353 // and we want it right after the last block so they don't
2354 // wait for other stuff first.
2355 std::vector<CInv> vInv;
2356 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2357 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2358 peer.m_continuation_block.SetNull();
2359 }
2360 }
2361}
2362
2363CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2364{
2365 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2366 auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2367 if (txinfo.tx) {
2368 return std::move(txinfo.tx);
2369 }
2370
2371 // Or it might be from the most recent block
2372 {
2373 LOCK(m_most_recent_block_mutex);
2374 if (m_most_recent_block_txs != nullptr) {
2375 auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2376 if (it != m_most_recent_block_txs->end()) return it->second;
2377 }
2378 }
2379
2380 return {};
2381}
2382
2383void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2384{
2386
2387 auto tx_relay = peer.GetTxRelay();
2388
2389 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2390 std::vector<CInv> vNotFound;
2391
2392 // Process as many TX items from the front of the getdata queue as
2393 // possible, since they're common and it's efficient to batch process
2394 // them.
2395 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2396 if (interruptMsgProc) return;
2397 // The send buffer provides backpressure. If there's no space in
2398 // the buffer, pause processing until the next call.
2399 if (pfrom.fPauseSend) break;
2400
2401 const CInv &inv = *it++;
2402
2403 if (tx_relay == nullptr) {
2404 // Ignore GETDATA requests for transactions from block-relay-only
2405 // peers and peers that asked us not to announce transactions.
2406 continue;
2407 }
2408
2409 CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2410 if (tx) {
2411 // WTX and WITNESS_TX imply we serialize with witness
2412 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2413 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2414 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2415 } else {
2416 vNotFound.push_back(inv);
2417 }
2418 }
2419
2420 // Only process one BLOCK item per call, since they're uncommon and can be
2421 // expensive to process.
2422 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2423 const CInv &inv = *it++;
2424 if (inv.IsGenBlkMsg()) {
2425 ProcessGetBlockData(pfrom, peer, inv);
2426 }
2427 // else: If the first item on the queue is an unknown type, we erase it
2428 // and continue processing the queue on the next call.
2429 }
2430
2431 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2432
2433 if (!vNotFound.empty()) {
2434 // Let the peer know that we didn't find what it asked for, so it doesn't
2435 // have to wait around forever.
2436 // SPV clients care about this message: it's needed when they are
2437 // recursively walking the dependencies of relevant unconfirmed
2438 // transactions. SPV clients want to do that because they want to know
2439 // about (and store and rebroadcast and risk analyze) the dependencies
2440 // of transactions relevant to them, without having to download the
2441 // entire memory pool.
2442 // Also, other nodes can use these messages to automatically request a
2443 // transaction from some other peer that announced it, and stop
2444 // waiting for us to respond.
2445 // In normal operation, we often send NOTFOUND messages for parents of
2446 // transactions that we relay; if a peer is missing a parent, they may
2447 // assume we have them and request the parents from us.
2448 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2449 }
2450}
2451
2452uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2453{
2454 uint32_t nFetchFlags = 0;
2455 if (CanServeWitnesses(peer)) {
2456 nFetchFlags |= MSG_WITNESS_FLAG;
2457 }
2458 return nFetchFlags;
2459}
2460
2461void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2462{
2463 BlockTransactions resp(req);
2464 for (size_t i = 0; i < req.indexes.size(); i++) {
2465 if (req.indexes[i] >= block.vtx.size()) {
2466 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2467 return;
2468 }
2469 resp.txn[i] = block.vtx[req.indexes[i]];
2470 }
2471
2472 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2473}
2474
2475bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2476{
2477 // Do these headers have proof-of-work matching what's claimed?
2478 if (!HasValidProofOfWork(headers, consensusParams)) {
2479 Misbehaving(peer, "header with invalid proof of work");
2480 return false;
2481 }
2482
2483 // Are these headers connected to each other?
2484 if (!CheckHeadersAreContinuous(headers)) {
2485 Misbehaving(peer, "non-continuous headers sequence");
2486 return false;
2487 }
2488 return true;
2489}
2490
2491arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2492{
2493 arith_uint256 near_chaintip_work = 0;
2494 LOCK(cs_main);
2495 if (m_chainman.ActiveChain().Tip() != nullptr) {
2496 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2497 // Use a 144 block buffer, so that we'll accept headers that fork from
2498 // near our tip.
2499 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2500 }
2501 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2502}
2503
2510void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2511 const std::vector<CBlockHeader>& headers)
2512{
2513 // Try to fill in the missing headers.
2514 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2515 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2516 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2517 headers[0].GetHash().ToString(),
2518 headers[0].hashPrevBlock.ToString(),
2519 best_header->nHeight,
2520 pfrom.GetId());
2521 }
2522
2523 // Set hashLastUnknownBlock for this peer, so that if we
2524 // eventually get the headers - even from a different peer -
2525 // we can use this peer to download.
2526 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2527}
2528
2529bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2530{
2531 uint256 hashLastBlock;
2532 for (const CBlockHeader& header : headers) {
2533 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2534 return false;
2535 }
2536 hashLastBlock = header.GetHash();
2537 }
2538 return true;
2539}
2540
2541bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2542{
2543 if (peer.m_headers_sync) {
2544 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2545 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2546 if (result.success) peer.m_last_getheaders_timestamp = {};
2547 if (result.request_more) {
2548 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2549 // If we were instructed to ask for a locator, it should not be empty.
2550 Assume(!locator.vHave.empty());
2551 // We can only be instructed to request more if processing was successful.
2552 Assume(result.success);
2553 if (!locator.vHave.empty()) {
2554 // It should be impossible for the getheaders request to fail,
2555 // because we just cleared the last getheaders timestamp.
2556 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2557 Assume(sent_getheaders);
2558 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2559 locator.vHave.front().ToString(), pfrom.GetId());
2560 }
2561 }
2562
2563 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2564 peer.m_headers_sync.reset(nullptr);
2565
2566 // Delete this peer's entry in m_headers_presync_stats.
2567 // If this is m_headers_presync_bestpeer, it will be replaced later
2568 // by the next peer that triggers the else{} branch below.
2569 LOCK(m_headers_presync_mutex);
2570 m_headers_presync_stats.erase(pfrom.GetId());
2571 } else {
2572 // Build statistics for this peer's sync.
2573 HeadersPresyncStats stats;
2574 stats.first = peer.m_headers_sync->GetPresyncWork();
2575 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2576 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2577 peer.m_headers_sync->GetPresyncTime()};
2578 }
2579
2580 // Update statistics in stats.
2581 LOCK(m_headers_presync_mutex);
2582 m_headers_presync_stats[pfrom.GetId()] = stats;
2583 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2584 bool best_updated = false;
2585 if (best_it == m_headers_presync_stats.end()) {
2586 // If the cached best peer is outdated, iterate over all remaining ones (including
2587 // newly updated one) to find the best one.
2588 NodeId peer_best{-1};
2589 const HeadersPresyncStats* stat_best{nullptr};
2590 for (const auto& [peer, stat] : m_headers_presync_stats) {
2591 if (!stat_best || stat > *stat_best) {
2592 peer_best = peer;
2593 stat_best = &stat;
2594 }
2595 }
2596 m_headers_presync_bestpeer = peer_best;
2597 best_updated = (peer_best == pfrom.GetId());
2598 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2599 // pfrom was and remains the best peer, or pfrom just became best.
2600 m_headers_presync_bestpeer = pfrom.GetId();
2601 best_updated = true;
2602 }
2603 if (best_updated && stats.second.has_value()) {
2604 // If the best peer updated, and it is in its first phase, signal.
2605 m_headers_presync_should_signal = true;
2606 }
2607 }
2608
2609 if (result.success) {
2610 // We only overwrite the headers passed in if processing was
2611 // successful.
2612 headers.swap(result.pow_validated_headers);
2613 }
2614
2615 return result.success;
2616 }
2617 // Either we didn't have a sync in progress, or something went wrong
2618 // processing these headers, or we are returning headers to the caller to
2619 // process.
2620 return false;
2621}
2622
2623bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2624{
2625 // Calculate the claimed total work on this chain.
2626 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2627
2628 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2629 // before we'll store it)
2630 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2631
2632 // Avoid DoS via low-difficulty-headers by only processing if the headers
2633 // are part of a chain with sufficient work.
2634 if (total_work < minimum_chain_work) {
2635 // Only try to sync with this peer if their headers message was full;
2636 // otherwise they don't have more headers after this so no point in
2637 // trying to sync their too-little-work chain.
2638 if (headers.size() == m_opts.max_headers_result) {
2639 // Note: we could advance to the last header in this set that is
2640 // known to us, rather than starting at the first header (which we
2641 // may already have); however this is unlikely to matter much since
2642 // ProcessHeadersMessage() already handles the case where all
2643 // headers in a received message are already known and are
2644 // ancestors of m_best_header or chainActive.Tip(), by skipping
2645 // this logic in that case. So even if the first header in this set
2646 // of headers is known, some header in this set must be new, so
2647 // advancing to the first unknown header would be a small effect.
2648 LOCK(peer.m_headers_sync_mutex);
2649 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2650 chain_start_header, minimum_chain_work));
2651
2652 // Now a HeadersSyncState object for tracking this synchronization
2653 // is created, process the headers using it as normal. Failures are
2654 // handled inside of IsContinuationOfLowWorkHeadersSync.
2655 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2656 } else {
2657 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2658 }
2659
2660 // The peer has not yet given us a chain that meets our work threshold,
2661 // so we want to prevent further processing of the headers in any case.
2662 headers = {};
2663 return true;
2664 }
2665
2666 return false;
2667}
2668
2669bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2670{
2671 if (header == nullptr) {
2672 return false;
2673 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2674 return true;
2675 } else if (m_chainman.ActiveChain().Contains(header)) {
2676 return true;
2677 }
2678 return false;
2679}
2680
2681bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2682{
2683 const auto current_time = NodeClock::now();
2684
2685 // Only allow a new getheaders message to go out if we don't have a recent
2686 // one already in-flight
2687 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2688 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2689 peer.m_last_getheaders_timestamp = current_time;
2690 return true;
2691 }
2692 return false;
2693}
2694
2695/*
2696 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2697 * We require that the given tip have at least as much work as our tip, and for
2698 * our current tip to be "close to synced" (see CanDirectFetch()).
2699 */
2700void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2701{
2702 LOCK(cs_main);
2703 CNodeState *nodestate = State(pfrom.GetId());
2704
2705 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2706 std::vector<const CBlockIndex*> vToFetch;
2707 const CBlockIndex* pindexWalk{&last_header};
2708 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2709 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2710 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2711 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2712 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2713 // We don't have this block, and it's not yet in flight.
2714 vToFetch.push_back(pindexWalk);
2715 }
2716 pindexWalk = pindexWalk->pprev;
2717 }
2718 // If pindexWalk still isn't on our main chain, we're looking at a
2719 // very large reorg at a time we think we're close to caught up to
2720 // the main chain -- this shouldn't really happen. Bail out on the
2721 // direct fetch and rely on parallel download instead.
2722 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2723 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2724 last_header.GetBlockHash().ToString(),
2725 last_header.nHeight);
2726 } else {
2727 std::vector<CInv> vGetData;
2728 // Download as much as possible, from earliest to latest.
2729 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2730 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2731 // Can't download any more from this peer
2732 break;
2733 }
2734 uint32_t nFetchFlags = GetFetchFlags(peer);
2735 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2736 BlockRequested(pfrom.GetId(), *pindex);
2737 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2738 pindex->GetBlockHash().ToString(), pfrom.GetId());
2739 }
2740 if (vGetData.size() > 1) {
2741 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2742 last_header.GetBlockHash().ToString(),
2743 last_header.nHeight);
2744 }
2745 if (vGetData.size() > 0) {
2746 if (!m_opts.ignore_incoming_txs &&
2747 nodestate->m_provides_cmpctblocks &&
2748 vGetData.size() == 1 &&
2749 mapBlocksInFlight.size() == 1 &&
2750 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2751 // In any case, we want to download using a compact block, not a regular one
2752 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2753 }
2754 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2755 }
2756 }
2757 }
2758}
2759
2765void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2766 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2767{
2768 LOCK(cs_main);
2769 CNodeState *nodestate = State(pfrom.GetId());
2770
2771 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2772
2773 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2774 // because it is set in UpdateBlockAvailability. Some nullptr checks
2775 // are still present, however, as belt-and-suspenders.
2776
2777 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2778 nodestate->m_last_block_announcement = GetTime();
2779 }
2780
2781 // If we're in IBD, we want outbound peers that will serve us a useful
2782 // chain. Disconnect peers that are on chains with insufficient work.
2783 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2784 // If the peer has no more headers to give us, then we know we have
2785 // their tip.
2786 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2787 // This peer has too little work on their headers chain to help
2788 // us sync -- disconnect if it is an outbound disconnection
2789 // candidate.
2790 // Note: We compare their tip to the minimum chain work (rather than
2791 // m_chainman.ActiveChain().Tip()) because we won't start block download
2792 // until we have a headers chain that has at least
2793 // the minimum chain work, even if a peer has a chain past our tip,
2794 // as an anti-DoS measure.
2795 if (pfrom.IsOutboundOrBlockRelayConn()) {
2796 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2797 pfrom.fDisconnect = true;
2798 }
2799 }
2800 }
2801
2802 // If this is an outbound full-relay peer, check to see if we should protect
2803 // it from the bad/lagging chain logic.
2804 // Note that outbound block-relay peers are excluded from this protection, and
2805 // thus always subject to eviction under the bad/lagging chain logic.
2806 // See ChainSyncTimeoutState.
2807 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2808 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2809 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2810 nodestate->m_chain_sync.m_protect = true;
2811 ++m_outbound_peers_with_protect_from_disconnect;
2812 }
2813 }
2814}
2815
2816void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2817 std::vector<CBlockHeader>&& headers,
2818 bool via_compact_block)
2819{
2820 size_t nCount = headers.size();
2821
2822 if (nCount == 0) {
2823 // Nothing interesting. Stop asking this peers for more headers.
2824 // If we were in the middle of headers sync, receiving an empty headers
2825 // message suggests that the peer suddenly has nothing to give us
2826 // (perhaps it reorged to our chain). Clear download state for this peer.
2827 LOCK(peer.m_headers_sync_mutex);
2828 if (peer.m_headers_sync) {
2829 peer.m_headers_sync.reset(nullptr);
2830 LOCK(m_headers_presync_mutex);
2831 m_headers_presync_stats.erase(pfrom.GetId());
2832 }
2833 // A headers message with no headers cannot be an announcement, so assume
2834 // it is a response to our last getheaders request, if there is one.
2835 peer.m_last_getheaders_timestamp = {};
2836 return;
2837 }
2838
2839 // Before we do any processing, make sure these pass basic sanity checks.
2840 // We'll rely on headers having valid proof-of-work further down, as an
2841 // anti-DoS criteria (note: this check is required before passing any
2842 // headers into HeadersSyncState).
2843 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2844 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2845 // just return. (Note that even if a header is announced via compact
2846 // block, the header itself should be valid, so this type of error can
2847 // always be punished.)
2848 return;
2849 }
2850
2851 const CBlockIndex *pindexLast = nullptr;
2852
2853 // We'll set already_validated_work to true if these headers are
2854 // successfully processed as part of a low-work headers sync in progress
2855 // (either in PRESYNC or REDOWNLOAD phase).
2856 // If true, this will mean that any headers returned to us (ie during
2857 // REDOWNLOAD) can be validated without further anti-DoS checks.
2858 bool already_validated_work = false;
2859
2860 // If we're in the middle of headers sync, let it do its magic.
2861 bool have_headers_sync = false;
2862 {
2863 LOCK(peer.m_headers_sync_mutex);
2864
2865 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2866
2867 // The headers we passed in may have been:
2868 // - untouched, perhaps if no headers-sync was in progress, or some
2869 // failure occurred
2870 // - erased, such as if the headers were successfully processed and no
2871 // additional headers processing needs to take place (such as if we
2872 // are still in PRESYNC)
2873 // - replaced with headers that are now ready for validation, such as
2874 // during the REDOWNLOAD phase of a low-work headers sync.
2875 // So just check whether we still have headers that we need to process,
2876 // or not.
2877 if (headers.empty()) {
2878 return;
2879 }
2880
2881 have_headers_sync = !!peer.m_headers_sync;
2882 }
2883
2884 // Do these headers connect to something in our block index?
2885 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2886 bool headers_connect_blockindex{chain_start_header != nullptr};
2887
2888 if (!headers_connect_blockindex) {
2889 // This could be a BIP 130 block announcement, use
2890 // special logic for handling headers that don't connect, as this
2891 // could be benign.
2892 HandleUnconnectingHeaders(pfrom, peer, headers);
2893 return;
2894 }
2895
2896 // If headers connect, assume that this is in response to any outstanding getheaders
2897 // request we may have sent, and clear out the time of our last request. Non-connecting
2898 // headers cannot be a response to a getheaders request.
2899 peer.m_last_getheaders_timestamp = {};
2900
2901 // If the headers we received are already in memory and an ancestor of
2902 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2903 // use any more memory (and we are not leaking information that could be
2904 // used to fingerprint us).
2905 const CBlockIndex *last_received_header{nullptr};
2906 {
2907 LOCK(cs_main);
2908 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2909 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2910 already_validated_work = true;
2911 }
2912 }
2913
2914 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2915 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2916 // on startup).
2918 already_validated_work = true;
2919 }
2920
2921 // At this point, the headers connect to something in our block index.
2922 // Do anti-DoS checks to determine if we should process or store for later
2923 // processing.
2924 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2925 chain_start_header, headers)) {
2926 // If we successfully started a low-work headers sync, then there
2927 // should be no headers to process any further.
2928 Assume(headers.empty());
2929 return;
2930 }
2931
2932 // At this point, we have a set of headers with sufficient work on them
2933 // which can be processed.
2934
2935 // If we don't have the last header, then this peer will have given us
2936 // something new (if these headers are valid).
2937 bool received_new_header{last_received_header == nullptr};
2938
2939 // Now process all the headers.
2941 if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2942 if (state.IsInvalid()) {
2943 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2944 return;
2945 }
2946 }
2947 assert(pindexLast);
2948
2949 // Consider fetching more headers if we are not using our headers-sync mechanism.
2950 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2951 // Headers message had its maximum size; the peer may have more headers.
2952 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2953 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2954 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2955 }
2956 }
2957
2958 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2959
2960 // Consider immediately downloading blocks.
2961 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2962
2963 return;
2964}
2965
2966std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2967 bool first_time_failure)
2968{
2969 AssertLockNotHeld(m_peer_mutex);
2970 AssertLockHeld(g_msgproc_mutex);
2971 AssertLockHeld(m_tx_download_mutex);
2972
2973 PeerRef peer{GetPeerRef(nodeid)};
2974
2975 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
2976 ptx->GetHash().ToString(),
2977 ptx->GetWitnessHash().ToString(),
2978 nodeid,
2979 state.ToString());
2980
2981 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
2982
2983 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
2984 AddToCompactExtraTransactions(ptx);
2985 }
2986 for (const Txid& parent_txid : unique_parents) {
2987 if (peer) AddKnownTx(*peer, parent_txid);
2988 }
2989
2990 MaybePunishNodeForTx(nodeid, state);
2991
2992 return package_to_validate;
2993}
2994
2995void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
2996{
2997 AssertLockNotHeld(m_peer_mutex);
2998 AssertLockHeld(g_msgproc_mutex);
2999 AssertLockHeld(m_tx_download_mutex);
3000
3001 m_txdownloadman.MempoolAcceptedTx(tx);
3002
3003 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3004 nodeid,
3005 tx->GetHash().ToString(),
3006 tx->GetWitnessHash().ToString(),
3007 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3008
3009 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3010
3011 for (const CTransactionRef& removedTx : replaced_transactions) {
3012 AddToCompactExtraTransactions(removedTx);
3013 }
3014}
3015
3016void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3017{
3018 AssertLockNotHeld(m_peer_mutex);
3019 AssertLockHeld(g_msgproc_mutex);
3020 AssertLockHeld(m_tx_download_mutex);
3021
3022 const auto& package = package_to_validate.m_txns;
3023 const auto& senders = package_to_validate.m_senders;
3024
3025 if (package_result.m_state.IsInvalid()) {
3026 m_txdownloadman.MempoolRejectedPackage(package);
3027 }
3028 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3029 if (!Assume(package.size() == 2)) return;
3030
3031 // Iterate backwards to erase in-package descendants from the orphanage before they become
3032 // relevant in AddChildrenToWorkSet.
3033 auto package_iter = package.rbegin();
3034 auto senders_iter = senders.rbegin();
3035 while (package_iter != package.rend()) {
3036 const auto& tx = *package_iter;
3037 const NodeId nodeid = *senders_iter;
3038 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3039
3040 // It is not guaranteed that a result exists for every transaction.
3041 if (it_result != package_result.m_tx_results.end()) {
3042 const auto& tx_result = it_result->second;
3043 switch (tx_result.m_result_type) {
3045 {
3046 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3047 break;
3048 }
3051 {
3052 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3053 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3054 // This should be updated if package submission is ever used for transactions
3055 // that haven't already been validated before.
3056 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3057 break;
3058 }
3060 {
3061 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3062 Assume(false);
3063 break;
3064 }
3065 }
3066 }
3067 package_iter++;
3068 senders_iter++;
3069 }
3070}
3071
3072bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3073{
3074 AssertLockHeld(g_msgproc_mutex);
3075 LOCK2(::cs_main, m_tx_download_mutex);
3076
3077 CTransactionRef porphanTx = nullptr;
3078
3079 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3080 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3081 const TxValidationState& state = result.m_state;
3082 const Txid& orphanHash = porphanTx->GetHash();
3083 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3084
3086 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3087 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3088 return true;
3089 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3090 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3091 orphanHash.ToString(),
3092 orphan_wtxid.ToString(),
3093 peer.m_id,
3094 state.ToString());
3095
3096 if (Assume(state.IsInvalid() &&
3100 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3101 }
3102 return true;
3103 }
3104 }
3105
3106 return false;
3107}
3108
3109bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3110 BlockFilterType filter_type, uint32_t start_height,
3111 const uint256& stop_hash, uint32_t max_height_diff,
3112 const CBlockIndex*& stop_index,
3113 BlockFilterIndex*& filter_index)
3114{
3115 const bool supported_filter_type =
3116 (filter_type == BlockFilterType::BASIC &&
3117 (peer.m_our_services & NODE_COMPACT_FILTERS));
3118 if (!supported_filter_type) {
3119 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3120 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3121 node.fDisconnect = true;
3122 return false;
3123 }
3124
3125 {
3126 LOCK(cs_main);
3127 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3128
3129 // Check that the stop block exists and the peer would be allowed to fetch it.
3130 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3131 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3132 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3133 node.fDisconnect = true;
3134 return false;
3135 }
3136 }
3137
3138 uint32_t stop_height = stop_index->nHeight;
3139 if (start_height > stop_height) {
3140 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3141 "start height %d and stop height %d, %s\n",
3142 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3143 node.fDisconnect = true;
3144 return false;
3145 }
3146 if (stop_height - start_height >= max_height_diff) {
3147 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3148 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3149 node.fDisconnect = true;
3150 return false;
3151 }
3152
3153 filter_index = GetBlockFilterIndex(filter_type);
3154 if (!filter_index) {
3155 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3156 return false;
3157 }
3158
3159 return true;
3160}
3161
3162void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3163{
3164 uint8_t filter_type_ser;
3165 uint32_t start_height;
3166 uint256 stop_hash;
3167
3168 vRecv >> filter_type_ser >> start_height >> stop_hash;
3169
3170 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3171
3172 const CBlockIndex* stop_index;
3173 BlockFilterIndex* filter_index;
3174 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3175 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3176 return;
3177 }
3178
3179 std::vector<BlockFilter> filters;
3180 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3181 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3182 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3183 return;
3184 }
3185
3186 for (const auto& filter : filters) {
3187 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3188 }
3189}
3190
3191void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3192{
3193 uint8_t filter_type_ser;
3194 uint32_t start_height;
3195 uint256 stop_hash;
3196
3197 vRecv >> filter_type_ser >> start_height >> stop_hash;
3198
3199 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3200
3201 const CBlockIndex* stop_index;
3202 BlockFilterIndex* filter_index;
3203 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3204 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3205 return;
3206 }
3207
3208 uint256 prev_header;
3209 if (start_height > 0) {
3210 const CBlockIndex* const prev_block =
3211 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3212 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3213 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3214 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3215 return;
3216 }
3217 }
3218
3219 std::vector<uint256> filter_hashes;
3220 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3221 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3222 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3223 return;
3224 }
3225
3226 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3227 filter_type_ser,
3228 stop_index->GetBlockHash(),
3229 prev_header,
3230 filter_hashes);
3231}
3232
3233void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3234{
3235 uint8_t filter_type_ser;
3236 uint256 stop_hash;
3237
3238 vRecv >> filter_type_ser >> stop_hash;
3239
3240 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3241
3242 const CBlockIndex* stop_index;
3243 BlockFilterIndex* filter_index;
3244 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3245 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3246 stop_index, filter_index)) {
3247 return;
3248 }
3249
3250 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3251
3252 // Populate headers.
3253 const CBlockIndex* block_index = stop_index;
3254 for (int i = headers.size() - 1; i >= 0; i--) {
3255 int height = (i + 1) * CFCHECKPT_INTERVAL;
3256 block_index = block_index->GetAncestor(height);
3257
3258 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3259 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3260 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3261 return;
3262 }
3263 }
3264
3265 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3266 filter_type_ser,
3267 stop_index->GetBlockHash(),
3268 headers);
3269}
3270
3271void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3272{
3273 bool new_block{false};
3274 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3275 if (new_block) {
3276 node.m_last_block_time = GetTime<std::chrono::seconds>();
3277 // In case this block came from a different peer than we requested
3278 // from, we can erase the block request now anyway (as we just stored
3279 // this block to disk).
3280 LOCK(cs_main);
3281 RemoveBlockRequest(block->GetHash(), std::nullopt);
3282 } else {
3283 LOCK(cs_main);
3284 mapBlockSource.erase(block->GetHash());
3285 }
3286}
3287
3288void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3289{
3290 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3291 bool fBlockRead{false};
3292 {
3293 LOCK(cs_main);
3294
3295 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3296 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3297 bool requested_block_from_this_peer{false};
3298
3299 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3300 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3301
3302 while (range_flight.first != range_flight.second) {
3303 auto [node_id, block_it] = range_flight.first->second;
3304 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3305 requested_block_from_this_peer = true;
3306 break;
3307 }
3308 range_flight.first++;
3309 }
3310
3311 if (!requested_block_from_this_peer) {
3312 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3313 return;
3314 }
3315
3316 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3317 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3318 if (status == READ_STATUS_INVALID) {
3319 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3320 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3321 return;
3322 } else if (status == READ_STATUS_FAILED) {
3323 if (first_in_flight) {
3324 // Might have collided, fall back to getdata now :(
3325 std::vector<CInv> invs;
3326 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3327 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3328 } else {
3329 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3330 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3331 return;
3332 }
3333 } else {
3334 // Block is either okay, or possibly we received
3335 // READ_STATUS_CHECKBLOCK_FAILED.
3336 // Note that CheckBlock can only fail for one of a few reasons:
3337 // 1. bad-proof-of-work (impossible here, because we've already
3338 // accepted the header)
3339 // 2. merkleroot doesn't match the transactions given (already
3340 // caught in FillBlock with READ_STATUS_FAILED, so
3341 // impossible here)
3342 // 3. the block is otherwise invalid (eg invalid coinbase,
3343 // block is too big, too many legacy sigops, etc).
3344 // So if CheckBlock failed, #3 is the only possibility.
3345 // Under BIP 152, we don't discourage the peer unless proof of work is
3346 // invalid (we don't require all the stateless checks to have
3347 // been run). This is handled below, so just treat this as
3348 // though the block was successfully read, and rely on the
3349 // handling in ProcessNewBlock to ensure the block index is
3350 // updated, etc.
3351 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3352 fBlockRead = true;
3353 // mapBlockSource is used for potentially punishing peers and
3354 // updating which peers send us compact blocks, so the race
3355 // between here and cs_main in ProcessNewBlock is fine.
3356 // BIP 152 permits peers to relay compact blocks after validating
3357 // the header only; we should not punish peers if the block turns
3358 // out to be invalid.
3359 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3360 }
3361 } // Don't hold cs_main when we call into ProcessNewBlock
3362 if (fBlockRead) {
3363 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3364 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3365 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3366 // disk-space attacks), but this should be safe due to the
3367 // protections in the compact block handler -- see related comment
3368 // in compact block optimistic reconstruction handling.
3369 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3370 }
3371 return;
3372}
3373
3374void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3375 const std::chrono::microseconds time_received,
3376 const std::atomic<bool>& interruptMsgProc)
3377{
3378 AssertLockHeld(g_msgproc_mutex);
3379
3380 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3381
3382 PeerRef peer = GetPeerRef(pfrom.GetId());
3383 if (peer == nullptr) return;
3384
3385 if (msg_type == NetMsgType::VERSION) {
3386 if (pfrom.nVersion != 0) {
3387 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3388 return;
3389 }
3390
3391 int64_t nTime;
3392 CService addrMe;
3393 uint64_t nNonce = 1;
3394 ServiceFlags nServices;
3395 int nVersion;
3396 std::string cleanSubVer;
3397 int starting_height = -1;
3398 bool fRelay = true;
3399
3400 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3401 if (nTime < 0) {
3402 nTime = 0;
3403 }
3404 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3405 vRecv >> CNetAddr::V1(addrMe);
3406 if (!pfrom.IsInboundConn())
3407 {
3408 // Overwrites potentially existing services. In contrast to this,
3409 // unvalidated services received via gossip relay in ADDR/ADDRV2
3410 // messages are only ever added but cannot replace existing ones.
3411 m_addrman.SetServices(pfrom.addr, nServices);
3412 }
3413 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3414 {
3415 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3416 nServices,
3417 GetDesirableServiceFlags(nServices),
3418 pfrom.DisconnectMsg(fLogIPs));
3419 pfrom.fDisconnect = true;
3420 return;
3421 }
3422
3423 if (nVersion < MIN_PEER_PROTO_VERSION) {
3424 // disconnect from peers older than this proto version
3425 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3426 pfrom.fDisconnect = true;
3427 return;
3428 }
3429
3430 if (!vRecv.empty()) {
3431 // The version message includes information about the sending node which we don't use:
3432 // - 8 bytes (service bits)
3433 // - 16 bytes (ipv6 address)
3434 // - 2 bytes (port)
3435 vRecv.ignore(26);
3436 vRecv >> nNonce;
3437 }
3438 if (!vRecv.empty()) {
3439 std::string strSubVer;
3440 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3441 cleanSubVer = SanitizeString(strSubVer);
3442 }
3443 if (!vRecv.empty()) {
3444 vRecv >> starting_height;
3445 }
3446 if (!vRecv.empty())
3447 vRecv >> fRelay;
3448 // Disconnect if we connected to ourself
3449 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3450 {
3451 LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3452 pfrom.fDisconnect = true;
3453 return;
3454 }
3455
3456 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3457 {
3458 SeenLocal(addrMe);
3459 }
3460
3461 // Inbound peers send us their version message when they connect.
3462 // We send our version message in response.
3463 if (pfrom.IsInboundConn()) {
3464 PushNodeVersion(pfrom, *peer);
3465 }
3466
3467 // Change version
3468 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3469 pfrom.SetCommonVersion(greatest_common_version);
3470 pfrom.nVersion = nVersion;
3471
3472 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3473 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3474 }
3475
3476 // Signal ADDRv2 support (BIP155).
3477 if (greatest_common_version >= 70016) {
3478 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3479 // implementations reject messages they don't know. As a courtesy, don't send
3480 // it to nodes with a version before 70016, as no software is known to support
3481 // BIP155 that doesn't announce at least that protocol version number.
3482 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3483 }
3484
3485 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3486 peer->m_their_services = nServices;
3487 pfrom.SetAddrLocal(addrMe);
3488 {
3489 LOCK(pfrom.m_subver_mutex);
3490 pfrom.cleanSubVer = cleanSubVer;
3491 }
3492 peer->m_starting_height = starting_height;
3493
3494 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3495 // - this isn't an outbound block-relay-only connection, and
3496 // - this isn't an outbound feeler connection, and
3497 // - fRelay=true (the peer wishes to receive transaction announcements)
3498 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3499 // the peer may turn on transaction relay later.
3500 if (!pfrom.IsBlockOnlyConn() &&
3501 !pfrom.IsFeelerConn() &&
3502 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3503 auto* const tx_relay = peer->SetTxRelay();
3504 {
3505 LOCK(tx_relay->m_bloom_filter_mutex);
3506 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3507 }
3508 if (fRelay) pfrom.m_relays_txs = true;
3509 }
3510
3511 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3512 // Per BIP-330, we announce txreconciliation support if:
3513 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3514 // - transaction relay is supported per the peer's VERSION message
3515 // - this is not a block-relay-only connection and not a feeler
3516 // - this is not an addr fetch connection;
3517 // - we are not in -blocksonly mode.
3518 const auto* tx_relay = peer->GetTxRelay();
3519 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3520 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3521 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3522 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3523 TXRECONCILIATION_VERSION, recon_salt);
3524 }
3525 }
3526
3527 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3528
3529 // Potentially mark this peer as a preferred download peer.
3530 {
3531 LOCK(cs_main);
3532 CNodeState* state = State(pfrom.GetId());
3533 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3534 m_num_preferred_download_peers += state->fPreferredDownload;
3535 }
3536
3537 // Attempt to initialize address relay for outbound peers and use result
3538 // to decide whether to send GETADDR, so that we don't send it to
3539 // inbound or outbound block-relay-only peers.
3540 bool send_getaddr{false};
3541 if (!pfrom.IsInboundConn()) {
3542 send_getaddr = SetupAddressRelay(pfrom, *peer);
3543 }
3544 if (send_getaddr) {
3545 // Do a one-time address fetch to help populate/update our addrman.
3546 // If we're starting up for the first time, our addrman may be pretty
3547 // empty, so this mechanism is important to help us connect to the network.
3548 // We skip this for block-relay-only peers. We want to avoid
3549 // potentially leaking addr information and we do not want to
3550 // indicate to the peer that we will participate in addr relay.
3551 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3552 peer->m_getaddr_sent = true;
3553 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3554 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3555 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3556 }
3557
3558 if (!pfrom.IsInboundConn()) {
3559 // For non-inbound connections, we update the addrman to record
3560 // connection success so that addrman will have an up-to-date
3561 // notion of which peers are online and available.
3562 //
3563 // While we strive to not leak information about block-relay-only
3564 // connections via the addrman, not moving an address to the tried
3565 // table is also potentially detrimental because new-table entries
3566 // are subject to eviction in the event of addrman collisions. We
3567 // mitigate the information-leak by never calling
3568 // AddrMan::Connected() on block-relay-only peers; see
3569 // FinalizeNode().
3570 //
3571 // This moves an address from New to Tried table in Addrman,
3572 // resolves tried-table collisions, etc.
3573 m_addrman.Good(pfrom.addr);
3574 }
3575
3576 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3577 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3578 cleanSubVer, pfrom.nVersion,
3579 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3580 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3581
3582 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3583 if (!pfrom.IsInboundConn()) {
3584 // Don't use timedata samples from inbound peers to make it
3585 // harder for others to create false warnings about our clock being out of sync.
3586 m_outbound_time_offsets.Add(peer->m_time_offset);
3587 m_outbound_time_offsets.WarnIfOutOfSync();
3588 }
3589
3590 // If the peer is old enough to have the old alert system, send it the final alert.
3591 if (greatest_common_version <= 70012) {
3592 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3593 MakeAndPushMessage(pfrom, "alert", finalAlert);
3594 }
3595
3596 // Feeler connections exist only to verify if address is online.
3597 if (pfrom.IsFeelerConn()) {
3598 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3599 pfrom.fDisconnect = true;
3600 }
3601 return;
3602 }
3603
3604 if (pfrom.nVersion == 0) {
3605 // Must have a version message before anything else
3606 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3607 return;
3608 }
3609
3610 if (msg_type == NetMsgType::VERACK) {
3611 if (pfrom.fSuccessfullyConnected) {
3612 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3613 return;
3614 }
3615
3616 // Log successful connections unconditionally for outbound, but not for inbound as those
3617 // can be triggered by an attacker at high rate.
3619 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3620 LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3621 pfrom.ConnectionTypeAsString(),
3622 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3623 pfrom.nVersion.load(), peer->m_starting_height,
3624 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3625 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3626 }
3627
3629 // Tell our peer we are willing to provide version 2 cmpctblocks.
3630 // However, we do not request new block announcements using
3631 // cmpctblock messages.
3632 // We send this to non-NODE NETWORK peers as well, because
3633 // they may wish to request compact blocks from us
3634 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3635 }
3636
3637 if (m_txreconciliation) {
3638 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3639 // We could have optimistically pre-registered/registered the peer. In that case,
3640 // we should forget about the reconciliation state here if this wasn't followed
3641 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3642 m_txreconciliation->ForgetPeer(pfrom.GetId());
3643 }
3644 }
3645
3646 if (auto tx_relay = peer->GetTxRelay()) {
3647 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3648 // version handshake is completed as
3649 // `TxRelay::m_next_inv_send_time` is first initialised in
3650 // `SendMessages` after the verack is received. Any transactions
3651 // received during the version handshake would otherwise
3652 // immediately be advertised without random delay, potentially
3653 // leaking the time of arrival to a spy.
3655 tx_relay->m_tx_inventory_mutex,
3656 return tx_relay->m_tx_inventory_to_send.empty() &&
3657 tx_relay->m_next_inv_send_time == 0s));
3658 }
3659
3660 {
3661 LOCK2(::cs_main, m_tx_download_mutex);
3662 const CNodeState* state = State(pfrom.GetId());
3663 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3664 .m_preferred = state->fPreferredDownload,
3665 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3666 .m_wtxid_relay = peer->m_wtxid_relay,
3667 });
3668 }
3669
3670 pfrom.fSuccessfullyConnected = true;
3671 return;
3672 }
3673
3674 if (msg_type == NetMsgType::SENDHEADERS) {
3675 peer->m_prefers_headers = true;
3676 return;
3677 }
3678
3679 if (msg_type == NetMsgType::SENDCMPCT) {
3680 bool sendcmpct_hb{false};
3681 uint64_t sendcmpct_version{0};
3682 vRecv >> sendcmpct_hb >> sendcmpct_version;
3683
3684 // Only support compact block relay with witnesses
3685 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3686
3687 LOCK(cs_main);
3688 CNodeState* nodestate = State(pfrom.GetId());
3689 nodestate->m_provides_cmpctblocks = true;
3690 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3691 // save whether peer selects us as BIP152 high-bandwidth peer
3692 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3693 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3694 return;
3695 }
3696
3697 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3698 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3699 if (msg_type == NetMsgType::WTXIDRELAY) {
3700 if (pfrom.fSuccessfullyConnected) {
3701 // Disconnect peers that send a wtxidrelay message after VERACK.
3702 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3703 pfrom.fDisconnect = true;
3704 return;
3705 }
3706 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3707 if (!peer->m_wtxid_relay) {
3708 peer->m_wtxid_relay = true;
3709 m_wtxid_relay_peers++;
3710 } else {
3711 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3712 }
3713 } else {
3714 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3715 }
3716 return;
3717 }
3718
3719 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3720 // between VERSION and VERACK.
3721 if (msg_type == NetMsgType::SENDADDRV2) {
3722 if (pfrom.fSuccessfullyConnected) {
3723 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3724 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3725 pfrom.fDisconnect = true;
3726 return;
3727 }
3728 peer->m_wants_addrv2 = true;
3729 return;
3730 }
3731
3732 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3733 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3734 // from switching announcement protocols after the connection is up.
3735 if (msg_type == NetMsgType::SENDTXRCNCL) {
3736 if (!m_txreconciliation) {
3737 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3738 return;
3739 }
3740
3741 if (pfrom.fSuccessfullyConnected) {
3742 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3743 pfrom.fDisconnect = true;
3744 return;
3745 }
3746
3747 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3748 if (RejectIncomingTxs(pfrom)) {
3749 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3750 pfrom.fDisconnect = true;
3751 return;
3752 }
3753
3754 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3755 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3756 // eliminates them, so that this flag fully represents what we are looking for.
3757 const auto* tx_relay = peer->GetTxRelay();
3758 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3759 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3760 pfrom.fDisconnect = true;
3761 return;
3762 }
3763
3764 uint32_t peer_txreconcl_version;
3765 uint64_t remote_salt;
3766 vRecv >> peer_txreconcl_version >> remote_salt;
3767
3768 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3769 peer_txreconcl_version, remote_salt);
3770 switch (result) {
3772 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3773 break;
3775 break;
3777 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3778 pfrom.fDisconnect = true;
3779 return;
3781 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3782 pfrom.fDisconnect = true;
3783 return;
3784 }
3785 return;
3786 }
3787
3788 if (!pfrom.fSuccessfullyConnected) {
3789 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3790 return;
3791 }
3792
3793 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3794 const auto ser_params{
3795 msg_type == NetMsgType::ADDRV2 ?
3796 // Set V2 param so that the CNetAddr and CAddress
3797 // unserialize methods know that an address in v2 format is coming.
3800 };
3801
3802 std::vector<CAddress> vAddr;
3803
3804 vRecv >> ser_params(vAddr);
3805
3806 if (!SetupAddressRelay(pfrom, *peer)) {
3807 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3808 return;
3809 }
3810
3811 if (vAddr.size() > MAX_ADDR_TO_SEND)
3812 {
3813 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3814 return;
3815 }
3816
3817 // Store the new addresses
3818 std::vector<CAddress> vAddrOk;
3819 const auto current_a_time{Now<NodeSeconds>()};
3820
3821 // Update/increment addr rate limiting bucket.
3822 const auto current_time{GetTime<std::chrono::microseconds>()};
3823 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3824 // Don't increment bucket if it's already full
3825 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3826 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3827 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3828 }
3829 peer->m_addr_token_timestamp = current_time;
3830
3831 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3832 uint64_t num_proc = 0;
3833 uint64_t num_rate_limit = 0;
3834 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3835 for (CAddress& addr : vAddr)
3836 {
3837 if (interruptMsgProc)
3838 return;
3839
3840 // Apply rate limiting.
3841 if (peer->m_addr_token_bucket < 1.0) {
3842 if (rate_limited) {
3843 ++num_rate_limit;
3844 continue;
3845 }
3846 } else {
3847 peer->m_addr_token_bucket -= 1.0;
3848 }
3849 // We only bother storing full nodes, though this may include
3850 // things which we would not make an outbound connection to, in
3851 // part because we may make feeler connections to them.
3852 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3853 continue;
3854
3855 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3856 addr.nTime = current_a_time - 5 * 24h;
3857 }
3858 AddAddressKnown(*peer, addr);
3859 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3860 // Do not process banned/discouraged addresses beyond remembering we received them
3861 continue;
3862 }
3863 ++num_proc;
3864 const bool reachable{g_reachable_nets.Contains(addr)};
3865 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3866 // Relay to a limited number of other nodes
3867 RelayAddress(pfrom.GetId(), addr, reachable);
3868 }
3869 // Do not store addresses outside our network
3870 if (reachable) {
3871 vAddrOk.push_back(addr);
3872 }
3873 }
3874 peer->m_addr_processed += num_proc;
3875 peer->m_addr_rate_limited += num_rate_limit;
3876 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3877 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3878
3879 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3880 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3881
3882 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3883 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3884 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3885 pfrom.fDisconnect = true;
3886 }
3887 return;
3888 }
3889
3890 if (msg_type == NetMsgType::INV) {
3891 std::vector<CInv> vInv;
3892 vRecv >> vInv;
3893 if (vInv.size() > MAX_INV_SZ)
3894 {
3895 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3896 return;
3897 }
3898
3899 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3900
3901 LOCK2(cs_main, m_tx_download_mutex);
3902
3903 const auto current_time{GetTime<std::chrono::microseconds>()};
3904 uint256* best_block{nullptr};
3905
3906 for (CInv& inv : vInv) {
3907 if (interruptMsgProc) return;
3908
3909 // Ignore INVs that don't match wtxidrelay setting.
3910 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3911 // This is fine as no INV messages are involved in that process.
3912 if (peer->m_wtxid_relay) {
3913 if (inv.IsMsgTx()) continue;
3914 } else {
3915 if (inv.IsMsgWtx()) continue;
3916 }
3917
3918 if (inv.IsMsgBlk()) {
3919 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3920 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3921
3922 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3923 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3924 // Headers-first is the primary method of announcement on
3925 // the network. If a node fell back to sending blocks by
3926 // inv, it may be for a re-org, or because we haven't
3927 // completed initial headers sync. The final block hash
3928 // provided should be the highest, so send a getheaders and
3929 // then fetch the blocks we need to catch up.
3930 best_block = &inv.hash;
3931 }
3932 } else if (inv.IsGenTxMsg()) {
3933 if (reject_tx_invs) {
3934 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
3935 pfrom.fDisconnect = true;
3936 return;
3937 }
3938 const GenTxid gtxid = ToGenTxid(inv);
3939 AddKnownTx(*peer, inv.hash);
3940
3941 if (!m_chainman.IsInitialBlockDownload()) {
3942 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
3943 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3944 }
3945 } else {
3946 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3947 }
3948 }
3949
3950 if (best_block != nullptr) {
3951 // If we haven't started initial headers-sync with this peer, then
3952 // consider sending a getheaders now. On initial startup, there's a
3953 // reliability vs bandwidth tradeoff, where we are only trying to do
3954 // initial headers sync with one peer at a time, with a long
3955 // timeout (at which point, if the sync hasn't completed, we will
3956 // disconnect the peer and then choose another). In the meantime,
3957 // as new blocks are found, we are willing to add one new peer per
3958 // block to sync with as well, to sync quicker in the case where
3959 // our initial peer is unresponsive (but less bandwidth than we'd
3960 // use if we turned on sync with all peers).
3961 CNodeState& state{*Assert(State(pfrom.GetId()))};
3962 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
3963 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
3964 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
3965 m_chainman.m_best_header->nHeight, best_block->ToString(),
3966 pfrom.GetId());
3967 }
3968 if (!state.fSyncStarted) {
3969 peer->m_inv_triggered_getheaders_before_sync = true;
3970 // Update the last block hash that triggered a new headers
3971 // sync, so that we don't turn on headers sync with more
3972 // than 1 new peer every new block.
3973 m_last_block_inv_triggering_headers_sync = *best_block;
3974 }
3975 }
3976 }
3977
3978 return;
3979 }
3980
3981 if (msg_type == NetMsgType::GETDATA) {
3982 std::vector<CInv> vInv;
3983 vRecv >> vInv;
3984 if (vInv.size() > MAX_INV_SZ)
3985 {
3986 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
3987 return;
3988 }
3989
3990 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
3991
3992 if (vInv.size() > 0) {
3993 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
3994 }
3995
3996 {
3997 LOCK(peer->m_getdata_requests_mutex);
3998 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
3999 ProcessGetData(pfrom, *peer, interruptMsgProc);
4000 }
4001
4002 return;
4003 }
4004
4005 if (msg_type == NetMsgType::GETBLOCKS) {
4006 CBlockLocator locator;
4007 uint256 hashStop;
4008 vRecv >> locator >> hashStop;
4009
4010 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4011 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4012 pfrom.fDisconnect = true;
4013 return;
4014 }
4015
4016 // We might have announced the currently-being-connected tip using a
4017 // compact block, which resulted in the peer sending a getblocks
4018 // request, which we would otherwise respond to without the new block.
4019 // To avoid this situation we simply verify that we are on our best
4020 // known chain now. This is super overkill, but we handle it better
4021 // for getheaders requests, and there are no known nodes which support
4022 // compact blocks but still use getblocks to request blocks.
4023 {
4024 std::shared_ptr<const CBlock> a_recent_block;
4025 {
4026 LOCK(m_most_recent_block_mutex);
4027 a_recent_block = m_most_recent_block;
4028 }
4030 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4031 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4032 }
4033 }
4034
4035 LOCK(cs_main);
4036
4037 // Find the last block the caller has in the main chain
4038 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4039
4040 // Send the rest of the chain
4041 if (pindex)
4042 pindex = m_chainman.ActiveChain().Next(pindex);
4043 int nLimit = 500;
4044 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4045 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4046 {
4047 if (pindex->GetBlockHash() == hashStop)
4048 {
4049 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4050 break;
4051 }
4052 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4053 // for some reasonable time window (1 hour) that block relay might require.
4054 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4055 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4056 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4057 break;
4058 }
4059 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4060 if (--nLimit <= 0) {
4061 // When this block is requested, we'll send an inv that'll
4062 // trigger the peer to getblocks the next batch of inventory.
4063 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4064 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4065 break;
4066 }
4067 }
4068 return;
4069 }
4070
4071 if (msg_type == NetMsgType::GETBLOCKTXN) {
4073 vRecv >> req;
4074
4075 std::shared_ptr<const CBlock> recent_block;
4076 {
4077 LOCK(m_most_recent_block_mutex);
4078 if (m_most_recent_block_hash == req.blockhash)
4079 recent_block = m_most_recent_block;
4080 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4081 }
4082 if (recent_block) {
4083 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4084 return;
4085 }
4086
4087 FlatFilePos block_pos{};
4088 {
4089 LOCK(cs_main);
4090
4091 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4092 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4093 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4094 return;
4095 }
4096
4097 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4098 block_pos = pindex->GetBlockPos();
4099 }
4100 }
4101
4102 if (!block_pos.IsNull()) {
4103 CBlock block;
4104 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos)};
4105 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4106 // pruned after we release cs_main above, so this read should never fail.
4107 assert(ret);
4108
4109 SendBlockTransactions(pfrom, *peer, block, req);
4110 return;
4111 }
4112
4113 // If an older block is requested (should never happen in practice,
4114 // but can happen in tests) send a block response instead of a
4115 // blocktxn response. Sending a full block response instead of a
4116 // small blocktxn response is preferable in the case where a peer
4117 // might maliciously send lots of getblocktxn requests to trigger
4118 // expensive disk reads, because it will require the peer to
4119 // actually receive all the data read from disk over the network.
4120 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4122 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4123 // The message processing loop will go around again (without pausing) and we'll respond then
4124 return;
4125 }
4126
4127 if (msg_type == NetMsgType::GETHEADERS) {
4128 CBlockLocator locator;
4129 uint256 hashStop;
4130 vRecv >> locator >> hashStop;
4131
4132 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4133 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4134 pfrom.fDisconnect = true;
4135 return;
4136 }
4137
4138 if (m_chainman.m_blockman.LoadingBlocks()) {
4139 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4140 return;
4141 }
4142
4143 LOCK(cs_main);
4144
4145 // Note that if we were to be on a chain that forks from the checkpointed
4146 // chain, then serving those headers to a peer that has seen the
4147 // checkpointed chain would cause that peer to disconnect us. Requiring
4148 // that our chainwork exceed the minimum chain work is a protection against
4149 // being fed a bogus chain when we started up for the first time and
4150 // getting partitioned off the honest network for serving that chain to
4151 // others.
4152 if (m_chainman.ActiveTip() == nullptr ||
4153 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4154 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4155 // Just respond with an empty headers message, to tell the peer to
4156 // go away but not treat us as unresponsive.
4157 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4158 return;
4159 }
4160
4161 CNodeState *nodestate = State(pfrom.GetId());
4162 const CBlockIndex* pindex = nullptr;
4163 if (locator.IsNull())
4164 {
4165 // If locator is null, return the hashStop block
4166 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4167 if (!pindex) {
4168 return;
4169 }
4170
4171 if (!BlockRequestAllowed(pindex)) {
4172 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4173 return;
4174 }
4175 }
4176 else
4177 {
4178 // Find the last block the caller has in the main chain
4179 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4180 if (pindex)
4181 pindex = m_chainman.ActiveChain().Next(pindex);
4182 }
4183
4184 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4185 std::vector<CBlock> vHeaders;
4186 int nLimit = m_opts.max_headers_result;
4187 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4188 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4189 {
4190 vHeaders.emplace_back(pindex->GetBlockHeader());
4191 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4192 break;
4193 }
4194 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4195 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4196 // headers message). In both cases it's safe to update
4197 // pindexBestHeaderSent to be our tip.
4198 //
4199 // It is important that we simply reset the BestHeaderSent value here,
4200 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4201 // the currently-being-connected tip using a compact block, which
4202 // resulted in the peer sending a headers request, which we respond to
4203 // without the new block. By resetting the BestHeaderSent, we ensure we
4204 // will re-announce the new block via headers (or compact blocks again)
4205 // in the SendMessages logic.
4206 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4207 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4208 return;
4209 }
4210
4211 if (msg_type == NetMsgType::TX) {
4212 if (RejectIncomingTxs(pfrom)) {
4213 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4214 pfrom.fDisconnect = true;
4215 return;
4216 }
4217
4218 // Stop processing the transaction early if we are still in IBD since we don't
4219 // have enough information to validate it yet. Sending unsolicited transactions
4220 // is not considered a protocol violation, so don't punish the peer.
4221 if (m_chainman.IsInitialBlockDownload()) return;
4222
4223 CTransactionRef ptx;
4224 vRecv >> TX_WITH_WITNESS(ptx);
4225 const CTransaction& tx = *ptx;
4226
4227 const uint256& txid = ptx->GetHash();
4228 const uint256& wtxid = ptx->GetWitnessHash();
4229
4230 const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4231 AddKnownTx(*peer, hash);
4232
4233 LOCK2(cs_main, m_tx_download_mutex);
4234
4235 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4236 if (!should_validate) {
4238 // Always relay transactions received from peers with forcerelay
4239 // permission, even if they were already in the mempool, allowing
4240 // the node to function as a gateway for nodes hidden behind it.
4241 if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
4242 LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4243 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4244 } else {
4245 LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4246 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4247 RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4248 }
4249 }
4250
4251 if (package_to_validate) {
4252 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4253 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4254 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4255 ProcessPackageResult(package_to_validate.value(), package_result);
4256 }
4257 return;
4258 }
4259
4260 // ReceivedTx should not be telling us to validate the tx and a package.
4261 Assume(!package_to_validate.has_value());
4262
4263 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4264 const TxValidationState& state = result.m_state;
4265
4267 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4268 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4269 }
4270 if (state.IsInvalid()) {
4271 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4272 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4273 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4274 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4275 ProcessPackageResult(package_to_validate.value(), package_result);
4276 }
4277 }
4278
4279 return;
4280 }
4281
4282 if (msg_type == NetMsgType::CMPCTBLOCK)
4283 {
4284 // Ignore cmpctblock received while importing
4285 if (m_chainman.m_blockman.LoadingBlocks()) {
4286 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4287 return;
4288 }
4289
4290 CBlockHeaderAndShortTxIDs cmpctblock;
4291 vRecv >> cmpctblock;
4292
4293 bool received_new_header = false;
4294 const auto blockhash = cmpctblock.header.GetHash();
4295
4296 {
4297 LOCK(cs_main);
4298
4299 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4300 if (!prev_block) {
4301 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4302 if (!m_chainman.IsInitialBlockDownload()) {
4303 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4304 }
4305 return;
4306 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4307 // If we get a low-work header in a compact block, we can ignore it.
4308 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4309 return;
4310 }
4311
4312 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4313 received_new_header = true;
4314 }
4315 }
4316
4317 const CBlockIndex *pindex = nullptr;
4319 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4320 if (state.IsInvalid()) {
4321 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4322 return;
4323 }
4324 }
4325
4326 if (received_new_header) {
4327 LogInfo("Saw new cmpctblock header hash=%s peer=%d\n",
4328 blockhash.ToString(), pfrom.GetId());
4329 }
4330
4331 bool fProcessBLOCKTXN = false;
4332
4333 // If we end up treating this as a plain headers message, call that as well
4334 // without cs_main.
4335 bool fRevertToHeaderProcessing = false;
4336
4337 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4338 // below)
4339 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4340 bool fBlockReconstructed = false;
4341
4342 {
4343 LOCK(cs_main);
4344 // If AcceptBlockHeader returned true, it set pindex
4345 assert(pindex);
4346 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4347
4348 CNodeState *nodestate = State(pfrom.GetId());
4349
4350 // If this was a new header with more work than our tip, update the
4351 // peer's last block announcement time
4352 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4353 nodestate->m_last_block_announcement = GetTime();
4354 }
4355
4356 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4357 return;
4358
4359 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4360 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4361 bool requested_block_from_this_peer{false};
4362
4363 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4364 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4365
4366 while (range_flight.first != range_flight.second) {
4367 if (range_flight.first->second.first == pfrom.GetId()) {
4368 requested_block_from_this_peer = true;
4369 break;
4370 }
4371 range_flight.first++;
4372 }
4373
4374 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4375 pindex->nTx != 0) { // We had this block at some point, but pruned it
4376 if (requested_block_from_this_peer) {
4377 // We requested this block for some reason, but our mempool will probably be useless
4378 // so we just grab the block via normal getdata
4379 std::vector<CInv> vInv(1);
4380 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4381 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4382 }
4383 return;
4384 }
4385
4386 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4387 if (!already_in_flight && !CanDirectFetch()) {
4388 return;
4389 }
4390
4391 // We want to be a bit conservative just to be extra careful about DoS
4392 // possibilities in compact block processing...
4393 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4394 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4395 requested_block_from_this_peer) {
4396 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4397 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4398 if (!(*queuedBlockIt)->partialBlock)
4399 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4400 else {
4401 // The block was already in flight using compact blocks from the same peer
4402 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4403 return;
4404 }
4405 }
4406
4407 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4408 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4409 if (status == READ_STATUS_INVALID) {
4410 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4411 Misbehaving(*peer, "invalid compact block");
4412 return;
4413 } else if (status == READ_STATUS_FAILED) {
4414 if (first_in_flight) {
4415 // Duplicate txindexes, the block is now in-flight, so just request it
4416 std::vector<CInv> vInv(1);
4417 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4418 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4419 } else {
4420 // Give up for this peer and wait for other peer(s)
4421 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4422 }
4423 return;
4424 }
4425
4427 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4428 if (!partialBlock.IsTxAvailable(i))
4429 req.indexes.push_back(i);
4430 }
4431 if (req.indexes.empty()) {
4432 fProcessBLOCKTXN = true;
4433 } else if (first_in_flight) {
4434 // We will try to round-trip any compact blocks we get on failure,
4435 // as long as it's first...
4436 req.blockhash = pindex->GetBlockHash();
4437 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4438 } else if (pfrom.m_bip152_highbandwidth_to &&
4439 (!pfrom.IsInboundConn() ||
4440 IsBlockRequestedFromOutbound(blockhash) ||
4441 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4442 // ... or it's a hb relay peer and:
4443 // - peer is outbound, or
4444 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4445 // - it's not the final parallel download slot (which we may reserve for first outbound)
4446 req.blockhash = pindex->GetBlockHash();
4447 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4448 } else {
4449 // Give up for this peer and wait for other peer(s)
4450 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4451 }
4452 } else {
4453 // This block is either already in flight from a different
4454 // peer, or this peer has too many blocks outstanding to
4455 // download from.
4456 // Optimistically try to reconstruct anyway since we might be
4457 // able to without any round trips.
4458 PartiallyDownloadedBlock tempBlock(&m_mempool);
4459 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4460 if (status != READ_STATUS_OK) {
4461 // TODO: don't ignore failures
4462 return;
4463 }
4464 std::vector<CTransactionRef> dummy;
4465 status = tempBlock.FillBlock(*pblock, dummy);
4466 if (status == READ_STATUS_OK) {
4467 fBlockReconstructed = true;
4468 }
4469 }
4470 } else {
4471 if (requested_block_from_this_peer) {
4472 // We requested this block, but its far into the future, so our
4473 // mempool will probably be useless - request the block normally
4474 std::vector<CInv> vInv(1);
4475 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4476 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4477 return;
4478 } else {
4479 // If this was an announce-cmpctblock, we want the same treatment as a header message
4480 fRevertToHeaderProcessing = true;
4481 }
4482 }
4483 } // cs_main
4484
4485 if (fProcessBLOCKTXN) {
4487 txn.blockhash = blockhash;
4488 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4489 }
4490
4491 if (fRevertToHeaderProcessing) {
4492 // Headers received from HB compact block peers are permitted to be
4493 // relayed before full validation (see BIP 152), so we don't want to disconnect
4494 // the peer if the header turns out to be for an invalid block.
4495 // Note that if a peer tries to build on an invalid chain, that
4496 // will be detected and the peer will be disconnected/discouraged.
4497 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4498 }
4499
4500 if (fBlockReconstructed) {
4501 // If we got here, we were able to optimistically reconstruct a
4502 // block that is in flight from some other peer.
4503 {
4504 LOCK(cs_main);
4505 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4506 }
4507 // Setting force_processing to true means that we bypass some of
4508 // our anti-DoS protections in AcceptBlock, which filters
4509 // unrequested blocks that might be trying to waste our resources
4510 // (eg disk space). Because we only try to reconstruct blocks when
4511 // we're close to caught up (via the CanDirectFetch() requirement
4512 // above, combined with the behavior of not requesting blocks until
4513 // we have a chain with at least the minimum chain work), and we ignore
4514 // compact blocks with less work than our tip, it is safe to treat
4515 // reconstructed compact blocks as having been requested.
4516 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4517 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4518 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4519 // Clear download state for this block, which is in
4520 // process from some other peer. We do this after calling
4521 // ProcessNewBlock so that a malleated cmpctblock announcement
4522 // can't be used to interfere with block relay.
4523 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4524 }
4525 }
4526 return;
4527 }
4528
4529 if (msg_type == NetMsgType::BLOCKTXN)
4530 {
4531 // Ignore blocktxn received while importing
4532 if (m_chainman.m_blockman.LoadingBlocks()) {
4533 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4534 return;
4535 }
4536
4537 BlockTransactions resp;
4538 vRecv >> resp;
4539
4540 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4541 }
4542
4543 if (msg_type == NetMsgType::HEADERS)
4544 {
4545 // Ignore headers received while importing
4546 if (m_chainman.m_blockman.LoadingBlocks()) {
4547 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4548 return;
4549 }
4550
4551 std::vector<CBlockHeader> headers;
4552
4553 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4554 unsigned int nCount = ReadCompactSize(vRecv);
4555 if (nCount > m_opts.max_headers_result) {
4556 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4557 return;
4558 }
4559 headers.resize(nCount);
4560 for (unsigned int n = 0; n < nCount; n++) {
4561 vRecv >> headers[n];
4562 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4563 }
4564
4565 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4566
4567 // Check if the headers presync progress needs to be reported to validation.
4568 // This needs to be done without holding the m_headers_presync_mutex lock.
4569 if (m_headers_presync_should_signal.exchange(false)) {
4570 HeadersPresyncStats stats;
4571 {
4572 LOCK(m_headers_presync_mutex);
4573 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4574 if (it != m_headers_presync_stats.end()) stats = it->second;
4575 }
4576 if (stats.second) {
4577 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4578 }
4579 }
4580
4581 return;
4582 }
4583
4584 if (msg_type == NetMsgType::BLOCK)
4585 {
4586 // Ignore block received while importing
4587 if (m_chainman.m_blockman.LoadingBlocks()) {
4588 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4589 return;
4590 }
4591
4592 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4593 vRecv >> TX_WITH_WITNESS(*pblock);
4594
4595 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4596
4597 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4598
4599 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4600 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4601 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4602 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4603 Misbehaving(*peer, "mutated block");
4604 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4605 return;
4606 }
4607
4608 bool forceProcessing = false;
4609 const uint256 hash(pblock->GetHash());
4610 bool min_pow_checked = false;
4611 {
4612 LOCK(cs_main);
4613 // Always process the block if we requested it, since we may
4614 // need it even when it's not a candidate for a new best tip.
4615 forceProcessing = IsBlockRequested(hash);
4616 RemoveBlockRequest(hash, pfrom.GetId());
4617 // mapBlockSource is only used for punishing peers and setting
4618 // which peers send us compact blocks, so the race between here and
4619 // cs_main in ProcessNewBlock is fine.
4620 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4621
4622 // Check claimed work on this block against our anti-dos thresholds.
4623 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4624 min_pow_checked = true;
4625 }
4626 }
4627 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4628 return;
4629 }
4630
4631 if (msg_type == NetMsgType::GETADDR) {
4632 // This asymmetric behavior for inbound and outbound connections was introduced
4633 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4634 // to users' AddrMan and later request them by sending getaddr messages.
4635 // Making nodes which are behind NAT and can only make outgoing connections ignore
4636 // the getaddr message mitigates the attack.
4637 if (!pfrom.IsInboundConn()) {
4638 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4639 return;
4640 }
4641
4642 // Since this must be an inbound connection, SetupAddressRelay will
4643 // never fail.
4644 Assume(SetupAddressRelay(pfrom, *peer));
4645
4646 // Only send one GetAddr response per connection to reduce resource waste
4647 // and discourage addr stamping of INV announcements.
4648 if (peer->m_getaddr_recvd) {
4649 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4650 return;
4651 }
4652 peer->m_getaddr_recvd = true;
4653
4654 peer->m_addrs_to_send.clear();
4655 std::vector<CAddress> vAddr;
4657 vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4658 } else {
4659 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4660 }
4661 for (const CAddress &addr : vAddr) {
4662 PushAddress(*peer, addr);
4663 }
4664 return;
4665 }
4666
4667 if (msg_type == NetMsgType::MEMPOOL) {
4668 // Only process received mempool messages if we advertise NODE_BLOOM
4669 // or if the peer has mempool permissions.
4670 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4671 {
4673 {
4674 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4675 pfrom.fDisconnect = true;
4676 }
4677 return;
4678 }
4679
4680 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4681 {
4683 {
4684 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4685 pfrom.fDisconnect = true;
4686 }
4687 return;
4688 }
4689
4690 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4691 LOCK(tx_relay->m_tx_inventory_mutex);
4692 tx_relay->m_send_mempool = true;
4693 }
4694 return;
4695 }
4696
4697 if (msg_type == NetMsgType::PING) {
4698 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4699 uint64_t nonce = 0;
4700 vRecv >> nonce;
4701 // Echo the message back with the nonce. This allows for two useful features:
4702 //
4703 // 1) A remote node can quickly check if the connection is operational
4704 // 2) Remote nodes can measure the latency of the network thread. If this node
4705 // is overloaded it won't respond to pings quickly and the remote node can
4706 // avoid sending us more work, like chain download requests.
4707 //
4708 // The nonce stops the remote getting confused between different pings: without
4709 // it, if the remote node sends a ping once per second and this node takes 5
4710 // seconds to respond to each, the 5th ping the remote sends would appear to
4711 // return very quickly.
4712 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4713 }
4714 return;
4715 }
4716
4717 if (msg_type == NetMsgType::PONG) {
4718 const auto ping_end = time_received;
4719 uint64_t nonce = 0;
4720 size_t nAvail = vRecv.in_avail();
4721 bool bPingFinished = false;
4722 std::string sProblem;
4723
4724 if (nAvail >= sizeof(nonce)) {
4725 vRecv >> nonce;
4726
4727 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4728 if (peer->m_ping_nonce_sent != 0) {
4729 if (nonce == peer->m_ping_nonce_sent) {
4730 // Matching pong received, this ping is no longer outstanding
4731 bPingFinished = true;
4732 const auto ping_time = ping_end - peer->m_ping_start.load();
4733 if (ping_time.count() >= 0) {
4734 // Let connman know about this successful ping-pong
4735 pfrom.PongReceived(ping_time);
4736 } else {
4737 // This should never happen
4738 sProblem = "Timing mishap";
4739 }
4740 } else {
4741 // Nonce mismatches are normal when pings are overlapping
4742 sProblem = "Nonce mismatch";
4743 if (nonce == 0) {
4744 // This is most likely a bug in another implementation somewhere; cancel this ping
4745 bPingFinished = true;
4746 sProblem = "Nonce zero";
4747 }
4748 }
4749 } else {
4750 sProblem = "Unsolicited pong without ping";
4751 }
4752 } else {
4753 // This is most likely a bug in another implementation somewhere; cancel this ping
4754 bPingFinished = true;
4755 sProblem = "Short payload";
4756 }
4757
4758 if (!(sProblem.empty())) {
4759 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4760 pfrom.GetId(),
4761 sProblem,
4762 peer->m_ping_nonce_sent,
4763 nonce,
4764 nAvail);
4765 }
4766 if (bPingFinished) {
4767 peer->m_ping_nonce_sent = 0;
4768 }
4769 return;
4770 }
4771
4772 if (msg_type == NetMsgType::FILTERLOAD) {
4773 if (!(peer->m_our_services & NODE_BLOOM)) {
4774 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4775 pfrom.fDisconnect = true;
4776 return;
4777 }
4778 CBloomFilter filter;
4779 vRecv >> filter;
4780
4781 if (!filter.IsWithinSizeConstraints())
4782 {
4783 // There is no excuse for sending a too-large filter
4784 Misbehaving(*peer, "too-large bloom filter");
4785 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4786 {
4787 LOCK(tx_relay->m_bloom_filter_mutex);
4788 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4789 tx_relay->m_relay_txs = true;
4790 }
4791 pfrom.m_bloom_filter_loaded = true;
4792 pfrom.m_relays_txs = true;
4793 }
4794 return;
4795 }
4796
4797 if (msg_type == NetMsgType::FILTERADD) {
4798 if (!(peer->m_our_services & NODE_BLOOM)) {
4799 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4800 pfrom.fDisconnect = true;
4801 return;
4802 }
4803 std::vector<unsigned char> vData;
4804 vRecv >> vData;
4805
4806 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4807 // and thus, the maximum size any matched object can have) in a filteradd message
4808 bool bad = false;
4809 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4810 bad = true;
4811 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4812 LOCK(tx_relay->m_bloom_filter_mutex);
4813 if (tx_relay->m_bloom_filter) {
4814 tx_relay->m_bloom_filter->insert(vData);
4815 } else {
4816 bad = true;
4817 }
4818 }
4819 if (bad) {
4820 Misbehaving(*peer, "bad filteradd message");
4821 }
4822 return;
4823 }
4824
4825 if (msg_type == NetMsgType::FILTERCLEAR) {
4826 if (!(peer->m_our_services & NODE_BLOOM)) {
4827 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4828 pfrom.fDisconnect = true;
4829 return;
4830 }
4831 auto tx_relay = peer->GetTxRelay();
4832 if (!tx_relay) return;
4833
4834 {
4835 LOCK(tx_relay->m_bloom_filter_mutex);
4836 tx_relay->m_bloom_filter = nullptr;
4837 tx_relay->m_relay_txs = true;
4838 }
4839 pfrom.m_bloom_filter_loaded = false;
4840 pfrom.m_relays_txs = true;
4841 return;
4842 }
4843
4844 if (msg_type == NetMsgType::FEEFILTER) {
4845 CAmount newFeeFilter = 0;
4846 vRecv >> newFeeFilter;
4847 if (MoneyRange(newFeeFilter)) {
4848 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4849 tx_relay->m_fee_filter_received = newFeeFilter;
4850 }
4851 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4852 }
4853 return;
4854 }
4855
4856 if (msg_type == NetMsgType::GETCFILTERS) {
4857 ProcessGetCFilters(pfrom, *peer, vRecv);
4858 return;
4859 }
4860
4861 if (msg_type == NetMsgType::GETCFHEADERS) {
4862 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4863 return;
4864 }
4865
4866 if (msg_type == NetMsgType::GETCFCHECKPT) {
4867 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4868 return;
4869 }
4870
4871 if (msg_type == NetMsgType::NOTFOUND) {
4872 std::vector<CInv> vInv;
4873 vRecv >> vInv;
4874 std::vector<uint256> tx_invs;
4876 for (CInv &inv : vInv) {
4877 if (inv.IsGenTxMsg()) {
4878 tx_invs.emplace_back(inv.hash);
4879 }
4880 }
4881 }
4882 LOCK(m_tx_download_mutex);
4883 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4884 return;
4885 }
4886
4887 // Ignore unknown commands for extensibility
4888 LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4889 return;
4890}
4891
4892bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4893{
4894 {
4895 LOCK(peer.m_misbehavior_mutex);
4896
4897 // There's nothing to do if the m_should_discourage flag isn't set
4898 if (!peer.m_should_discourage) return false;
4899
4900 peer.m_should_discourage = false;
4901 } // peer.m_misbehavior_mutex
4902
4904 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4905 LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4906 return false;
4907 }
4908
4909 if (pnode.IsManualConn()) {
4910 // We never disconnect or discourage manual peers for bad behavior
4911 LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4912 return false;
4913 }
4914
4915 if (pnode.addr.IsLocal()) {
4916 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4917 // all peers on the same local address)
4918 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4919 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4920 pnode.fDisconnect = true;
4921 return true;
4922 }
4923
4924 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4925 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4926 if (m_banman) m_banman->Discourage(pnode.addr);
4927 m_connman.DisconnectNode(pnode.addr);
4928 return true;
4929}
4930
4931bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4932{
4933 AssertLockNotHeld(m_tx_download_mutex);
4934 AssertLockHeld(g_msgproc_mutex);
4935
4936 PeerRef peer = GetPeerRef(pfrom->GetId());
4937 if (peer == nullptr) return false;
4938
4939 // For outbound connections, ensure that the initial VERSION message
4940 // has been sent first before processing any incoming messages
4941 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
4942
4943 {
4944 LOCK(peer->m_getdata_requests_mutex);
4945 if (!peer->m_getdata_requests.empty()) {
4946 ProcessGetData(*pfrom, *peer, interruptMsgProc);
4947 }
4948 }
4949
4950 const bool processed_orphan = ProcessOrphanTx(*peer);
4951
4952 if (pfrom->fDisconnect)
4953 return false;
4954
4955 if (processed_orphan) return true;
4956
4957 // this maintains the order of responses
4958 // and prevents m_getdata_requests to grow unbounded
4959 {
4960 LOCK(peer->m_getdata_requests_mutex);
4961 if (!peer->m_getdata_requests.empty()) return true;
4962 }
4963
4964 // Don't bother if send buffer is too full to respond anyway
4965 if (pfrom->fPauseSend) return false;
4966
4967 auto poll_result{pfrom->PollMessage()};
4968 if (!poll_result) {
4969 // No message to process
4970 return false;
4971 }
4972
4973 CNetMessage& msg{poll_result->first};
4974 bool fMoreWork = poll_result->second;
4975
4976 TRACEPOINT(net, inbound_message,
4977 pfrom->GetId(),
4978 pfrom->m_addr_name.c_str(),
4979 pfrom->ConnectionTypeAsString().c_str(),
4980 msg.m_type.c_str(),
4981 msg.m_recv.size(),
4982 msg.m_recv.data()
4983 );
4984
4985 if (m_opts.capture_messages) {
4986 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
4987 }
4988
4989 try {
4990 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
4991 if (interruptMsgProc) return false;
4992 {
4993 LOCK(peer->m_getdata_requests_mutex);
4994 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
4995 }
4996 // Does this peer has an orphan ready to reconsider?
4997 // (Note: we may have provided a parent for an orphan provided
4998 // by another peer that was already processed; in that case,
4999 // the extra work may not be noticed, possibly resulting in an
5000 // unnecessary 100ms delay)
5001 LOCK(m_tx_download_mutex);
5002 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5003 } catch (const std::exception& e) {
5004 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5005 } catch (...) {
5006 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5007 }
5008
5009 return fMoreWork;
5010}
5011
5012void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5013{
5015
5016 CNodeState &state = *State(pto.GetId());
5017
5018 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5019 // This is an outbound peer subject to disconnection if they don't
5020 // announce a block with as much work as the current tip within
5021 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5022 // their chain has more work than ours, we should sync to it,
5023 // unless it's invalid, in which case we should find that out and
5024 // disconnect from them elsewhere).
5025 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5026 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5027 if (state.m_chain_sync.m_timeout != 0s) {
5028 state.m_chain_sync.m_timeout = 0s;
5029 state.m_chain_sync.m_work_header = nullptr;
5030 state.m_chain_sync.m_sent_getheaders = false;
5031 }
5032 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5033 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5034 // AND
5035 // we are noticing this for the first time (m_timeout is 0)
5036 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5037 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5038 // Either way, set a new timeout based on our current tip.
5039 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5040 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5041 state.m_chain_sync.m_sent_getheaders = false;
5042 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5043 // No evidence yet that our peer has synced to a chain with work equal to that
5044 // of our tip, when we first detected it was behind. Send a single getheaders
5045 // message to give the peer a chance to update us.
5046 if (state.m_chain_sync.m_sent_getheaders) {
5047 // They've run out of time to catch up!
5048 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5049 pto.fDisconnect = true;
5050 } else {
5051 assert(state.m_chain_sync.m_work_header);
5052 // Here, we assume that the getheaders message goes out,
5053 // because it'll either go out or be skipped because of a
5054 // getheaders in-flight already, in which case the peer should
5055 // still respond to us with a sufficiently high work chain tip.
5056 MaybeSendGetHeaders(pto,
5057 GetLocator(state.m_chain_sync.m_work_header->pprev),
5058 peer);
5059 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5060 state.m_chain_sync.m_sent_getheaders = true;
5061 // Bump the timeout to allow a response, which could clear the timeout
5062 // (if the response shows the peer has synced), reset the timeout (if
5063 // the peer syncs to the required work but not to our tip), or result
5064 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5065 // has not sufficiently progressed)
5066 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5067 }
5068 }
5069 }
5070}
5071
5072void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5073{
5074 // If we have any extra block-relay-only peers, disconnect the youngest unless
5075 // it's given us a block -- in which case, compare with the second-youngest, and
5076 // out of those two, disconnect the peer who least recently gave us a block.
5077 // The youngest block-relay-only peer would be the extra peer we connected
5078 // to temporarily in order to sync our tip; see net.cpp.
5079 // Note that we use higher nodeid as a measure for most recent connection.
5080 if (m_connman.GetExtraBlockRelayCount() > 0) {
5081 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5082
5083 m_connman.ForEachNode([&](CNode* pnode) {
5084 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5085 if (pnode->GetId() > youngest_peer.first) {
5086 next_youngest_peer = youngest_peer;
5087 youngest_peer.first = pnode->GetId();
5088 youngest_peer.second = pnode->m_last_block_time;
5089 }
5090 });
5091 NodeId to_disconnect = youngest_peer.first;
5092 if (youngest_peer.second > next_youngest_peer.second) {
5093 // Our newest block-relay-only peer gave us a block more recently;
5094 // disconnect our second youngest.
5095 to_disconnect = next_youngest_peer.first;
5096 }
5097 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5099 // Make sure we're not getting a block right now, and that
5100 // we've been connected long enough for this eviction to happen
5101 // at all.
5102 // Note that we only request blocks from a peer if we learn of a
5103 // valid headers chain with at least as much work as our tip.
5104 CNodeState *node_state = State(pnode->GetId());
5105 if (node_state == nullptr ||
5106 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5107 pnode->fDisconnect = true;
5108 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5109 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5110 return true;
5111 } else {
5112 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5113 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5114 }
5115 return false;
5116 });
5117 }
5118
5119 // Check whether we have too many outbound-full-relay peers
5120 if (m_connman.GetExtraFullOutboundCount() > 0) {
5121 // If we have more outbound-full-relay peers than we target, disconnect one.
5122 // Pick the outbound-full-relay peer that least recently announced
5123 // us a new block, with ties broken by choosing the more recent
5124 // connection (higher node id)
5125 // Protect peers from eviction if we don't have another connection
5126 // to their network, counting both outbound-full-relay and manual peers.
5127 NodeId worst_peer = -1;
5128 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5129
5130 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5131 AssertLockHeld(::cs_main);
5132
5133 // Only consider outbound-full-relay peers that are not already
5134 // marked for disconnection
5135 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5136 CNodeState *state = State(pnode->GetId());
5137 if (state == nullptr) return; // shouldn't be possible, but just in case
5138 // Don't evict our protected peers
5139 if (state->m_chain_sync.m_protect) return;
5140 // If this is the only connection on a particular network that is
5141 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5142 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5143 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5144 worst_peer = pnode->GetId();
5145 oldest_block_announcement = state->m_last_block_announcement;
5146 }
5147 });
5148 if (worst_peer != -1) {
5149 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5151
5152 // Only disconnect a peer that has been connected to us for
5153 // some reasonable fraction of our check-frequency, to give
5154 // it time for new information to have arrived.
5155 // Also don't disconnect any peer we're trying to download a
5156 // block from.
5157 CNodeState &state = *State(pnode->GetId());
5158 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5159 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5160 pnode->fDisconnect = true;
5161 return true;
5162 } else {
5163 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5164 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5165 return false;
5166 }
5167 });
5168 if (disconnected) {
5169 // If we disconnected an extra peer, that means we successfully
5170 // connected to at least one peer after the last time we
5171 // detected a stale tip. Don't try any more extra peers until
5172 // we next detect a stale tip, to limit the load we put on the
5173 // network from these extra connections.
5174 m_connman.SetTryNewOutboundPeer(false);
5175 }
5176 }
5177 }
5178}
5179
5180void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5181{
5182 LOCK(cs_main);
5183
5184 auto now{GetTime<std::chrono::seconds>()};
5185
5186 EvictExtraOutboundPeers(now);
5187
5188 if (now > m_stale_tip_check_time) {
5189 // Check whether our tip is stale, and if so, allow using an extra
5190 // outbound peer
5191 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5192 LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5193 count_seconds(now - m_last_tip_update.load()));
5194 m_connman.SetTryNewOutboundPeer(true);
5195 } else if (m_connman.GetTryNewOutboundPeer()) {
5196 m_connman.SetTryNewOutboundPeer(false);
5197 }
5198 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5199 }
5200
5201 if (!m_initial_sync_finished && CanDirectFetch()) {
5202 m_connman.StartExtraBlockRelayPeers();
5203 m_initial_sync_finished = true;
5204 }
5205}
5206
5207void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5208{
5209 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5210 peer.m_ping_nonce_sent &&
5211 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5212 {
5213 // The ping timeout is using mocktime. To disable the check during
5214 // testing, increase -peertimeout.
5215 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5216 node_to.fDisconnect = true;
5217 return;
5218 }
5219
5220 bool pingSend = false;
5221
5222 if (peer.m_ping_queued) {
5223 // RPC ping request by user
5224 pingSend = true;
5225 }
5226
5227 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5228 // Ping automatically sent as a latency probe & keepalive.
5229 pingSend = true;
5230 }
5231
5232 if (pingSend) {
5233 uint64_t nonce;
5234 do {
5236 } while (nonce == 0);
5237 peer.m_ping_queued = false;
5238 peer.m_ping_start = now;
5239 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5240 peer.m_ping_nonce_sent = nonce;
5241 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5242 } else {
5243 // Peer is too old to support ping command with nonce, pong will never arrive.
5244 peer.m_ping_nonce_sent = 0;
5245 MakeAndPushMessage(node_to, NetMsgType::PING);
5246 }
5247 }
5248}
5249
5250void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5251{
5252 // Nothing to do for non-address-relay peers
5253 if (!peer.m_addr_relay_enabled) return;
5254
5255 LOCK(peer.m_addr_send_times_mutex);
5256 // Periodically advertise our local address to the peer.
5257 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5258 peer.m_next_local_addr_send < current_time) {
5259 // If we've sent before, clear the bloom filter for the peer, so that our
5260 // self-announcement will actually go out.
5261 // This might be unnecessary if the bloom filter has already rolled
5262 // over since our last self-announcement, but there is only a small
5263 // bandwidth cost that we can incur by doing this (which happens
5264 // once a day on average).
5265 if (peer.m_next_local_addr_send != 0us) {
5266 peer.m_addr_known->reset();
5267 }
5268 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5269 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5270 PushAddress(peer, local_addr);
5271 }
5272 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5273 }
5274
5275 // We sent an `addr` message to this peer recently. Nothing more to do.
5276 if (current_time <= peer.m_next_addr_send) return;
5277
5278 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5279
5280 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5281 // Should be impossible since we always check size before adding to
5282 // m_addrs_to_send. Recover by trimming the vector.
5283 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5284 }
5285
5286 // Remove addr records that the peer already knows about, and add new
5287 // addrs to the m_addr_known filter on the same pass.
5288 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5289 bool ret = peer.m_addr_known->contains(addr.GetKey());
5290 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5291 return ret;
5292 };
5293 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5294 peer.m_addrs_to_send.end());
5295
5296 // No addr messages to send
5297 if (peer.m_addrs_to_send.empty()) return;
5298
5299 if (peer.m_wants_addrv2) {
5300 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5301 } else {
5302 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5303 }
5304 peer.m_addrs_to_send.clear();
5305
5306 // we only send the big addr message once
5307 if (peer.m_addrs_to_send.capacity() > 40) {
5308 peer.m_addrs_to_send.shrink_to_fit();
5309 }
5310}
5311
5312void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5313{
5314 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5315 // initial-headers-sync with this peer. Receiving headers announcements for
5316 // new blocks while trying to sync their headers chain is problematic,
5317 // because of the state tracking done.
5318 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5319 LOCK(cs_main);
5320 CNodeState &state = *State(node.GetId());
5321 if (state.pindexBestKnownBlock != nullptr &&
5322 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5323 // Tell our peer we prefer to receive headers rather than inv's
5324 // We send this to non-NODE NETWORK peers as well, because even
5325 // non-NODE NETWORK peers can announce blocks (such as pruning
5326 // nodes)
5327 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5328 peer.m_sent_sendheaders = true;
5329 }
5330 }
5331}
5332
5333void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5334{
5335 if (m_opts.ignore_incoming_txs) return;
5336 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5337 // peers with the forcerelay permission should not filter txs to us
5339 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5340 // transactions to us, regardless of feefilter state.
5341 if (pto.IsBlockOnlyConn()) return;
5342
5343 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5344
5345 if (m_chainman.IsInitialBlockDownload()) {
5346 // Received tx-inv messages are discarded when the active
5347 // chainstate is in IBD, so tell the peer to not send them.
5348 currentFilter = MAX_MONEY;
5349 } else {
5350 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5351 if (peer.m_fee_filter_sent == MAX_FILTER) {
5352 // Send the current filter if we sent MAX_FILTER previously
5353 // and made it out of IBD.
5354 peer.m_next_send_feefilter = 0us;
5355 }
5356 }
5357 if (current_time > peer.m_next_send_feefilter) {
5358 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5359 // We always have a fee filter of at least the min relay fee
5360 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5361 if (filterToSend != peer.m_fee_filter_sent) {
5362 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5363 peer.m_fee_filter_sent = filterToSend;
5364 }
5365 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5366 }
5367 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5368 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5369 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5370 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5371 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5372 }
5373}
5374
5375namespace {
5376class CompareInvMempoolOrder
5377{
5378 CTxMemPool* mp;
5379 bool m_wtxid_relay;
5380public:
5381 explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5382 {
5383 mp = _mempool;
5384 m_wtxid_relay = use_wtxid;
5385 }
5386
5387 bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5388 {
5389 /* As std::make_heap produces a max-heap, we want the entries with the
5390 * fewest ancestors/highest fee to sort later. */
5391 return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5392 }
5393};
5394} // namespace
5395
5396bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5397{
5398 // block-relay-only peers may never send txs to us
5399 if (peer.IsBlockOnlyConn()) return true;
5400 if (peer.IsFeelerConn()) return true;
5401 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5402 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5403 return false;
5404}
5405
5406bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5407{
5408 // We don't participate in addr relay with outbound block-relay-only
5409 // connections to prevent providing adversaries with the additional
5410 // information of addr traffic to infer the link.
5411 if (node.IsBlockOnlyConn()) return false;
5412
5413 if (!peer.m_addr_relay_enabled.exchange(true)) {
5414 // During version message processing (non-block-relay-only outbound peers)
5415 // or on first addr-related message we have received (inbound peers), initialize
5416 // m_addr_known.
5417 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5418 }
5419
5420 return true;
5421}
5422
5423bool PeerManagerImpl::SendMessages(CNode* pto)
5424{
5425 AssertLockNotHeld(m_tx_download_mutex);
5426 AssertLockHeld(g_msgproc_mutex);
5427
5428 PeerRef peer = GetPeerRef(pto->GetId());
5429 if (!peer) return false;
5430 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5431
5432 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5433 // disconnect misbehaving peers even before the version handshake is complete.
5434 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5435
5436 // Initiate version handshake for outbound connections
5437 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5438 PushNodeVersion(*pto, *peer);
5439 peer->m_outbound_version_message_sent = true;
5440 }
5441
5442 // Don't send anything until the version handshake is complete
5443 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5444 return true;
5445
5446 const auto current_time{GetTime<std::chrono::microseconds>()};
5447
5448 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5449 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5450 pto->fDisconnect = true;
5451 return true;
5452 }
5453
5454 MaybeSendPing(*pto, *peer, current_time);
5455
5456 // MaybeSendPing may have marked peer for disconnection
5457 if (pto->fDisconnect) return true;
5458
5459 MaybeSendAddr(*pto, *peer, current_time);
5460
5461 MaybeSendSendHeaders(*pto, *peer);
5462
5463 {
5464 LOCK(cs_main);
5465
5466 CNodeState &state = *State(pto->GetId());
5467
5468 // Start block sync
5469 if (m_chainman.m_best_header == nullptr) {
5470 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5471 }
5472
5473 // Determine whether we might try initial headers sync or parallel
5474 // block download from this peer -- this mostly affects behavior while
5475 // in IBD (once out of IBD, we sync from all peers).
5476 bool sync_blocks_and_headers_from_peer = false;
5477 if (state.fPreferredDownload) {
5478 sync_blocks_and_headers_from_peer = true;
5479 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5480 // Typically this is an inbound peer. If we don't have any outbound
5481 // peers, or if we aren't downloading any blocks from such peers,
5482 // then allow block downloads from this peer, too.
5483 // We prefer downloading blocks from outbound peers to avoid
5484 // putting undue load on (say) some home user who is just making
5485 // outbound connections to the network, but if our only source of
5486 // the latest blocks is from an inbound peer, we have to be sure to
5487 // eventually download it (and not just wait indefinitely for an
5488 // outbound peer to have it).
5489 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5490 sync_blocks_and_headers_from_peer = true;
5491 }
5492 }
5493
5494 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5495 // Only actively request headers from a single peer, unless we're close to today.
5496 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5497 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5498 /* If possible, start at the block preceding the currently
5499 best known header. This ensures that we always get a
5500 non-empty list of headers back as long as the peer
5501 is up-to-date. With a non-empty response, we can initialise
5502 the peer's known best block. This wouldn't be possible
5503 if we requested starting at m_chainman.m_best_header and
5504 got back an empty response. */
5505 if (pindexStart->pprev)
5506 pindexStart = pindexStart->pprev;
5507 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5508 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5509
5510 state.fSyncStarted = true;
5511 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5512 (
5513 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5514 // to maintain precision
5515 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5516 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5517 );
5518 nSyncStarted++;
5519 }
5520 }
5521 }
5522
5523 //
5524 // Try sending block announcements via headers
5525 //
5526 {
5527 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5528 // list of block hashes we're relaying, and our peer wants
5529 // headers announcements, then find the first header
5530 // not yet known to our peer but would connect, and send.
5531 // If no header would connect, or if we have too many
5532 // blocks, or if the peer doesn't want headers, just
5533 // add all to the inv queue.
5534 LOCK(peer->m_block_inv_mutex);
5535 std::vector<CBlock> vHeaders;
5536 bool fRevertToInv = ((!peer->m_prefers_headers &&
5537 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5538 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5539 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5540 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5541
5542 if (!fRevertToInv) {
5543 bool fFoundStartingHeader = false;
5544 // Try to find first header that our peer doesn't have, and
5545 // then send all headers past that one. If we come across any
5546 // headers that aren't on m_chainman.ActiveChain(), give up.
5547 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5548 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5549 assert(pindex);
5550 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5551 // Bail out if we reorged away from this block
5552 fRevertToInv = true;
5553 break;
5554 }
5555 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5556 // This means that the list of blocks to announce don't
5557 // connect to each other.
5558 // This shouldn't really be possible to hit during
5559 // regular operation (because reorgs should take us to
5560 // a chain that has some block not on the prior chain,
5561 // which should be caught by the prior check), but one
5562 // way this could happen is by using invalidateblock /
5563 // reconsiderblock repeatedly on the tip, causing it to
5564 // be added multiple times to m_blocks_for_headers_relay.
5565 // Robustly deal with this rare situation by reverting
5566 // to an inv.
5567 fRevertToInv = true;
5568 break;
5569 }
5570 pBestIndex = pindex;
5571 if (fFoundStartingHeader) {
5572 // add this to the headers message
5573 vHeaders.emplace_back(pindex->GetBlockHeader());
5574 } else if (PeerHasHeader(&state, pindex)) {
5575 continue; // keep looking for the first new block
5576 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5577 // Peer doesn't have this header but they do have the prior one.
5578 // Start sending headers.
5579 fFoundStartingHeader = true;
5580 vHeaders.emplace_back(pindex->GetBlockHeader());
5581 } else {
5582 // Peer doesn't have this header or the prior one -- nothing will
5583 // connect, so bail out.
5584 fRevertToInv = true;
5585 break;
5586 }
5587 }
5588 }
5589 if (!fRevertToInv && !vHeaders.empty()) {
5590 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5591 // We only send up to 1 block as header-and-ids, as otherwise
5592 // probably means we're doing an initial-ish-sync or they're slow
5593 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5594 vHeaders.front().GetHash().ToString(), pto->GetId());
5595
5596 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5597 {
5598 LOCK(m_most_recent_block_mutex);
5599 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5600 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5601 }
5602 }
5603 if (cached_cmpctblock_msg.has_value()) {
5604 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5605 } else {
5606 CBlock block;
5607 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5608 assert(ret);
5609 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5610 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5611 }
5612 state.pindexBestHeaderSent = pBestIndex;
5613 } else if (peer->m_prefers_headers) {
5614 if (vHeaders.size() > 1) {
5615 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5616 vHeaders.size(),
5617 vHeaders.front().GetHash().ToString(),
5618 vHeaders.back().GetHash().ToString(), pto->GetId());
5619 } else {
5620 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5621 vHeaders.front().GetHash().ToString(), pto->GetId());
5622 }
5623 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5624 state.pindexBestHeaderSent = pBestIndex;
5625 } else
5626 fRevertToInv = true;
5627 }
5628 if (fRevertToInv) {
5629 // If falling back to using an inv, just try to inv the tip.
5630 // The last entry in m_blocks_for_headers_relay was our tip at some point
5631 // in the past.
5632 if (!peer->m_blocks_for_headers_relay.empty()) {
5633 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5634 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5635 assert(pindex);
5636
5637 // Warn if we're announcing a block that is not on the main chain.
5638 // This should be very rare and could be optimized out.
5639 // Just log for now.
5640 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5641 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5642 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5643 }
5644
5645 // If the peer's chain has this block, don't inv it back.
5646 if (!PeerHasHeader(&state, pindex)) {
5647 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5648 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5649 pto->GetId(), hashToAnnounce.ToString());
5650 }
5651 }
5652 }
5653 peer->m_blocks_for_headers_relay.clear();
5654 }
5655
5656 //
5657 // Message: inventory
5658 //
5659 std::vector<CInv> vInv;
5660 {
5661 LOCK(peer->m_block_inv_mutex);
5662 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5663
5664 // Add blocks
5665 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5666 vInv.emplace_back(MSG_BLOCK, hash);
5667 if (vInv.size() == MAX_INV_SZ) {
5668 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5669 vInv.clear();
5670 }
5671 }
5672 peer->m_blocks_for_inv_relay.clear();
5673 }
5674
5675 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5676 LOCK(tx_relay->m_tx_inventory_mutex);
5677 // Check whether periodic sends should happen
5678 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5679 if (tx_relay->m_next_inv_send_time < current_time) {
5680 fSendTrickle = true;
5681 if (pto->IsInboundConn()) {
5682 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5683 } else {
5684 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5685 }
5686 }
5687
5688 // Time to send but the peer has requested we not relay transactions.
5689 if (fSendTrickle) {
5690 LOCK(tx_relay->m_bloom_filter_mutex);
5691 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5692 }
5693
5694 // Respond to BIP35 mempool requests
5695 if (fSendTrickle && tx_relay->m_send_mempool) {
5696 auto vtxinfo = m_mempool.infoAll();
5697 tx_relay->m_send_mempool = false;
5698 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5699
5700 LOCK(tx_relay->m_bloom_filter_mutex);
5701
5702 for (const auto& txinfo : vtxinfo) {
5703 CInv inv{
5704 peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5705 peer->m_wtxid_relay ?
5706 txinfo.tx->GetWitnessHash().ToUint256() :
5707 txinfo.tx->GetHash().ToUint256(),
5708 };
5709 tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5710
5711 // Don't send transactions that peers will not put into their mempool
5712 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5713 continue;
5714 }
5715 if (tx_relay->m_bloom_filter) {
5716 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5717 }
5718 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5719 vInv.push_back(inv);
5720 if (vInv.size() == MAX_INV_SZ) {
5721 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5722 vInv.clear();
5723 }
5724 }
5725 }
5726
5727 // Determine transactions to relay
5728 if (fSendTrickle) {
5729 // Produce a vector with all candidates for sending
5730 std::vector<std::set<uint256>::iterator> vInvTx;
5731 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5732 for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5733 vInvTx.push_back(it);
5734 }
5735 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5736 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5737 // A heap is used so that not all items need sorting if only a few are being sent.
5738 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5739 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5740 // No reason to drain out at many times the network's capacity,
5741 // especially since we have many peers and some will draw much shorter delays.
5742 unsigned int nRelayedTransactions = 0;
5743 LOCK(tx_relay->m_bloom_filter_mutex);
5744 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5745 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5746 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5747 // Fetch the top element from the heap
5748 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5749 std::set<uint256>::iterator it = vInvTx.back();
5750 vInvTx.pop_back();
5751 uint256 hash = *it;
5752 CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5753 // Remove it from the to-be-sent set
5754 tx_relay->m_tx_inventory_to_send.erase(it);
5755 // Check if not in the filter already
5756 if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
5757 continue;
5758 }
5759 // Not in the mempool anymore? don't bother sending it.
5760 auto txinfo = m_mempool.info(ToGenTxid(inv));
5761 if (!txinfo.tx) {
5762 continue;
5763 }
5764 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5765 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5766 continue;
5767 }
5768 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5769 // Send
5770 vInv.push_back(inv);
5771 nRelayedTransactions++;
5772 if (vInv.size() == MAX_INV_SZ) {
5773 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5774 vInv.clear();
5775 }
5776 tx_relay->m_tx_inventory_known_filter.insert(hash);
5777 }
5778
5779 // Ensure we'll respond to GETDATA requests for anything we've just announced
5780 LOCK(m_mempool.cs);
5781 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5782 }
5783 }
5784 if (!vInv.empty())
5785 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5786
5787 // Detect whether we're stalling
5788 auto stalling_timeout = m_block_stalling_timeout.load();
5789 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5790 // Stalling only triggers when the block download window cannot move. During normal steady state,
5791 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5792 // should only happen during initial block download.
5793 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
5794 pto->fDisconnect = true;
5795 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5796 // bandwidth is insufficient.
5797 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5798 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5799 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5800 }
5801 return true;
5802 }
5803 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5804 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5805 // We compensate for other peers to prevent killing off peers due to our own downstream link
5806 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5807 // to unreasonably increase our timeout.
5808 if (state.vBlocksInFlight.size() > 0) {
5809 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5810 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5811 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5812 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
5813 pto->fDisconnect = true;
5814 return true;
5815 }
5816 }
5817 // Check for headers sync timeouts
5818 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5819 // Detect whether this is a stalling initial-headers-sync peer
5820 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5821 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5822 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5823 // and we have others we could be using instead.
5824 // Note: If all our peers are inbound, then we won't
5825 // disconnect our sync peer for stalling; we have bigger
5826 // problems if we can't get any outbound peers.
5828 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
5829 pto->fDisconnect = true;
5830 return true;
5831 } else {
5832 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
5833 // Reset the headers sync state so that we have a
5834 // chance to try downloading from a different peer.
5835 // Note: this will also result in at least one more
5836 // getheaders message to be sent to
5837 // this peer (eventually).
5838 state.fSyncStarted = false;
5839 nSyncStarted--;
5840 peer->m_headers_sync_timeout = 0us;
5841 }
5842 }
5843 } else {
5844 // After we've caught up once, reset the timeout so we can't trigger
5845 // disconnect later.
5846 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5847 }
5848 }
5849
5850 // Check that outbound peers have reasonable chains
5851 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5852 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5853
5854 //
5855 // Message: getdata (blocks)
5856 //
5857 std::vector<CInv> vGetData;
5858 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5859 std::vector<const CBlockIndex*> vToDownload;
5860 NodeId staller = -1;
5861 auto get_inflight_budget = [&state]() {
5862 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5863 };
5864
5865 // If a snapshot chainstate is in use, we want to find its next blocks
5866 // before the background chainstate to prioritize getting to network tip.
5867 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5868 if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5869 // If the background tip is not an ancestor of the snapshot block,
5870 // we need to start requesting blocks from their last common ancestor.
5871 const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5872 TryDownloadingHistoricalBlocks(
5873 *peer,
5874 get_inflight_budget(),
5875 vToDownload, from_tip,
5876 Assert(m_chainman.GetSnapshotBaseBlock()));
5877 }
5878 for (const CBlockIndex *pindex : vToDownload) {
5879 uint32_t nFetchFlags = GetFetchFlags(*peer);
5880 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5881 BlockRequested(pto->GetId(), *pindex);
5882 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5883 pindex->nHeight, pto->GetId());
5884 }
5885 if (state.vBlocksInFlight.empty() && staller != -1) {
5886 if (State(staller)->m_stalling_since == 0us) {
5887 State(staller)->m_stalling_since = current_time;
5888 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5889 }
5890 }
5891 }
5892
5893 //
5894 // Message: getdata (transactions)
5895 //
5896 {
5897 LOCK(m_tx_download_mutex);
5898 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5899 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5900 if (vGetData.size() >= MAX_GETDATA_SZ) {
5901 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5902 vGetData.clear();
5903 }
5904 }
5905 }
5906
5907 if (!vGetData.empty())
5908 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5909 } // release cs_main
5910 MaybeSendFeefilter(*pto, *peer, current_time);
5911 return true;
5912}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:93
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:131
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:50
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:146
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:165
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:111
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:107
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:115
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous, checkpoint.
Definition: chain.h:97
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:121
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:85
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:59
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:141
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:147
CBlockHeader GetBlockHeader() const
Definition: chain.h:230
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:165
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:259
uint256 GetBlockHash() const
Definition: chain.h:243
int64_t GetBlockTime() const
Definition: chain.h:266
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:170
bool IsValid(enum BlockStatus nUpTo=BLOCK_VALID_TRANSACTIONS) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:295
NodeSeconds Time() const
Definition: chain.h:261
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:120
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:153
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:208
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:417
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:433
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:453
int Height() const
Return the maximal height in the chain.
Definition: chain.h:462
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:447
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:81
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:93
Definition: net.h:1052
void ForEachNode(const NodeFn &func)
Definition: net.h:1151
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3917
bool GetNetworkActive() const
Definition: net.h:1136
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2415
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2420
int GetExtraBlockRelayCount() const
Definition: net.cpp:2465
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2236
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3736
void StartExtraBlockRelayPeers()
Definition: net.cpp:2426
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3636
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3930
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3619
int GetExtraFullOutboundCount() const
Definition: net.cpp:2451
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3503
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:373
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1994
bool GetUseAddrmanOutgoing() const
Definition: net.h:1137
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per kilovirtualbyte: CAmount / kvB.
Definition: feerate.h:33
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:63
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:126
std::vector< std::pair< unsigned int, uint256 > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:138
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:466
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:428
bool IsLocal() const
Definition: netaddress.cpp:402
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:481
Transport protocol agnostic message container.
Definition: net.h:231
Information about a peer.
Definition: net.h:673
bool IsFeelerConn() const
Definition: net.h:803
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
bool ExpectServicesFromConn() const
Definition: net.h:815
std::atomic< int > nVersion
Definition: net.h:716
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:851
bool IsInboundConn() const
Definition: net.h:811
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:724
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:760
NodeId GetId() const
Definition: net.h:894
bool IsManualConn() const
Definition: net.h:779
const std::string m_addr_name
Definition: net.h:711
std::string ConnectionTypeAsString() const
Definition: net.h:948
void SetCommonVersion(int greatest_common_version)
Definition: net.h:919
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:855
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:967
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
bool IsAddrFetchConn() const
Definition: net.h:807
uint64_t GetLocalNonce() const
Definition: net.h:898
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:600
bool IsBlockOnlyConn() const
Definition: net.h:799
int GetCommonVersion() const
Definition: net.h:924
bool IsFullOutboundConn() const
Definition: net.h:775
Mutex m_subver_mutex
Definition: net.h:717
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3851
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:859
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:710
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:715
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:899
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
The basic transaction that is broadcasted on the network and contained in blocks.
Definition: transaction.h:296
const Wtxid & GetWitnessHash() const LIFETIMEBOUND
Definition: transaction.h:344
const Txid & GetHash() const LIFETIMEBOUND
Definition: transaction.h:343
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:304
void RemoveUnbroadcastTx(const uint256 &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:1069
std::set< uint256 > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:687
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:390
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:1126
CTransactionRef get(const uint256 &hash) const
Definition: txmempool.cpp:884
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:1063
const Options m_opts
Definition: txmempool.h:439
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:863
TxMempoolInfo info(const GenTxid &gtxid) const
Definition: txmempool.cpp:893
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:705
TxMempoolInfo info_for_relay(const GenTxid &gtxid, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.cpp:902
bool exists(const GenTxid &gtxid) const
Definition: txmempool.h:647
unsigned long size() const
Definition: txmempool.h:629
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void BlockConnected(ChainstateRole role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
virtual void BlockChecked(const CBlock &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
Provides an interface for creating and interacting with one or two chainstates: an IBD chainstate gen...
Definition: validation.h:866
SnapshotCompletionResult MaybeCompleteSnapshotValidation() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(Chainstate ActiveChainstate)() const
Once the background validation chainstate has reached the height which is the base of the UTXO snapsh...
Definition: validation.h:1110
const CBlockIndex * GetBackgroundSyncTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The tip of the background sync chain.
Definition: validation.h:1121
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1001
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1113
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool BackgroundSyncInProgress() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The state of a background sync (for net processing)
Definition: validation.h:1116
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:979
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1111
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1007
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
bool empty() const
Definition: streams.h:182
size_type size() const
Definition: streams.h:181
void ignore(size_t num_ignore)
Definition: streams.h:236
int in_avail() const
Definition: streams.h:216
Fast randomness source.
Definition: random.h:377
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:395
A generic txid reference (txid or wtxid).
Definition: transaction.h:428
bool IsWtxid() const
Definition: transaction.h:436
const uint256 & GetHash() const LIFETIMEBOUND
Definition: transaction.h:437
static GenTxid Txid(const uint256 &hash)
Definition: transaction.h:434
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1011
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< CTransactionRef > &extra_txn)
bool IsTxAvailable(size_t index) const
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing)
virtual std::optional< std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual std::vector< TxOrphanage::OrphanTxBase > GetOrphanTransactions()=0
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:98
bool IsValid() const
Definition: validation.h:106
Result GetResult() const
Definition: validation.h:109
std::string ToString() const
Definition: validation.h:112
bool IsInvalid() const
Definition: validation.h:107
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:47
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool ReadRawBlock(std::vector< uint8_t > &block, const FlatFilePos &pos) const
bool LoadingBlocks() const
Definition: blockstorage.h:355
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:349
bool ReadBlock(CBlock &block, const FlatFilePos &pos) const
Functions for disk access for blocks.
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
256-bit opaque blob.
Definition: uint256.h:201
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_CHECKPOINT
the block failed to meet one of our checkpoints
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_MEMPOOL_POLICY
violated mempool's fee/size/descendant/RBF/etc limits
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_PREMATURE_SPEND
transaction spends a coinbase too early, or violates locktime/sequence locks
@ TX_INPUTS_NOT_STANDARD
inputs (covered by txid) failed policy rules
@ TX_WITNESS_STRIPPED
Transaction is missing a witness.
@ TX_CONFLICT
Tx already in mempool or conflicts with a tx in the chain (if it conflicts with another tx in mempool...
@ TX_NOT_STANDARD
otherwise didn't meet our local policy rules
@ TX_WITNESS_MUTATED
Transaction might have a witness prior to SegWit activation, or witness may have been malleated (whic...
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
@ TX_CONSENSUS
invalid by consensus rules
@ TX_RECONSIDERABLE
fails some policy, but might be acceptable if submitted in a (different) package
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
ChainstateRole
This enum describes the various roles a specific Chainstate instance can take.
Definition: chain.h:25
bool fLogIPs
Definition: logging.cpp:45
#define LogInfo(...)
Definition: logging.h:261
#define LogError(...)
Definition: logging.h:263
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:233
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ TXPACKAGES
Definition: logging.h:73
@ MEMPOOLREJ
Definition: logging.h:59
@ MEMPOOL
Definition: logging.h:45
@ NET
Definition: logging.h:43
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:28
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Functions to serialize / deserialize common bitcoin types.
Definition: common-types.h:57
Definition: messages.h:20
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:427
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:233
bool fListen
Definition: net.cpp:123
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:126
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:246
std::function< void(const CAddress &addr, const std::string &msg_type, Span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4018
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:65
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
int64_t NodeId
Definition: net.h:97
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:719
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:64
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:196
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:423
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" command for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" command and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:502
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:339
constexpr auto MakeUCharSpan(V &&v) -> decltype(UCharSpanCast(Span{std::forward< V >(v)}))
Like the Span constructor, but for (const) unsigned char member types only.
Definition: span.h:296
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:74
int64_t nPowTargetSpacing
Definition: params.h:117
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:119
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:123
const ResultType m_result_type
Result type.
Definition: validation.h:132
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:135
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:138
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:229
PackageValidationState m_state
Definition: validation.h:230
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:237
std::chrono::seconds median_outbound_time_offset
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:59
std::string ToString() const
Definition: txdownloadman.h:81
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK2(cs1, cs2)
Definition: sync.h:258
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
#define GUARDED_BY(x)
Definition: threadsafety.h:38
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:48
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:41
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:39
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:76
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:83
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:81
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it)
Definition: txmempool.cpp:847
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:68