Bitcoin Core 30.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/types.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
38#include <node/txorphanage.h>
40#include <node/warnings.h>
41#include <policy/feerate.h>
43#include <policy/packages.h>
44#include <policy/policy.h>
45#include <primitives/block.h>
47#include <private_broadcast.h>
48#include <protocol.h>
49#include <random.h>
50#include <scheduler.h>
51#include <script/script.h>
52#include <serialize.h>
53#include <span.h>
54#include <streams.h>
55#include <sync.h>
56#include <tinyformat.h>
57#include <txmempool.h>
58#include <uint256.h>
59#include <util/check.h>
60#include <util/strencodings.h>
61#include <util/time.h>
62#include <util/trace.h>
63#include <validation.h>
64
65#include <algorithm>
66#include <array>
67#include <atomic>
68#include <compare>
69#include <cstddef>
70#include <deque>
71#include <exception>
72#include <functional>
73#include <future>
74#include <initializer_list>
75#include <iterator>
76#include <limits>
77#include <list>
78#include <map>
79#include <memory>
80#include <optional>
81#include <queue>
82#include <ranges>
83#include <ratio>
84#include <set>
85#include <span>
86#include <typeinfo>
87#include <utility>
88
90using namespace util::hex_literals;
91
92TRACEPOINT_SEMAPHORE(net, inbound_message);
93TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
94
97static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
98static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
100static constexpr auto HEADERS_RESPONSE_TIME{2min};
106static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
108static constexpr auto STALE_CHECK_INTERVAL{10min};
110static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
112static constexpr auto MINIMUM_CONNECT_TIME{30s};
114static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
117static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
120static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
122static constexpr auto PING_INTERVAL{2min};
124static const unsigned int MAX_LOCATOR_SZ = 101;
126static const unsigned int MAX_INV_SZ = 50000;
128static const unsigned int MAX_GETDATA_SZ = 1000;
130static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
133static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
135static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
138static const int MAX_CMPCTBLOCK_DEPTH = 5;
140static const int MAX_BLOCKTXN_DEPTH = 10;
141static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
146static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
148static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
150static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
152static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
154static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
156static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
158static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
160static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
162static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
172static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND{14};
176static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
177static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
178static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
180static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
182static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
184static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
186static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
188static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
190static constexpr size_t MAX_ADDR_TO_SEND{1000};
193static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
199static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
201static constexpr size_t NUM_PRIVATE_BROADCAST_PER_TX{3};
204
205// Internal stuff
206namespace {
208struct QueuedBlock {
210 const CBlockIndex* pindex;
212 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
213};
214
227struct Peer {
229 const NodeId m_id{0};
230
244 const ServiceFlags m_our_services;
246 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
247
249 const bool m_is_inbound;
250
252 Mutex m_misbehavior_mutex;
254 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
255
257 Mutex m_block_inv_mutex;
261 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
265 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
270 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
271
273 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
274
276 // TODO: remove in v32.0, only show reported height once in "receive version message: ..." debug log
277 std::atomic<int> m_starting_height{-1};
278
280 std::atomic<uint64_t> m_ping_nonce_sent{0};
282 std::atomic<std::chrono::microseconds> m_ping_start{0us};
284 std::atomic<bool> m_ping_queued{false};
285
287 std::atomic<bool> m_wtxid_relay{false};
294 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
295
296 struct TxRelay {
297 mutable RecursiveMutex m_bloom_filter_mutex;
299 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
301 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
302
303 mutable RecursiveMutex m_tx_inventory_mutex;
307 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
312 std::set<Wtxid> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
316 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
319 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
322 uint64_t m_last_inv_sequence GUARDED_BY(m_tx_inventory_mutex){1};
323
325 std::atomic<CAmount> m_fee_filter_received{0};
326 };
327
328 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
329 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
330 {
331 LOCK(m_tx_relay_mutex);
332 Assume(!m_tx_relay);
333 m_tx_relay = std::make_unique<Peer::TxRelay>();
334 return m_tx_relay.get();
335 };
336
337 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
338 {
339 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
340 };
341
343 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
353 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
368 std::atomic_bool m_addr_relay_enabled{false};
370 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
372 mutable Mutex m_addr_send_times_mutex;
374 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
376 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
379 std::atomic_bool m_wants_addrv2{false};
381 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
384 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
386 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
388 std::atomic<uint64_t> m_addr_rate_limited{0};
390 std::atomic<uint64_t> m_addr_processed{0};
391
393 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
394
396 Mutex m_getdata_requests_mutex;
398 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
399
402
404 Mutex m_headers_sync_mutex;
407 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
408
410 std::atomic<bool> m_sent_sendheaders{false};
411
413 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
414
416 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
417
420 std::atomic<std::chrono::seconds> m_time_offset{0s};
421
422 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
423 : m_id{id}
424 , m_our_services{our_services}
425 , m_is_inbound{is_inbound}
426 {}
427
428private:
429 mutable Mutex m_tx_relay_mutex;
430
432 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
433};
434
435using PeerRef = std::shared_ptr<Peer>;
436
443struct CNodeState {
445 const CBlockIndex* pindexBestKnownBlock{nullptr};
447 uint256 hashLastUnknownBlock{};
449 const CBlockIndex* pindexLastCommonBlock{nullptr};
451 const CBlockIndex* pindexBestHeaderSent{nullptr};
453 bool fSyncStarted{false};
455 std::chrono::microseconds m_stalling_since{0us};
456 std::list<QueuedBlock> vBlocksInFlight;
458 std::chrono::microseconds m_downloading_since{0us};
460 bool fPreferredDownload{false};
462 bool m_requested_hb_cmpctblocks{false};
464 bool m_provides_cmpctblocks{false};
465
490 struct ChainSyncTimeoutState {
492 std::chrono::seconds m_timeout{0s};
494 const CBlockIndex* m_work_header{nullptr};
496 bool m_sent_getheaders{false};
498 bool m_protect{false};
499 };
500
501 ChainSyncTimeoutState m_chain_sync;
502
504 int64_t m_last_block_announcement{0};
505};
506
507class PeerManagerImpl final : public PeerManager
508{
509public:
510 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
511 BanMan* banman, ChainstateManager& chainman,
512 CTxMemPool& pool, node::Warnings& warnings, Options opts);
513
515 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
516 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
517 void BlockConnected(const ChainstateRole& role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
518 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
519 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
520 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
521 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
522 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
523 void BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state) override
524 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
525 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
526 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
527
529 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
530 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
531 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
532 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
533 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
534 bool SendMessages(CNode* pto) override
535 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
536
538 void StartScheduledTasks(CScheduler& scheduler) override;
539 void CheckForStaleTipAndEvictPeers() override;
540 util::Expected<void, std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
541 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
542 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
543 std::vector<node::TxOrphanage::OrphanInfo> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
544 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
545 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
546 void InitiateTxBroadcastToAll(const Txid& txid, const Wtxid& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
547 void InitiateTxBroadcastPrivate(const CTransactionRef& tx) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
548 void SetBestBlock(int height, std::chrono::seconds time) override
549 {
550 m_best_height = height;
551 m_best_block_time = time;
552 };
553 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
554 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
555 std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
556 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
557 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
558 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
559
560private:
562 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
563
565 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
566
568 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
569
571 void ReattemptPrivateBroadcast(CScheduler& scheduler);
572
575 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
576
579 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
580
583 void Misbehaving(Peer& peer, const std::string& message);
584
593 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
594 bool via_compact_block, const std::string& message = "")
595 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
596
603 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
604
616 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
617 bool first_time_failure)
618 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
619
622 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
623 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
624
628 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
629 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
630
642 bool ProcessOrphanTx(Peer& peer)
643 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
644
652 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
653 std::vector<CBlockHeader>&& headers,
654 bool via_compact_block)
655 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
658 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, Peer& peer);
660 arith_uint256 GetAntiDoSWorkThreshold();
664 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
666 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
685 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
686 std::vector<CBlockHeader>& headers)
687 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
699 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
700 const CBlockIndex& chain_start_header,
701 std::vector<CBlockHeader>& headers)
702 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
703
706 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
707
712 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
714 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
716 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
717 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
718
719 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
720
722 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
723 template <typename... Args>
724 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
725 {
726 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
727 }
728
730 void PushNodeVersion(CNode& pnode, const Peer& peer);
731
736 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
737
739 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
740
742 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
743
751 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
752
754 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
755
757
759
760 const CChainParams& m_chainparams;
761 CConnman& m_connman;
762 AddrMan& m_addrman;
764 BanMan* const m_banman;
765 ChainstateManager& m_chainman;
766 CTxMemPool& m_mempool;
767
776 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
777 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
778
779 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
780
782 std::atomic<int> m_best_height{-1};
784 std::atomic<std::chrono::seconds> m_best_block_time{0s};
785
787 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
788
789 node::Warnings& m_warnings;
790 TimeOffsets m_outbound_time_offsets{m_warnings};
791
792 const Options m_opts;
793
794 bool RejectIncomingTxs(const CNode& peer) const;
795
798 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
799
802 mutable Mutex m_peer_mutex;
809 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
810
812 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
813
815 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
817 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
818
819 uint32_t GetFetchFlags(const Peer& peer) const;
820
821 std::map<uint64_t, std::chrono::microseconds> m_next_inv_to_inbounds_per_network_key GUARDED_BY(g_msgproc_mutex);
822
824 int nSyncStarted GUARDED_BY(cs_main) = 0;
825
827 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
828
835 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
836
838 std::atomic<int> m_wtxid_relay_peers{0};
839
841 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
842
844 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
845
847 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
848
856 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
857 std::chrono::seconds average_interval,
858 uint64_t network_key) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
859
860
861 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
862 Mutex m_most_recent_block_mutex;
863 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
864 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
865 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
866 std::unique_ptr<const std::map<GenTxid, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
867
868 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
870 Mutex m_headers_presync_mutex;
878 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
880 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
882 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
884 std::atomic_bool m_headers_presync_should_signal{false};
885
887 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
888
890 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
891
893 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
894
902 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
903
904 /* Mark a block as in flight
905 * Returns false, still setting pit, if the block was already in flight from the same peer
906 * pit will only be valid as long as the same cs_main lock is being held
907 */
908 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
909
910 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
911
915 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
916
918 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
919
947 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
948
949 /* Multimap used to preserve insertion order */
950 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
951 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
952
954 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
955
957 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
958 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, !tx_relay.m_tx_inventory_mutex);
959
960 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
961 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
963
965 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
966
968 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
969 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
970
977 void PushPrivateBroadcastTx(CNode& node) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
978
985 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
986
988 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
989
991 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
992
993 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
994
998 std::vector<std::pair<Wtxid, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
1000 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
1001
1003 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1005 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1006 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1007
1012 int64_t ApproximateBestBlockDepth() const;
1013
1020 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1021 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1022 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1023 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1024
1040 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1041 BlockFilterType filter_type, uint32_t start_height,
1042 const uint256& stop_hash, uint32_t max_height_diff,
1043 const CBlockIndex*& stop_index,
1044 BlockFilterIndex*& filter_index);
1045
1055 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1056
1066 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1067
1077 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1078
1085 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1086
1087 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1088 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1089
1090 void LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block);
1091
1093 PrivateBroadcast m_tx_for_private_broadcast;
1094};
1095
1096const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1097{
1098 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1099 if (it == m_node_states.end())
1100 return nullptr;
1101 return &it->second;
1102}
1103
1104CNodeState* PeerManagerImpl::State(NodeId pnode)
1105{
1106 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1107}
1108
1114static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1115{
1116 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1117}
1118
1119void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1120{
1121 assert(peer.m_addr_known);
1122 peer.m_addr_known->insert(addr.GetKey());
1123}
1124
1125void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1126{
1127 // Known checking here is only to save space from duplicates.
1128 // Before sending, we'll filter it again for known addresses that were
1129 // added after addresses were pushed.
1130 assert(peer.m_addr_known);
1131 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1132 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1133 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1134 } else {
1135 peer.m_addrs_to_send.push_back(addr);
1136 }
1137 }
1138}
1139
1140static void AddKnownTx(Peer& peer, const uint256& hash)
1141{
1142 auto tx_relay = peer.GetTxRelay();
1143 if (!tx_relay) return;
1144
1145 LOCK(tx_relay->m_tx_inventory_mutex);
1146 tx_relay->m_tx_inventory_known_filter.insert(hash);
1147}
1148
1150static bool CanServeBlocks(const Peer& peer)
1151{
1152 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1153}
1154
1157static bool IsLimitedPeer(const Peer& peer)
1158{
1159 return (!(peer.m_their_services & NODE_NETWORK) &&
1160 (peer.m_their_services & NODE_NETWORK_LIMITED));
1161}
1162
1164static bool CanServeWitnesses(const Peer& peer)
1165{
1166 return peer.m_their_services & NODE_WITNESS;
1167}
1168
1169std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1170 std::chrono::seconds average_interval,
1171 uint64_t network_key)
1172{
1173 auto [it, inserted] = m_next_inv_to_inbounds_per_network_key.try_emplace(network_key, 0us);
1174 auto& timer{it->second};
1175 if (timer < now) {
1176 timer = now + m_rng.rand_exp_duration(average_interval);
1177 }
1178 return timer;
1179}
1180
1181bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1182{
1183 return mapBlocksInFlight.contains(hash);
1184}
1185
1186bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1187{
1188 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1189 auto [nodeid, block_it] = range.first->second;
1190 PeerRef peer{GetPeerRef(nodeid)};
1191 if (peer && !peer->m_is_inbound) return true;
1192 }
1193
1194 return false;
1195}
1196
1197void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1198{
1199 auto range = mapBlocksInFlight.equal_range(hash);
1200 if (range.first == range.second) {
1201 // Block was not requested from any peer
1202 return;
1203 }
1204
1205 // We should not have requested too many of this block
1206 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1207
1208 while (range.first != range.second) {
1209 const auto& [node_id, list_it]{range.first->second};
1210
1211 if (from_peer && *from_peer != node_id) {
1212 range.first++;
1213 continue;
1214 }
1215
1216 CNodeState& state = *Assert(State(node_id));
1217
1218 if (state.vBlocksInFlight.begin() == list_it) {
1219 // First block on the queue was received, update the start download time for the next one
1220 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1221 }
1222 state.vBlocksInFlight.erase(list_it);
1223
1224 if (state.vBlocksInFlight.empty()) {
1225 // Last validated block on the queue for this peer was received.
1226 m_peers_downloading_from--;
1227 }
1228 state.m_stalling_since = 0us;
1229
1230 range.first = mapBlocksInFlight.erase(range.first);
1231 }
1232}
1233
1234bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1235{
1236 const uint256& hash{block.GetBlockHash()};
1237
1238 CNodeState *state = State(nodeid);
1239 assert(state != nullptr);
1240
1241 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1242
1243 // Short-circuit most stuff in case it is from the same node
1244 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1245 if (range.first->second.first == nodeid) {
1246 if (pit) {
1247 *pit = &range.first->second.second;
1248 }
1249 return false;
1250 }
1251 }
1252
1253 // Make sure it's not being fetched already from same peer.
1254 RemoveBlockRequest(hash, nodeid);
1255
1256 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1257 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1258 if (state->vBlocksInFlight.size() == 1) {
1259 // We're starting a block download (batch) from this peer.
1260 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1261 m_peers_downloading_from++;
1262 }
1263 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1264 if (pit) {
1265 *pit = &itInFlight->second.second;
1266 }
1267 return true;
1268}
1269
1270void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1271{
1273
1274 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1275 // mempool will not contain the transactions necessary to reconstruct the
1276 // compact block.
1277 if (m_opts.ignore_incoming_txs) return;
1278
1279 CNodeState* nodestate = State(nodeid);
1280 PeerRef peer{GetPeerRef(nodeid)};
1281 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1282 // Don't request compact blocks if the peer has not signalled support
1283 return;
1284 }
1285
1286 int num_outbound_hb_peers = 0;
1287 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1288 if (*it == nodeid) {
1289 lNodesAnnouncingHeaderAndIDs.erase(it);
1290 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1291 return;
1292 }
1293 PeerRef peer_ref{GetPeerRef(*it)};
1294 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1295 }
1296 if (peer && peer->m_is_inbound) {
1297 // If we're adding an inbound HB peer, make sure we're not removing
1298 // our last outbound HB peer in the process.
1299 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1300 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1301 if (remove_peer && !remove_peer->m_is_inbound) {
1302 // Put the HB outbound peer in the second slot, so that it
1303 // doesn't get removed.
1304 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1305 }
1306 }
1307 }
1308 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1310 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1311 // As per BIP152, we only get 3 of our peers to announce
1312 // blocks using compact encodings.
1313 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1314 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1315 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1316 pnodeStop->m_bip152_highbandwidth_to = false;
1317 return true;
1318 });
1319 lNodesAnnouncingHeaderAndIDs.pop_front();
1320 }
1321 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1322 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1323 pfrom->m_bip152_highbandwidth_to = true;
1324 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1325 return true;
1326 });
1327}
1328
1329bool PeerManagerImpl::TipMayBeStale()
1330{
1332 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1333 if (m_last_tip_update.load() == 0s) {
1334 m_last_tip_update = GetTime<std::chrono::seconds>();
1335 }
1336 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1337}
1338
1339int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1340{
1341 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1342}
1343
1344bool PeerManagerImpl::CanDirectFetch()
1345{
1346 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1347}
1348
1349static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1350{
1351 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1352 return true;
1353 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1354 return true;
1355 return false;
1356}
1357
1358void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1359 CNodeState *state = State(nodeid);
1360 assert(state != nullptr);
1361
1362 if (!state->hashLastUnknownBlock.IsNull()) {
1363 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1364 if (pindex && pindex->nChainWork > 0) {
1365 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1366 state->pindexBestKnownBlock = pindex;
1367 }
1368 state->hashLastUnknownBlock.SetNull();
1369 }
1370 }
1371}
1372
1373void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1374 CNodeState *state = State(nodeid);
1375 assert(state != nullptr);
1376
1377 ProcessBlockAvailability(nodeid);
1378
1379 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1380 if (pindex && pindex->nChainWork > 0) {
1381 // An actually better block was announced.
1382 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1383 state->pindexBestKnownBlock = pindex;
1384 }
1385 } else {
1386 // An unknown block was announced; just assume that the latest one is the best one.
1387 state->hashLastUnknownBlock = hash;
1388 }
1389}
1390
1391// Logic for calculating which blocks to download from a given peer, given our current tip.
1392void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1393{
1394 if (count == 0)
1395 return;
1396
1397 vBlocks.reserve(vBlocks.size() + count);
1398 CNodeState *state = State(peer.m_id);
1399 assert(state != nullptr);
1400
1401 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1402 ProcessBlockAvailability(peer.m_id);
1403
1404 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1405 // This peer has nothing interesting.
1406 return;
1407 }
1408
1409 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1410 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1411 // so downloading blocks from it would be futile.
1412 const CBlockIndex* snap_base{m_chainman.CurrentChainstate().SnapshotBase()};
1413 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1414 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1415 return;
1416 }
1417
1418 // Determine the forking point between the peer's chain and our chain:
1419 // pindexLastCommonBlock is required to be an ancestor of pindexBestKnownBlock, and will be used as a starting point.
1420 // It is being set to the fork point between the peer's best known block and the current tip, unless it is already set to
1421 // an ancestor with more work than the fork point.
1422 auto fork_point = LastCommonAncestor(state->pindexBestKnownBlock, m_chainman.ActiveTip());
1423 if (state->pindexLastCommonBlock == nullptr ||
1424 fork_point->nChainWork > state->pindexLastCommonBlock->nChainWork ||
1425 state->pindexBestKnownBlock->GetAncestor(state->pindexLastCommonBlock->nHeight) != state->pindexLastCommonBlock) {
1426 state->pindexLastCommonBlock = fork_point;
1427 }
1428 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1429 return;
1430
1431 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1432 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1433 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1434 // download that next block if the window were 1 larger.
1435 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1436
1437 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1438}
1439
1440void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1441{
1442 Assert(from_tip);
1443 Assert(target_block);
1444
1445 if (vBlocks.size() >= count) {
1446 return;
1447 }
1448
1449 vBlocks.reserve(count);
1450 CNodeState *state = Assert(State(peer.m_id));
1451
1452 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1453 // This peer can't provide us the complete series of blocks leading up to the
1454 // assumeutxo snapshot base.
1455 //
1456 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1457 // will eventually crash when we try to reorg to it. Let other logic
1458 // deal with whether we disconnect this peer.
1459 //
1460 // TODO at some point in the future, we might choose to request what blocks
1461 // this peer does have from the historical chain, despite it not having a
1462 // complete history beneath the snapshot base.
1463 return;
1464 }
1465
1466 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1467}
1468
1469void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1470{
1471 std::vector<const CBlockIndex*> vToFetch;
1472 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1473 bool is_limited_peer = IsLimitedPeer(peer);
1474 NodeId waitingfor = -1;
1475 while (pindexWalk->nHeight < nMaxHeight) {
1476 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1477 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1478 // as iterating over ~100 CBlockIndex* entries anyway.
1479 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1480 vToFetch.resize(nToFetch);
1481 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1482 vToFetch[nToFetch - 1] = pindexWalk;
1483 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1484 vToFetch[i - 1] = vToFetch[i]->pprev;
1485 }
1486
1487 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1488 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1489 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1490 // already part of our chain (and therefore don't need it even if pruned).
1491 for (const CBlockIndex* pindex : vToFetch) {
1492 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1493 // We consider the chain that this peer is on invalid.
1494 return;
1495 }
1496
1497 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1498 // We wouldn't download this block or its descendants from this peer.
1499 return;
1500 }
1501
1502 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1503 if (activeChain && pindex->HaveNumChainTxs()) {
1504 state->pindexLastCommonBlock = pindex;
1505 }
1506 continue;
1507 }
1508
1509 // Is block in-flight?
1510 if (IsBlockRequested(pindex->GetBlockHash())) {
1511 if (waitingfor == -1) {
1512 // This is the first already-in-flight block.
1513 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1514 }
1515 continue;
1516 }
1517
1518 // The block is not already downloaded, and not yet in flight.
1519 if (pindex->nHeight > nWindowEnd) {
1520 // We reached the end of the window.
1521 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1522 // We aren't able to fetch anything, but we would be if the download window was one larger.
1523 if (nodeStaller) *nodeStaller = waitingfor;
1524 }
1525 return;
1526 }
1527
1528 // Don't request blocks that go further than what limited peers can provide
1529 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1530 continue;
1531 }
1532
1533 vBlocks.push_back(pindex);
1534 if (vBlocks.size() == count) {
1535 return;
1536 }
1537 }
1538 }
1539}
1540
1541} // namespace
1542
1543void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1544{
1545 uint64_t my_services;
1546 int64_t my_time;
1547 uint64_t your_services;
1548 CService your_addr;
1549 std::string my_user_agent;
1550 int my_height;
1551 bool my_tx_relay;
1552 if (pnode.IsPrivateBroadcastConn()) {
1553 my_services = NODE_NONE;
1554 my_time = 0;
1555 your_services = NODE_NONE;
1556 your_addr = CService{};
1557 my_user_agent = "/pynode:0.0.1/"; // Use a constant other than the default (or user-configured). See https://github.com/bitcoin/bitcoin/pull/27509#discussion_r1214671917
1558 my_height = 0;
1559 my_tx_relay = false;
1560 } else {
1561 const CAddress& addr{pnode.addr};
1562 my_services = peer.m_our_services;
1563 my_time = count_seconds(GetTime<std::chrono::seconds>());
1564 your_services = addr.nServices;
1565 your_addr = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? CService{addr} : CService{};
1566 my_user_agent = strSubVersion;
1567 my_height = m_best_height;
1568 my_tx_relay = !RejectIncomingTxs(pnode);
1569 }
1570
1571 MakeAndPushMessage(
1572 pnode,
1575 my_services,
1576 my_time,
1577 // your_services + CNetAddr::V1(your_addr) is the pre-version-31402 serialization of your_addr (without nTime)
1578 your_services, CNetAddr::V1(your_addr),
1579 // same, for a dummy address
1580 my_services, CNetAddr::V1(CService{}),
1581 pnode.GetLocalNonce(),
1582 my_user_agent,
1583 my_height,
1584 my_tx_relay);
1585
1586 LogDebug(
1587 BCLog::NET, "send version message: version=%d, blocks=%d%s, txrelay=%d, peer=%d\n",
1588 PROTOCOL_VERSION, my_height,
1589 fLogIPs ? strprintf(", them=%s", your_addr.ToStringAddrPort()) : "",
1590 my_tx_relay, pnode.GetId());
1591}
1592
1593void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1594{
1595 LOCK(cs_main);
1596 CNodeState *state = State(node);
1597 if (state) state->m_last_block_announcement = time_in_seconds;
1598}
1599
1600void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1601{
1602 NodeId nodeid = node.GetId();
1603 {
1604 LOCK(cs_main); // For m_node_states
1605 m_node_states.try_emplace(m_node_states.end(), nodeid);
1606 }
1607 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1608
1610 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1611 }
1612
1613 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1614 {
1615 LOCK(m_peer_mutex);
1616 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1617 }
1618}
1619
1620void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1621{
1622 std::set<Txid> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1623
1624 for (const auto& txid : unbroadcast_txids) {
1625 CTransactionRef tx = m_mempool.get(txid);
1626
1627 if (tx != nullptr) {
1628 InitiateTxBroadcastToAll(txid, tx->GetWitnessHash());
1629 } else {
1630 m_mempool.RemoveUnbroadcastTx(txid, true);
1631 }
1632 }
1633
1634 // Schedule next run for 10-15 minutes in the future.
1635 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1636 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1637 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1638}
1639
1640void PeerManagerImpl::ReattemptPrivateBroadcast(CScheduler& scheduler)
1641{
1642 // Remove stale transactions that are no longer relevant (e.g. already in
1643 // the mempool or mined) and count the remaining ones.
1644 size_t num_for_rebroadcast{0};
1645 const auto stale_txs = m_tx_for_private_broadcast.GetStale();
1646 if (!stale_txs.empty()) {
1647 LOCK(cs_main);
1648 for (const auto& stale_tx : stale_txs) {
1649 auto mempool_acceptable = m_chainman.ProcessTransaction(stale_tx, /*test_accept=*/true);
1650 if (mempool_acceptable.m_result_type == MempoolAcceptResult::ResultType::VALID) {
1652 "Reattempting broadcast of stale txid=%s wtxid=%s",
1653 stale_tx->GetHash().ToString(), stale_tx->GetWitnessHash().ToString());
1654 ++num_for_rebroadcast;
1655 } else {
1656 LogInfo("[privatebroadcast] Giving up broadcast attempts for txid=%s wtxid=%s: %s",
1657 stale_tx->GetHash().ToString(), stale_tx->GetWitnessHash().ToString(),
1658 mempool_acceptable.m_state.ToString());
1659 m_tx_for_private_broadcast.Remove(stale_tx);
1660 }
1661 }
1662
1663 // This could overshoot, but that is ok - we will open some private connections in vain.
1664 m_connman.m_private_broadcast.NumToOpenAdd(num_for_rebroadcast);
1665 }
1666
1667 const auto delta{2min + FastRandomContext().randrange<std::chrono::milliseconds>(1min)};
1668 scheduler.scheduleFromNow([&] { ReattemptPrivateBroadcast(scheduler); }, delta);
1669}
1670
1671void PeerManagerImpl::FinalizeNode(const CNode& node)
1672{
1673 NodeId nodeid = node.GetId();
1674 {
1675 LOCK(cs_main);
1676 {
1677 // We remove the PeerRef from g_peer_map here, but we don't always
1678 // destruct the Peer. Sometimes another thread is still holding a
1679 // PeerRef, so the refcount is >= 1. Be careful not to do any
1680 // processing here that assumes Peer won't be changed before it's
1681 // destructed.
1682 PeerRef peer = RemovePeer(nodeid);
1683 assert(peer != nullptr);
1684 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1685 assert(m_wtxid_relay_peers >= 0);
1686 }
1687 CNodeState *state = State(nodeid);
1688 assert(state != nullptr);
1689
1690 if (state->fSyncStarted)
1691 nSyncStarted--;
1692
1693 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1694 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1695 while (range.first != range.second) {
1696 auto [node_id, list_it] = range.first->second;
1697 if (node_id != nodeid) {
1698 range.first++;
1699 } else {
1700 range.first = mapBlocksInFlight.erase(range.first);
1701 }
1702 }
1703 }
1704 {
1705 LOCK(m_tx_download_mutex);
1706 m_txdownloadman.DisconnectedPeer(nodeid);
1707 }
1708 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1709 m_num_preferred_download_peers -= state->fPreferredDownload;
1710 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1711 assert(m_peers_downloading_from >= 0);
1712 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1713 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1714
1715 m_node_states.erase(nodeid);
1716
1717 if (m_node_states.empty()) {
1718 // Do a consistency check after the last peer is removed.
1719 assert(mapBlocksInFlight.empty());
1720 assert(m_num_preferred_download_peers == 0);
1721 assert(m_peers_downloading_from == 0);
1722 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1723 assert(m_wtxid_relay_peers == 0);
1724 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1725 }
1726 } // cs_main
1727 if (node.fSuccessfullyConnected &&
1728 !node.IsBlockOnlyConn() && !node.IsPrivateBroadcastConn() && !node.IsInboundConn()) {
1729 // Only change visible addrman state for full outbound peers. We don't
1730 // call Connected() for feeler connections since they don't have
1731 // fSuccessfullyConnected set. Also don't call Connected() for private broadcast
1732 // connections since they could leak information in addrman.
1733 m_addrman.Connected(node.addr);
1734 }
1735 {
1736 LOCK(m_headers_presync_mutex);
1737 m_headers_presync_stats.erase(nodeid);
1738 }
1739 if (node.IsPrivateBroadcastConn() &&
1740 !m_tx_for_private_broadcast.DidNodeConfirmReception(nodeid) &&
1741 m_tx_for_private_broadcast.HavePendingTransactions()) {
1742
1743 m_connman.m_private_broadcast.NumToOpenAdd(1);
1744 }
1745 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1746}
1747
1748bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1749{
1750 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1751 return !(GetDesirableServiceFlags(services) & (~services));
1752}
1753
1754ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1755{
1756 if (services & NODE_NETWORK_LIMITED) {
1757 // Limited peers are desirable when we are close to the tip.
1758 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1760 }
1761 }
1763}
1764
1765PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1766{
1767 LOCK(m_peer_mutex);
1768 auto it = m_peer_map.find(id);
1769 return it != m_peer_map.end() ? it->second : nullptr;
1770}
1771
1772PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1773{
1774 PeerRef ret;
1775 LOCK(m_peer_mutex);
1776 auto it = m_peer_map.find(id);
1777 if (it != m_peer_map.end()) {
1778 ret = std::move(it->second);
1779 m_peer_map.erase(it);
1780 }
1781 return ret;
1782}
1783
1784bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1785{
1786 {
1787 LOCK(cs_main);
1788 const CNodeState* state = State(nodeid);
1789 if (state == nullptr)
1790 return false;
1791 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1792 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1793 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1794 if (queue.pindex)
1795 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1796 }
1797 }
1798
1799 PeerRef peer = GetPeerRef(nodeid);
1800 if (peer == nullptr) return false;
1801 stats.their_services = peer->m_their_services;
1802 stats.m_starting_height = peer->m_starting_height;
1803 // It is common for nodes with good ping times to suddenly become lagged,
1804 // due to a new block arriving or other large transfer.
1805 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1806 // since pingtime does not update until the ping is complete, which might take a while.
1807 // So, if a ping is taking an unusually long time in flight,
1808 // the caller can immediately detect that this is happening.
1809 auto ping_wait{0us};
1810 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1811 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1812 }
1813
1814 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1815 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1816 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1817 LOCK(tx_relay->m_tx_inventory_mutex);
1818 stats.m_last_inv_seq = tx_relay->m_last_inv_sequence;
1819 stats.m_inv_to_send = tx_relay->m_tx_inventory_to_send.size();
1820 } else {
1821 stats.m_relay_txs = false;
1822 stats.m_fee_filter_received = 0;
1823 stats.m_inv_to_send = 0;
1824 }
1825
1826 stats.m_ping_wait = ping_wait;
1827 stats.m_addr_processed = peer->m_addr_processed.load();
1828 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1829 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1830 {
1831 LOCK(peer->m_headers_sync_mutex);
1832 if (peer->m_headers_sync) {
1833 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1834 }
1835 }
1836 stats.time_offset = peer->m_time_offset;
1837
1838 return true;
1839}
1840
1841std::vector<node::TxOrphanage::OrphanInfo> PeerManagerImpl::GetOrphanTransactions()
1842{
1843 LOCK(m_tx_download_mutex);
1844 return m_txdownloadman.GetOrphanTransactions();
1845}
1846
1847PeerManagerInfo PeerManagerImpl::GetInfo() const
1848{
1849 return PeerManagerInfo{
1850 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1851 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1852 };
1853}
1854
1855void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1856{
1857 if (m_opts.max_extra_txs <= 0)
1858 return;
1859 if (!vExtraTxnForCompact.size())
1860 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1861 vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1862 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1863}
1864
1865void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1866{
1867 LOCK(peer.m_misbehavior_mutex);
1868
1869 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1870 peer.m_should_discourage = true;
1871 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1872 TRACEPOINT(net, misbehaving_connection,
1873 peer.m_id,
1874 message.c_str()
1875 );
1876}
1877
1878void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1879 bool via_compact_block, const std::string& message)
1880{
1881 PeerRef peer{GetPeerRef(nodeid)};
1882 switch (state.GetResult()) {
1884 break;
1886 // We didn't try to process the block because the header chain may have
1887 // too little work.
1888 break;
1889 // The node is providing invalid data:
1892 if (!via_compact_block) {
1893 if (peer) Misbehaving(*peer, message);
1894 return;
1895 }
1896 break;
1898 {
1899 // Discourage outbound (but not inbound) peers if on an invalid chain.
1900 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1901 if (peer && !via_compact_block && !peer->m_is_inbound) {
1902 if (peer) Misbehaving(*peer, message);
1903 return;
1904 }
1905 break;
1906 }
1909 if (peer) Misbehaving(*peer, message);
1910 return;
1911 // Conflicting (but not necessarily invalid) data or different policy:
1913 if (peer) Misbehaving(*peer, message);
1914 return;
1916 break;
1917 }
1918 if (message != "") {
1919 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1920 }
1921}
1922
1923bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1924{
1926 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1927 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1928 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1929 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1930}
1931
1932util::Expected<void, std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1933{
1934 if (m_chainman.m_blockman.LoadingBlocks()) return util::Unexpected{"Loading blocks ..."};
1935
1936 // Ensure this peer exists and hasn't been disconnected
1937 PeerRef peer = GetPeerRef(peer_id);
1938 if (peer == nullptr) return util::Unexpected{"Peer does not exist"};
1939
1940 // Ignore pre-segwit peers
1941 if (!CanServeWitnesses(*peer)) return util::Unexpected{"Pre-SegWit peer"};
1942
1943 LOCK(cs_main);
1944
1945 // Forget about all prior requests
1946 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1947
1948 // Mark block as in-flight
1949 if (!BlockRequested(peer_id, block_index)) return util::Unexpected{"Already requested from this peer"};
1950
1951 // Construct message to request the block
1952 const uint256& hash{block_index.GetBlockHash()};
1953 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1954
1955 // Send block request message to the peer
1956 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1957 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1958 return true;
1959 });
1960
1961 if (!success) return util::Unexpected{"Peer not fully connected"};
1962
1963 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1964 hash.ToString(), peer_id);
1965 return {};
1966}
1967
1968std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1969 BanMan* banman, ChainstateManager& chainman,
1970 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1971{
1972 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1973}
1974
1975PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1976 BanMan* banman, ChainstateManager& chainman,
1977 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1978 : m_rng{opts.deterministic_rng},
1979 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1980 m_chainparams(chainman.GetParams()),
1981 m_connman(connman),
1982 m_addrman(addrman),
1983 m_banman(banman),
1984 m_chainman(chainman),
1985 m_mempool(pool),
1986 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.deterministic_rng}),
1987 m_warnings{warnings},
1988 m_opts{opts}
1989{
1990 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1991 // This argument can go away after Erlay support is complete.
1992 if (opts.reconcile_txs) {
1993 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1994 }
1995}
1996
1997void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1998{
1999 // Stale tip checking and peer eviction are on two different timers, but we
2000 // don't want them to get out of sync due to drift in the scheduler, so we
2001 // combine them in one function and schedule at the quicker (peer-eviction)
2002 // timer.
2003 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
2004 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
2005
2006 // schedule next run for 10-15 minutes in the future
2007 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
2008 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
2009
2010 if (m_opts.private_broadcast) {
2011 scheduler.scheduleFromNow([&] { ReattemptPrivateBroadcast(scheduler); }, 0min);
2012 }
2013}
2014
2015void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
2016{
2017 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
2018 // m_tx_download_mutex waits on the mempool mutex.
2019 AssertLockNotHeld(m_mempool.cs);
2020 AssertLockNotHeld(m_tx_download_mutex);
2021
2022 if (!is_ibd) {
2023 LOCK(m_tx_download_mutex);
2024 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
2025 // to a timelock. Reset the rejection filters to give those transactions another chance if we
2026 // see them again.
2027 m_txdownloadman.ActiveTipChange();
2028 }
2029}
2030
2037void PeerManagerImpl::BlockConnected(
2038 const ChainstateRole& role,
2039 const std::shared_ptr<const CBlock>& pblock,
2040 const CBlockIndex* pindex)
2041{
2042 // Update this for all chainstate roles so that we don't mistakenly see peers
2043 // helping us do background IBD as having a stale tip.
2044 m_last_tip_update = GetTime<std::chrono::seconds>();
2045
2046 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
2047 auto stalling_timeout = m_block_stalling_timeout.load();
2048 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
2049 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
2050 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
2051 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
2052 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
2053 }
2054 }
2055
2056 // The following task can be skipped since we don't maintain a mempool for
2057 // the historical chainstate.
2058 if (role.historical) {
2059 return;
2060 }
2061 LOCK(m_tx_download_mutex);
2062 m_txdownloadman.BlockConnected(pblock);
2063}
2064
2065void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
2066{
2067 LOCK(m_tx_download_mutex);
2068 m_txdownloadman.BlockDisconnected();
2069}
2070
2075void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
2076{
2077 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
2078
2079 LOCK(cs_main);
2080
2081 if (pindex->nHeight <= m_highest_fast_announce)
2082 return;
2083 m_highest_fast_announce = pindex->nHeight;
2084
2085 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
2086
2087 uint256 hashBlock(pblock->GetHash());
2088 const std::shared_future<CSerializedNetMsg> lazy_ser{
2089 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2090
2091 {
2092 auto most_recent_block_txs = std::make_unique<std::map<GenTxid, CTransactionRef>>();
2093 for (const auto& tx : pblock->vtx) {
2094 most_recent_block_txs->emplace(tx->GetHash(), tx);
2095 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2096 }
2097
2098 LOCK(m_most_recent_block_mutex);
2099 m_most_recent_block_hash = hashBlock;
2100 m_most_recent_block = pblock;
2101 m_most_recent_compact_block = pcmpctblock;
2102 m_most_recent_block_txs = std::move(most_recent_block_txs);
2103 }
2104
2105 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2107
2109 return;
2110 ProcessBlockAvailability(pnode->GetId());
2111 CNodeState &state = *State(pnode->GetId());
2112 // If the peer has, or we announced to them the previous block already,
2113 // but we don't think they have this one, go ahead and announce it
2114 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2115
2116 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2117 hashBlock.ToString(), pnode->GetId());
2118
2119 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2120 PushMessage(*pnode, ser_cmpctblock.Copy());
2121 state.pindexBestHeaderSent = pindex;
2122 }
2123 });
2124}
2125
2130void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2131{
2132 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2133
2134 // Don't relay inventory during initial block download.
2135 if (fInitialDownload) return;
2136
2137 // Find the hashes of all blocks that weren't previously in the best chain.
2138 std::vector<uint256> vHashes;
2139 const CBlockIndex *pindexToAnnounce = pindexNew;
2140 while (pindexToAnnounce != pindexFork) {
2141 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2142 pindexToAnnounce = pindexToAnnounce->pprev;
2143 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2144 // Limit announcements in case of a huge reorganization.
2145 // Rely on the peer's synchronization mechanism in that case.
2146 break;
2147 }
2148 }
2149
2150 {
2151 LOCK(m_peer_mutex);
2152 for (auto& it : m_peer_map) {
2153 Peer& peer = *it.second;
2154 LOCK(peer.m_block_inv_mutex);
2155 for (const uint256& hash : vHashes | std::views::reverse) {
2156 peer.m_blocks_for_headers_relay.push_back(hash);
2157 }
2158 }
2159 }
2160
2161 m_connman.WakeMessageHandler();
2162}
2163
2168void PeerManagerImpl::BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state)
2169{
2170 LOCK(cs_main);
2171
2172 const uint256 hash(block->GetHash());
2173 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2174
2175 // If the block failed validation, we know where it came from and we're still connected
2176 // to that peer, maybe punish.
2177 if (state.IsInvalid() &&
2178 it != mapBlockSource.end() &&
2179 State(it->second.first)) {
2180 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2181 }
2182 // Check that:
2183 // 1. The block is valid
2184 // 2. We're not in initial block download
2185 // 3. This is currently the best block we're aware of. We haven't updated
2186 // the tip yet so we have no way to check this directly here. Instead we
2187 // just check that there are currently no other blocks in flight.
2188 else if (state.IsValid() &&
2189 !m_chainman.IsInitialBlockDownload() &&
2190 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2191 if (it != mapBlockSource.end()) {
2192 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2193 }
2194 }
2195 if (it != mapBlockSource.end())
2196 mapBlockSource.erase(it);
2197}
2198
2200//
2201// Messages
2202//
2203
2204bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2205{
2206 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2207}
2208
2209void PeerManagerImpl::SendPings()
2210{
2211 LOCK(m_peer_mutex);
2212 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2213}
2214
2215void PeerManagerImpl::InitiateTxBroadcastToAll(const Txid& txid, const Wtxid& wtxid)
2216{
2217 LOCK(m_peer_mutex);
2218 for(auto& it : m_peer_map) {
2219 Peer& peer = *it.second;
2220 auto tx_relay = peer.GetTxRelay();
2221 if (!tx_relay) continue;
2222
2223 LOCK(tx_relay->m_tx_inventory_mutex);
2224 // Only queue transactions for announcement once the version handshake
2225 // is completed. The time of arrival for these transactions is
2226 // otherwise at risk of leaking to a spy, if the spy is able to
2227 // distinguish transactions received during the handshake from the rest
2228 // in the announcement.
2229 if (tx_relay->m_next_inv_send_time == 0s) continue;
2230
2231 const uint256& hash{peer.m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256()};
2232 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2233 tx_relay->m_tx_inventory_to_send.insert(wtxid);
2234 }
2235 }
2236}
2237
2238void PeerManagerImpl::InitiateTxBroadcastPrivate(const CTransactionRef& tx)
2239{
2240 const auto txstr{strprintf("txid=%s, wtxid=%s", tx->GetHash().ToString(), tx->GetWitnessHash().ToString())};
2241 if (m_tx_for_private_broadcast.Add(tx)) {
2242 LogDebug(BCLog::PRIVBROADCAST, "Requesting %d new connections due to %s", NUM_PRIVATE_BROADCAST_PER_TX, txstr);
2244 } else {
2245 LogDebug(BCLog::PRIVBROADCAST, "Ignoring unnecessary request to schedule an already scheduled transaction: %s", txstr);
2246 }
2247}
2248
2249void PeerManagerImpl::RelayAddress(NodeId originator,
2250 const CAddress& addr,
2251 bool fReachable)
2252{
2253 // We choose the same nodes within a given 24h window (if the list of connected
2254 // nodes does not change) and we don't relay to nodes that already know an
2255 // address. So within 24h we will likely relay a given address once. This is to
2256 // prevent a peer from unjustly giving their address better propagation by sending
2257 // it to us repeatedly.
2258
2259 if (!fReachable && !addr.IsRelayable()) return;
2260
2261 // Relay to a limited number of other nodes
2262 // Use deterministic randomness to send to the same nodes for 24 hours
2263 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2264 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2265 const auto current_time{GetTime<std::chrono::seconds>()};
2266 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2267 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2269 .Write(hash_addr)
2270 .Write(time_addr)};
2271
2272 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2273 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2274
2275 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2276 assert(nRelayNodes <= best.size());
2277
2278 LOCK(m_peer_mutex);
2279
2280 for (auto& [id, peer] : m_peer_map) {
2281 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2282 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2283 for (unsigned int i = 0; i < nRelayNodes; i++) {
2284 if (hashKey > best[i].first) {
2285 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2286 best[i] = std::make_pair(hashKey, peer.get());
2287 break;
2288 }
2289 }
2290 }
2291 };
2292
2293 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2294 PushAddress(*best[i].second, addr);
2295 }
2296}
2297
2298void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2299{
2300 std::shared_ptr<const CBlock> a_recent_block;
2301 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2302 {
2303 LOCK(m_most_recent_block_mutex);
2304 a_recent_block = m_most_recent_block;
2305 a_recent_compact_block = m_most_recent_compact_block;
2306 }
2307
2308 bool need_activate_chain = false;
2309 {
2310 LOCK(cs_main);
2311 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2312 if (pindex) {
2313 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2314 pindex->IsValid(BLOCK_VALID_TREE)) {
2315 // If we have the block and all of its parents, but have not yet validated it,
2316 // we might be in the middle of connecting it (ie in the unlock of cs_main
2317 // before ActivateBestChain but after AcceptBlock).
2318 // In this case, we need to run ActivateBestChain prior to checking the relay
2319 // conditions below.
2320 need_activate_chain = true;
2321 }
2322 }
2323 } // release cs_main before calling ActivateBestChain
2324 if (need_activate_chain) {
2326 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2327 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2328 }
2329 }
2330
2331 const CBlockIndex* pindex{nullptr};
2332 const CBlockIndex* tip{nullptr};
2333 bool can_direct_fetch{false};
2334 FlatFilePos block_pos{};
2335 {
2336 LOCK(cs_main);
2337 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2338 if (!pindex) {
2339 return;
2340 }
2341 if (!BlockRequestAllowed(pindex)) {
2342 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2343 return;
2344 }
2345 // disconnect node in case we have reached the outbound limit for serving historical blocks
2346 if (m_connman.OutboundTargetReached(true) &&
2347 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2348 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2349 ) {
2350 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2351 pfrom.fDisconnect = true;
2352 return;
2353 }
2354 tip = m_chainman.ActiveChain().Tip();
2355 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2357 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2358 )) {
2359 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2360 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2361 pfrom.fDisconnect = true;
2362 return;
2363 }
2364 // Pruned nodes may have deleted the block, so check whether
2365 // it's available before trying to send.
2366 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2367 return;
2368 }
2369 can_direct_fetch = CanDirectFetch();
2370 block_pos = pindex->GetBlockPos();
2371 }
2372
2373 std::shared_ptr<const CBlock> pblock;
2374 if (a_recent_block && a_recent_block->GetHash() == inv.hash) {
2375 pblock = a_recent_block;
2376 } else if (inv.IsMsgWitnessBlk()) {
2377 // Fast-path: in this case it is possible to serve the block directly from disk,
2378 // as the network format matches the format on disk
2379 if (const auto block_data{m_chainman.m_blockman.ReadRawBlock(block_pos)}) {
2380 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{*block_data});
2381 } else {
2382 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2383 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2384 } else {
2385 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2386 }
2387 pfrom.fDisconnect = true;
2388 return;
2389 }
2390 // Don't set pblock as we've sent the block
2391 } else {
2392 // Send block from disk
2393 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2394 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos, inv.hash)) {
2395 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2396 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2397 } else {
2398 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2399 }
2400 pfrom.fDisconnect = true;
2401 return;
2402 }
2403 pblock = pblockRead;
2404 }
2405 if (pblock) {
2406 if (inv.IsMsgBlk()) {
2407 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2408 } else if (inv.IsMsgWitnessBlk()) {
2409 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2410 } else if (inv.IsMsgFilteredBlk()) {
2411 bool sendMerkleBlock = false;
2412 CMerkleBlock merkleBlock;
2413 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2414 LOCK(tx_relay->m_bloom_filter_mutex);
2415 if (tx_relay->m_bloom_filter) {
2416 sendMerkleBlock = true;
2417 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2418 }
2419 }
2420 if (sendMerkleBlock) {
2421 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2422 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2423 // This avoids hurting performance by pointlessly requiring a round-trip
2424 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2425 // they must either disconnect and retry or request the full block.
2426 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2427 // however we MUST always provide at least what the remote peer needs
2428 for (const auto& [tx_idx, _] : merkleBlock.vMatchedTxn)
2429 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[tx_idx]));
2430 }
2431 // else
2432 // no response
2433 } else if (inv.IsMsgCmpctBlk()) {
2434 // If a peer is asking for old blocks, we're almost guaranteed
2435 // they won't have a useful mempool to match against a compact block,
2436 // and we don't feel like constructing the object for them, so
2437 // instead we respond with the full, non-compact block.
2438 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2439 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == inv.hash) {
2440 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2441 } else {
2442 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2443 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2444 }
2445 } else {
2446 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2447 }
2448 }
2449 }
2450
2451 {
2452 LOCK(peer.m_block_inv_mutex);
2453 // Trigger the peer node to send a getblocks request for the next batch of inventory
2454 if (inv.hash == peer.m_continuation_block) {
2455 // Send immediately. This must send even if redundant,
2456 // and we want it right after the last block so they don't
2457 // wait for other stuff first.
2458 std::vector<CInv> vInv;
2459 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2460 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2461 peer.m_continuation_block.SetNull();
2462 }
2463 }
2464}
2465
2466CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2467{
2468 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2469 auto txinfo{std::visit(
2470 [&](const auto& id) {
2471 return m_mempool.info_for_relay(id, WITH_LOCK(tx_relay.m_tx_inventory_mutex, return tx_relay.m_last_inv_sequence));
2472 },
2473 gtxid)};
2474 if (txinfo.tx) {
2475 return std::move(txinfo.tx);
2476 }
2477
2478 // Or it might be from the most recent block
2479 {
2480 LOCK(m_most_recent_block_mutex);
2481 if (m_most_recent_block_txs != nullptr) {
2482 auto it = m_most_recent_block_txs->find(gtxid);
2483 if (it != m_most_recent_block_txs->end()) return it->second;
2484 }
2485 }
2486
2487 return {};
2488}
2489
2490void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2491{
2493
2494 auto tx_relay = peer.GetTxRelay();
2495
2496 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2497 std::vector<CInv> vNotFound;
2498
2499 // Process as many TX items from the front of the getdata queue as
2500 // possible, since they're common and it's efficient to batch process
2501 // them.
2502 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2503 if (interruptMsgProc) return;
2504 // The send buffer provides backpressure. If there's no space in
2505 // the buffer, pause processing until the next call.
2506 if (pfrom.fPauseSend) break;
2507
2508 const CInv &inv = *it++;
2509
2510 if (tx_relay == nullptr) {
2511 // Ignore GETDATA requests for transactions from block-relay-only
2512 // peers and peers that asked us not to announce transactions.
2513 continue;
2514 }
2515
2516 if (auto tx{FindTxForGetData(*tx_relay, ToGenTxid(inv))}) {
2517 // WTX and WITNESS_TX imply we serialize with witness
2518 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2519 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2520 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2521 } else {
2522 vNotFound.push_back(inv);
2523 }
2524 }
2525
2526 // Only process one BLOCK item per call, since they're uncommon and can be
2527 // expensive to process.
2528 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2529 const CInv &inv = *it++;
2530 if (inv.IsGenBlkMsg()) {
2531 ProcessGetBlockData(pfrom, peer, inv);
2532 }
2533 // else: If the first item on the queue is an unknown type, we erase it
2534 // and continue processing the queue on the next call.
2535 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2536 // result in never making progress and this thread using 100% allocated CPU. See
2537 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2538 }
2539
2540 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2541
2542 if (!vNotFound.empty()) {
2543 // Let the peer know that we didn't find what it asked for, so it doesn't
2544 // have to wait around forever.
2545 // SPV clients care about this message: it's needed when they are
2546 // recursively walking the dependencies of relevant unconfirmed
2547 // transactions. SPV clients want to do that because they want to know
2548 // about (and store and rebroadcast and risk analyze) the dependencies
2549 // of transactions relevant to them, without having to download the
2550 // entire memory pool.
2551 // Also, other nodes can use these messages to automatically request a
2552 // transaction from some other peer that announced it, and stop
2553 // waiting for us to respond.
2554 // In normal operation, we often send NOTFOUND messages for parents of
2555 // transactions that we relay; if a peer is missing a parent, they may
2556 // assume we have them and request the parents from us.
2557 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2558 }
2559}
2560
2561uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2562{
2563 uint32_t nFetchFlags = 0;
2564 if (CanServeWitnesses(peer)) {
2565 nFetchFlags |= MSG_WITNESS_FLAG;
2566 }
2567 return nFetchFlags;
2568}
2569
2570void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2571{
2572 BlockTransactions resp(req);
2573 unsigned int tx_requested_size = 0;
2574 for (size_t i = 0; i < req.indexes.size(); i++) {
2575 if (req.indexes[i] >= block.vtx.size()) {
2576 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2577 return;
2578 }
2579 resp.txn[i] = block.vtx[req.indexes[i]];
2580 tx_requested_size += resp.txn[i]->GetTotalSize();
2581 }
2582
2583 LogDebug(BCLog::CMPCTBLOCK, "Peer %d sent us a GETBLOCKTXN for block %s, sending a BLOCKTXN with %u txns. (%u bytes)\n", pfrom.GetId(), block.GetHash().ToString(), resp.txn.size(), tx_requested_size);
2584 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2585}
2586
2587bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, Peer& peer)
2588{
2589 // Do these headers have proof-of-work matching what's claimed?
2590 if (!HasValidProofOfWork(headers, m_chainparams.GetConsensus())) {
2591 Misbehaving(peer, "header with invalid proof of work");
2592 return false;
2593 }
2594
2595 // Are these headers connected to each other?
2596 if (!CheckHeadersAreContinuous(headers)) {
2597 Misbehaving(peer, "non-continuous headers sequence");
2598 return false;
2599 }
2600 return true;
2601}
2602
2603arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2604{
2605 arith_uint256 near_chaintip_work = 0;
2606 LOCK(cs_main);
2607 if (m_chainman.ActiveChain().Tip() != nullptr) {
2608 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2609 // Use a 144 block buffer, so that we'll accept headers that fork from
2610 // near our tip.
2611 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2612 }
2613 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2614}
2615
2622void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2623 const std::vector<CBlockHeader>& headers)
2624{
2625 // Try to fill in the missing headers.
2626 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2627 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2628 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2629 headers[0].GetHash().ToString(),
2630 headers[0].hashPrevBlock.ToString(),
2631 best_header->nHeight,
2632 pfrom.GetId());
2633 }
2634
2635 // Set hashLastUnknownBlock for this peer, so that if we
2636 // eventually get the headers - even from a different peer -
2637 // we can use this peer to download.
2638 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2639}
2640
2641bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2642{
2643 uint256 hashLastBlock;
2644 for (const CBlockHeader& header : headers) {
2645 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2646 return false;
2647 }
2648 hashLastBlock = header.GetHash();
2649 }
2650 return true;
2651}
2652
2653bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2654{
2655 if (peer.m_headers_sync) {
2656 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2657 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2658 if (result.success) peer.m_last_getheaders_timestamp = {};
2659 if (result.request_more) {
2660 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2661 // If we were instructed to ask for a locator, it should not be empty.
2662 Assume(!locator.vHave.empty());
2663 // We can only be instructed to request more if processing was successful.
2664 Assume(result.success);
2665 if (!locator.vHave.empty()) {
2666 // It should be impossible for the getheaders request to fail,
2667 // because we just cleared the last getheaders timestamp.
2668 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2669 Assume(sent_getheaders);
2670 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2671 locator.vHave.front().ToString(), pfrom.GetId());
2672 }
2673 }
2674
2675 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2676 peer.m_headers_sync.reset(nullptr);
2677
2678 // Delete this peer's entry in m_headers_presync_stats.
2679 // If this is m_headers_presync_bestpeer, it will be replaced later
2680 // by the next peer that triggers the else{} branch below.
2681 LOCK(m_headers_presync_mutex);
2682 m_headers_presync_stats.erase(pfrom.GetId());
2683 } else {
2684 // Build statistics for this peer's sync.
2685 HeadersPresyncStats stats;
2686 stats.first = peer.m_headers_sync->GetPresyncWork();
2687 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2688 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2689 peer.m_headers_sync->GetPresyncTime()};
2690 }
2691
2692 // Update statistics in stats.
2693 LOCK(m_headers_presync_mutex);
2694 m_headers_presync_stats[pfrom.GetId()] = stats;
2695 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2696 bool best_updated = false;
2697 if (best_it == m_headers_presync_stats.end()) {
2698 // If the cached best peer is outdated, iterate over all remaining ones (including
2699 // newly updated one) to find the best one.
2700 NodeId peer_best{-1};
2701 const HeadersPresyncStats* stat_best{nullptr};
2702 for (const auto& [peer, stat] : m_headers_presync_stats) {
2703 if (!stat_best || stat > *stat_best) {
2704 peer_best = peer;
2705 stat_best = &stat;
2706 }
2707 }
2708 m_headers_presync_bestpeer = peer_best;
2709 best_updated = (peer_best == pfrom.GetId());
2710 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2711 // pfrom was and remains the best peer, or pfrom just became best.
2712 m_headers_presync_bestpeer = pfrom.GetId();
2713 best_updated = true;
2714 }
2715 if (best_updated && stats.second.has_value()) {
2716 // If the best peer updated, and it is in its first phase, signal.
2717 m_headers_presync_should_signal = true;
2718 }
2719 }
2720
2721 if (result.success) {
2722 // We only overwrite the headers passed in if processing was
2723 // successful.
2724 headers.swap(result.pow_validated_headers);
2725 }
2726
2727 return result.success;
2728 }
2729 // Either we didn't have a sync in progress, or something went wrong
2730 // processing these headers, or we are returning headers to the caller to
2731 // process.
2732 return false;
2733}
2734
2735bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex& chain_start_header, std::vector<CBlockHeader>& headers)
2736{
2737 // Calculate the claimed total work on this chain.
2738 arith_uint256 total_work = chain_start_header.nChainWork + CalculateClaimedHeadersWork(headers);
2739
2740 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2741 // before we'll store it)
2742 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2743
2744 // Avoid DoS via low-difficulty-headers by only processing if the headers
2745 // are part of a chain with sufficient work.
2746 if (total_work < minimum_chain_work) {
2747 // Only try to sync with this peer if their headers message was full;
2748 // otherwise they don't have more headers after this so no point in
2749 // trying to sync their too-little-work chain.
2750 if (headers.size() == m_opts.max_headers_result) {
2751 // Note: we could advance to the last header in this set that is
2752 // known to us, rather than starting at the first header (which we
2753 // may already have); however this is unlikely to matter much since
2754 // ProcessHeadersMessage() already handles the case where all
2755 // headers in a received message are already known and are
2756 // ancestors of m_best_header or chainActive.Tip(), by skipping
2757 // this logic in that case. So even if the first header in this set
2758 // of headers is known, some header in this set must be new, so
2759 // advancing to the first unknown header would be a small effect.
2760 LOCK(peer.m_headers_sync_mutex);
2761 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2762 m_chainparams.HeadersSync(), chain_start_header, minimum_chain_work));
2763
2764 // Now a HeadersSyncState object for tracking this synchronization
2765 // is created, process the headers using it as normal. Failures are
2766 // handled inside of IsContinuationOfLowWorkHeadersSync.
2767 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2768 } else {
2769 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header.nHeight + headers.size(), pfrom.GetId());
2770 }
2771
2772 // The peer has not yet given us a chain that meets our work threshold,
2773 // so we want to prevent further processing of the headers in any case.
2774 headers = {};
2775 return true;
2776 }
2777
2778 return false;
2779}
2780
2781bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2782{
2783 if (header == nullptr) {
2784 return false;
2785 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2786 return true;
2787 } else if (m_chainman.ActiveChain().Contains(header)) {
2788 return true;
2789 }
2790 return false;
2791}
2792
2793bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2794{
2795 const auto current_time = NodeClock::now();
2796
2797 // Only allow a new getheaders message to go out if we don't have a recent
2798 // one already in-flight
2799 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2800 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2801 peer.m_last_getheaders_timestamp = current_time;
2802 return true;
2803 }
2804 return false;
2805}
2806
2807/*
2808 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2809 * We require that the given tip have at least as much work as our tip, and for
2810 * our current tip to be "close to synced" (see CanDirectFetch()).
2811 */
2812void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2813{
2814 LOCK(cs_main);
2815 CNodeState *nodestate = State(pfrom.GetId());
2816
2817 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2818 std::vector<const CBlockIndex*> vToFetch;
2819 const CBlockIndex* pindexWalk{&last_header};
2820 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2821 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2822 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2823 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2824 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2825 // We don't have this block, and it's not yet in flight.
2826 vToFetch.push_back(pindexWalk);
2827 }
2828 pindexWalk = pindexWalk->pprev;
2829 }
2830 // If pindexWalk still isn't on our main chain, we're looking at a
2831 // very large reorg at a time we think we're close to caught up to
2832 // the main chain -- this shouldn't really happen. Bail out on the
2833 // direct fetch and rely on parallel download instead.
2834 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2835 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2836 last_header.GetBlockHash().ToString(),
2837 last_header.nHeight);
2838 } else {
2839 std::vector<CInv> vGetData;
2840 // Download as much as possible, from earliest to latest.
2841 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2842 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2843 // Can't download any more from this peer
2844 break;
2845 }
2846 uint32_t nFetchFlags = GetFetchFlags(peer);
2847 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2848 BlockRequested(pfrom.GetId(), *pindex);
2849 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2850 pindex->GetBlockHash().ToString(), pfrom.GetId());
2851 }
2852 if (vGetData.size() > 1) {
2853 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2854 last_header.GetBlockHash().ToString(),
2855 last_header.nHeight);
2856 }
2857 if (vGetData.size() > 0) {
2858 if (!m_opts.ignore_incoming_txs &&
2859 nodestate->m_provides_cmpctblocks &&
2860 vGetData.size() == 1 &&
2861 mapBlocksInFlight.size() == 1 &&
2862 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2863 // In any case, we want to download using a compact block, not a regular one
2864 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2865 }
2866 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2867 }
2868 }
2869 }
2870}
2871
2877void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2878 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2879{
2880 LOCK(cs_main);
2881 CNodeState *nodestate = State(pfrom.GetId());
2882
2883 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2884
2885 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2886 // because it is set in UpdateBlockAvailability. Some nullptr checks
2887 // are still present, however, as belt-and-suspenders.
2888
2889 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2890 nodestate->m_last_block_announcement = GetTime();
2891 }
2892
2893 // If we're in IBD, we want outbound peers that will serve us a useful
2894 // chain. Disconnect peers that are on chains with insufficient work.
2895 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2896 // If the peer has no more headers to give us, then we know we have
2897 // their tip.
2898 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2899 // This peer has too little work on their headers chain to help
2900 // us sync -- disconnect if it is an outbound disconnection
2901 // candidate.
2902 // Note: We compare their tip to the minimum chain work (rather than
2903 // m_chainman.ActiveChain().Tip()) because we won't start block download
2904 // until we have a headers chain that has at least
2905 // the minimum chain work, even if a peer has a chain past our tip,
2906 // as an anti-DoS measure.
2907 if (pfrom.IsOutboundOrBlockRelayConn()) {
2908 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2909 pfrom.fDisconnect = true;
2910 }
2911 }
2912 }
2913
2914 // If this is an outbound full-relay peer, check to see if we should protect
2915 // it from the bad/lagging chain logic.
2916 // Note that outbound block-relay peers are excluded from this protection, and
2917 // thus always subject to eviction under the bad/lagging chain logic.
2918 // See ChainSyncTimeoutState.
2919 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2920 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2921 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2922 nodestate->m_chain_sync.m_protect = true;
2923 ++m_outbound_peers_with_protect_from_disconnect;
2924 }
2925 }
2926}
2927
2928void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2929 std::vector<CBlockHeader>&& headers,
2930 bool via_compact_block)
2931{
2932 size_t nCount = headers.size();
2933
2934 if (nCount == 0) {
2935 // Nothing interesting. Stop asking this peers for more headers.
2936 // If we were in the middle of headers sync, receiving an empty headers
2937 // message suggests that the peer suddenly has nothing to give us
2938 // (perhaps it reorged to our chain). Clear download state for this peer.
2939 LOCK(peer.m_headers_sync_mutex);
2940 if (peer.m_headers_sync) {
2941 peer.m_headers_sync.reset(nullptr);
2942 LOCK(m_headers_presync_mutex);
2943 m_headers_presync_stats.erase(pfrom.GetId());
2944 }
2945 // A headers message with no headers cannot be an announcement, so assume
2946 // it is a response to our last getheaders request, if there is one.
2947 peer.m_last_getheaders_timestamp = {};
2948 return;
2949 }
2950
2951 // Before we do any processing, make sure these pass basic sanity checks.
2952 // We'll rely on headers having valid proof-of-work further down, as an
2953 // anti-DoS criteria (note: this check is required before passing any
2954 // headers into HeadersSyncState).
2955 if (!CheckHeadersPoW(headers, peer)) {
2956 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2957 // just return. (Note that even if a header is announced via compact
2958 // block, the header itself should be valid, so this type of error can
2959 // always be punished.)
2960 return;
2961 }
2962
2963 const CBlockIndex *pindexLast = nullptr;
2964
2965 // We'll set already_validated_work to true if these headers are
2966 // successfully processed as part of a low-work headers sync in progress
2967 // (either in PRESYNC or REDOWNLOAD phase).
2968 // If true, this will mean that any headers returned to us (ie during
2969 // REDOWNLOAD) can be validated without further anti-DoS checks.
2970 bool already_validated_work = false;
2971
2972 // If we're in the middle of headers sync, let it do its magic.
2973 bool have_headers_sync = false;
2974 {
2975 LOCK(peer.m_headers_sync_mutex);
2976
2977 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2978
2979 // The headers we passed in may have been:
2980 // - untouched, perhaps if no headers-sync was in progress, or some
2981 // failure occurred
2982 // - erased, such as if the headers were successfully processed and no
2983 // additional headers processing needs to take place (such as if we
2984 // are still in PRESYNC)
2985 // - replaced with headers that are now ready for validation, such as
2986 // during the REDOWNLOAD phase of a low-work headers sync.
2987 // So just check whether we still have headers that we need to process,
2988 // or not.
2989 if (headers.empty()) {
2990 return;
2991 }
2992
2993 have_headers_sync = !!peer.m_headers_sync;
2994 }
2995
2996 // Do these headers connect to something in our block index?
2997 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2998 bool headers_connect_blockindex{chain_start_header != nullptr};
2999
3000 if (!headers_connect_blockindex) {
3001 // This could be a BIP 130 block announcement, use
3002 // special logic for handling headers that don't connect, as this
3003 // could be benign.
3004 HandleUnconnectingHeaders(pfrom, peer, headers);
3005 return;
3006 }
3007
3008 // If headers connect, assume that this is in response to any outstanding getheaders
3009 // request we may have sent, and clear out the time of our last request. Non-connecting
3010 // headers cannot be a response to a getheaders request.
3011 peer.m_last_getheaders_timestamp = {};
3012
3013 // If the headers we received are already in memory and an ancestor of
3014 // m_best_header or our tip, skip anti-DoS checks. These headers will not
3015 // use any more memory (and we are not leaking information that could be
3016 // used to fingerprint us).
3017 const CBlockIndex *last_received_header{nullptr};
3018 {
3019 LOCK(cs_main);
3020 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
3021 already_validated_work = already_validated_work || IsAncestorOfBestHeaderOrTip(last_received_header);
3022 }
3023
3024 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
3025 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
3026 // on startup).
3028 already_validated_work = true;
3029 }
3030
3031 // At this point, the headers connect to something in our block index.
3032 // Do anti-DoS checks to determine if we should process or store for later
3033 // processing.
3034 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
3035 *chain_start_header, headers)) {
3036 // If we successfully started a low-work headers sync, then there
3037 // should be no headers to process any further.
3038 Assume(headers.empty());
3039 return;
3040 }
3041
3042 // At this point, we have a set of headers with sufficient work on them
3043 // which can be processed.
3044
3045 // If we don't have the last header, then this peer will have given us
3046 // something new (if these headers are valid).
3047 bool received_new_header{last_received_header == nullptr};
3048
3049 // Now process all the headers.
3051 const bool processed{m_chainman.ProcessNewBlockHeaders(headers,
3052 /*min_pow_checked=*/true,
3053 state, &pindexLast)};
3054 if (!processed) {
3055 if (state.IsInvalid()) {
3057 // Warn user if outgoing peers send us headers of blocks that we previously marked as invalid.
3058 LogWarning("%s (received from peer=%i). "
3059 "If this happens with all peers, consider database corruption (that -reindex may fix) "
3060 "or a potential consensus incompatibility.",
3061 state.GetDebugMessage(), pfrom.GetId());
3062 }
3063 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
3064 return;
3065 }
3066 }
3067 assert(pindexLast);
3068
3069 if (processed && received_new_header) {
3070 LogBlockHeader(*pindexLast, pfrom, /*via_compact_block=*/false);
3071 }
3072
3073 // Consider fetching more headers if we are not using our headers-sync mechanism.
3074 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
3075 // Headers message had its maximum size; the peer may have more headers.
3076 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
3077 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
3078 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
3079 }
3080 }
3081
3082 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
3083
3084 // Consider immediately downloading blocks.
3085 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
3086
3087 return;
3088}
3089
3090std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
3091 bool first_time_failure)
3092{
3093 AssertLockNotHeld(m_peer_mutex);
3094 AssertLockHeld(g_msgproc_mutex);
3095 AssertLockHeld(m_tx_download_mutex);
3096
3097 PeerRef peer{GetPeerRef(nodeid)};
3098
3099 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3100 ptx->GetHash().ToString(),
3101 ptx->GetWitnessHash().ToString(),
3102 nodeid,
3103 state.ToString());
3104
3105 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
3106
3107 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
3108 AddToCompactExtraTransactions(ptx);
3109 }
3110 for (const Txid& parent_txid : unique_parents) {
3111 if (peer) AddKnownTx(*peer, parent_txid.ToUint256());
3112 }
3113
3114 return package_to_validate;
3115}
3116
3117void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3118{
3119 AssertLockNotHeld(m_peer_mutex);
3120 AssertLockHeld(g_msgproc_mutex);
3121 AssertLockHeld(m_tx_download_mutex);
3122
3123 m_txdownloadman.MempoolAcceptedTx(tx);
3124
3125 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3126 nodeid,
3127 tx->GetHash().ToString(),
3128 tx->GetWitnessHash().ToString(),
3129 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3130
3131 InitiateTxBroadcastToAll(tx->GetHash(), tx->GetWitnessHash());
3132
3133 for (const CTransactionRef& removedTx : replaced_transactions) {
3134 AddToCompactExtraTransactions(removedTx);
3135 }
3136}
3137
3138void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3139{
3140 AssertLockNotHeld(m_peer_mutex);
3141 AssertLockHeld(g_msgproc_mutex);
3142 AssertLockHeld(m_tx_download_mutex);
3143
3144 const auto& package = package_to_validate.m_txns;
3145 const auto& senders = package_to_validate.m_senders;
3146
3147 if (package_result.m_state.IsInvalid()) {
3148 m_txdownloadman.MempoolRejectedPackage(package);
3149 }
3150 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3151 if (!Assume(package.size() == 2)) return;
3152
3153 // Iterate backwards to erase in-package descendants from the orphanage before they become
3154 // relevant in AddChildrenToWorkSet.
3155 auto package_iter = package.rbegin();
3156 auto senders_iter = senders.rbegin();
3157 while (package_iter != package.rend()) {
3158 const auto& tx = *package_iter;
3159 const NodeId nodeid = *senders_iter;
3160 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3161
3162 // It is not guaranteed that a result exists for every transaction.
3163 if (it_result != package_result.m_tx_results.end()) {
3164 const auto& tx_result = it_result->second;
3165 switch (tx_result.m_result_type) {
3167 {
3168 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3169 break;
3170 }
3173 {
3174 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3175 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3176 // This should be updated if package submission is ever used for transactions
3177 // that haven't already been validated before.
3178 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3179 break;
3180 }
3182 {
3183 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3184 Assume(false);
3185 break;
3186 }
3187 }
3188 }
3189 package_iter++;
3190 senders_iter++;
3191 }
3192}
3193
3194// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3195// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3196bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3197{
3198 AssertLockHeld(g_msgproc_mutex);
3199 LOCK2(::cs_main, m_tx_download_mutex);
3200
3201 CTransactionRef porphanTx = nullptr;
3202
3203 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3204 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3205 const TxValidationState& state = result.m_state;
3206 const Txid& orphanHash = porphanTx->GetHash();
3207 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3208
3210 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3211 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3212 return true;
3213 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3214 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3215 orphanHash.ToString(),
3216 orphan_wtxid.ToString(),
3217 peer.m_id,
3218 state.ToString());
3219
3220 if (Assume(state.IsInvalid() &&
3224 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3225 }
3226 return true;
3227 }
3228 }
3229
3230 return false;
3231}
3232
3233bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3234 BlockFilterType filter_type, uint32_t start_height,
3235 const uint256& stop_hash, uint32_t max_height_diff,
3236 const CBlockIndex*& stop_index,
3237 BlockFilterIndex*& filter_index)
3238{
3239 const bool supported_filter_type =
3240 (filter_type == BlockFilterType::BASIC &&
3241 (peer.m_our_services & NODE_COMPACT_FILTERS));
3242 if (!supported_filter_type) {
3243 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3244 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3245 node.fDisconnect = true;
3246 return false;
3247 }
3248
3249 {
3250 LOCK(cs_main);
3251 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3252
3253 // Check that the stop block exists and the peer would be allowed to fetch it.
3254 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3255 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3256 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3257 node.fDisconnect = true;
3258 return false;
3259 }
3260 }
3261
3262 uint32_t stop_height = stop_index->nHeight;
3263 if (start_height > stop_height) {
3264 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3265 "start height %d and stop height %d, %s\n",
3266 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3267 node.fDisconnect = true;
3268 return false;
3269 }
3270 if (stop_height - start_height >= max_height_diff) {
3271 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3272 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3273 node.fDisconnect = true;
3274 return false;
3275 }
3276
3277 filter_index = GetBlockFilterIndex(filter_type);
3278 if (!filter_index) {
3279 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3280 return false;
3281 }
3282
3283 return true;
3284}
3285
3286void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3287{
3288 uint8_t filter_type_ser;
3289 uint32_t start_height;
3290 uint256 stop_hash;
3291
3292 vRecv >> filter_type_ser >> start_height >> stop_hash;
3293
3294 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3295
3296 const CBlockIndex* stop_index;
3297 BlockFilterIndex* filter_index;
3298 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3299 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3300 return;
3301 }
3302
3303 std::vector<BlockFilter> filters;
3304 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3305 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3306 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3307 return;
3308 }
3309
3310 for (const auto& filter : filters) {
3311 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3312 }
3313}
3314
3315void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3316{
3317 uint8_t filter_type_ser;
3318 uint32_t start_height;
3319 uint256 stop_hash;
3320
3321 vRecv >> filter_type_ser >> start_height >> stop_hash;
3322
3323 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3324
3325 const CBlockIndex* stop_index;
3326 BlockFilterIndex* filter_index;
3327 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3328 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3329 return;
3330 }
3331
3332 uint256 prev_header;
3333 if (start_height > 0) {
3334 const CBlockIndex* const prev_block =
3335 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3336 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3337 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3338 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3339 return;
3340 }
3341 }
3342
3343 std::vector<uint256> filter_hashes;
3344 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3345 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3346 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3347 return;
3348 }
3349
3350 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3351 filter_type_ser,
3352 stop_index->GetBlockHash(),
3353 prev_header,
3354 filter_hashes);
3355}
3356
3357void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3358{
3359 uint8_t filter_type_ser;
3360 uint256 stop_hash;
3361
3362 vRecv >> filter_type_ser >> stop_hash;
3363
3364 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3365
3366 const CBlockIndex* stop_index;
3367 BlockFilterIndex* filter_index;
3368 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3369 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3370 stop_index, filter_index)) {
3371 return;
3372 }
3373
3374 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3375
3376 // Populate headers.
3377 const CBlockIndex* block_index = stop_index;
3378 for (int i = headers.size() - 1; i >= 0; i--) {
3379 int height = (i + 1) * CFCHECKPT_INTERVAL;
3380 block_index = block_index->GetAncestor(height);
3381
3382 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3383 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3384 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3385 return;
3386 }
3387 }
3388
3389 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3390 filter_type_ser,
3391 stop_index->GetBlockHash(),
3392 headers);
3393}
3394
3395void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3396{
3397 bool new_block{false};
3398 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3399 if (new_block) {
3400 node.m_last_block_time = GetTime<std::chrono::seconds>();
3401 // In case this block came from a different peer than we requested
3402 // from, we can erase the block request now anyway (as we just stored
3403 // this block to disk).
3404 LOCK(cs_main);
3405 RemoveBlockRequest(block->GetHash(), std::nullopt);
3406 } else {
3407 LOCK(cs_main);
3408 mapBlockSource.erase(block->GetHash());
3409 }
3410}
3411
3412void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3413{
3414 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3415 bool fBlockRead{false};
3416 {
3417 LOCK(cs_main);
3418
3419 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3420 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3421 bool requested_block_from_this_peer{false};
3422
3423 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3424 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3425
3426 while (range_flight.first != range_flight.second) {
3427 auto [node_id, block_it] = range_flight.first->second;
3428 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3429 requested_block_from_this_peer = true;
3430 break;
3431 }
3432 range_flight.first++;
3433 }
3434
3435 if (!requested_block_from_this_peer) {
3436 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3437 return;
3438 }
3439
3440 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3441
3442 if (partialBlock.header.IsNull()) {
3443 // It is possible for the header to be empty if a previous call to FillBlock wiped the header, but left
3444 // the PartiallyDownloadedBlock pointer around (i.e. did not call RemoveBlockRequest). In this case, we
3445 // should not call LookupBlockIndex below.
3446 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3447 Misbehaving(peer, "previous compact block reconstruction attempt failed");
3448 LogDebug(BCLog::NET, "Peer %d sent compact block transactions multiple times", pfrom.GetId());
3449 return;
3450 }
3451
3452 // We should not have gotten this far in compact block processing unless it's attached to a known header
3453 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(partialBlock.header.hashPrevBlock))};
3454 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn,
3455 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
3456 if (status == READ_STATUS_INVALID) {
3457 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3458 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3459 return;
3460 } else if (status == READ_STATUS_FAILED) {
3461 if (first_in_flight) {
3462 // Might have collided, fall back to getdata now :(
3463 // We keep the failed partialBlock to disallow processing another compact block announcement from the same
3464 // peer for the same block. We let the full block download below continue under the same m_downloading_since
3465 // timer.
3466 std::vector<CInv> invs;
3467 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3468 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3469 } else {
3470 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3471 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3472 return;
3473 }
3474 } else {
3475 // Block is okay for further processing
3476 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3477 fBlockRead = true;
3478 // mapBlockSource is used for potentially punishing peers and
3479 // updating which peers send us compact blocks, so the race
3480 // between here and cs_main in ProcessNewBlock is fine.
3481 // BIP 152 permits peers to relay compact blocks after validating
3482 // the header only; we should not punish peers if the block turns
3483 // out to be invalid.
3484 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3485 }
3486 } // Don't hold cs_main when we call into ProcessNewBlock
3487 if (fBlockRead) {
3488 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3489 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3490 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3491 // disk-space attacks), but this should be safe due to the
3492 // protections in the compact block handler -- see related comment
3493 // in compact block optimistic reconstruction handling.
3494 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3495 }
3496 return;
3497}
3498
3499void PeerManagerImpl::LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block) {
3500 // To prevent log spam, this function should only be called after it was determined that a
3501 // header is both new and valid.
3502 //
3503 // These messages are valuable for detecting potential selfish mining behavior;
3504 // if multiple displacing headers are seen near simultaneously across many
3505 // nodes in the network, this might be an indication of selfish mining.
3506 // In addition it can be used to identify peers which send us a header, but
3507 // don't followup with a complete and valid (compact) block.
3508 // Having this log by default when not in IBD ensures broad availability of
3509 // this data in case investigation is merited.
3510 const auto msg = strprintf(
3511 "Saw new %sheader hash=%s height=%d peer=%d%s",
3512 via_compact_block ? "cmpctblock " : "",
3513 index.GetBlockHash().ToString(),
3514 index.nHeight,
3515 peer.GetId(),
3516 peer.LogIP(fLogIPs)
3517 );
3518 if (m_chainman.IsInitialBlockDownload()) {
3520 } else {
3521 LogInfo("%s", msg);
3522 }
3523}
3524
3525void PeerManagerImpl::PushPrivateBroadcastTx(CNode& node)
3526{
3527 Assume(node.IsPrivateBroadcastConn());
3528
3529 const auto opt_tx{m_tx_for_private_broadcast.PickTxForSend(node.GetId())};
3530 if (!opt_tx) {
3531 LogDebug(BCLog::PRIVBROADCAST, "Disconnecting: no more transactions for private broadcast (connected in vain), peer=%d%s", node.GetId(), node.LogIP(fLogIPs));
3532 node.fDisconnect = true;
3533 return;
3534 }
3535 const CTransactionRef& tx{*opt_tx};
3536
3537 LogInfo("[privatebroadcast] P2P handshake completed, sending INV for txid=%s%s, peer=%d%s",
3538 tx->GetHash().ToString(), tx->HasWitness() ? strprintf(", wtxid=%s", tx->GetWitnessHash().ToString()) : "",
3539 node.GetId(), node.LogIP(fLogIPs));
3540
3541 MakeAndPushMessage(node, NetMsgType::INV, std::vector<CInv>{{CInv{MSG_TX, tx->GetHash().ToUint256()}}});
3542}
3543
3544void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3545 const std::chrono::microseconds time_received,
3546 const std::atomic<bool>& interruptMsgProc)
3547{
3548 AssertLockHeld(g_msgproc_mutex);
3549
3550 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3551
3552 PeerRef peer = GetPeerRef(pfrom.GetId());
3553 if (peer == nullptr) return;
3554
3555 if (msg_type == NetMsgType::VERSION) {
3556 if (pfrom.nVersion != 0) {
3557 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3558 return;
3559 }
3560
3561 int64_t nTime;
3562 CService addrMe;
3563 uint64_t nNonce = 1;
3564 ServiceFlags nServices;
3565 int nVersion;
3566 std::string cleanSubVer;
3567 int starting_height = -1;
3568 bool fRelay = true;
3569
3570 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3571 if (nTime < 0) {
3572 nTime = 0;
3573 }
3574 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3575 vRecv >> CNetAddr::V1(addrMe);
3576 if (!pfrom.IsInboundConn())
3577 {
3578 // Overwrites potentially existing services. In contrast to this,
3579 // unvalidated services received via gossip relay in ADDR/ADDRV2
3580 // messages are only ever added but cannot replace existing ones.
3581 m_addrman.SetServices(pfrom.addr, nServices);
3582 }
3583 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3584 {
3585 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3586 nServices,
3587 GetDesirableServiceFlags(nServices),
3588 pfrom.DisconnectMsg(fLogIPs));
3589 pfrom.fDisconnect = true;
3590 return;
3591 }
3592
3593 if (nVersion < MIN_PEER_PROTO_VERSION) {
3594 // disconnect from peers older than this proto version
3595 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3596 pfrom.fDisconnect = true;
3597 return;
3598 }
3599
3600 if (!vRecv.empty()) {
3601 // The version message includes information about the sending node which we don't use:
3602 // - 8 bytes (service bits)
3603 // - 16 bytes (ipv6 address)
3604 // - 2 bytes (port)
3605 vRecv.ignore(26);
3606 vRecv >> nNonce;
3607 }
3608 if (!vRecv.empty()) {
3609 std::string strSubVer;
3610 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3611 cleanSubVer = SanitizeString(strSubVer);
3612 }
3613 if (!vRecv.empty()) {
3614 vRecv >> starting_height;
3615 }
3616 if (!vRecv.empty())
3617 vRecv >> fRelay;
3618 // Disconnect if we connected to ourself
3619 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3620 {
3621 LogInfo("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3622 pfrom.fDisconnect = true;
3623 return;
3624 }
3625
3626 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3627 {
3628 SeenLocal(addrMe);
3629 }
3630
3631 // Inbound peers send us their version message when they connect.
3632 // We send our version message in response.
3633 if (pfrom.IsInboundConn()) {
3634 PushNodeVersion(pfrom, *peer);
3635 }
3636
3637 // Change version
3638 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3639 pfrom.SetCommonVersion(greatest_common_version);
3640 pfrom.nVersion = nVersion;
3641
3642 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3643 peer->m_their_services = nServices;
3644 pfrom.SetAddrLocal(addrMe);
3645 {
3646 LOCK(pfrom.m_subver_mutex);
3647 pfrom.cleanSubVer = cleanSubVer;
3648 }
3649 peer->m_starting_height = starting_height;
3650
3651 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3652 // - this isn't an outbound block-relay-only connection, and
3653 // - this isn't an outbound feeler connection, and
3654 // - fRelay=true (the peer wishes to receive transaction announcements)
3655 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3656 // the peer may turn on transaction relay later.
3657 if (!pfrom.IsBlockOnlyConn() &&
3658 !pfrom.IsFeelerConn() &&
3659 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3660 auto* const tx_relay = peer->SetTxRelay();
3661 {
3662 LOCK(tx_relay->m_bloom_filter_mutex);
3663 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3664 }
3665 if (fRelay) pfrom.m_relays_txs = true;
3666 }
3667
3668 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3669 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3670 cleanSubVer, pfrom.nVersion,
3671 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3672 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3673
3674 if (pfrom.IsPrivateBroadcastConn()) {
3675 if (fRelay) {
3676 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3677 } else {
3678 LogInfo("[privatebroadcast] Disconnecting: does not support transactions relay (connected in vain), peer=%d%s",
3679 pfrom.GetId(), pfrom.LogIP(fLogIPs));
3680 pfrom.fDisconnect = true;
3681 }
3682 return;
3683 }
3684
3685 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3686 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3687 }
3688
3689 // Signal ADDRv2 support (BIP155).
3690 if (greatest_common_version >= 70016) {
3691 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3692 // implementations reject messages they don't know. As a courtesy, don't send
3693 // it to nodes with a version before 70016, as no software is known to support
3694 // BIP155 that doesn't announce at least that protocol version number.
3695 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3696 }
3697
3698 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3699 // Per BIP-330, we announce txreconciliation support if:
3700 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3701 // - transaction relay is supported per the peer's VERSION message
3702 // - this is not a block-relay-only connection and not a feeler
3703 // - this is not an addr fetch connection;
3704 // - we are not in -blocksonly mode.
3705 const auto* tx_relay = peer->GetTxRelay();
3706 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3707 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3708 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3709 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3710 TXRECONCILIATION_VERSION, recon_salt);
3711 }
3712 }
3713
3714 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3715
3716 // Potentially mark this peer as a preferred download peer.
3717 {
3718 LOCK(cs_main);
3719 CNodeState* state = State(pfrom.GetId());
3720 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3721 m_num_preferred_download_peers += state->fPreferredDownload;
3722 }
3723
3724 // Attempt to initialize address relay for outbound peers and use result
3725 // to decide whether to send GETADDR, so that we don't send it to
3726 // inbound or outbound block-relay-only peers.
3727 bool send_getaddr{false};
3728 if (!pfrom.IsInboundConn()) {
3729 send_getaddr = SetupAddressRelay(pfrom, *peer);
3730 }
3731 if (send_getaddr) {
3732 // Do a one-time address fetch to help populate/update our addrman.
3733 // If we're starting up for the first time, our addrman may be pretty
3734 // empty, so this mechanism is important to help us connect to the network.
3735 // We skip this for block-relay-only peers. We want to avoid
3736 // potentially leaking addr information and we do not want to
3737 // indicate to the peer that we will participate in addr relay.
3738 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3739 peer->m_getaddr_sent = true;
3740 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3741 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3742 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3743 }
3744
3745 if (!pfrom.IsInboundConn()) {
3746 // For non-inbound connections, we update the addrman to record
3747 // connection success so that addrman will have an up-to-date
3748 // notion of which peers are online and available.
3749 //
3750 // While we strive to not leak information about block-relay-only
3751 // connections via the addrman, not moving an address to the tried
3752 // table is also potentially detrimental because new-table entries
3753 // are subject to eviction in the event of addrman collisions. We
3754 // mitigate the information-leak by never calling
3755 // AddrMan::Connected() on block-relay-only peers; see
3756 // FinalizeNode().
3757 //
3758 // This moves an address from New to Tried table in Addrman,
3759 // resolves tried-table collisions, etc.
3760 m_addrman.Good(pfrom.addr);
3761 }
3762
3763 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3764 if (!pfrom.IsInboundConn()) {
3765 // Don't use timedata samples from inbound peers to make it
3766 // harder for others to create false warnings about our clock being out of sync.
3767 m_outbound_time_offsets.Add(peer->m_time_offset);
3768 m_outbound_time_offsets.WarnIfOutOfSync();
3769 }
3770
3771 // If the peer is old enough to have the old alert system, send it the final alert.
3772 if (greatest_common_version <= 70012) {
3773 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3774 MakeAndPushMessage(pfrom, "alert", finalAlert);
3775 }
3776
3777 // Feeler connections exist only to verify if address is online.
3778 if (pfrom.IsFeelerConn()) {
3779 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3780 pfrom.fDisconnect = true;
3781 }
3782 return;
3783 }
3784
3785 if (pfrom.nVersion == 0) {
3786 // Must have a version message before anything else
3787 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3788 return;
3789 }
3790
3791 if (msg_type == NetMsgType::VERACK) {
3792 if (pfrom.fSuccessfullyConnected) {
3793 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3794 return;
3795 }
3796
3797 auto new_peer_msg = [&]() {
3798 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3799 return strprintf("New %s peer connected: transport: %s, version: %d, blocks=%d peer=%d%s%s\n",
3800 pfrom.ConnectionTypeAsString(),
3801 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3802 pfrom.nVersion.load(), peer->m_starting_height,
3803 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3804 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3805 };
3806
3807 // Log successful connections unconditionally for outbound, but not for inbound as those
3808 // can be triggered by an attacker at high rate.
3809 if (pfrom.IsInboundConn()) {
3810 LogDebug(BCLog::NET, "%s", new_peer_msg());
3811 } else {
3812 LogInfo("%s", new_peer_msg());
3813 }
3814
3815 if (auto tx_relay = peer->GetTxRelay()) {
3816 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3817 // version handshake is completed as
3818 // `TxRelay::m_next_inv_send_time` is first initialised in
3819 // `SendMessages` after the verack is received. Any transactions
3820 // received during the version handshake would otherwise
3821 // immediately be advertised without random delay, potentially
3822 // leaking the time of arrival to a spy.
3824 tx_relay->m_tx_inventory_mutex,
3825 return tx_relay->m_tx_inventory_to_send.empty() &&
3826 tx_relay->m_next_inv_send_time == 0s));
3827 }
3828
3829 if (pfrom.IsPrivateBroadcastConn()) {
3830 pfrom.fSuccessfullyConnected = true;
3831 // The peer may intend to later send us NetMsgType::FEEFILTER limiting
3832 // cheap transactions, but we don't wait for that and thus we may send
3833 // them a transaction below their threshold. This is ok because this
3834 // relay logic is designed to work even in cases when the peer drops
3835 // the transaction (due to it being too cheap, or for other reasons).
3836 PushPrivateBroadcastTx(pfrom);
3837 return;
3838 }
3839
3841 // Tell our peer we are willing to provide version 2 cmpctblocks.
3842 // However, we do not request new block announcements using
3843 // cmpctblock messages.
3844 // We send this to non-NODE NETWORK peers as well, because
3845 // they may wish to request compact blocks from us
3846 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3847 }
3848
3849 if (m_txreconciliation) {
3850 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3851 // We could have optimistically pre-registered/registered the peer. In that case,
3852 // we should forget about the reconciliation state here if this wasn't followed
3853 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3854 m_txreconciliation->ForgetPeer(pfrom.GetId());
3855 }
3856 }
3857
3858 {
3859 LOCK2(::cs_main, m_tx_download_mutex);
3860 const CNodeState* state = State(pfrom.GetId());
3861 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3862 .m_preferred = state->fPreferredDownload,
3863 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3864 .m_wtxid_relay = peer->m_wtxid_relay,
3865 });
3866 }
3867
3868 pfrom.fSuccessfullyConnected = true;
3869 return;
3870 }
3871
3872 if (msg_type == NetMsgType::SENDHEADERS) {
3873 peer->m_prefers_headers = true;
3874 return;
3875 }
3876
3877 if (msg_type == NetMsgType::SENDCMPCT) {
3878 bool sendcmpct_hb{false};
3879 uint64_t sendcmpct_version{0};
3880 vRecv >> sendcmpct_hb >> sendcmpct_version;
3881
3882 // Only support compact block relay with witnesses
3883 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3884
3885 LOCK(cs_main);
3886 CNodeState* nodestate = State(pfrom.GetId());
3887 nodestate->m_provides_cmpctblocks = true;
3888 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3889 // save whether peer selects us as BIP152 high-bandwidth peer
3890 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3891 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3892 return;
3893 }
3894
3895 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3896 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3897 if (msg_type == NetMsgType::WTXIDRELAY) {
3898 if (pfrom.fSuccessfullyConnected) {
3899 // Disconnect peers that send a wtxidrelay message after VERACK.
3900 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3901 pfrom.fDisconnect = true;
3902 return;
3903 }
3904 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3905 if (!peer->m_wtxid_relay) {
3906 peer->m_wtxid_relay = true;
3907 m_wtxid_relay_peers++;
3908 } else {
3909 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3910 }
3911 } else {
3912 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3913 }
3914 return;
3915 }
3916
3917 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3918 // between VERSION and VERACK.
3919 if (msg_type == NetMsgType::SENDADDRV2) {
3920 if (pfrom.fSuccessfullyConnected) {
3921 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3922 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3923 pfrom.fDisconnect = true;
3924 return;
3925 }
3926 peer->m_wants_addrv2 = true;
3927 return;
3928 }
3929
3930 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3931 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3932 // from switching announcement protocols after the connection is up.
3933 if (msg_type == NetMsgType::SENDTXRCNCL) {
3934 if (!m_txreconciliation) {
3935 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3936 return;
3937 }
3938
3939 if (pfrom.fSuccessfullyConnected) {
3940 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3941 pfrom.fDisconnect = true;
3942 return;
3943 }
3944
3945 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3946 if (RejectIncomingTxs(pfrom)) {
3947 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3948 pfrom.fDisconnect = true;
3949 return;
3950 }
3951
3952 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3953 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3954 // eliminates them, so that this flag fully represents what we are looking for.
3955 const auto* tx_relay = peer->GetTxRelay();
3956 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3957 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3958 pfrom.fDisconnect = true;
3959 return;
3960 }
3961
3962 uint32_t peer_txreconcl_version;
3963 uint64_t remote_salt;
3964 vRecv >> peer_txreconcl_version >> remote_salt;
3965
3966 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3967 peer_txreconcl_version, remote_salt);
3968 switch (result) {
3970 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3971 break;
3973 break;
3975 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3976 pfrom.fDisconnect = true;
3977 return;
3979 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3980 pfrom.fDisconnect = true;
3981 return;
3982 }
3983 return;
3984 }
3985
3986 if (!pfrom.fSuccessfullyConnected) {
3987 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3988 return;
3989 }
3990
3991 if (pfrom.IsPrivateBroadcastConn()) {
3992 if (msg_type != NetMsgType::PONG && msg_type != NetMsgType::GETDATA) {
3993 LogDebug(BCLog::PRIVBROADCAST, "Ignoring incoming message '%s', peer=%d%s", msg_type, pfrom.GetId(), pfrom.LogIP(fLogIPs));
3994 return;
3995 }
3996 }
3997
3998 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3999 const auto ser_params{
4000 msg_type == NetMsgType::ADDRV2 ?
4001 // Set V2 param so that the CNetAddr and CAddress
4002 // unserialize methods know that an address in v2 format is coming.
4005 };
4006
4007 std::vector<CAddress> vAddr;
4008
4009 vRecv >> ser_params(vAddr);
4010
4011 if (!SetupAddressRelay(pfrom, *peer)) {
4012 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
4013 return;
4014 }
4015
4016 if (vAddr.size() > MAX_ADDR_TO_SEND)
4017 {
4018 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
4019 return;
4020 }
4021
4022 // Store the new addresses
4023 std::vector<CAddress> vAddrOk;
4024 const auto current_a_time{Now<NodeSeconds>()};
4025
4026 // Update/increment addr rate limiting bucket.
4027 const auto current_time{GetTime<std::chrono::microseconds>()};
4028 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
4029 // Don't increment bucket if it's already full
4030 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
4031 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
4032 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
4033 }
4034 peer->m_addr_token_timestamp = current_time;
4035
4036 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
4037 uint64_t num_proc = 0;
4038 uint64_t num_rate_limit = 0;
4039 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
4040 for (CAddress& addr : vAddr)
4041 {
4042 if (interruptMsgProc)
4043 return;
4044
4045 // Apply rate limiting.
4046 if (peer->m_addr_token_bucket < 1.0) {
4047 if (rate_limited) {
4048 ++num_rate_limit;
4049 continue;
4050 }
4051 } else {
4052 peer->m_addr_token_bucket -= 1.0;
4053 }
4054 // We only bother storing full nodes, though this may include
4055 // things which we would not make an outbound connection to, in
4056 // part because we may make feeler connections to them.
4057 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
4058 continue;
4059
4060 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
4061 addr.nTime = current_a_time - 5 * 24h;
4062 }
4063 AddAddressKnown(*peer, addr);
4064 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
4065 // Do not process banned/discouraged addresses beyond remembering we received them
4066 continue;
4067 }
4068 ++num_proc;
4069 const bool reachable{g_reachable_nets.Contains(addr)};
4070 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
4071 // Relay to a limited number of other nodes
4072 RelayAddress(pfrom.GetId(), addr, reachable);
4073 }
4074 // Do not store addresses outside our network
4075 if (reachable) {
4076 vAddrOk.push_back(addr);
4077 }
4078 }
4079 peer->m_addr_processed += num_proc;
4080 peer->m_addr_rate_limited += num_rate_limit;
4081 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
4082 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
4083
4084 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
4085 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
4086
4087 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
4088 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
4089 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
4090 pfrom.fDisconnect = true;
4091 }
4092 return;
4093 }
4094
4095 if (msg_type == NetMsgType::INV) {
4096 std::vector<CInv> vInv;
4097 vRecv >> vInv;
4098 if (vInv.size() > MAX_INV_SZ)
4099 {
4100 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
4101 return;
4102 }
4103
4104 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
4105
4106 LOCK2(cs_main, m_tx_download_mutex);
4107
4108 const auto current_time{GetTime<std::chrono::microseconds>()};
4109 uint256* best_block{nullptr};
4110
4111 for (CInv& inv : vInv) {
4112 if (interruptMsgProc) return;
4113
4114 // Ignore INVs that don't match wtxidrelay setting.
4115 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
4116 // This is fine as no INV messages are involved in that process.
4117 if (peer->m_wtxid_relay) {
4118 if (inv.IsMsgTx()) continue;
4119 } else {
4120 if (inv.IsMsgWtx()) continue;
4121 }
4122
4123 if (inv.IsMsgBlk()) {
4124 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
4125 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4126
4127 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
4128 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
4129 // Headers-first is the primary method of announcement on
4130 // the network. If a node fell back to sending blocks by
4131 // inv, it may be for a re-org, or because we haven't
4132 // completed initial headers sync. The final block hash
4133 // provided should be the highest, so send a getheaders and
4134 // then fetch the blocks we need to catch up.
4135 best_block = &inv.hash;
4136 }
4137 } else if (inv.IsGenTxMsg()) {
4138 if (reject_tx_invs) {
4139 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
4140 pfrom.fDisconnect = true;
4141 return;
4142 }
4143 const GenTxid gtxid = ToGenTxid(inv);
4144 AddKnownTx(*peer, inv.hash);
4145
4146 if (!m_chainman.IsInitialBlockDownload()) {
4147 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
4148 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4149 }
4150 } else {
4151 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
4152 }
4153 }
4154
4155 if (best_block != nullptr) {
4156 // If we haven't started initial headers-sync with this peer, then
4157 // consider sending a getheaders now. On initial startup, there's a
4158 // reliability vs bandwidth tradeoff, where we are only trying to do
4159 // initial headers sync with one peer at a time, with a long
4160 // timeout (at which point, if the sync hasn't completed, we will
4161 // disconnect the peer and then choose another). In the meantime,
4162 // as new blocks are found, we are willing to add one new peer per
4163 // block to sync with as well, to sync quicker in the case where
4164 // our initial peer is unresponsive (but less bandwidth than we'd
4165 // use if we turned on sync with all peers).
4166 CNodeState& state{*Assert(State(pfrom.GetId()))};
4167 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
4168 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
4169 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
4170 m_chainman.m_best_header->nHeight, best_block->ToString(),
4171 pfrom.GetId());
4172 }
4173 if (!state.fSyncStarted) {
4174 peer->m_inv_triggered_getheaders_before_sync = true;
4175 // Update the last block hash that triggered a new headers
4176 // sync, so that we don't turn on headers sync with more
4177 // than 1 new peer every new block.
4178 m_last_block_inv_triggering_headers_sync = *best_block;
4179 }
4180 }
4181 }
4182
4183 return;
4184 }
4185
4186 if (msg_type == NetMsgType::GETDATA) {
4187 std::vector<CInv> vInv;
4188 vRecv >> vInv;
4189 if (vInv.size() > MAX_INV_SZ)
4190 {
4191 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4192 return;
4193 }
4194
4195 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4196
4197 if (vInv.size() > 0) {
4198 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4199 }
4200
4201 if (pfrom.IsPrivateBroadcastConn()) {
4202 const auto pushed_tx_opt{m_tx_for_private_broadcast.GetTxForNode(pfrom.GetId())};
4203 if (!pushed_tx_opt) {
4204 LogInfo("[privatebroadcast] Disconnecting: got GETDATA without sending an INV, peer=%d%s",
4205 pfrom.GetId(), fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : "");
4206 pfrom.fDisconnect = true;
4207 return;
4208 }
4209
4210 const CTransactionRef& pushed_tx{*pushed_tx_opt};
4211
4212 // The GETDATA request must contain exactly one inv and it must be for the transaction
4213 // that we INVed to the peer earlier.
4214 if (vInv.size() == 1 && vInv[0].IsMsgTx() && vInv[0].hash == pushed_tx->GetHash().ToUint256()) {
4215
4216 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_WITH_WITNESS(*pushed_tx));
4217
4218 peer->m_ping_queued = true; // Ensure a ping will be sent: mimic a request via RPC.
4219 MaybeSendPing(pfrom, *peer, GetTime<std::chrono::microseconds>());
4220 } else {
4221 LogInfo("[privatebroadcast] Disconnecting: got an unexpected GETDATA message, peer=%d%s",
4222 pfrom.GetId(), fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToStringAddrPort()) : "");
4223 pfrom.fDisconnect = true;
4224 }
4225 return;
4226 }
4227
4228 {
4229 LOCK(peer->m_getdata_requests_mutex);
4230 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4231 ProcessGetData(pfrom, *peer, interruptMsgProc);
4232 }
4233
4234 return;
4235 }
4236
4237 if (msg_type == NetMsgType::GETBLOCKS) {
4238 CBlockLocator locator;
4239 uint256 hashStop;
4240 vRecv >> locator >> hashStop;
4241
4242 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4243 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4244 pfrom.fDisconnect = true;
4245 return;
4246 }
4247
4248 // We might have announced the currently-being-connected tip using a
4249 // compact block, which resulted in the peer sending a getblocks
4250 // request, which we would otherwise respond to without the new block.
4251 // To avoid this situation we simply verify that we are on our best
4252 // known chain now. This is super overkill, but we handle it better
4253 // for getheaders requests, and there are no known nodes which support
4254 // compact blocks but still use getblocks to request blocks.
4255 {
4256 std::shared_ptr<const CBlock> a_recent_block;
4257 {
4258 LOCK(m_most_recent_block_mutex);
4259 a_recent_block = m_most_recent_block;
4260 }
4262 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4263 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4264 }
4265 }
4266
4267 LOCK(cs_main);
4268
4269 // Find the last block the caller has in the main chain
4270 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4271
4272 // Send the rest of the chain
4273 if (pindex)
4274 pindex = m_chainman.ActiveChain().Next(pindex);
4275 int nLimit = 500;
4276 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4277 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4278 {
4279 if (pindex->GetBlockHash() == hashStop)
4280 {
4281 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4282 break;
4283 }
4284 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4285 // for some reasonable time window (1 hour) that block relay might require.
4286 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4287 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4288 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4289 break;
4290 }
4291 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4292 if (--nLimit <= 0) {
4293 // When this block is requested, we'll send an inv that'll
4294 // trigger the peer to getblocks the next batch of inventory.
4295 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4296 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4297 break;
4298 }
4299 }
4300 return;
4301 }
4302
4303 if (msg_type == NetMsgType::GETBLOCKTXN) {
4305 vRecv >> req;
4306 // Verify differential encoding invariant: indexes must be strictly increasing
4307 // DifferenceFormatter should guarantee this property during deserialization
4308 for (size_t i = 1; i < req.indexes.size(); ++i) {
4309 Assume(req.indexes[i] > req.indexes[i-1]);
4310 }
4311
4312 std::shared_ptr<const CBlock> recent_block;
4313 {
4314 LOCK(m_most_recent_block_mutex);
4315 if (m_most_recent_block_hash == req.blockhash)
4316 recent_block = m_most_recent_block;
4317 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4318 }
4319 if (recent_block) {
4320 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4321 return;
4322 }
4323
4324 FlatFilePos block_pos{};
4325 {
4326 LOCK(cs_main);
4327
4328 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4329 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4330 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4331 return;
4332 }
4333
4334 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4335 block_pos = pindex->GetBlockPos();
4336 }
4337 }
4338
4339 if (!block_pos.IsNull()) {
4340 CBlock block;
4341 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos, req.blockhash)};
4342 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4343 // pruned after we release cs_main above, so this read should never fail.
4344 assert(ret);
4345
4346 SendBlockTransactions(pfrom, *peer, block, req);
4347 return;
4348 }
4349
4350 // If an older block is requested (should never happen in practice,
4351 // but can happen in tests) send a block response instead of a
4352 // blocktxn response. Sending a full block response instead of a
4353 // small blocktxn response is preferable in the case where a peer
4354 // might maliciously send lots of getblocktxn requests to trigger
4355 // expensive disk reads, because it will require the peer to
4356 // actually receive all the data read from disk over the network.
4357 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4359 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4360 // The message processing loop will go around again (without pausing) and we'll respond then
4361 return;
4362 }
4363
4364 if (msg_type == NetMsgType::GETHEADERS) {
4365 CBlockLocator locator;
4366 uint256 hashStop;
4367 vRecv >> locator >> hashStop;
4368
4369 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4370 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4371 pfrom.fDisconnect = true;
4372 return;
4373 }
4374
4375 if (m_chainman.m_blockman.LoadingBlocks()) {
4376 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4377 return;
4378 }
4379
4380 LOCK(cs_main);
4381
4382 // Don't serve headers from our active chain until our chainwork is at least
4383 // the minimum chain work. This prevents us from starting a low-work headers
4384 // sync that will inevitably be aborted by our peer.
4385 if (m_chainman.ActiveTip() == nullptr ||
4386 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4387 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4388 // Just respond with an empty headers message, to tell the peer to
4389 // go away but not treat us as unresponsive.
4390 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4391 return;
4392 }
4393
4394 CNodeState *nodestate = State(pfrom.GetId());
4395 const CBlockIndex* pindex = nullptr;
4396 if (locator.IsNull())
4397 {
4398 // If locator is null, return the hashStop block
4399 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4400 if (!pindex) {
4401 return;
4402 }
4403
4404 if (!BlockRequestAllowed(pindex)) {
4405 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4406 return;
4407 }
4408 }
4409 else
4410 {
4411 // Find the last block the caller has in the main chain
4412 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4413 if (pindex)
4414 pindex = m_chainman.ActiveChain().Next(pindex);
4415 }
4416
4417 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4418 std::vector<CBlock> vHeaders;
4419 int nLimit = m_opts.max_headers_result;
4420 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4421 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4422 {
4423 vHeaders.emplace_back(pindex->GetBlockHeader());
4424 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4425 break;
4426 }
4427 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4428 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4429 // headers message). In both cases it's safe to update
4430 // pindexBestHeaderSent to be our tip.
4431 //
4432 // It is important that we simply reset the BestHeaderSent value here,
4433 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4434 // the currently-being-connected tip using a compact block, which
4435 // resulted in the peer sending a headers request, which we respond to
4436 // without the new block. By resetting the BestHeaderSent, we ensure we
4437 // will re-announce the new block via headers (or compact blocks again)
4438 // in the SendMessages logic.
4439 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4440 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4441 return;
4442 }
4443
4444 if (msg_type == NetMsgType::TX) {
4445 if (RejectIncomingTxs(pfrom)) {
4446 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4447 pfrom.fDisconnect = true;
4448 return;
4449 }
4450
4451 // Stop processing the transaction early if we are still in IBD since we don't
4452 // have enough information to validate it yet. Sending unsolicited transactions
4453 // is not considered a protocol violation, so don't punish the peer.
4454 if (m_chainman.IsInitialBlockDownload()) return;
4455
4456 CTransactionRef ptx;
4457 vRecv >> TX_WITH_WITNESS(ptx);
4458
4459 const Txid& txid = ptx->GetHash();
4460 const Wtxid& wtxid = ptx->GetWitnessHash();
4461
4462 const uint256& hash = peer->m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256();
4463 AddKnownTx(*peer, hash);
4464
4465 if (const auto num_broadcasted{m_tx_for_private_broadcast.Remove(ptx)}) {
4466 LogInfo("[privatebroadcast] Received our privately broadcast transaction (txid=%s) from the "
4467 "network from peer=%d%s; stopping private broadcast attempts",
4468 txid.ToString(), pfrom.GetId(), pfrom.LogIP(fLogIPs));
4469 if (NUM_PRIVATE_BROADCAST_PER_TX > num_broadcasted.value()) {
4470 // Not all of the initial NUM_PRIVATE_BROADCAST_PER_TX connections were needed.
4471 // Tell CConnman it does not need to start the remaining ones.
4472 m_connman.m_private_broadcast.NumToOpenSub(NUM_PRIVATE_BROADCAST_PER_TX - num_broadcasted.value());
4473 }
4474 }
4475
4476 LOCK2(cs_main, m_tx_download_mutex);
4477
4478 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4479 if (!should_validate) {
4481 // Always relay transactions received from peers with forcerelay
4482 // permission, even if they were already in the mempool, allowing
4483 // the node to function as a gateway for nodes hidden behind it.
4484 if (!m_mempool.exists(txid)) {
4485 LogInfo("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4486 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4487 } else {
4488 LogInfo("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4489 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4490 InitiateTxBroadcastToAll(txid, wtxid);
4491 }
4492 }
4493
4494 if (package_to_validate) {
4495 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4496 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4497 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4498 ProcessPackageResult(package_to_validate.value(), package_result);
4499 }
4500 return;
4501 }
4502
4503 // ReceivedTx should not be telling us to validate the tx and a package.
4504 Assume(!package_to_validate.has_value());
4505
4506 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4507 const TxValidationState& state = result.m_state;
4508
4510 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4511 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4512 }
4513 if (state.IsInvalid()) {
4514 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4515 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4516 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4517 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4518 ProcessPackageResult(package_to_validate.value(), package_result);
4519 }
4520 }
4521
4522 return;
4523 }
4524
4525 if (msg_type == NetMsgType::CMPCTBLOCK)
4526 {
4527 // Ignore cmpctblock received while importing
4528 if (m_chainman.m_blockman.LoadingBlocks()) {
4529 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4530 return;
4531 }
4532
4533 CBlockHeaderAndShortTxIDs cmpctblock;
4534 vRecv >> cmpctblock;
4535
4536 bool received_new_header = false;
4537 const auto blockhash = cmpctblock.header.GetHash();
4538
4539 {
4540 LOCK(cs_main);
4541
4542 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4543 if (!prev_block) {
4544 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4545 if (!m_chainman.IsInitialBlockDownload()) {
4546 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4547 }
4548 return;
4549 } else if (prev_block->nChainWork + GetBlockProof(cmpctblock.header) < GetAntiDoSWorkThreshold()) {
4550 // If we get a low-work header in a compact block, we can ignore it.
4551 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4552 return;
4553 }
4554
4555 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4556 received_new_header = true;
4557 }
4558 }
4559
4560 const CBlockIndex *pindex = nullptr;
4562 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4563 if (state.IsInvalid()) {
4564 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4565 return;
4566 }
4567 }
4568
4569 // If AcceptBlockHeader returned true, it set pindex
4570 Assert(pindex);
4571 if (received_new_header) {
4572 LogBlockHeader(*pindex, pfrom, /*via_compact_block=*/true);
4573 }
4574
4575 bool fProcessBLOCKTXN = false;
4576
4577 // If we end up treating this as a plain headers message, call that as well
4578 // without cs_main.
4579 bool fRevertToHeaderProcessing = false;
4580
4581 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4582 // below)
4583 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4584 bool fBlockReconstructed = false;
4585
4586 {
4587 LOCK(cs_main);
4588 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4589
4590 CNodeState *nodestate = State(pfrom.GetId());
4591
4592 // If this was a new header with more work than our tip, update the
4593 // peer's last block announcement time
4594 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4595 nodestate->m_last_block_announcement = GetTime();
4596 }
4597
4598 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4599 return;
4600
4601 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4602 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4603 bool requested_block_from_this_peer{false};
4604
4605 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4606 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4607
4608 while (range_flight.first != range_flight.second) {
4609 if (range_flight.first->second.first == pfrom.GetId()) {
4610 requested_block_from_this_peer = true;
4611 break;
4612 }
4613 range_flight.first++;
4614 }
4615
4616 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4617 pindex->nTx != 0) { // We had this block at some point, but pruned it
4618 if (requested_block_from_this_peer) {
4619 // We requested this block for some reason, but our mempool will probably be useless
4620 // so we just grab the block via normal getdata
4621 std::vector<CInv> vInv(1);
4622 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4623 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4624 }
4625 return;
4626 }
4627
4628 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4629 if (!already_in_flight && !CanDirectFetch()) {
4630 return;
4631 }
4632
4633 // We want to be a bit conservative just to be extra careful about DoS
4634 // possibilities in compact block processing...
4635 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4636 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4637 requested_block_from_this_peer) {
4638 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4639 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4640 if (!(*queuedBlockIt)->partialBlock)
4641 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4642 else {
4643 // The block was already in flight using compact blocks from the same peer
4644 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4645 return;
4646 }
4647 }
4648
4649 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4650 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4651 if (status == READ_STATUS_INVALID) {
4652 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4653 Misbehaving(*peer, "invalid compact block");
4654 return;
4655 } else if (status == READ_STATUS_FAILED) {
4656 if (first_in_flight) {
4657 // Duplicate txindexes, the block is now in-flight, so just request it
4658 std::vector<CInv> vInv(1);
4659 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4660 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4661 } else {
4662 // Give up for this peer and wait for other peer(s)
4663 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4664 }
4665 return;
4666 }
4667
4669 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4670 if (!partialBlock.IsTxAvailable(i))
4671 req.indexes.push_back(i);
4672 }
4673 if (req.indexes.empty()) {
4674 fProcessBLOCKTXN = true;
4675 } else if (first_in_flight) {
4676 // We will try to round-trip any compact blocks we get on failure,
4677 // as long as it's first...
4678 req.blockhash = pindex->GetBlockHash();
4679 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4680 } else if (pfrom.m_bip152_highbandwidth_to &&
4681 (!pfrom.IsInboundConn() ||
4682 IsBlockRequestedFromOutbound(blockhash) ||
4683 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4684 // ... or it's a hb relay peer and:
4685 // - peer is outbound, or
4686 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4687 // - it's not the final parallel download slot (which we may reserve for first outbound)
4688 req.blockhash = pindex->GetBlockHash();
4689 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4690 } else {
4691 // Give up for this peer and wait for other peer(s)
4692 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4693 }
4694 } else {
4695 // This block is either already in flight from a different
4696 // peer, or this peer has too many blocks outstanding to
4697 // download from.
4698 // Optimistically try to reconstruct anyway since we might be
4699 // able to without any round trips.
4700 PartiallyDownloadedBlock tempBlock(&m_mempool);
4701 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4702 if (status != READ_STATUS_OK) {
4703 // TODO: don't ignore failures
4704 return;
4705 }
4706 std::vector<CTransactionRef> dummy;
4707 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock))};
4708 status = tempBlock.FillBlock(*pblock, dummy,
4709 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
4710 if (status == READ_STATUS_OK) {
4711 fBlockReconstructed = true;
4712 }
4713 }
4714 } else {
4715 if (requested_block_from_this_peer) {
4716 // We requested this block, but its far into the future, so our
4717 // mempool will probably be useless - request the block normally
4718 std::vector<CInv> vInv(1);
4719 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4720 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4721 return;
4722 } else {
4723 // If this was an announce-cmpctblock, we want the same treatment as a header message
4724 fRevertToHeaderProcessing = true;
4725 }
4726 }
4727 } // cs_main
4728
4729 if (fProcessBLOCKTXN) {
4731 txn.blockhash = blockhash;
4732 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4733 }
4734
4735 if (fRevertToHeaderProcessing) {
4736 // Headers received from HB compact block peers are permitted to be
4737 // relayed before full validation (see BIP 152), so we don't want to disconnect
4738 // the peer if the header turns out to be for an invalid block.
4739 // Note that if a peer tries to build on an invalid chain, that
4740 // will be detected and the peer will be disconnected/discouraged.
4741 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4742 }
4743
4744 if (fBlockReconstructed) {
4745 // If we got here, we were able to optimistically reconstruct a
4746 // block that is in flight from some other peer.
4747 {
4748 LOCK(cs_main);
4749 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4750 }
4751 // Setting force_processing to true means that we bypass some of
4752 // our anti-DoS protections in AcceptBlock, which filters
4753 // unrequested blocks that might be trying to waste our resources
4754 // (eg disk space). Because we only try to reconstruct blocks when
4755 // we're close to caught up (via the CanDirectFetch() requirement
4756 // above, combined with the behavior of not requesting blocks until
4757 // we have a chain with at least the minimum chain work), and we ignore
4758 // compact blocks with less work than our tip, it is safe to treat
4759 // reconstructed compact blocks as having been requested.
4760 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4761 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4762 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4763 // Clear download state for this block, which is in
4764 // process from some other peer. We do this after calling
4765 // ProcessNewBlock so that a malleated cmpctblock announcement
4766 // can't be used to interfere with block relay.
4767 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4768 }
4769 }
4770 return;
4771 }
4772
4773 if (msg_type == NetMsgType::BLOCKTXN)
4774 {
4775 // Ignore blocktxn received while importing
4776 if (m_chainman.m_blockman.LoadingBlocks()) {
4777 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4778 return;
4779 }
4780
4781 BlockTransactions resp;
4782 vRecv >> resp;
4783
4784 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4785 }
4786
4787 if (msg_type == NetMsgType::HEADERS)
4788 {
4789 // Ignore headers received while importing
4790 if (m_chainman.m_blockman.LoadingBlocks()) {
4791 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4792 return;
4793 }
4794
4795 std::vector<CBlockHeader> headers;
4796
4797 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4798 unsigned int nCount = ReadCompactSize(vRecv);
4799 if (nCount > m_opts.max_headers_result) {
4800 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4801 return;
4802 }
4803 headers.resize(nCount);
4804 for (unsigned int n = 0; n < nCount; n++) {
4805 vRecv >> headers[n];
4806 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4807 }
4808
4809 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4810
4811 // Check if the headers presync progress needs to be reported to validation.
4812 // This needs to be done without holding the m_headers_presync_mutex lock.
4813 if (m_headers_presync_should_signal.exchange(false)) {
4814 HeadersPresyncStats stats;
4815 {
4816 LOCK(m_headers_presync_mutex);
4817 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4818 if (it != m_headers_presync_stats.end()) stats = it->second;
4819 }
4820 if (stats.second) {
4821 m_chainman.ReportHeadersPresync(stats.second->first, stats.second->second);
4822 }
4823 }
4824
4825 return;
4826 }
4827
4828 if (msg_type == NetMsgType::BLOCK)
4829 {
4830 // Ignore block received while importing
4831 if (m_chainman.m_blockman.LoadingBlocks()) {
4832 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4833 return;
4834 }
4835
4836 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4837 vRecv >> TX_WITH_WITNESS(*pblock);
4838
4839 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4840
4841 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4842
4843 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4844 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4845 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4846 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4847 Misbehaving(*peer, "mutated block");
4848 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4849 return;
4850 }
4851
4852 bool forceProcessing = false;
4853 const uint256 hash(pblock->GetHash());
4854 bool min_pow_checked = false;
4855 {
4856 LOCK(cs_main);
4857 // Always process the block if we requested it, since we may
4858 // need it even when it's not a candidate for a new best tip.
4859 forceProcessing = IsBlockRequested(hash);
4860 RemoveBlockRequest(hash, pfrom.GetId());
4861 // mapBlockSource is only used for punishing peers and setting
4862 // which peers send us compact blocks, so the race between here and
4863 // cs_main in ProcessNewBlock is fine.
4864 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4865
4866 // Check claimed work on this block against our anti-dos thresholds.
4867 if (prev_block && prev_block->nChainWork + GetBlockProof(*pblock) >= GetAntiDoSWorkThreshold()) {
4868 min_pow_checked = true;
4869 }
4870 }
4871 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4872 return;
4873 }
4874
4875 if (msg_type == NetMsgType::GETADDR) {
4876 // This asymmetric behavior for inbound and outbound connections was introduced
4877 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4878 // to users' AddrMan and later request them by sending getaddr messages.
4879 // Making nodes which are behind NAT and can only make outgoing connections ignore
4880 // the getaddr message mitigates the attack.
4881 if (!pfrom.IsInboundConn()) {
4882 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4883 return;
4884 }
4885
4886 // Since this must be an inbound connection, SetupAddressRelay will
4887 // never fail.
4888 Assume(SetupAddressRelay(pfrom, *peer));
4889
4890 // Only send one GetAddr response per connection to reduce resource waste
4891 // and discourage addr stamping of INV announcements.
4892 if (peer->m_getaddr_recvd) {
4893 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4894 return;
4895 }
4896 peer->m_getaddr_recvd = true;
4897
4898 peer->m_addrs_to_send.clear();
4899 std::vector<CAddress> vAddr;
4901 vAddr = m_connman.GetAddressesUnsafe(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4902 } else {
4903 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4904 }
4905 for (const CAddress &addr : vAddr) {
4906 PushAddress(*peer, addr);
4907 }
4908 return;
4909 }
4910
4911 if (msg_type == NetMsgType::MEMPOOL) {
4912 // Only process received mempool messages if we advertise NODE_BLOOM
4913 // or if the peer has mempool permissions.
4914 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4915 {
4917 {
4918 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4919 pfrom.fDisconnect = true;
4920 }
4921 return;
4922 }
4923
4924 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4925 {
4927 {
4928 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4929 pfrom.fDisconnect = true;
4930 }
4931 return;
4932 }
4933
4934 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4935 LOCK(tx_relay->m_tx_inventory_mutex);
4936 tx_relay->m_send_mempool = true;
4937 }
4938 return;
4939 }
4940
4941 if (msg_type == NetMsgType::PING) {
4942 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4943 uint64_t nonce = 0;
4944 vRecv >> nonce;
4945 // Echo the message back with the nonce. This allows for two useful features:
4946 //
4947 // 1) A remote node can quickly check if the connection is operational
4948 // 2) Remote nodes can measure the latency of the network thread. If this node
4949 // is overloaded it won't respond to pings quickly and the remote node can
4950 // avoid sending us more work, like chain download requests.
4951 //
4952 // The nonce stops the remote getting confused between different pings: without
4953 // it, if the remote node sends a ping once per second and this node takes 5
4954 // seconds to respond to each, the 5th ping the remote sends would appear to
4955 // return very quickly.
4956 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4957 }
4958 return;
4959 }
4960
4961 if (msg_type == NetMsgType::PONG) {
4962 const auto ping_end = time_received;
4963 uint64_t nonce = 0;
4964 size_t nAvail = vRecv.in_avail();
4965 bool bPingFinished = false;
4966 std::string sProblem;
4967
4968 if (nAvail >= sizeof(nonce)) {
4969 vRecv >> nonce;
4970
4971 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4972 if (peer->m_ping_nonce_sent != 0) {
4973 if (nonce == peer->m_ping_nonce_sent) {
4974 // Matching pong received, this ping is no longer outstanding
4975 bPingFinished = true;
4976 const auto ping_time = ping_end - peer->m_ping_start.load();
4977 if (ping_time.count() >= 0) {
4978 // Let connman know about this successful ping-pong
4979 pfrom.PongReceived(ping_time);
4980 if (pfrom.IsPrivateBroadcastConn()) {
4981 m_tx_for_private_broadcast.NodeConfirmedReception(pfrom.GetId());
4982 LogInfo("[privatebroadcast] Got a PONG (the transaction will probably reach the network), marking for disconnect, peer=%d%s",
4983 pfrom.GetId(), pfrom.LogIP(fLogIPs));
4984 pfrom.fDisconnect = true;
4985 }
4986 } else {
4987 // This should never happen
4988 sProblem = "Timing mishap";
4989 }
4990 } else {
4991 // Nonce mismatches are normal when pings are overlapping
4992 sProblem = "Nonce mismatch";
4993 if (nonce == 0) {
4994 // This is most likely a bug in another implementation somewhere; cancel this ping
4995 bPingFinished = true;
4996 sProblem = "Nonce zero";
4997 }
4998 }
4999 } else {
5000 sProblem = "Unsolicited pong without ping";
5001 }
5002 } else {
5003 // This is most likely a bug in another implementation somewhere; cancel this ping
5004 bPingFinished = true;
5005 sProblem = "Short payload";
5006 }
5007
5008 if (!(sProblem.empty())) {
5009 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
5010 pfrom.GetId(),
5011 sProblem,
5012 peer->m_ping_nonce_sent,
5013 nonce,
5014 nAvail);
5015 }
5016 if (bPingFinished) {
5017 peer->m_ping_nonce_sent = 0;
5018 }
5019 return;
5020 }
5021
5022 if (msg_type == NetMsgType::FILTERLOAD) {
5023 if (!(peer->m_our_services & NODE_BLOOM)) {
5024 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
5025 pfrom.fDisconnect = true;
5026 return;
5027 }
5028 CBloomFilter filter;
5029 vRecv >> filter;
5030
5031 if (!filter.IsWithinSizeConstraints())
5032 {
5033 // There is no excuse for sending a too-large filter
5034 Misbehaving(*peer, "too-large bloom filter");
5035 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5036 {
5037 LOCK(tx_relay->m_bloom_filter_mutex);
5038 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
5039 tx_relay->m_relay_txs = true;
5040 }
5041 pfrom.m_bloom_filter_loaded = true;
5042 pfrom.m_relays_txs = true;
5043 }
5044 return;
5045 }
5046
5047 if (msg_type == NetMsgType::FILTERADD) {
5048 if (!(peer->m_our_services & NODE_BLOOM)) {
5049 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
5050 pfrom.fDisconnect = true;
5051 return;
5052 }
5053 std::vector<unsigned char> vData;
5054 vRecv >> vData;
5055
5056 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
5057 // and thus, the maximum size any matched object can have) in a filteradd message
5058 bool bad = false;
5059 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
5060 bad = true;
5061 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5062 LOCK(tx_relay->m_bloom_filter_mutex);
5063 if (tx_relay->m_bloom_filter) {
5064 tx_relay->m_bloom_filter->insert(vData);
5065 } else {
5066 bad = true;
5067 }
5068 }
5069 if (bad) {
5070 Misbehaving(*peer, "bad filteradd message");
5071 }
5072 return;
5073 }
5074
5075 if (msg_type == NetMsgType::FILTERCLEAR) {
5076 if (!(peer->m_our_services & NODE_BLOOM)) {
5077 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
5078 pfrom.fDisconnect = true;
5079 return;
5080 }
5081 auto tx_relay = peer->GetTxRelay();
5082 if (!tx_relay) return;
5083
5084 {
5085 LOCK(tx_relay->m_bloom_filter_mutex);
5086 tx_relay->m_bloom_filter = nullptr;
5087 tx_relay->m_relay_txs = true;
5088 }
5089 pfrom.m_bloom_filter_loaded = false;
5090 pfrom.m_relays_txs = true;
5091 return;
5092 }
5093
5094 if (msg_type == NetMsgType::FEEFILTER) {
5095 CAmount newFeeFilter = 0;
5096 vRecv >> newFeeFilter;
5097 if (MoneyRange(newFeeFilter)) {
5098 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5099 tx_relay->m_fee_filter_received = newFeeFilter;
5100 }
5101 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
5102 }
5103 return;
5104 }
5105
5106 if (msg_type == NetMsgType::GETCFILTERS) {
5107 ProcessGetCFilters(pfrom, *peer, vRecv);
5108 return;
5109 }
5110
5111 if (msg_type == NetMsgType::GETCFHEADERS) {
5112 ProcessGetCFHeaders(pfrom, *peer, vRecv);
5113 return;
5114 }
5115
5116 if (msg_type == NetMsgType::GETCFCHECKPT) {
5117 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
5118 return;
5119 }
5120
5121 if (msg_type == NetMsgType::NOTFOUND) {
5122 std::vector<CInv> vInv;
5123 vRecv >> vInv;
5124 std::vector<GenTxid> tx_invs;
5126 for (CInv &inv : vInv) {
5127 if (inv.IsGenTxMsg()) {
5128 tx_invs.emplace_back(ToGenTxid(inv));
5129 }
5130 }
5131 }
5132 LOCK(m_tx_download_mutex);
5133 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
5134 return;
5135 }
5136
5137 // Ignore unknown message types for extensibility
5138 LogDebug(BCLog::NET, "Unknown message type \"%s\" from peer=%d", SanitizeString(msg_type), pfrom.GetId());
5139 return;
5140}
5141
5142bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
5143{
5144 {
5145 LOCK(peer.m_misbehavior_mutex);
5146
5147 // There's nothing to do if the m_should_discourage flag isn't set
5148 if (!peer.m_should_discourage) return false;
5149
5150 peer.m_should_discourage = false;
5151 } // peer.m_misbehavior_mutex
5152
5154 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
5155 LogWarning("Not punishing noban peer %d!", peer.m_id);
5156 return false;
5157 }
5158
5159 if (pnode.IsManualConn()) {
5160 // We never disconnect or discourage manual peers for bad behavior
5161 LogWarning("Not punishing manually connected peer %d!", peer.m_id);
5162 return false;
5163 }
5164
5165 if (pnode.addr.IsLocal()) {
5166 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
5167 // all peers on the same local address)
5168 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
5169 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
5170 pnode.fDisconnect = true;
5171 return true;
5172 }
5173
5174 // Normal case: Disconnect the peer and discourage all nodes sharing the address
5175 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
5176 if (m_banman) m_banman->Discourage(pnode.addr);
5177 m_connman.DisconnectNode(pnode.addr);
5178 return true;
5179}
5180
5181bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
5182{
5183 AssertLockNotHeld(m_tx_download_mutex);
5184 AssertLockHeld(g_msgproc_mutex);
5185
5186 PeerRef peer = GetPeerRef(pfrom->GetId());
5187 if (peer == nullptr) return false;
5188
5189 // For outbound connections, ensure that the initial VERSION message
5190 // has been sent first before processing any incoming messages
5191 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
5192
5193 {
5194 LOCK(peer->m_getdata_requests_mutex);
5195 if (!peer->m_getdata_requests.empty()) {
5196 ProcessGetData(*pfrom, *peer, interruptMsgProc);
5197 }
5198 }
5199
5200 const bool processed_orphan = ProcessOrphanTx(*peer);
5201
5202 if (pfrom->fDisconnect)
5203 return false;
5204
5205 if (processed_orphan) return true;
5206
5207 // this maintains the order of responses
5208 // and prevents m_getdata_requests to grow unbounded
5209 {
5210 LOCK(peer->m_getdata_requests_mutex);
5211 if (!peer->m_getdata_requests.empty()) return true;
5212 }
5213
5214 // Don't bother if send buffer is too full to respond anyway
5215 if (pfrom->fPauseSend) return false;
5216
5217 auto poll_result{pfrom->PollMessage()};
5218 if (!poll_result) {
5219 // No message to process
5220 return false;
5221 }
5222
5223 CNetMessage& msg{poll_result->first};
5224 bool fMoreWork = poll_result->second;
5225
5226 TRACEPOINT(net, inbound_message,
5227 pfrom->GetId(),
5228 pfrom->m_addr_name.c_str(),
5229 pfrom->ConnectionTypeAsString().c_str(),
5230 msg.m_type.c_str(),
5231 msg.m_recv.size(),
5232 msg.m_recv.data()
5233 );
5234
5235 if (m_opts.capture_messages) {
5236 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5237 }
5238
5239 try {
5240 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5241 if (interruptMsgProc) return false;
5242 {
5243 LOCK(peer->m_getdata_requests_mutex);
5244 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5245 }
5246 // Does this peer has an orphan ready to reconsider?
5247 // (Note: we may have provided a parent for an orphan provided
5248 // by another peer that was already processed; in that case,
5249 // the extra work may not be noticed, possibly resulting in an
5250 // unnecessary 100ms delay)
5251 LOCK(m_tx_download_mutex);
5252 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5253 } catch (const std::exception& e) {
5254 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5255 } catch (...) {
5256 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5257 }
5258
5259 return fMoreWork;
5260}
5261
5262void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5263{
5265
5266 CNodeState &state = *State(pto.GetId());
5267
5268 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5269 // This is an outbound peer subject to disconnection if they don't
5270 // announce a block with as much work as the current tip within
5271 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5272 // their chain has more work than ours, we should sync to it,
5273 // unless it's invalid, in which case we should find that out and
5274 // disconnect from them elsewhere).
5275 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5276 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5277 if (state.m_chain_sync.m_timeout != 0s) {
5278 state.m_chain_sync.m_timeout = 0s;
5279 state.m_chain_sync.m_work_header = nullptr;
5280 state.m_chain_sync.m_sent_getheaders = false;
5281 }
5282 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5283 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5284 // AND
5285 // we are noticing this for the first time (m_timeout is 0)
5286 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5287 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5288 // Either way, set a new timeout based on our current tip.
5289 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5290 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5291 state.m_chain_sync.m_sent_getheaders = false;
5292 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5293 // No evidence yet that our peer has synced to a chain with work equal to that
5294 // of our tip, when we first detected it was behind. Send a single getheaders
5295 // message to give the peer a chance to update us.
5296 if (state.m_chain_sync.m_sent_getheaders) {
5297 // They've run out of time to catch up!
5298 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5299 pto.fDisconnect = true;
5300 } else {
5301 assert(state.m_chain_sync.m_work_header);
5302 // Here, we assume that the getheaders message goes out,
5303 // because it'll either go out or be skipped because of a
5304 // getheaders in-flight already, in which case the peer should
5305 // still respond to us with a sufficiently high work chain tip.
5306 MaybeSendGetHeaders(pto,
5307 GetLocator(state.m_chain_sync.m_work_header->pprev),
5308 peer);
5309 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5310 state.m_chain_sync.m_sent_getheaders = true;
5311 // Bump the timeout to allow a response, which could clear the timeout
5312 // (if the response shows the peer has synced), reset the timeout (if
5313 // the peer syncs to the required work but not to our tip), or result
5314 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5315 // has not sufficiently progressed)
5316 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5317 }
5318 }
5319 }
5320}
5321
5322void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5323{
5324 // If we have any extra block-relay-only peers, disconnect the youngest unless
5325 // it's given us a block -- in which case, compare with the second-youngest, and
5326 // out of those two, disconnect the peer who least recently gave us a block.
5327 // The youngest block-relay-only peer would be the extra peer we connected
5328 // to temporarily in order to sync our tip; see net.cpp.
5329 // Note that we use higher nodeid as a measure for most recent connection.
5330 if (m_connman.GetExtraBlockRelayCount() > 0) {
5331 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5332
5333 m_connman.ForEachNode([&](CNode* pnode) {
5334 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5335 if (pnode->GetId() > youngest_peer.first) {
5336 next_youngest_peer = youngest_peer;
5337 youngest_peer.first = pnode->GetId();
5338 youngest_peer.second = pnode->m_last_block_time;
5339 }
5340 });
5341 NodeId to_disconnect = youngest_peer.first;
5342 if (youngest_peer.second > next_youngest_peer.second) {
5343 // Our newest block-relay-only peer gave us a block more recently;
5344 // disconnect our second youngest.
5345 to_disconnect = next_youngest_peer.first;
5346 }
5347 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5349 // Make sure we're not getting a block right now, and that
5350 // we've been connected long enough for this eviction to happen
5351 // at all.
5352 // Note that we only request blocks from a peer if we learn of a
5353 // valid headers chain with at least as much work as our tip.
5354 CNodeState *node_state = State(pnode->GetId());
5355 if (node_state == nullptr ||
5356 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5357 pnode->fDisconnect = true;
5358 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5359 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5360 return true;
5361 } else {
5362 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5363 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5364 }
5365 return false;
5366 });
5367 }
5368
5369 // Check whether we have too many outbound-full-relay peers
5370 if (m_connman.GetExtraFullOutboundCount() > 0) {
5371 // If we have more outbound-full-relay peers than we target, disconnect one.
5372 // Pick the outbound-full-relay peer that least recently announced
5373 // us a new block, with ties broken by choosing the more recent
5374 // connection (higher node id)
5375 // Protect peers from eviction if we don't have another connection
5376 // to their network, counting both outbound-full-relay and manual peers.
5377 NodeId worst_peer = -1;
5378 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5379
5380 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5381 AssertLockHeld(::cs_main);
5382
5383 // Only consider outbound-full-relay peers that are not already
5384 // marked for disconnection
5385 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5386 CNodeState *state = State(pnode->GetId());
5387 if (state == nullptr) return; // shouldn't be possible, but just in case
5388 // Don't evict our protected peers
5389 if (state->m_chain_sync.m_protect) return;
5390 // If this is the only connection on a particular network that is
5391 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5392 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5393 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5394 worst_peer = pnode->GetId();
5395 oldest_block_announcement = state->m_last_block_announcement;
5396 }
5397 });
5398 if (worst_peer != -1) {
5399 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5401
5402 // Only disconnect a peer that has been connected to us for
5403 // some reasonable fraction of our check-frequency, to give
5404 // it time for new information to have arrived.
5405 // Also don't disconnect any peer we're trying to download a
5406 // block from.
5407 CNodeState &state = *State(pnode->GetId());
5408 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5409 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5410 pnode->fDisconnect = true;
5411 return true;
5412 } else {
5413 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5414 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5415 return false;
5416 }
5417 });
5418 if (disconnected) {
5419 // If we disconnected an extra peer, that means we successfully
5420 // connected to at least one peer after the last time we
5421 // detected a stale tip. Don't try any more extra peers until
5422 // we next detect a stale tip, to limit the load we put on the
5423 // network from these extra connections.
5424 m_connman.SetTryNewOutboundPeer(false);
5425 }
5426 }
5427 }
5428}
5429
5430void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5431{
5432 LOCK(cs_main);
5433
5434 auto now{GetTime<std::chrono::seconds>()};
5435
5436 EvictExtraOutboundPeers(now);
5437
5438 if (now > m_stale_tip_check_time) {
5439 // Check whether our tip is stale, and if so, allow using an extra
5440 // outbound peer
5441 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5442 LogInfo("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5443 count_seconds(now - m_last_tip_update.load()));
5444 m_connman.SetTryNewOutboundPeer(true);
5445 } else if (m_connman.GetTryNewOutboundPeer()) {
5446 m_connman.SetTryNewOutboundPeer(false);
5447 }
5448 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5449 }
5450
5451 if (!m_initial_sync_finished && CanDirectFetch()) {
5452 m_connman.StartExtraBlockRelayPeers();
5453 m_initial_sync_finished = true;
5454 }
5455}
5456
5457void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5458{
5459 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5460 peer.m_ping_nonce_sent &&
5461 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5462 {
5463 // The ping timeout is using mocktime. To disable the check during
5464 // testing, increase -peertimeout.
5465 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5466 node_to.fDisconnect = true;
5467 return;
5468 }
5469
5470 bool pingSend = false;
5471
5472 if (peer.m_ping_queued) {
5473 // RPC ping request by user
5474 pingSend = true;
5475 }
5476
5477 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5478 // Ping automatically sent as a latency probe & keepalive.
5479 pingSend = true;
5480 }
5481
5482 if (pingSend) {
5483 uint64_t nonce;
5484 do {
5486 } while (nonce == 0);
5487 peer.m_ping_queued = false;
5488 peer.m_ping_start = now;
5489 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5490 peer.m_ping_nonce_sent = nonce;
5491 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5492 } else {
5493 // Peer is too old to support ping message type with nonce, pong will never arrive.
5494 peer.m_ping_nonce_sent = 0;
5495 MakeAndPushMessage(node_to, NetMsgType::PING);
5496 }
5497 }
5498}
5499
5500void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5501{
5502 // Nothing to do for non-address-relay peers
5503 if (!peer.m_addr_relay_enabled) return;
5504
5505 LOCK(peer.m_addr_send_times_mutex);
5506 // Periodically advertise our local address to the peer.
5507 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5508 peer.m_next_local_addr_send < current_time) {
5509 // If we've sent before, clear the bloom filter for the peer, so that our
5510 // self-announcement will actually go out.
5511 // This might be unnecessary if the bloom filter has already rolled
5512 // over since our last self-announcement, but there is only a small
5513 // bandwidth cost that we can incur by doing this (which happens
5514 // once a day on average).
5515 if (peer.m_next_local_addr_send != 0us) {
5516 peer.m_addr_known->reset();
5517 }
5518 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5519 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5520 if (peer.m_next_local_addr_send == 0us) {
5521 // Send the initial self-announcement in its own message. This makes sure
5522 // rate-limiting with limited start-tokens doesn't ignore it if the first
5523 // message ends up containing multiple addresses.
5524 std::vector<CAddress> self_announcement {local_addr};
5525 if (peer.m_wants_addrv2) {
5526 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(self_announcement));
5527 } else {
5528 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(self_announcement));
5529 }
5530 } else {
5531 // All later self-announcements are sent together with the other addresses.
5532 PushAddress(peer, local_addr);
5533 }
5534 }
5535 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5536 }
5537
5538 // We sent an `addr` message to this peer recently. Nothing more to do.
5539 if (current_time <= peer.m_next_addr_send) return;
5540
5541 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5542
5543 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5544 // Should be impossible since we always check size before adding to
5545 // m_addrs_to_send. Recover by trimming the vector.
5546 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5547 }
5548
5549 // Remove addr records that the peer already knows about, and add new
5550 // addrs to the m_addr_known filter on the same pass.
5551 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5552 bool ret = peer.m_addr_known->contains(addr.GetKey());
5553 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5554 return ret;
5555 };
5556 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5557 peer.m_addrs_to_send.end());
5558
5559 // No addr messages to send
5560 if (peer.m_addrs_to_send.empty()) return;
5561
5562 if (peer.m_wants_addrv2) {
5563 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5564 } else {
5565 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5566 }
5567 peer.m_addrs_to_send.clear();
5568
5569 // we only send the big addr message once
5570 if (peer.m_addrs_to_send.capacity() > 40) {
5571 peer.m_addrs_to_send.shrink_to_fit();
5572 }
5573}
5574
5575void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5576{
5577 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5578 // initial-headers-sync with this peer. Receiving headers announcements for
5579 // new blocks while trying to sync their headers chain is problematic,
5580 // because of the state tracking done.
5581 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5582 LOCK(cs_main);
5583 CNodeState &state = *State(node.GetId());
5584 if (state.pindexBestKnownBlock != nullptr &&
5585 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5586 // Tell our peer we prefer to receive headers rather than inv's
5587 // We send this to non-NODE NETWORK peers as well, because even
5588 // non-NODE NETWORK peers can announce blocks (such as pruning
5589 // nodes)
5590 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5591 peer.m_sent_sendheaders = true;
5592 }
5593 }
5594}
5595
5596void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5597{
5598 if (m_opts.ignore_incoming_txs) return;
5599 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5600 // peers with the forcerelay permission should not filter txs to us
5602 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5603 // transactions to us, regardless of feefilter state.
5604 if (pto.IsBlockOnlyConn()) return;
5605
5606 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5607
5608 if (m_chainman.IsInitialBlockDownload()) {
5609 // Received tx-inv messages are discarded when the active
5610 // chainstate is in IBD, so tell the peer to not send them.
5611 currentFilter = MAX_MONEY;
5612 } else {
5613 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5614 if (peer.m_fee_filter_sent == MAX_FILTER) {
5615 // Send the current filter if we sent MAX_FILTER previously
5616 // and made it out of IBD.
5617 peer.m_next_send_feefilter = 0us;
5618 }
5619 }
5620 if (current_time > peer.m_next_send_feefilter) {
5621 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5622 // We always have a fee filter of at least the min relay fee
5623 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5624 if (filterToSend != peer.m_fee_filter_sent) {
5625 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5626 peer.m_fee_filter_sent = filterToSend;
5627 }
5628 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5629 }
5630 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5631 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5632 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5633 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5634 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5635 }
5636}
5637
5638namespace {
5639class CompareInvMempoolOrder
5640{
5641 const CTxMemPool* m_mempool;
5642public:
5643 explicit CompareInvMempoolOrder(CTxMemPool* mempool) : m_mempool{mempool} {}
5644
5645 bool operator()(std::set<Wtxid>::iterator a, std::set<Wtxid>::iterator b)
5646 {
5647 /* As std::make_heap produces a max-heap, we want the entries with the
5648 * higher mining score to sort later. */
5649 return m_mempool->CompareMiningScoreWithTopology(*b, *a);
5650 }
5651};
5652} // namespace
5653
5654bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5655{
5656 // block-relay-only peers may never send txs to us
5657 if (peer.IsBlockOnlyConn()) return true;
5658 if (peer.IsFeelerConn()) return true;
5659 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5660 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5661 return false;
5662}
5663
5664bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5665{
5666 // We don't participate in addr relay with outbound block-relay-only
5667 // connections to prevent providing adversaries with the additional
5668 // information of addr traffic to infer the link.
5669 if (node.IsBlockOnlyConn()) return false;
5670
5671 if (!peer.m_addr_relay_enabled.exchange(true)) {
5672 // During version message processing (non-block-relay-only outbound peers)
5673 // or on first addr-related message we have received (inbound peers), initialize
5674 // m_addr_known.
5675 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5676 }
5677
5678 return true;
5679}
5680
5681bool PeerManagerImpl::SendMessages(CNode* pto)
5682{
5683 AssertLockNotHeld(m_tx_download_mutex);
5684 AssertLockHeld(g_msgproc_mutex);
5685
5686 PeerRef peer = GetPeerRef(pto->GetId());
5687 if (!peer) return false;
5688 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5689
5690 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5691 // disconnect misbehaving peers even before the version handshake is complete.
5692 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5693
5694 // Initiate version handshake for outbound connections
5695 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5696 PushNodeVersion(*pto, *peer);
5697 peer->m_outbound_version_message_sent = true;
5698 }
5699
5700 // Don't send anything until the version handshake is complete
5701 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5702 return true;
5703
5704 const auto current_time{GetTime<std::chrono::microseconds>()};
5705
5706 // The logic below does not apply to private broadcast peers, so skip it.
5707 // Also in CConnman::PushMessage() we make sure that unwanted messages are
5708 // not sent. This here is just an optimization.
5709 if (pto->IsPrivateBroadcastConn()) {
5710 if (pto->m_connected + PRIVATE_BROADCAST_MAX_CONNECTION_LIFETIME < current_time) {
5711 LogInfo("[privatebroadcast] Disconnecting: did not complete the transaction send within %d seconds, peer=%d%s",
5713 pto->fDisconnect = true;
5714 }
5715 return true;
5716 }
5717
5718 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5719 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5720 pto->fDisconnect = true;
5721 return true;
5722 }
5723
5724 MaybeSendPing(*pto, *peer, current_time);
5725
5726 // MaybeSendPing may have marked peer for disconnection
5727 if (pto->fDisconnect) return true;
5728
5729 MaybeSendAddr(*pto, *peer, current_time);
5730
5731 MaybeSendSendHeaders(*pto, *peer);
5732
5733 {
5734 LOCK(cs_main);
5735
5736 CNodeState &state = *State(pto->GetId());
5737
5738 // Start block sync
5739 if (m_chainman.m_best_header == nullptr) {
5740 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5741 }
5742
5743 // Determine whether we might try initial headers sync or parallel
5744 // block download from this peer -- this mostly affects behavior while
5745 // in IBD (once out of IBD, we sync from all peers).
5746 bool sync_blocks_and_headers_from_peer = false;
5747 if (state.fPreferredDownload) {
5748 sync_blocks_and_headers_from_peer = true;
5749 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5750 // Typically this is an inbound peer. If we don't have any outbound
5751 // peers, or if we aren't downloading any blocks from such peers,
5752 // then allow block downloads from this peer, too.
5753 // We prefer downloading blocks from outbound peers to avoid
5754 // putting undue load on (say) some home user who is just making
5755 // outbound connections to the network, but if our only source of
5756 // the latest blocks is from an inbound peer, we have to be sure to
5757 // eventually download it (and not just wait indefinitely for an
5758 // outbound peer to have it).
5759 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5760 sync_blocks_and_headers_from_peer = true;
5761 }
5762 }
5763
5764 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5765 // Only actively request headers from a single peer, unless we're close to today.
5766 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5767 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5768 /* If possible, start at the block preceding the currently
5769 best known header. This ensures that we always get a
5770 non-empty list of headers back as long as the peer
5771 is up-to-date. With a non-empty response, we can initialise
5772 the peer's known best block. This wouldn't be possible
5773 if we requested starting at m_chainman.m_best_header and
5774 got back an empty response. */
5775 if (pindexStart->pprev)
5776 pindexStart = pindexStart->pprev;
5777 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5778 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5779
5780 state.fSyncStarted = true;
5781 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5782 (
5783 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5784 // to maintain precision
5785 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5786 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5787 );
5788 nSyncStarted++;
5789 }
5790 }
5791 }
5792
5793 //
5794 // Try sending block announcements via headers
5795 //
5796 {
5797 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5798 // list of block hashes we're relaying, and our peer wants
5799 // headers announcements, then find the first header
5800 // not yet known to our peer but would connect, and send.
5801 // If no header would connect, or if we have too many
5802 // blocks, or if the peer doesn't want headers, just
5803 // add all to the inv queue.
5804 LOCK(peer->m_block_inv_mutex);
5805 std::vector<CBlock> vHeaders;
5806 bool fRevertToInv = ((!peer->m_prefers_headers &&
5807 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5808 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5809 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5810 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5811
5812 if (!fRevertToInv) {
5813 bool fFoundStartingHeader = false;
5814 // Try to find first header that our peer doesn't have, and
5815 // then send all headers past that one. If we come across any
5816 // headers that aren't on m_chainman.ActiveChain(), give up.
5817 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5818 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5819 assert(pindex);
5820 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5821 // Bail out if we reorged away from this block
5822 fRevertToInv = true;
5823 break;
5824 }
5825 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5826 // This means that the list of blocks to announce don't
5827 // connect to each other.
5828 // This shouldn't really be possible to hit during
5829 // regular operation (because reorgs should take us to
5830 // a chain that has some block not on the prior chain,
5831 // which should be caught by the prior check), but one
5832 // way this could happen is by using invalidateblock /
5833 // reconsiderblock repeatedly on the tip, causing it to
5834 // be added multiple times to m_blocks_for_headers_relay.
5835 // Robustly deal with this rare situation by reverting
5836 // to an inv.
5837 fRevertToInv = true;
5838 break;
5839 }
5840 pBestIndex = pindex;
5841 if (fFoundStartingHeader) {
5842 // add this to the headers message
5843 vHeaders.emplace_back(pindex->GetBlockHeader());
5844 } else if (PeerHasHeader(&state, pindex)) {
5845 continue; // keep looking for the first new block
5846 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5847 // Peer doesn't have this header but they do have the prior one.
5848 // Start sending headers.
5849 fFoundStartingHeader = true;
5850 vHeaders.emplace_back(pindex->GetBlockHeader());
5851 } else {
5852 // Peer doesn't have this header or the prior one -- nothing will
5853 // connect, so bail out.
5854 fRevertToInv = true;
5855 break;
5856 }
5857 }
5858 }
5859 if (!fRevertToInv && !vHeaders.empty()) {
5860 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5861 // We only send up to 1 block as header-and-ids, as otherwise
5862 // probably means we're doing an initial-ish-sync or they're slow
5863 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5864 vHeaders.front().GetHash().ToString(), pto->GetId());
5865
5866 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5867 {
5868 LOCK(m_most_recent_block_mutex);
5869 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5870 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5871 }
5872 }
5873 if (cached_cmpctblock_msg.has_value()) {
5874 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5875 } else {
5876 CBlock block;
5877 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5878 assert(ret);
5879 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5880 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5881 }
5882 state.pindexBestHeaderSent = pBestIndex;
5883 } else if (peer->m_prefers_headers) {
5884 if (vHeaders.size() > 1) {
5885 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5886 vHeaders.size(),
5887 vHeaders.front().GetHash().ToString(),
5888 vHeaders.back().GetHash().ToString(), pto->GetId());
5889 } else {
5890 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5891 vHeaders.front().GetHash().ToString(), pto->GetId());
5892 }
5893 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5894 state.pindexBestHeaderSent = pBestIndex;
5895 } else
5896 fRevertToInv = true;
5897 }
5898 if (fRevertToInv) {
5899 // If falling back to using an inv, just try to inv the tip.
5900 // The last entry in m_blocks_for_headers_relay was our tip at some point
5901 // in the past.
5902 if (!peer->m_blocks_for_headers_relay.empty()) {
5903 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5904 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5905 assert(pindex);
5906
5907 // Warn if we're announcing a block that is not on the main chain.
5908 // This should be very rare and could be optimized out.
5909 // Just log for now.
5910 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5911 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5912 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5913 }
5914
5915 // If the peer's chain has this block, don't inv it back.
5916 if (!PeerHasHeader(&state, pindex)) {
5917 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5918 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5919 pto->GetId(), hashToAnnounce.ToString());
5920 }
5921 }
5922 }
5923 peer->m_blocks_for_headers_relay.clear();
5924 }
5925
5926 //
5927 // Message: inventory
5928 //
5929 std::vector<CInv> vInv;
5930 {
5931 LOCK(peer->m_block_inv_mutex);
5932 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5933
5934 // Add blocks
5935 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5936 vInv.emplace_back(MSG_BLOCK, hash);
5937 if (vInv.size() == MAX_INV_SZ) {
5938 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5939 vInv.clear();
5940 }
5941 }
5942 peer->m_blocks_for_inv_relay.clear();
5943 }
5944
5945 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5946 LOCK(tx_relay->m_tx_inventory_mutex);
5947 // Check whether periodic sends should happen
5948 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5949 if (tx_relay->m_next_inv_send_time < current_time) {
5950 fSendTrickle = true;
5951 if (pto->IsInboundConn()) {
5952 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL, pto->m_network_key);
5953 } else {
5954 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5955 }
5956 }
5957
5958 // Time to send but the peer has requested we not relay transactions.
5959 if (fSendTrickle) {
5960 LOCK(tx_relay->m_bloom_filter_mutex);
5961 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5962 }
5963
5964 // Respond to BIP35 mempool requests
5965 if (fSendTrickle && tx_relay->m_send_mempool) {
5966 auto vtxinfo = m_mempool.infoAll();
5967 tx_relay->m_send_mempool = false;
5968 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5969
5970 LOCK(tx_relay->m_bloom_filter_mutex);
5971
5972 for (const auto& txinfo : vtxinfo) {
5973 const Txid& txid{txinfo.tx->GetHash()};
5974 const Wtxid& wtxid{txinfo.tx->GetWitnessHash()};
5975 const auto inv = peer->m_wtxid_relay ?
5976 CInv{MSG_WTX, wtxid.ToUint256()} :
5977 CInv{MSG_TX, txid.ToUint256()};
5978 tx_relay->m_tx_inventory_to_send.erase(wtxid);
5979
5980 // Don't send transactions that peers will not put into their mempool
5981 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5982 continue;
5983 }
5984 if (tx_relay->m_bloom_filter) {
5985 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5986 }
5987 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5988 vInv.push_back(inv);
5989 if (vInv.size() == MAX_INV_SZ) {
5990 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5991 vInv.clear();
5992 }
5993 }
5994 }
5995
5996 // Determine transactions to relay
5997 if (fSendTrickle) {
5998 // Produce a vector with all candidates for sending
5999 std::vector<std::set<Wtxid>::iterator> vInvTx;
6000 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
6001 for (std::set<Wtxid>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
6002 vInvTx.push_back(it);
6003 }
6004 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
6005 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
6006 // A heap is used so that not all items need sorting if only a few are being sent.
6007 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
6008 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
6009 // No reason to drain out at many times the network's capacity,
6010 // especially since we have many peers and some will draw much shorter delays.
6011 unsigned int nRelayedTransactions = 0;
6012 LOCK(tx_relay->m_bloom_filter_mutex);
6013 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
6014 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
6015 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
6016 // Fetch the top element from the heap
6017 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
6018 std::set<Wtxid>::iterator it = vInvTx.back();
6019 vInvTx.pop_back();
6020 auto wtxid = *it;
6021 // Remove it from the to-be-sent set
6022 tx_relay->m_tx_inventory_to_send.erase(it);
6023 // Not in the mempool anymore? don't bother sending it.
6024 auto txinfo = m_mempool.info(wtxid);
6025 if (!txinfo.tx) {
6026 continue;
6027 }
6028 // `TxRelay::m_tx_inventory_known_filter` contains either txids or wtxids
6029 // depending on whether our peer supports wtxid-relay. Therefore, first
6030 // construct the inv and then use its hash for the filter check.
6031 const auto inv = peer->m_wtxid_relay ?
6032 CInv{MSG_WTX, wtxid.ToUint256()} :
6033 CInv{MSG_TX, txinfo.tx->GetHash().ToUint256()};
6034 // Check if not in the filter already
6035 if (tx_relay->m_tx_inventory_known_filter.contains(inv.hash)) {
6036 continue;
6037 }
6038 // Peer told you to not send transactions at that feerate? Don't bother sending it.
6039 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
6040 continue;
6041 }
6042 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
6043 // Send
6044 vInv.push_back(inv);
6045 nRelayedTransactions++;
6046 if (vInv.size() == MAX_INV_SZ) {
6047 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
6048 vInv.clear();
6049 }
6050 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
6051 }
6052
6053 // Ensure we'll respond to GETDATA requests for anything we've just announced
6054 LOCK(m_mempool.cs);
6055 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
6056 }
6057 }
6058 if (!vInv.empty())
6059 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
6060
6061 // Detect whether we're stalling
6062 auto stalling_timeout = m_block_stalling_timeout.load();
6063 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
6064 // Stalling only triggers when the block download window cannot move. During normal steady state,
6065 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
6066 // should only happen during initial block download.
6067 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
6068 pto->fDisconnect = true;
6069 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
6070 // bandwidth is insufficient.
6071 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
6072 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
6073 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
6074 }
6075 return true;
6076 }
6077 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
6078 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
6079 // We compensate for other peers to prevent killing off peers due to our own downstream link
6080 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
6081 // to unreasonably increase our timeout.
6082 if (state.vBlocksInFlight.size() > 0) {
6083 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
6084 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
6085 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
6086 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
6087 pto->fDisconnect = true;
6088 return true;
6089 }
6090 }
6091 // Check for headers sync timeouts
6092 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
6093 // Detect whether this is a stalling initial-headers-sync peer
6094 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
6095 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
6096 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
6097 // and we have others we could be using instead.
6098 // Note: If all our peers are inbound, then we won't
6099 // disconnect our sync peer for stalling; we have bigger
6100 // problems if we can't get any outbound peers.
6102 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
6103 pto->fDisconnect = true;
6104 return true;
6105 } else {
6106 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
6107 // Reset the headers sync state so that we have a
6108 // chance to try downloading from a different peer.
6109 // Note: this will also result in at least one more
6110 // getheaders message to be sent to
6111 // this peer (eventually).
6112 state.fSyncStarted = false;
6113 nSyncStarted--;
6114 peer->m_headers_sync_timeout = 0us;
6115 }
6116 }
6117 } else {
6118 // After we've caught up once, reset the timeout so we can't trigger
6119 // disconnect later.
6120 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
6121 }
6122 }
6123
6124 // Check that outbound peers have reasonable chains
6125 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
6126 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
6127
6128 //
6129 // Message: getdata (blocks)
6130 //
6131 std::vector<CInv> vGetData;
6132 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
6133 std::vector<const CBlockIndex*> vToDownload;
6134 NodeId staller = -1;
6135 auto get_inflight_budget = [&state]() {
6136 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
6137 };
6138
6139 // If there are multiple chainstates, download blocks for the
6140 // current chainstate first, to prioritize getting to network tip
6141 // before downloading historical blocks.
6142 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
6143 auto historical_blocks{m_chainman.GetHistoricalBlockRange()};
6144 if (historical_blocks && !IsLimitedPeer(*peer)) {
6145 // If the first needed historical block is not an ancestor of the last,
6146 // we need to start requesting blocks from their last common ancestor.
6147 const CBlockIndex* from_tip = LastCommonAncestor(historical_blocks->first, historical_blocks->second);
6148 TryDownloadingHistoricalBlocks(
6149 *peer,
6150 get_inflight_budget(),
6151 vToDownload, from_tip, historical_blocks->second);
6152 }
6153 for (const CBlockIndex *pindex : vToDownload) {
6154 uint32_t nFetchFlags = GetFetchFlags(*peer);
6155 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
6156 BlockRequested(pto->GetId(), *pindex);
6157 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
6158 pindex->nHeight, pto->GetId());
6159 }
6160 if (state.vBlocksInFlight.empty() && staller != -1) {
6161 if (State(staller)->m_stalling_since == 0us) {
6162 State(staller)->m_stalling_since = current_time;
6163 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
6164 }
6165 }
6166 }
6167
6168 //
6169 // Message: getdata (transactions)
6170 //
6171 {
6172 LOCK(m_tx_download_mutex);
6173 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
6174 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.ToUint256());
6175 if (vGetData.size() >= MAX_GETDATA_SZ) {
6176 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
6177 vGetData.clear();
6178 }
6179 }
6180 }
6181
6182 if (!vGetData.empty())
6183 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
6184 } // release cs_main
6185 MaybeSendFeefilter(*pto, *peer, current_time);
6186 return true;
6187}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:94
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:45
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:136
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:155
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:65
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:61
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:69
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:51
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:75
arith_uint256 GetBlockProof(const CBlockIndex &block)
Compute how much work a block index entry corresponds to.
Definition: chain.h:306
#define Assert(val)
Identity function.
Definition: check.h:113
#define Assume(val)
Assume is the identity function.
Definition: check.h:125
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
bool IsNull() const
Definition: block.h:49
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:95
bool IsValid(enum BlockStatus nUpTo) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:251
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:101
CBlockHeader GetBlockHeader() const
Definition: chain.h:186
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:119
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:215
uint256 GetBlockHash() const
Definition: chain.h:199
int64_t GetBlockTime() const
Definition: chain.h:222
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:124
NodeSeconds Time() const
Definition: chain.h:217
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:110
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:107
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:164
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:381
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:397
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:417
int Height() const
Return the maximal height in the chain.
Definition: chain.h:426
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:411
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:77
const HeadersSyncParams & HeadersSync() const
Definition: chainparams.h:117
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:89
void NumToOpenAdd(size_t n)
Increment the number of new connections of type ConnectionType::PRIVATE_BROADCAST to be opened by CCo...
Definition: net.cpp:3105
size_t NumToOpenSub(size_t n)
Decrement the number of new connections of type ConnectionType::PRIVATE_BROADCAST to be opened by CCo...
Definition: net.cpp:3111
Definition: net.h:1072
void ForEachNode(const NodeFn &func)
Definition: net.h:1267
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:4131
bool GetNetworkActive() const
Definition: net.h:1167
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::microseconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:2016
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2439
class CConnman::PrivateBroadcast m_private_broadcast
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3707
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2444
int GetExtraBlockRelayCount() const
Definition: net.cpp:2489
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2259
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3924
void StartExtraBlockRelayPeers()
Definition: net.cpp:2450
bool DisconnectNode(std::string_view node)
Definition: net.cpp:3822
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:4144
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3805
int GetExtraFullOutboundCount() const
Definition: net.cpp:2475
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3696
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:353
bool GetUseAddrmanOutgoing() const
Definition: net.h:1168
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per virtualbyte: CAmount / vB the feerate is represented internally as FeeFrac.
Definition: feerate.h:35
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:65
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:127
std::vector< std::pair< unsigned int, Txid > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:139
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:462
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:424
bool IsLocal() const
Definition: netaddress.cpp:398
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:477
Transport protocol agnostic message container.
Definition: net.h:238
Information about a peer.
Definition: net.h:680
bool IsFeelerConn() const
Definition: net.h:816
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:713
bool ExpectServicesFromConn() const
Definition: net.h:833
std::atomic< int > nVersion
Definition: net.h:723
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:870
bool IsInboundConn() const
Definition: net.h:829
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:731
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:771
NodeId GetId() const
Definition: net.h:914
bool IsManualConn() const
Definition: net.h:791
const std::string m_addr_name
Definition: net.h:718
std::string ConnectionTypeAsString() const
Definition: net.h:968
void SetCommonVersion(int greatest_common_version)
Definition: net.h:939
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:865
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:874
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:867
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:987
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:735
bool IsAddrFetchConn() const
Definition: net.h:820
uint64_t GetLocalNonce() const
Definition: net.h:918
const CAddress addr
Definition: net.h:715
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:607
bool IsBlockOnlyConn() const
Definition: net.h:812
int GetCommonVersion() const
Definition: net.h:944
bool IsFullOutboundConn() const
Definition: net.h:787
Mutex m_subver_mutex
Definition: net.h:724
const uint64_t m_network_key
Network key used to prevent fingerprinting our node across networks.
Definition: net.h:748
std::atomic_bool fPauseSend
Definition: net.h:744
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:4041
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:878
bool IsPrivateBroadcastConn() const
Definition: net.h:824
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:717
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:684
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:722
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:885
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:722
std::atomic_bool fDisconnect
Definition: net.h:738
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:891
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:530
std::string ToStringAddrPort() const
Definition: netaddress.cpp:903
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:895
General SipHash-2-4 implementation.
Definition: siphash.h:27
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:73
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data.
Definition: siphash.cpp:24
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:189
bool CompareMiningScoreWithTopology(const Wtxid &hasha, const Wtxid &hashb) const
Definition: txmempool.cpp:539
TxMempoolInfo info_for_relay(const T &id, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.h:532
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:263
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:812
CTransactionRef get(const Txid &hash) const
Definition: txmempool.cpp:604
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:761
const Options m_opts
Definition: txmempool.h:306
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:583
TxMempoolInfo info(const T &id) const
Definition: txmempool.h:523
bool exists(const Txid &txid) const
Definition: txmempool.h:506
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:577
std::set< Txid > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:559
unsigned long size() const
Definition: txmempool.h:488
void RemoveUnbroadcastTx(const Txid &txid, bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:767
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void BlockChecked(const std::shared_ptr< const CBlock > &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
virtual void BlockConnected(const kernel::ChainstateRole &role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
void ClearBlockIndexCandidates() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex * FindForkInGlobalIndex(const CBlockLocator &locator) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Find the last common block of this chain and a locator.
Definition: validation.cpp:122
Interface for managing multiple Chainstate objects, where each chainstate is associated with chainsta...
Definition: validation.h:930
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1022
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1157
Chainstate & ActiveChainstate() const
Alternatives to CurrentChainstate() used by older code to query latest chainstate information without...
SnapshotCompletionResult MaybeValidateSnapshot(Chainstate &validated_cs, Chainstate &unvalidated_cs) EXCLUSIVE_LOCKS_REQUIRED(Chainstate & CurrentChainstate() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Try to validate an assumeutxo snapshot by using a validated historical chainstate targeted at the sna...
Definition: validation.h:1109
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:1000
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1155
void ReportHeadersPresync(int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1028
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
bool empty() const
Definition: streams.h:165
size_type size() const
Definition: streams.h:164
void ignore(size_t num_ignore)
Definition: streams.h:219
int in_avail() const
Definition: streams.h:199
Fast randomness source.
Definition: random.h:386
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:404
bool IsWtxid() const
const uint256 & ToUint256() const LIFETIMEBOUND
HeadersSyncState:
Definition: headerssync.h:102
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1031
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing, bool segwit_active)
bool IsTxAvailable(size_t index) const
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< std::pair< Wtxid, CTransactionRef > > &extra_txn)
virtual util::Expected< void, std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
virtual std::vector< node::TxOrphanage::OrphanInfo > GetOrphanTransactions()=0
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
Store a list of transactions to be broadcast privately.
void NodeConfirmedReception(const NodeId &nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Mark that the node has confirmed reception of the transaction we sent it by responding with PONG to o...
bool HavePendingTransactions() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Check if there are transactions that need to be broadcast.
bool DidNodeConfirmReception(const NodeId &nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Check if the node has confirmed reception of the transaction.
std::optional< size_t > Remove(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Forget a transaction.
std::optional< CTransactionRef > PickTxForSend(const NodeId &will_send_to_nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Pick the transaction with the fewest send attempts, and confirmations, and oldest send/confirm times.
std::optional< CTransactionRef > GetTxForNode(const NodeId &nodeid) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Get the transaction that was picked for sending to a given node by PickTxForSend().
bool Add(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Add a transaction to the storage.
std::vector< CTransactionRef > GetStale() const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Get the transactions that have not been broadcast recently.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:132
bool IsValid() const
Definition: validation.h:105
std::string GetDebugMessage() const
Definition: validation.h:110
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool LoadingBlocks() const
Definition: blockstorage.h:409
ReadRawBlockResult ReadRawBlock(const FlatFilePos &pos, std::optional< std::pair< size_t, size_t > > block_part=std::nullopt) const
bool ReadBlock(CBlock &block, const FlatFilePos &pos, const std::optional< uint256 > &expected_hash) const
Functions for disk access for blocks.
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:403
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
const uint256 & ToUint256() const LIFETIMEBOUND
256-bit opaque blob.
Definition: uint256.h:195
The util::Expected class provides a standard way for low-level functions to return either error value...
Definition: expected.h:34
The util::Unexpected class represents an unexpected value stored in util::Expected.
Definition: expected.h:21
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
HeadersSyncState::State State
is a home for simple enum and struct type definitions that can be used internally by functions in the...
bool fLogIPs
Definition: logging.cpp:47
#define LogWarning(...)
Definition: logging.h:393
#define LogInfo(...)
Definition: logging.h:392
#define LogError(...)
Definition: logging.h:394
#define LogDebug(category,...)
Definition: logging.h:412
unsigned int nonce
Definition: miner_tests.cpp:81
@ TXPACKAGES
Definition: logging.h:117
@ PRIVBROADCAST
Definition: logging.h:119
@ VALIDATION
Definition: logging.h:108
@ MEMPOOLREJ
Definition: logging.h:103
@ CMPCTBLOCK
Definition: logging.h:99
@ MEMPOOL
Definition: logging.h:89
@ NET
Definition: logging.h:87
@ DEPLOYMENT_SEGWIT
Definition: params.h:30
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Definition: messages.h:21
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:384
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:245
bool fListen
Definition: net.cpp:117
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:120
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:240
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4237
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:67
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:59
int64_t NodeId
Definition: net.h:103
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr size_t NUM_PRIVATE_BROADCAST_PER_TX
For private broadcast, send a transaction to this many peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto PRIVATE_BROADCAST_MAX_CONNECTION_LIFETIME
Private broadcast connections must complete within this time.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:739
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:67
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:181
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:180
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:403
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" message type for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" message type and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:493
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:330
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:112
std::vector< uint256 > vHave
Definition: block.h:122
bool IsNull() const
Definition: block.h:140
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_last_inv_seq
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:84
int64_t nPowTargetSpacing
Definition: params.h:120
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:122
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:130
const ResultType m_result_type
Result type.
Definition: validation.h:139
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:142
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:145
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:236
PackageValidationState m_state
Definition: validation.h:237
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:244
std::chrono::seconds median_outbound_time_offset
Information about chainstate that notifications are sent from.
Definition: types.h:18
bool historical
Whether this is a historical chainstate downloading old blocks to validate an assumeutxo snapshot,...
Definition: types.h:26
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:57
std::string ToString() const
Definition: txdownloadman.h:79
#define AssertLockNotHeld(cs)
Definition: sync.h:142
#define LOCK2(cs1, cs2)
Definition: sync.h:260
#define LOCK(cs)
Definition: sync.h:259
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:290
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:104
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define GUARDED_BY(x)
Definition: threadsafety.h:39
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:50
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:42
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:40
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:56
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:77
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:84
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(std::span< const CBlockHeader > headers, const Consensus::Params &consensusParams)
Check that the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:75