Bitcoin Core 29.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/chain.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
39#include <node/warnings.h>
40#include <policy/feerate.h>
41#include <policy/fees.h>
42#include <policy/packages.h>
43#include <policy/policy.h>
44#include <primitives/block.h>
46#include <protocol.h>
47#include <random.h>
48#include <scheduler.h>
49#include <script/script.h>
50#include <serialize.h>
51#include <span.h>
52#include <streams.h>
53#include <sync.h>
54#include <tinyformat.h>
55#include <txmempool.h>
56#include <txorphanage.h>
57#include <uint256.h>
58#include <util/check.h>
59#include <util/strencodings.h>
60#include <util/time.h>
61#include <util/trace.h>
62#include <validation.h>
63
64#include <algorithm>
65#include <array>
66#include <atomic>
67#include <compare>
68#include <cstddef>
69#include <deque>
70#include <exception>
71#include <functional>
72#include <future>
73#include <initializer_list>
74#include <iterator>
75#include <limits>
76#include <list>
77#include <map>
78#include <memory>
79#include <optional>
80#include <queue>
81#include <ranges>
82#include <ratio>
83#include <set>
84#include <span>
85#include <typeinfo>
86#include <utility>
87
88using namespace util::hex_literals;
89
90TRACEPOINT_SEMAPHORE(net, inbound_message);
91TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
92
95static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
96static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
98static constexpr auto HEADERS_RESPONSE_TIME{2min};
104static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
106static constexpr auto STALE_CHECK_INTERVAL{10min};
108static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
110static constexpr auto MINIMUM_CONNECT_TIME{30s};
112static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
115static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
118static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
120static constexpr auto PING_INTERVAL{2min};
122static const unsigned int MAX_LOCATOR_SZ = 101;
124static const unsigned int MAX_INV_SZ = 50000;
126static const unsigned int MAX_GETDATA_SZ = 1000;
128static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
131static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
133static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
136static const int MAX_CMPCTBLOCK_DEPTH = 5;
138static const int MAX_BLOCKTXN_DEPTH = 10;
139static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
144static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
146static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
148static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
150static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
152static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
154static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
156static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
158static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
160static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
170static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
174static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
175static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
176static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
178static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
180static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
182static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
184static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
186static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
188static constexpr size_t MAX_ADDR_TO_SEND{1000};
191static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
197static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
198
199// Internal stuff
200namespace {
202struct QueuedBlock {
204 const CBlockIndex* pindex;
206 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
207};
208
221struct Peer {
223 const NodeId m_id{0};
224
238 const ServiceFlags m_our_services;
240 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
241
243 const bool m_is_inbound;
244
246 Mutex m_misbehavior_mutex;
248 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
249
251 Mutex m_block_inv_mutex;
255 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
259 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
264 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
265
267 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
268
270 std::atomic<int> m_starting_height{-1};
271
273 std::atomic<uint64_t> m_ping_nonce_sent{0};
275 std::atomic<std::chrono::microseconds> m_ping_start{0us};
277 std::atomic<bool> m_ping_queued{false};
278
280 std::atomic<bool> m_wtxid_relay{false};
287 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
288
289 struct TxRelay {
290 mutable RecursiveMutex m_bloom_filter_mutex;
292 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
294 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
295
296 mutable RecursiveMutex m_tx_inventory_mutex;
300 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
305 std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
309 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
312 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
315 uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
316
318 std::atomic<CAmount> m_fee_filter_received{0};
319 };
320
321 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
322 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
323 {
324 LOCK(m_tx_relay_mutex);
325 Assume(!m_tx_relay);
326 m_tx_relay = std::make_unique<Peer::TxRelay>();
327 return m_tx_relay.get();
328 };
329
330 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
331 {
332 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
333 };
334
336 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
346 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
361 std::atomic_bool m_addr_relay_enabled{false};
363 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
365 mutable Mutex m_addr_send_times_mutex;
367 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
369 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
372 std::atomic_bool m_wants_addrv2{false};
374 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
377 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
379 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
381 std::atomic<uint64_t> m_addr_rate_limited{0};
383 std::atomic<uint64_t> m_addr_processed{0};
384
386 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
387
389 Mutex m_getdata_requests_mutex;
391 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
392
395
397 Mutex m_headers_sync_mutex;
400 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
401
403 std::atomic<bool> m_sent_sendheaders{false};
404
406 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
407
409 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
410
413 std::atomic<std::chrono::seconds> m_time_offset{0s};
414
415 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
416 : m_id{id}
417 , m_our_services{our_services}
418 , m_is_inbound{is_inbound}
419 {}
420
421private:
422 mutable Mutex m_tx_relay_mutex;
423
425 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
426};
427
428using PeerRef = std::shared_ptr<Peer>;
429
436struct CNodeState {
438 const CBlockIndex* pindexBestKnownBlock{nullptr};
440 uint256 hashLastUnknownBlock{};
442 const CBlockIndex* pindexLastCommonBlock{nullptr};
444 const CBlockIndex* pindexBestHeaderSent{nullptr};
446 bool fSyncStarted{false};
448 std::chrono::microseconds m_stalling_since{0us};
449 std::list<QueuedBlock> vBlocksInFlight;
451 std::chrono::microseconds m_downloading_since{0us};
453 bool fPreferredDownload{false};
455 bool m_requested_hb_cmpctblocks{false};
457 bool m_provides_cmpctblocks{false};
458
483 struct ChainSyncTimeoutState {
485 std::chrono::seconds m_timeout{0s};
487 const CBlockIndex* m_work_header{nullptr};
489 bool m_sent_getheaders{false};
491 bool m_protect{false};
492 };
493
494 ChainSyncTimeoutState m_chain_sync;
495
497 int64_t m_last_block_announcement{0};
498};
499
500class PeerManagerImpl final : public PeerManager
501{
502public:
503 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
504 BanMan* banman, ChainstateManager& chainman,
505 CTxMemPool& pool, node::Warnings& warnings, Options opts);
506
508 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
509 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
510 void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
511 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
512 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
513 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
514 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
515 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516 void BlockChecked(const CBlock& block, const BlockValidationState& state) override
517 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
518 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
519 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
520
522 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
523 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
524 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
525 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
526 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
527 bool SendMessages(CNode* pto) override
528 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
529
531 void StartScheduledTasks(CScheduler& scheduler) override;
532 void CheckForStaleTipAndEvictPeers() override;
533 std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
534 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
535 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536 std::vector<TxOrphanage::OrphanTxBase> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
537 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
538 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539 void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 void SetBestBlock(int height, std::chrono::seconds time) override
541 {
542 m_best_height = height;
543 m_best_block_time = time;
544 };
545 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
546 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
547 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
548 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
549 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
550 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
551
552private:
554 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
555
557 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
558
560 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
561
564 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
565
568 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
569
572 void Misbehaving(Peer& peer, const std::string& message);
573
582 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
583 bool via_compact_block, const std::string& message = "")
584 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
585
589 void MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
590 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
591
598 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
599
611 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
612 bool first_time_failure)
613 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
614
617 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
618 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
619
623 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
624 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
625
637 bool ProcessOrphanTx(Peer& peer)
638 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
639
647 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
648 std::vector<CBlockHeader>&& headers,
649 bool via_compact_block)
650 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
653 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
655 arith_uint256 GetAntiDoSWorkThreshold();
659 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
661 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
680 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
681 std::vector<CBlockHeader>& headers)
682 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
694 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
695 const CBlockIndex* chain_start_header,
696 std::vector<CBlockHeader>& headers)
697 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
698
701 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
702
707 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
709 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
711 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
712 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
713
714 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
715
717 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
718 template <typename... Args>
719 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
720 {
721 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
722 }
723
725 void PushNodeVersion(CNode& pnode, const Peer& peer);
726
731 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
732
734 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
735
737 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
738
746 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
747
749 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
750
752
754
755 const CChainParams& m_chainparams;
756 CConnman& m_connman;
757 AddrMan& m_addrman;
759 BanMan* const m_banman;
760 ChainstateManager& m_chainman;
761 CTxMemPool& m_mempool;
762
771 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
772 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
773
774 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
775
777 std::atomic<int> m_best_height{-1};
779 std::atomic<std::chrono::seconds> m_best_block_time{0s};
780
782 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
783
784 node::Warnings& m_warnings;
785 TimeOffsets m_outbound_time_offsets{m_warnings};
786
787 const Options m_opts;
788
789 bool RejectIncomingTxs(const CNode& peer) const;
790
793 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
794
797 mutable Mutex m_peer_mutex;
804 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
805
807 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
808
810 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
812 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
813
814 uint32_t GetFetchFlags(const Peer& peer) const;
815
816 std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
817
819 int nSyncStarted GUARDED_BY(cs_main) = 0;
820
822 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
823
830 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
831
833 std::atomic<int> m_wtxid_relay_peers{0};
834
836 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
837
839 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
840
842 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
843
850 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
851 std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
852
853
854 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
855 Mutex m_most_recent_block_mutex;
856 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
857 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
858 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
859 std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
860
861 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
863 Mutex m_headers_presync_mutex;
871 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
873 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
875 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
877 std::atomic_bool m_headers_presync_should_signal{false};
878
880 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
881
883 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
884
886 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
887
895 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
896
897 /* Mark a block as in flight
898 * Returns false, still setting pit, if the block was already in flight from the same peer
899 * pit will only be valid as long as the same cs_main lock is being held
900 */
901 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
902
903 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
904
908 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
909
911 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
912
940 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
941
942 /* Multimap used to preserve insertion order */
943 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
944 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
945
947 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
948
950 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
952
953 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
954 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
956
958 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
959
961 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
962 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
963
970 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
971
973 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
974
976 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
977
978 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
979
983 std::vector<CTransactionRef> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
985 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
986
988 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
990 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
991 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
992
997 int64_t ApproximateBestBlockDepth() const;
998
1005 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1006 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1007 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1008 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1009
1025 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1026 BlockFilterType filter_type, uint32_t start_height,
1027 const uint256& stop_hash, uint32_t max_height_diff,
1028 const CBlockIndex*& stop_index,
1029 BlockFilterIndex*& filter_index);
1030
1040 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1041
1051 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1052
1062 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1063
1070 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1071
1072 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1073 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1074
1075 void LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block);
1076};
1077
1078const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1079{
1080 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1081 if (it == m_node_states.end())
1082 return nullptr;
1083 return &it->second;
1084}
1085
1086CNodeState* PeerManagerImpl::State(NodeId pnode)
1087{
1088 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1089}
1090
1096static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1097{
1098 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1099}
1100
1101void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1102{
1103 assert(peer.m_addr_known);
1104 peer.m_addr_known->insert(addr.GetKey());
1105}
1106
1107void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1108{
1109 // Known checking here is only to save space from duplicates.
1110 // Before sending, we'll filter it again for known addresses that were
1111 // added after addresses were pushed.
1112 assert(peer.m_addr_known);
1113 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1114 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1115 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1116 } else {
1117 peer.m_addrs_to_send.push_back(addr);
1118 }
1119 }
1120}
1121
1122static void AddKnownTx(Peer& peer, const uint256& hash)
1123{
1124 auto tx_relay = peer.GetTxRelay();
1125 if (!tx_relay) return;
1126
1127 LOCK(tx_relay->m_tx_inventory_mutex);
1128 tx_relay->m_tx_inventory_known_filter.insert(hash);
1129}
1130
1132static bool CanServeBlocks(const Peer& peer)
1133{
1134 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1135}
1136
1139static bool IsLimitedPeer(const Peer& peer)
1140{
1141 return (!(peer.m_their_services & NODE_NETWORK) &&
1142 (peer.m_their_services & NODE_NETWORK_LIMITED));
1143}
1144
1146static bool CanServeWitnesses(const Peer& peer)
1147{
1148 return peer.m_their_services & NODE_WITNESS;
1149}
1150
1151std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1152 std::chrono::seconds average_interval)
1153{
1154 if (m_next_inv_to_inbounds.load() < now) {
1155 // If this function were called from multiple threads simultaneously
1156 // it would possible that both update the next send variable, and return a different result to their caller.
1157 // This is not possible in practice as only the net processing thread invokes this function.
1158 m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1159 }
1160 return m_next_inv_to_inbounds;
1161}
1162
1163bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1164{
1165 return mapBlocksInFlight.count(hash);
1166}
1167
1168bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1169{
1170 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1171 auto [nodeid, block_it] = range.first->second;
1172 PeerRef peer{GetPeerRef(nodeid)};
1173 if (peer && !peer->m_is_inbound) return true;
1174 }
1175
1176 return false;
1177}
1178
1179void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1180{
1181 auto range = mapBlocksInFlight.equal_range(hash);
1182 if (range.first == range.second) {
1183 // Block was not requested from any peer
1184 return;
1185 }
1186
1187 // We should not have requested too many of this block
1188 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1189
1190 while (range.first != range.second) {
1191 const auto& [node_id, list_it]{range.first->second};
1192
1193 if (from_peer && *from_peer != node_id) {
1194 range.first++;
1195 continue;
1196 }
1197
1198 CNodeState& state = *Assert(State(node_id));
1199
1200 if (state.vBlocksInFlight.begin() == list_it) {
1201 // First block on the queue was received, update the start download time for the next one
1202 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1203 }
1204 state.vBlocksInFlight.erase(list_it);
1205
1206 if (state.vBlocksInFlight.empty()) {
1207 // Last validated block on the queue for this peer was received.
1208 m_peers_downloading_from--;
1209 }
1210 state.m_stalling_since = 0us;
1211
1212 range.first = mapBlocksInFlight.erase(range.first);
1213 }
1214}
1215
1216bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1217{
1218 const uint256& hash{block.GetBlockHash()};
1219
1220 CNodeState *state = State(nodeid);
1221 assert(state != nullptr);
1222
1223 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1224
1225 // Short-circuit most stuff in case it is from the same node
1226 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1227 if (range.first->second.first == nodeid) {
1228 if (pit) {
1229 *pit = &range.first->second.second;
1230 }
1231 return false;
1232 }
1233 }
1234
1235 // Make sure it's not being fetched already from same peer.
1236 RemoveBlockRequest(hash, nodeid);
1237
1238 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1239 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1240 if (state->vBlocksInFlight.size() == 1) {
1241 // We're starting a block download (batch) from this peer.
1242 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1243 m_peers_downloading_from++;
1244 }
1245 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1246 if (pit) {
1247 *pit = &itInFlight->second.second;
1248 }
1249 return true;
1250}
1251
1252void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1253{
1255
1256 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1257 // mempool will not contain the transactions necessary to reconstruct the
1258 // compact block.
1259 if (m_opts.ignore_incoming_txs) return;
1260
1261 CNodeState* nodestate = State(nodeid);
1262 PeerRef peer{GetPeerRef(nodeid)};
1263 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1264 // Don't request compact blocks if the peer has not signalled support
1265 return;
1266 }
1267
1268 int num_outbound_hb_peers = 0;
1269 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1270 if (*it == nodeid) {
1271 lNodesAnnouncingHeaderAndIDs.erase(it);
1272 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1273 return;
1274 }
1275 PeerRef peer_ref{GetPeerRef(*it)};
1276 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1277 }
1278 if (peer && peer->m_is_inbound) {
1279 // If we're adding an inbound HB peer, make sure we're not removing
1280 // our last outbound HB peer in the process.
1281 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1282 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1283 if (remove_peer && !remove_peer->m_is_inbound) {
1284 // Put the HB outbound peer in the second slot, so that it
1285 // doesn't get removed.
1286 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1287 }
1288 }
1289 }
1290 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1292 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1293 // As per BIP152, we only get 3 of our peers to announce
1294 // blocks using compact encodings.
1295 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1296 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1297 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1298 pnodeStop->m_bip152_highbandwidth_to = false;
1299 return true;
1300 });
1301 lNodesAnnouncingHeaderAndIDs.pop_front();
1302 }
1303 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1304 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1305 pfrom->m_bip152_highbandwidth_to = true;
1306 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1307 return true;
1308 });
1309}
1310
1311bool PeerManagerImpl::TipMayBeStale()
1312{
1314 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1315 if (m_last_tip_update.load() == 0s) {
1316 m_last_tip_update = GetTime<std::chrono::seconds>();
1317 }
1318 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1319}
1320
1321int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1322{
1323 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1324}
1325
1326bool PeerManagerImpl::CanDirectFetch()
1327{
1328 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1329}
1330
1331static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1332{
1333 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1334 return true;
1335 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1336 return true;
1337 return false;
1338}
1339
1340void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1341 CNodeState *state = State(nodeid);
1342 assert(state != nullptr);
1343
1344 if (!state->hashLastUnknownBlock.IsNull()) {
1345 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1346 if (pindex && pindex->nChainWork > 0) {
1347 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1348 state->pindexBestKnownBlock = pindex;
1349 }
1350 state->hashLastUnknownBlock.SetNull();
1351 }
1352 }
1353}
1354
1355void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1356 CNodeState *state = State(nodeid);
1357 assert(state != nullptr);
1358
1359 ProcessBlockAvailability(nodeid);
1360
1361 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1362 if (pindex && pindex->nChainWork > 0) {
1363 // An actually better block was announced.
1364 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1365 state->pindexBestKnownBlock = pindex;
1366 }
1367 } else {
1368 // An unknown block was announced; just assume that the latest one is the best one.
1369 state->hashLastUnknownBlock = hash;
1370 }
1371}
1372
1373// Logic for calculating which blocks to download from a given peer, given our current tip.
1374void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1375{
1376 if (count == 0)
1377 return;
1378
1379 vBlocks.reserve(vBlocks.size() + count);
1380 CNodeState *state = State(peer.m_id);
1381 assert(state != nullptr);
1382
1383 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1384 ProcessBlockAvailability(peer.m_id);
1385
1386 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1387 // This peer has nothing interesting.
1388 return;
1389 }
1390
1391 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1392 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1393 // so downloading blocks from it would be futile.
1394 const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1395 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1396 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1397 return;
1398 }
1399
1400 // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1401 // Guessing wrong in either direction is not a problem.
1402 // Also reset pindexLastCommonBlock after a snapshot was loaded, so that blocks after the snapshot will be prioritised for download.
1403 if (state->pindexLastCommonBlock == nullptr ||
1404 (snap_base && state->pindexLastCommonBlock->nHeight < snap_base->nHeight)) {
1405 state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1406 }
1407
1408 // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1409 // of its current tip anymore. Go back enough to fix that.
1410 state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1411 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1412 return;
1413
1414 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1415 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1416 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1417 // download that next block if the window were 1 larger.
1418 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1419
1420 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1421}
1422
1423void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1424{
1425 Assert(from_tip);
1426 Assert(target_block);
1427
1428 if (vBlocks.size() >= count) {
1429 return;
1430 }
1431
1432 vBlocks.reserve(count);
1433 CNodeState *state = Assert(State(peer.m_id));
1434
1435 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1436 // This peer can't provide us the complete series of blocks leading up to the
1437 // assumeutxo snapshot base.
1438 //
1439 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1440 // will eventually crash when we try to reorg to it. Let other logic
1441 // deal with whether we disconnect this peer.
1442 //
1443 // TODO at some point in the future, we might choose to request what blocks
1444 // this peer does have from the historical chain, despite it not having a
1445 // complete history beneath the snapshot base.
1446 return;
1447 }
1448
1449 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1450}
1451
1452void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1453{
1454 std::vector<const CBlockIndex*> vToFetch;
1455 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1456 bool is_limited_peer = IsLimitedPeer(peer);
1457 NodeId waitingfor = -1;
1458 while (pindexWalk->nHeight < nMaxHeight) {
1459 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1460 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1461 // as iterating over ~100 CBlockIndex* entries anyway.
1462 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1463 vToFetch.resize(nToFetch);
1464 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1465 vToFetch[nToFetch - 1] = pindexWalk;
1466 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1467 vToFetch[i - 1] = vToFetch[i]->pprev;
1468 }
1469
1470 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1471 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1472 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1473 // already part of our chain (and therefore don't need it even if pruned).
1474 for (const CBlockIndex* pindex : vToFetch) {
1475 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1476 // We consider the chain that this peer is on invalid.
1477 return;
1478 }
1479
1480 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1481 // We wouldn't download this block or its descendants from this peer.
1482 return;
1483 }
1484
1485 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1486 if (activeChain && pindex->HaveNumChainTxs()) {
1487 state->pindexLastCommonBlock = pindex;
1488 }
1489 continue;
1490 }
1491
1492 // Is block in-flight?
1493 if (IsBlockRequested(pindex->GetBlockHash())) {
1494 if (waitingfor == -1) {
1495 // This is the first already-in-flight block.
1496 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1497 }
1498 continue;
1499 }
1500
1501 // The block is not already downloaded, and not yet in flight.
1502 if (pindex->nHeight > nWindowEnd) {
1503 // We reached the end of the window.
1504 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1505 // We aren't able to fetch anything, but we would be if the download window was one larger.
1506 if (nodeStaller) *nodeStaller = waitingfor;
1507 }
1508 return;
1509 }
1510
1511 // Don't request blocks that go further than what limited peers can provide
1512 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1513 continue;
1514 }
1515
1516 vBlocks.push_back(pindex);
1517 if (vBlocks.size() == count) {
1518 return;
1519 }
1520 }
1521 }
1522}
1523
1524} // namespace
1525
1526void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1527{
1528 uint64_t my_services{peer.m_our_services};
1529 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1530 uint64_t nonce = pnode.GetLocalNonce();
1531 const int nNodeStartingHeight{m_best_height};
1532 NodeId nodeid = pnode.GetId();
1533 CAddress addr = pnode.addr;
1534
1535 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1536 uint64_t your_services{addr.nServices};
1537
1538 const bool tx_relay{!RejectIncomingTxs(pnode)};
1539 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1540 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1541 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1542 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1543
1544 if (fLogIPs) {
1545 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1546 } else {
1547 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1548 }
1549}
1550
1551void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1552{
1553 LOCK(cs_main);
1554 CNodeState *state = State(node);
1555 if (state) state->m_last_block_announcement = time_in_seconds;
1556}
1557
1558void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1559{
1560 NodeId nodeid = node.GetId();
1561 {
1562 LOCK(cs_main); // For m_node_states
1563 m_node_states.try_emplace(m_node_states.end(), nodeid);
1564 }
1565 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1566
1568 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1569 }
1570
1571 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1572 {
1573 LOCK(m_peer_mutex);
1574 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1575 }
1576}
1577
1578void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1579{
1580 std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1581
1582 for (const auto& txid : unbroadcast_txids) {
1583 CTransactionRef tx = m_mempool.get(txid);
1584
1585 if (tx != nullptr) {
1586 RelayTransaction(txid, tx->GetWitnessHash());
1587 } else {
1588 m_mempool.RemoveUnbroadcastTx(txid, true);
1589 }
1590 }
1591
1592 // Schedule next run for 10-15 minutes in the future.
1593 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1594 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1595 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1596}
1597
1598void PeerManagerImpl::FinalizeNode(const CNode& node)
1599{
1600 NodeId nodeid = node.GetId();
1601 {
1602 LOCK(cs_main);
1603 {
1604 // We remove the PeerRef from g_peer_map here, but we don't always
1605 // destruct the Peer. Sometimes another thread is still holding a
1606 // PeerRef, so the refcount is >= 1. Be careful not to do any
1607 // processing here that assumes Peer won't be changed before it's
1608 // destructed.
1609 PeerRef peer = RemovePeer(nodeid);
1610 assert(peer != nullptr);
1611 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1612 assert(m_wtxid_relay_peers >= 0);
1613 }
1614 CNodeState *state = State(nodeid);
1615 assert(state != nullptr);
1616
1617 if (state->fSyncStarted)
1618 nSyncStarted--;
1619
1620 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1621 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1622 while (range.first != range.second) {
1623 auto [node_id, list_it] = range.first->second;
1624 if (node_id != nodeid) {
1625 range.first++;
1626 } else {
1627 range.first = mapBlocksInFlight.erase(range.first);
1628 }
1629 }
1630 }
1631 {
1632 LOCK(m_tx_download_mutex);
1633 m_txdownloadman.DisconnectedPeer(nodeid);
1634 }
1635 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1636 m_num_preferred_download_peers -= state->fPreferredDownload;
1637 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1638 assert(m_peers_downloading_from >= 0);
1639 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1640 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1641
1642 m_node_states.erase(nodeid);
1643
1644 if (m_node_states.empty()) {
1645 // Do a consistency check after the last peer is removed.
1646 assert(mapBlocksInFlight.empty());
1647 assert(m_num_preferred_download_peers == 0);
1648 assert(m_peers_downloading_from == 0);
1649 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1650 assert(m_wtxid_relay_peers == 0);
1651 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1652 }
1653 } // cs_main
1654 if (node.fSuccessfullyConnected &&
1655 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1656 // Only change visible addrman state for full outbound peers. We don't
1657 // call Connected() for feeler connections since they don't have
1658 // fSuccessfullyConnected set.
1659 m_addrman.Connected(node.addr);
1660 }
1661 {
1662 LOCK(m_headers_presync_mutex);
1663 m_headers_presync_stats.erase(nodeid);
1664 }
1665 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1666}
1667
1668bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1669{
1670 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1671 return !(GetDesirableServiceFlags(services) & (~services));
1672}
1673
1674ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1675{
1676 if (services & NODE_NETWORK_LIMITED) {
1677 // Limited peers are desirable when we are close to the tip.
1678 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1680 }
1681 }
1683}
1684
1685PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1686{
1687 LOCK(m_peer_mutex);
1688 auto it = m_peer_map.find(id);
1689 return it != m_peer_map.end() ? it->second : nullptr;
1690}
1691
1692PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1693{
1694 PeerRef ret;
1695 LOCK(m_peer_mutex);
1696 auto it = m_peer_map.find(id);
1697 if (it != m_peer_map.end()) {
1698 ret = std::move(it->second);
1699 m_peer_map.erase(it);
1700 }
1701 return ret;
1702}
1703
1704bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1705{
1706 {
1707 LOCK(cs_main);
1708 const CNodeState* state = State(nodeid);
1709 if (state == nullptr)
1710 return false;
1711 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1712 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1713 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1714 if (queue.pindex)
1715 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1716 }
1717 }
1718
1719 PeerRef peer = GetPeerRef(nodeid);
1720 if (peer == nullptr) return false;
1721 stats.their_services = peer->m_their_services;
1722 stats.m_starting_height = peer->m_starting_height;
1723 // It is common for nodes with good ping times to suddenly become lagged,
1724 // due to a new block arriving or other large transfer.
1725 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1726 // since pingtime does not update until the ping is complete, which might take a while.
1727 // So, if a ping is taking an unusually long time in flight,
1728 // the caller can immediately detect that this is happening.
1729 auto ping_wait{0us};
1730 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1731 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1732 }
1733
1734 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1735 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1736 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1737 } else {
1738 stats.m_relay_txs = false;
1739 stats.m_fee_filter_received = 0;
1740 }
1741
1742 stats.m_ping_wait = ping_wait;
1743 stats.m_addr_processed = peer->m_addr_processed.load();
1744 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1745 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1746 {
1747 LOCK(peer->m_headers_sync_mutex);
1748 if (peer->m_headers_sync) {
1749 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1750 }
1751 }
1752 stats.time_offset = peer->m_time_offset;
1753
1754 return true;
1755}
1756
1757std::vector<TxOrphanage::OrphanTxBase> PeerManagerImpl::GetOrphanTransactions()
1758{
1759 LOCK(m_tx_download_mutex);
1760 return m_txdownloadman.GetOrphanTransactions();
1761}
1762
1764{
1765 return PeerManagerInfo{
1766 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1767 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1768 };
1769}
1770
1771void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1772{
1773 if (m_opts.max_extra_txs <= 0)
1774 return;
1775 if (!vExtraTxnForCompact.size())
1776 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1777 vExtraTxnForCompact[vExtraTxnForCompactIt] = tx;
1778 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1779}
1780
1781void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1782{
1783 LOCK(peer.m_misbehavior_mutex);
1784
1785 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1786 peer.m_should_discourage = true;
1787 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1788 TRACEPOINT(net, misbehaving_connection,
1789 peer.m_id,
1790 message.c_str()
1791 );
1792}
1793
1794void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1795 bool via_compact_block, const std::string& message)
1796{
1797 PeerRef peer{GetPeerRef(nodeid)};
1798 switch (state.GetResult()) {
1800 break;
1802 // We didn't try to process the block because the header chain may have
1803 // too little work.
1804 break;
1805 // The node is providing invalid data:
1808 if (!via_compact_block) {
1809 if (peer) Misbehaving(*peer, message);
1810 return;
1811 }
1812 break;
1814 {
1815 // Discourage outbound (but not inbound) peers if on an invalid chain.
1816 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1817 if (peer && !via_compact_block && !peer->m_is_inbound) {
1818 if (peer) Misbehaving(*peer, message);
1819 return;
1820 }
1821 break;
1822 }
1825 if (peer) Misbehaving(*peer, message);
1826 return;
1827 // Conflicting (but not necessarily invalid) data or different policy:
1829 if (peer) Misbehaving(*peer, message);
1830 return;
1832 break;
1833 }
1834 if (message != "") {
1835 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1836 }
1837}
1838
1839void PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1840{
1841 PeerRef peer{GetPeerRef(nodeid)};
1842 switch (state.GetResult()) {
1844 break;
1845 // The node is providing invalid data:
1847 if (peer) Misbehaving(*peer, "");
1848 return;
1849 // Conflicting (but not necessarily invalid) data or different policy:
1861 break;
1862 }
1863}
1864
1865bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1866{
1868 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1869 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1870 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1871 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1872}
1873
1874std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1875{
1876 if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1877
1878 // Ensure this peer exists and hasn't been disconnected
1879 PeerRef peer = GetPeerRef(peer_id);
1880 if (peer == nullptr) return "Peer does not exist";
1881
1882 // Ignore pre-segwit peers
1883 if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1884
1885 LOCK(cs_main);
1886
1887 // Forget about all prior requests
1888 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1889
1890 // Mark block as in-flight
1891 if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1892
1893 // Construct message to request the block
1894 const uint256& hash{block_index.GetBlockHash()};
1895 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1896
1897 // Send block request message to the peer
1898 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1899 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1900 return true;
1901 });
1902
1903 if (!success) return "Peer not fully connected";
1904
1905 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1906 hash.ToString(), peer_id);
1907 return std::nullopt;
1908}
1909
1910std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1911 BanMan* banman, ChainstateManager& chainman,
1912 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1913{
1914 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1915}
1916
1917PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1918 BanMan* banman, ChainstateManager& chainman,
1919 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1920 : m_rng{opts.deterministic_rng},
1921 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1922 m_chainparams(chainman.GetParams()),
1923 m_connman(connman),
1924 m_addrman(addrman),
1925 m_banman(banman),
1926 m_chainman(chainman),
1927 m_mempool(pool),
1928 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.max_orphan_txs, opts.deterministic_rng}),
1929 m_warnings{warnings},
1930 m_opts{opts}
1931{
1932 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1933 // This argument can go away after Erlay support is complete.
1934 if (opts.reconcile_txs) {
1935 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1936 }
1937}
1938
1939void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1940{
1941 // Stale tip checking and peer eviction are on two different timers, but we
1942 // don't want them to get out of sync due to drift in the scheduler, so we
1943 // combine them in one function and schedule at the quicker (peer-eviction)
1944 // timer.
1945 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1946 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1947
1948 // schedule next run for 10-15 minutes in the future
1949 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1950 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1951}
1952
1953void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1954{
1955 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1956 // m_tx_download_mutex waits on the mempool mutex.
1957 AssertLockNotHeld(m_mempool.cs);
1958 AssertLockNotHeld(m_tx_download_mutex);
1959
1960 if (!is_ibd) {
1961 LOCK(m_tx_download_mutex);
1962 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1963 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1964 // see them again.
1965 m_txdownloadman.ActiveTipChange();
1966 }
1967}
1968
1975void PeerManagerImpl::BlockConnected(
1976 ChainstateRole role,
1977 const std::shared_ptr<const CBlock>& pblock,
1978 const CBlockIndex* pindex)
1979{
1980 // Update this for all chainstate roles so that we don't mistakenly see peers
1981 // helping us do background IBD as having a stale tip.
1982 m_last_tip_update = GetTime<std::chrono::seconds>();
1983
1984 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1985 auto stalling_timeout = m_block_stalling_timeout.load();
1986 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1987 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1988 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1989 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1990 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1991 }
1992 }
1993
1994 // The following task can be skipped since we don't maintain a mempool for
1995 // the ibd/background chainstate.
1996 if (role == ChainstateRole::BACKGROUND) {
1997 return;
1998 }
1999 LOCK(m_tx_download_mutex);
2000 m_txdownloadman.BlockConnected(pblock);
2001}
2002
2003void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
2004{
2005 LOCK(m_tx_download_mutex);
2006 m_txdownloadman.BlockDisconnected();
2007}
2008
2013void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
2014{
2015 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
2016
2017 LOCK(cs_main);
2018
2019 if (pindex->nHeight <= m_highest_fast_announce)
2020 return;
2021 m_highest_fast_announce = pindex->nHeight;
2022
2023 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
2024
2025 uint256 hashBlock(pblock->GetHash());
2026 const std::shared_future<CSerializedNetMsg> lazy_ser{
2027 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2028
2029 {
2030 auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
2031 for (const auto& tx : pblock->vtx) {
2032 most_recent_block_txs->emplace(tx->GetHash(), tx);
2033 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2034 }
2035
2036 LOCK(m_most_recent_block_mutex);
2037 m_most_recent_block_hash = hashBlock;
2038 m_most_recent_block = pblock;
2039 m_most_recent_compact_block = pcmpctblock;
2040 m_most_recent_block_txs = std::move(most_recent_block_txs);
2041 }
2042
2043 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2045
2047 return;
2048 ProcessBlockAvailability(pnode->GetId());
2049 CNodeState &state = *State(pnode->GetId());
2050 // If the peer has, or we announced to them the previous block already,
2051 // but we don't think they have this one, go ahead and announce it
2052 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2053
2054 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2055 hashBlock.ToString(), pnode->GetId());
2056
2057 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2058 PushMessage(*pnode, ser_cmpctblock.Copy());
2059 state.pindexBestHeaderSent = pindex;
2060 }
2061 });
2062}
2063
2068void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2069{
2070 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2071
2072 // Don't relay inventory during initial block download.
2073 if (fInitialDownload) return;
2074
2075 // Find the hashes of all blocks that weren't previously in the best chain.
2076 std::vector<uint256> vHashes;
2077 const CBlockIndex *pindexToAnnounce = pindexNew;
2078 while (pindexToAnnounce != pindexFork) {
2079 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2080 pindexToAnnounce = pindexToAnnounce->pprev;
2081 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2082 // Limit announcements in case of a huge reorganization.
2083 // Rely on the peer's synchronization mechanism in that case.
2084 break;
2085 }
2086 }
2087
2088 {
2089 LOCK(m_peer_mutex);
2090 for (auto& it : m_peer_map) {
2091 Peer& peer = *it.second;
2092 LOCK(peer.m_block_inv_mutex);
2093 for (const uint256& hash : vHashes | std::views::reverse) {
2094 peer.m_blocks_for_headers_relay.push_back(hash);
2095 }
2096 }
2097 }
2098
2099 m_connman.WakeMessageHandler();
2100}
2101
2106void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2107{
2108 LOCK(cs_main);
2109
2110 const uint256 hash(block.GetHash());
2111 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2112
2113 // If the block failed validation, we know where it came from and we're still connected
2114 // to that peer, maybe punish.
2115 if (state.IsInvalid() &&
2116 it != mapBlockSource.end() &&
2117 State(it->second.first)) {
2118 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2119 }
2120 // Check that:
2121 // 1. The block is valid
2122 // 2. We're not in initial block download
2123 // 3. This is currently the best block we're aware of. We haven't updated
2124 // the tip yet so we have no way to check this directly here. Instead we
2125 // just check that there are currently no other blocks in flight.
2126 else if (state.IsValid() &&
2127 !m_chainman.IsInitialBlockDownload() &&
2128 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2129 if (it != mapBlockSource.end()) {
2130 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2131 }
2132 }
2133 if (it != mapBlockSource.end())
2134 mapBlockSource.erase(it);
2135}
2136
2138//
2139// Messages
2140//
2141
2142bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2143{
2144 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2145}
2146
2147void PeerManagerImpl::SendPings()
2148{
2149 LOCK(m_peer_mutex);
2150 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2151}
2152
2153void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2154{
2155 LOCK(m_peer_mutex);
2156 for(auto& it : m_peer_map) {
2157 Peer& peer = *it.second;
2158 auto tx_relay = peer.GetTxRelay();
2159 if (!tx_relay) continue;
2160
2161 LOCK(tx_relay->m_tx_inventory_mutex);
2162 // Only queue transactions for announcement once the version handshake
2163 // is completed. The time of arrival for these transactions is
2164 // otherwise at risk of leaking to a spy, if the spy is able to
2165 // distinguish transactions received during the handshake from the rest
2166 // in the announcement.
2167 if (tx_relay->m_next_inv_send_time == 0s) continue;
2168
2169 const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2170 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2171 tx_relay->m_tx_inventory_to_send.insert(hash);
2172 }
2173 };
2174}
2175
2176void PeerManagerImpl::RelayAddress(NodeId originator,
2177 const CAddress& addr,
2178 bool fReachable)
2179{
2180 // We choose the same nodes within a given 24h window (if the list of connected
2181 // nodes does not change) and we don't relay to nodes that already know an
2182 // address. So within 24h we will likely relay a given address once. This is to
2183 // prevent a peer from unjustly giving their address better propagation by sending
2184 // it to us repeatedly.
2185
2186 if (!fReachable && !addr.IsRelayable()) return;
2187
2188 // Relay to a limited number of other nodes
2189 // Use deterministic randomness to send to the same nodes for 24 hours
2190 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2191 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2192 const auto current_time{GetTime<std::chrono::seconds>()};
2193 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2194 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2196 .Write(hash_addr)
2197 .Write(time_addr)};
2198
2199 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2200 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2201
2202 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2203 assert(nRelayNodes <= best.size());
2204
2205 LOCK(m_peer_mutex);
2206
2207 for (auto& [id, peer] : m_peer_map) {
2208 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2209 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2210 for (unsigned int i = 0; i < nRelayNodes; i++) {
2211 if (hashKey > best[i].first) {
2212 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2213 best[i] = std::make_pair(hashKey, peer.get());
2214 break;
2215 }
2216 }
2217 }
2218 };
2219
2220 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2221 PushAddress(*best[i].second, addr);
2222 }
2223}
2224
2225void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2226{
2227 std::shared_ptr<const CBlock> a_recent_block;
2228 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2229 {
2230 LOCK(m_most_recent_block_mutex);
2231 a_recent_block = m_most_recent_block;
2232 a_recent_compact_block = m_most_recent_compact_block;
2233 }
2234
2235 bool need_activate_chain = false;
2236 {
2237 LOCK(cs_main);
2238 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2239 if (pindex) {
2240 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2241 pindex->IsValid(BLOCK_VALID_TREE)) {
2242 // If we have the block and all of its parents, but have not yet validated it,
2243 // we might be in the middle of connecting it (ie in the unlock of cs_main
2244 // before ActivateBestChain but after AcceptBlock).
2245 // In this case, we need to run ActivateBestChain prior to checking the relay
2246 // conditions below.
2247 need_activate_chain = true;
2248 }
2249 }
2250 } // release cs_main before calling ActivateBestChain
2251 if (need_activate_chain) {
2253 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2254 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2255 }
2256 }
2257
2258 const CBlockIndex* pindex{nullptr};
2259 const CBlockIndex* tip{nullptr};
2260 bool can_direct_fetch{false};
2261 FlatFilePos block_pos{};
2262 {
2263 LOCK(cs_main);
2264 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2265 if (!pindex) {
2266 return;
2267 }
2268 if (!BlockRequestAllowed(pindex)) {
2269 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2270 return;
2271 }
2272 // disconnect node in case we have reached the outbound limit for serving historical blocks
2273 if (m_connman.OutboundTargetReached(true) &&
2274 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2275 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2276 ) {
2277 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2278 pfrom.fDisconnect = true;
2279 return;
2280 }
2281 tip = m_chainman.ActiveChain().Tip();
2282 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2284 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2285 )) {
2286 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2287 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2288 pfrom.fDisconnect = true;
2289 return;
2290 }
2291 // Pruned nodes may have deleted the block, so check whether
2292 // it's available before trying to send.
2293 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2294 return;
2295 }
2296 can_direct_fetch = CanDirectFetch();
2297 block_pos = pindex->GetBlockPos();
2298 }
2299
2300 std::shared_ptr<const CBlock> pblock;
2301 if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
2302 pblock = a_recent_block;
2303 } else if (inv.IsMsgWitnessBlk()) {
2304 // Fast-path: in this case it is possible to serve the block directly from disk,
2305 // as the network format matches the format on disk
2306 std::vector<uint8_t> block_data;
2307 if (!m_chainman.m_blockman.ReadRawBlock(block_data, block_pos)) {
2308 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2309 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2310 } else {
2311 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2312 }
2313 pfrom.fDisconnect = true;
2314 return;
2315 }
2316 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{block_data});
2317 // Don't set pblock as we've sent the block
2318 } else {
2319 // Send block from disk
2320 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2321 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos)) {
2322 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2323 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2324 } else {
2325 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2326 }
2327 pfrom.fDisconnect = true;
2328 return;
2329 }
2330 pblock = pblockRead;
2331 }
2332 if (pblock) {
2333 if (inv.IsMsgBlk()) {
2334 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2335 } else if (inv.IsMsgWitnessBlk()) {
2336 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2337 } else if (inv.IsMsgFilteredBlk()) {
2338 bool sendMerkleBlock = false;
2339 CMerkleBlock merkleBlock;
2340 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2341 LOCK(tx_relay->m_bloom_filter_mutex);
2342 if (tx_relay->m_bloom_filter) {
2343 sendMerkleBlock = true;
2344 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2345 }
2346 }
2347 if (sendMerkleBlock) {
2348 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2349 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2350 // This avoids hurting performance by pointlessly requiring a round-trip
2351 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2352 // they must either disconnect and retry or request the full block.
2353 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2354 // however we MUST always provide at least what the remote peer needs
2355 typedef std::pair<unsigned int, uint256> PairType;
2356 for (PairType& pair : merkleBlock.vMatchedTxn)
2357 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2358 }
2359 // else
2360 // no response
2361 } else if (inv.IsMsgCmpctBlk()) {
2362 // If a peer is asking for old blocks, we're almost guaranteed
2363 // they won't have a useful mempool to match against a compact block,
2364 // and we don't feel like constructing the object for them, so
2365 // instead we respond with the full, non-compact block.
2366 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2367 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
2368 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2369 } else {
2370 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2371 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2372 }
2373 } else {
2374 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2375 }
2376 }
2377 }
2378
2379 {
2380 LOCK(peer.m_block_inv_mutex);
2381 // Trigger the peer node to send a getblocks request for the next batch of inventory
2382 if (inv.hash == peer.m_continuation_block) {
2383 // Send immediately. This must send even if redundant,
2384 // and we want it right after the last block so they don't
2385 // wait for other stuff first.
2386 std::vector<CInv> vInv;
2387 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2388 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2389 peer.m_continuation_block.SetNull();
2390 }
2391 }
2392}
2393
2394CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2395{
2396 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2397 auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2398 if (txinfo.tx) {
2399 return std::move(txinfo.tx);
2400 }
2401
2402 // Or it might be from the most recent block
2403 {
2404 LOCK(m_most_recent_block_mutex);
2405 if (m_most_recent_block_txs != nullptr) {
2406 auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2407 if (it != m_most_recent_block_txs->end()) return it->second;
2408 }
2409 }
2410
2411 return {};
2412}
2413
2414void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2415{
2417
2418 auto tx_relay = peer.GetTxRelay();
2419
2420 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2421 std::vector<CInv> vNotFound;
2422
2423 // Process as many TX items from the front of the getdata queue as
2424 // possible, since they're common and it's efficient to batch process
2425 // them.
2426 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2427 if (interruptMsgProc) return;
2428 // The send buffer provides backpressure. If there's no space in
2429 // the buffer, pause processing until the next call.
2430 if (pfrom.fPauseSend) break;
2431
2432 const CInv &inv = *it++;
2433
2434 if (tx_relay == nullptr) {
2435 // Ignore GETDATA requests for transactions from block-relay-only
2436 // peers and peers that asked us not to announce transactions.
2437 continue;
2438 }
2439
2440 CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2441 if (tx) {
2442 // WTX and WITNESS_TX imply we serialize with witness
2443 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2444 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2445 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2446 } else {
2447 vNotFound.push_back(inv);
2448 }
2449 }
2450
2451 // Only process one BLOCK item per call, since they're uncommon and can be
2452 // expensive to process.
2453 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2454 const CInv &inv = *it++;
2455 if (inv.IsGenBlkMsg()) {
2456 ProcessGetBlockData(pfrom, peer, inv);
2457 }
2458 // else: If the first item on the queue is an unknown type, we erase it
2459 // and continue processing the queue on the next call.
2460 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2461 // result in never making progress and this thread using 100% allocated CPU. See
2462 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2463 }
2464
2465 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2466
2467 if (!vNotFound.empty()) {
2468 // Let the peer know that we didn't find what it asked for, so it doesn't
2469 // have to wait around forever.
2470 // SPV clients care about this message: it's needed when they are
2471 // recursively walking the dependencies of relevant unconfirmed
2472 // transactions. SPV clients want to do that because they want to know
2473 // about (and store and rebroadcast and risk analyze) the dependencies
2474 // of transactions relevant to them, without having to download the
2475 // entire memory pool.
2476 // Also, other nodes can use these messages to automatically request a
2477 // transaction from some other peer that announced it, and stop
2478 // waiting for us to respond.
2479 // In normal operation, we often send NOTFOUND messages for parents of
2480 // transactions that we relay; if a peer is missing a parent, they may
2481 // assume we have them and request the parents from us.
2482 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2483 }
2484}
2485
2486uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2487{
2488 uint32_t nFetchFlags = 0;
2489 if (CanServeWitnesses(peer)) {
2490 nFetchFlags |= MSG_WITNESS_FLAG;
2491 }
2492 return nFetchFlags;
2493}
2494
2495void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2496{
2497 BlockTransactions resp(req);
2498 for (size_t i = 0; i < req.indexes.size(); i++) {
2499 if (req.indexes[i] >= block.vtx.size()) {
2500 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2501 return;
2502 }
2503 resp.txn[i] = block.vtx[req.indexes[i]];
2504 }
2505
2506 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2507}
2508
2509bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2510{
2511 // Do these headers have proof-of-work matching what's claimed?
2512 if (!HasValidProofOfWork(headers, consensusParams)) {
2513 Misbehaving(peer, "header with invalid proof of work");
2514 return false;
2515 }
2516
2517 // Are these headers connected to each other?
2518 if (!CheckHeadersAreContinuous(headers)) {
2519 Misbehaving(peer, "non-continuous headers sequence");
2520 return false;
2521 }
2522 return true;
2523}
2524
2525arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2526{
2527 arith_uint256 near_chaintip_work = 0;
2528 LOCK(cs_main);
2529 if (m_chainman.ActiveChain().Tip() != nullptr) {
2530 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2531 // Use a 144 block buffer, so that we'll accept headers that fork from
2532 // near our tip.
2533 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2534 }
2535 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2536}
2537
2544void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2545 const std::vector<CBlockHeader>& headers)
2546{
2547 // Try to fill in the missing headers.
2548 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2549 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2550 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2551 headers[0].GetHash().ToString(),
2552 headers[0].hashPrevBlock.ToString(),
2553 best_header->nHeight,
2554 pfrom.GetId());
2555 }
2556
2557 // Set hashLastUnknownBlock for this peer, so that if we
2558 // eventually get the headers - even from a different peer -
2559 // we can use this peer to download.
2560 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2561}
2562
2563bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2564{
2565 uint256 hashLastBlock;
2566 for (const CBlockHeader& header : headers) {
2567 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2568 return false;
2569 }
2570 hashLastBlock = header.GetHash();
2571 }
2572 return true;
2573}
2574
2575bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2576{
2577 if (peer.m_headers_sync) {
2578 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2579 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2580 if (result.success) peer.m_last_getheaders_timestamp = {};
2581 if (result.request_more) {
2582 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2583 // If we were instructed to ask for a locator, it should not be empty.
2584 Assume(!locator.vHave.empty());
2585 // We can only be instructed to request more if processing was successful.
2586 Assume(result.success);
2587 if (!locator.vHave.empty()) {
2588 // It should be impossible for the getheaders request to fail,
2589 // because we just cleared the last getheaders timestamp.
2590 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2591 Assume(sent_getheaders);
2592 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2593 locator.vHave.front().ToString(), pfrom.GetId());
2594 }
2595 }
2596
2597 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2598 peer.m_headers_sync.reset(nullptr);
2599
2600 // Delete this peer's entry in m_headers_presync_stats.
2601 // If this is m_headers_presync_bestpeer, it will be replaced later
2602 // by the next peer that triggers the else{} branch below.
2603 LOCK(m_headers_presync_mutex);
2604 m_headers_presync_stats.erase(pfrom.GetId());
2605 } else {
2606 // Build statistics for this peer's sync.
2607 HeadersPresyncStats stats;
2608 stats.first = peer.m_headers_sync->GetPresyncWork();
2609 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2610 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2611 peer.m_headers_sync->GetPresyncTime()};
2612 }
2613
2614 // Update statistics in stats.
2615 LOCK(m_headers_presync_mutex);
2616 m_headers_presync_stats[pfrom.GetId()] = stats;
2617 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2618 bool best_updated = false;
2619 if (best_it == m_headers_presync_stats.end()) {
2620 // If the cached best peer is outdated, iterate over all remaining ones (including
2621 // newly updated one) to find the best one.
2622 NodeId peer_best{-1};
2623 const HeadersPresyncStats* stat_best{nullptr};
2624 for (const auto& [peer, stat] : m_headers_presync_stats) {
2625 if (!stat_best || stat > *stat_best) {
2626 peer_best = peer;
2627 stat_best = &stat;
2628 }
2629 }
2630 m_headers_presync_bestpeer = peer_best;
2631 best_updated = (peer_best == pfrom.GetId());
2632 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2633 // pfrom was and remains the best peer, or pfrom just became best.
2634 m_headers_presync_bestpeer = pfrom.GetId();
2635 best_updated = true;
2636 }
2637 if (best_updated && stats.second.has_value()) {
2638 // If the best peer updated, and it is in its first phase, signal.
2639 m_headers_presync_should_signal = true;
2640 }
2641 }
2642
2643 if (result.success) {
2644 // We only overwrite the headers passed in if processing was
2645 // successful.
2646 headers.swap(result.pow_validated_headers);
2647 }
2648
2649 return result.success;
2650 }
2651 // Either we didn't have a sync in progress, or something went wrong
2652 // processing these headers, or we are returning headers to the caller to
2653 // process.
2654 return false;
2655}
2656
2657bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2658{
2659 // Calculate the claimed total work on this chain.
2660 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2661
2662 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2663 // before we'll store it)
2664 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2665
2666 // Avoid DoS via low-difficulty-headers by only processing if the headers
2667 // are part of a chain with sufficient work.
2668 if (total_work < minimum_chain_work) {
2669 // Only try to sync with this peer if their headers message was full;
2670 // otherwise they don't have more headers after this so no point in
2671 // trying to sync their too-little-work chain.
2672 if (headers.size() == m_opts.max_headers_result) {
2673 // Note: we could advance to the last header in this set that is
2674 // known to us, rather than starting at the first header (which we
2675 // may already have); however this is unlikely to matter much since
2676 // ProcessHeadersMessage() already handles the case where all
2677 // headers in a received message are already known and are
2678 // ancestors of m_best_header or chainActive.Tip(), by skipping
2679 // this logic in that case. So even if the first header in this set
2680 // of headers is known, some header in this set must be new, so
2681 // advancing to the first unknown header would be a small effect.
2682 LOCK(peer.m_headers_sync_mutex);
2683 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2684 chain_start_header, minimum_chain_work));
2685
2686 // Now a HeadersSyncState object for tracking this synchronization
2687 // is created, process the headers using it as normal. Failures are
2688 // handled inside of IsContinuationOfLowWorkHeadersSync.
2689 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2690 } else {
2691 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2692 }
2693
2694 // The peer has not yet given us a chain that meets our work threshold,
2695 // so we want to prevent further processing of the headers in any case.
2696 headers = {};
2697 return true;
2698 }
2699
2700 return false;
2701}
2702
2703bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2704{
2705 if (header == nullptr) {
2706 return false;
2707 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2708 return true;
2709 } else if (m_chainman.ActiveChain().Contains(header)) {
2710 return true;
2711 }
2712 return false;
2713}
2714
2715bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2716{
2717 const auto current_time = NodeClock::now();
2718
2719 // Only allow a new getheaders message to go out if we don't have a recent
2720 // one already in-flight
2721 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2722 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2723 peer.m_last_getheaders_timestamp = current_time;
2724 return true;
2725 }
2726 return false;
2727}
2728
2729/*
2730 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2731 * We require that the given tip have at least as much work as our tip, and for
2732 * our current tip to be "close to synced" (see CanDirectFetch()).
2733 */
2734void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2735{
2736 LOCK(cs_main);
2737 CNodeState *nodestate = State(pfrom.GetId());
2738
2739 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2740 std::vector<const CBlockIndex*> vToFetch;
2741 const CBlockIndex* pindexWalk{&last_header};
2742 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2743 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2744 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2745 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2746 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2747 // We don't have this block, and it's not yet in flight.
2748 vToFetch.push_back(pindexWalk);
2749 }
2750 pindexWalk = pindexWalk->pprev;
2751 }
2752 // If pindexWalk still isn't on our main chain, we're looking at a
2753 // very large reorg at a time we think we're close to caught up to
2754 // the main chain -- this shouldn't really happen. Bail out on the
2755 // direct fetch and rely on parallel download instead.
2756 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2757 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2758 last_header.GetBlockHash().ToString(),
2759 last_header.nHeight);
2760 } else {
2761 std::vector<CInv> vGetData;
2762 // Download as much as possible, from earliest to latest.
2763 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2764 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2765 // Can't download any more from this peer
2766 break;
2767 }
2768 uint32_t nFetchFlags = GetFetchFlags(peer);
2769 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2770 BlockRequested(pfrom.GetId(), *pindex);
2771 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2772 pindex->GetBlockHash().ToString(), pfrom.GetId());
2773 }
2774 if (vGetData.size() > 1) {
2775 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2776 last_header.GetBlockHash().ToString(),
2777 last_header.nHeight);
2778 }
2779 if (vGetData.size() > 0) {
2780 if (!m_opts.ignore_incoming_txs &&
2781 nodestate->m_provides_cmpctblocks &&
2782 vGetData.size() == 1 &&
2783 mapBlocksInFlight.size() == 1 &&
2784 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2785 // In any case, we want to download using a compact block, not a regular one
2786 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2787 }
2788 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2789 }
2790 }
2791 }
2792}
2793
2799void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2800 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2801{
2802 LOCK(cs_main);
2803 CNodeState *nodestate = State(pfrom.GetId());
2804
2805 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2806
2807 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2808 // because it is set in UpdateBlockAvailability. Some nullptr checks
2809 // are still present, however, as belt-and-suspenders.
2810
2811 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2812 nodestate->m_last_block_announcement = GetTime();
2813 }
2814
2815 // If we're in IBD, we want outbound peers that will serve us a useful
2816 // chain. Disconnect peers that are on chains with insufficient work.
2817 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2818 // If the peer has no more headers to give us, then we know we have
2819 // their tip.
2820 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2821 // This peer has too little work on their headers chain to help
2822 // us sync -- disconnect if it is an outbound disconnection
2823 // candidate.
2824 // Note: We compare their tip to the minimum chain work (rather than
2825 // m_chainman.ActiveChain().Tip()) because we won't start block download
2826 // until we have a headers chain that has at least
2827 // the minimum chain work, even if a peer has a chain past our tip,
2828 // as an anti-DoS measure.
2829 if (pfrom.IsOutboundOrBlockRelayConn()) {
2830 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2831 pfrom.fDisconnect = true;
2832 }
2833 }
2834 }
2835
2836 // If this is an outbound full-relay peer, check to see if we should protect
2837 // it from the bad/lagging chain logic.
2838 // Note that outbound block-relay peers are excluded from this protection, and
2839 // thus always subject to eviction under the bad/lagging chain logic.
2840 // See ChainSyncTimeoutState.
2841 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2842 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2843 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2844 nodestate->m_chain_sync.m_protect = true;
2845 ++m_outbound_peers_with_protect_from_disconnect;
2846 }
2847 }
2848}
2849
2850void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2851 std::vector<CBlockHeader>&& headers,
2852 bool via_compact_block)
2853{
2854 size_t nCount = headers.size();
2855
2856 if (nCount == 0) {
2857 // Nothing interesting. Stop asking this peers for more headers.
2858 // If we were in the middle of headers sync, receiving an empty headers
2859 // message suggests that the peer suddenly has nothing to give us
2860 // (perhaps it reorged to our chain). Clear download state for this peer.
2861 LOCK(peer.m_headers_sync_mutex);
2862 if (peer.m_headers_sync) {
2863 peer.m_headers_sync.reset(nullptr);
2864 LOCK(m_headers_presync_mutex);
2865 m_headers_presync_stats.erase(pfrom.GetId());
2866 }
2867 // A headers message with no headers cannot be an announcement, so assume
2868 // it is a response to our last getheaders request, if there is one.
2869 peer.m_last_getheaders_timestamp = {};
2870 return;
2871 }
2872
2873 // Before we do any processing, make sure these pass basic sanity checks.
2874 // We'll rely on headers having valid proof-of-work further down, as an
2875 // anti-DoS criteria (note: this check is required before passing any
2876 // headers into HeadersSyncState).
2877 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2878 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2879 // just return. (Note that even if a header is announced via compact
2880 // block, the header itself should be valid, so this type of error can
2881 // always be punished.)
2882 return;
2883 }
2884
2885 const CBlockIndex *pindexLast = nullptr;
2886
2887 // We'll set already_validated_work to true if these headers are
2888 // successfully processed as part of a low-work headers sync in progress
2889 // (either in PRESYNC or REDOWNLOAD phase).
2890 // If true, this will mean that any headers returned to us (ie during
2891 // REDOWNLOAD) can be validated without further anti-DoS checks.
2892 bool already_validated_work = false;
2893
2894 // If we're in the middle of headers sync, let it do its magic.
2895 bool have_headers_sync = false;
2896 {
2897 LOCK(peer.m_headers_sync_mutex);
2898
2899 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2900
2901 // The headers we passed in may have been:
2902 // - untouched, perhaps if no headers-sync was in progress, or some
2903 // failure occurred
2904 // - erased, such as if the headers were successfully processed and no
2905 // additional headers processing needs to take place (such as if we
2906 // are still in PRESYNC)
2907 // - replaced with headers that are now ready for validation, such as
2908 // during the REDOWNLOAD phase of a low-work headers sync.
2909 // So just check whether we still have headers that we need to process,
2910 // or not.
2911 if (headers.empty()) {
2912 return;
2913 }
2914
2915 have_headers_sync = !!peer.m_headers_sync;
2916 }
2917
2918 // Do these headers connect to something in our block index?
2919 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2920 bool headers_connect_blockindex{chain_start_header != nullptr};
2921
2922 if (!headers_connect_blockindex) {
2923 // This could be a BIP 130 block announcement, use
2924 // special logic for handling headers that don't connect, as this
2925 // could be benign.
2926 HandleUnconnectingHeaders(pfrom, peer, headers);
2927 return;
2928 }
2929
2930 // If headers connect, assume that this is in response to any outstanding getheaders
2931 // request we may have sent, and clear out the time of our last request. Non-connecting
2932 // headers cannot be a response to a getheaders request.
2933 peer.m_last_getheaders_timestamp = {};
2934
2935 // If the headers we received are already in memory and an ancestor of
2936 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2937 // use any more memory (and we are not leaking information that could be
2938 // used to fingerprint us).
2939 const CBlockIndex *last_received_header{nullptr};
2940 {
2941 LOCK(cs_main);
2942 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2943 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2944 already_validated_work = true;
2945 }
2946 }
2947
2948 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2949 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2950 // on startup).
2952 already_validated_work = true;
2953 }
2954
2955 // At this point, the headers connect to something in our block index.
2956 // Do anti-DoS checks to determine if we should process or store for later
2957 // processing.
2958 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2959 chain_start_header, headers)) {
2960 // If we successfully started a low-work headers sync, then there
2961 // should be no headers to process any further.
2962 Assume(headers.empty());
2963 return;
2964 }
2965
2966 // At this point, we have a set of headers with sufficient work on them
2967 // which can be processed.
2968
2969 // If we don't have the last header, then this peer will have given us
2970 // something new (if these headers are valid).
2971 bool received_new_header{last_received_header == nullptr};
2972
2973 // Now process all the headers.
2975 const bool processed{m_chainman.ProcessNewBlockHeaders(headers,
2976 /*min_pow_checked=*/true,
2977 state, &pindexLast)};
2978 if (!processed) {
2979 if (state.IsInvalid()) {
2980 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2981 return;
2982 }
2983 }
2984 assert(pindexLast);
2985
2986 if (processed && received_new_header) {
2987 LogBlockHeader(*pindexLast, pfrom, /*via_compact_block=*/false);
2988 }
2989
2990 // Consider fetching more headers if we are not using our headers-sync mechanism.
2991 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2992 // Headers message had its maximum size; the peer may have more headers.
2993 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2994 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2995 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2996 }
2997 }
2998
2999 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
3000
3001 // Consider immediately downloading blocks.
3002 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
3003
3004 return;
3005}
3006
3007std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
3008 bool first_time_failure)
3009{
3010 AssertLockNotHeld(m_peer_mutex);
3011 AssertLockHeld(g_msgproc_mutex);
3012 AssertLockHeld(m_tx_download_mutex);
3013
3014 PeerRef peer{GetPeerRef(nodeid)};
3015
3016 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3017 ptx->GetHash().ToString(),
3018 ptx->GetWitnessHash().ToString(),
3019 nodeid,
3020 state.ToString());
3021
3022 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
3023
3024 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
3025 AddToCompactExtraTransactions(ptx);
3026 }
3027 for (const Txid& parent_txid : unique_parents) {
3028 if (peer) AddKnownTx(*peer, parent_txid);
3029 }
3030
3031 MaybePunishNodeForTx(nodeid, state);
3032
3033 return package_to_validate;
3034}
3035
3036void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3037{
3038 AssertLockNotHeld(m_peer_mutex);
3039 AssertLockHeld(g_msgproc_mutex);
3040 AssertLockHeld(m_tx_download_mutex);
3041
3042 m_txdownloadman.MempoolAcceptedTx(tx);
3043
3044 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3045 nodeid,
3046 tx->GetHash().ToString(),
3047 tx->GetWitnessHash().ToString(),
3048 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3049
3050 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3051
3052 for (const CTransactionRef& removedTx : replaced_transactions) {
3053 AddToCompactExtraTransactions(removedTx);
3054 }
3055}
3056
3057void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3058{
3059 AssertLockNotHeld(m_peer_mutex);
3060 AssertLockHeld(g_msgproc_mutex);
3061 AssertLockHeld(m_tx_download_mutex);
3062
3063 const auto& package = package_to_validate.m_txns;
3064 const auto& senders = package_to_validate.m_senders;
3065
3066 if (package_result.m_state.IsInvalid()) {
3067 m_txdownloadman.MempoolRejectedPackage(package);
3068 }
3069 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3070 if (!Assume(package.size() == 2)) return;
3071
3072 // Iterate backwards to erase in-package descendants from the orphanage before they become
3073 // relevant in AddChildrenToWorkSet.
3074 auto package_iter = package.rbegin();
3075 auto senders_iter = senders.rbegin();
3076 while (package_iter != package.rend()) {
3077 const auto& tx = *package_iter;
3078 const NodeId nodeid = *senders_iter;
3079 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3080
3081 // It is not guaranteed that a result exists for every transaction.
3082 if (it_result != package_result.m_tx_results.end()) {
3083 const auto& tx_result = it_result->second;
3084 switch (tx_result.m_result_type) {
3086 {
3087 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3088 break;
3089 }
3092 {
3093 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3094 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3095 // This should be updated if package submission is ever used for transactions
3096 // that haven't already been validated before.
3097 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3098 break;
3099 }
3101 {
3102 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3103 Assume(false);
3104 break;
3105 }
3106 }
3107 }
3108 package_iter++;
3109 senders_iter++;
3110 }
3111}
3112
3113// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3114// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3115bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3116{
3117 AssertLockHeld(g_msgproc_mutex);
3118 LOCK2(::cs_main, m_tx_download_mutex);
3119
3120 CTransactionRef porphanTx = nullptr;
3121
3122 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3123 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3124 const TxValidationState& state = result.m_state;
3125 const Txid& orphanHash = porphanTx->GetHash();
3126 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3127
3129 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3130 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3131 return true;
3132 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3133 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3134 orphanHash.ToString(),
3135 orphan_wtxid.ToString(),
3136 peer.m_id,
3137 state.ToString());
3138
3139 if (Assume(state.IsInvalid() &&
3143 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3144 }
3145 return true;
3146 }
3147 }
3148
3149 return false;
3150}
3151
3152bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3153 BlockFilterType filter_type, uint32_t start_height,
3154 const uint256& stop_hash, uint32_t max_height_diff,
3155 const CBlockIndex*& stop_index,
3156 BlockFilterIndex*& filter_index)
3157{
3158 const bool supported_filter_type =
3159 (filter_type == BlockFilterType::BASIC &&
3160 (peer.m_our_services & NODE_COMPACT_FILTERS));
3161 if (!supported_filter_type) {
3162 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3163 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3164 node.fDisconnect = true;
3165 return false;
3166 }
3167
3168 {
3169 LOCK(cs_main);
3170 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3171
3172 // Check that the stop block exists and the peer would be allowed to fetch it.
3173 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3174 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3175 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3176 node.fDisconnect = true;
3177 return false;
3178 }
3179 }
3180
3181 uint32_t stop_height = stop_index->nHeight;
3182 if (start_height > stop_height) {
3183 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3184 "start height %d and stop height %d, %s\n",
3185 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3186 node.fDisconnect = true;
3187 return false;
3188 }
3189 if (stop_height - start_height >= max_height_diff) {
3190 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3191 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3192 node.fDisconnect = true;
3193 return false;
3194 }
3195
3196 filter_index = GetBlockFilterIndex(filter_type);
3197 if (!filter_index) {
3198 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3199 return false;
3200 }
3201
3202 return true;
3203}
3204
3205void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3206{
3207 uint8_t filter_type_ser;
3208 uint32_t start_height;
3209 uint256 stop_hash;
3210
3211 vRecv >> filter_type_ser >> start_height >> stop_hash;
3212
3213 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3214
3215 const CBlockIndex* stop_index;
3216 BlockFilterIndex* filter_index;
3217 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3218 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3219 return;
3220 }
3221
3222 std::vector<BlockFilter> filters;
3223 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3224 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3225 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3226 return;
3227 }
3228
3229 for (const auto& filter : filters) {
3230 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3231 }
3232}
3233
3234void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3235{
3236 uint8_t filter_type_ser;
3237 uint32_t start_height;
3238 uint256 stop_hash;
3239
3240 vRecv >> filter_type_ser >> start_height >> stop_hash;
3241
3242 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3243
3244 const CBlockIndex* stop_index;
3245 BlockFilterIndex* filter_index;
3246 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3247 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3248 return;
3249 }
3250
3251 uint256 prev_header;
3252 if (start_height > 0) {
3253 const CBlockIndex* const prev_block =
3254 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3255 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3256 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3257 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3258 return;
3259 }
3260 }
3261
3262 std::vector<uint256> filter_hashes;
3263 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3264 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3265 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3266 return;
3267 }
3268
3269 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3270 filter_type_ser,
3271 stop_index->GetBlockHash(),
3272 prev_header,
3273 filter_hashes);
3274}
3275
3276void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3277{
3278 uint8_t filter_type_ser;
3279 uint256 stop_hash;
3280
3281 vRecv >> filter_type_ser >> stop_hash;
3282
3283 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3284
3285 const CBlockIndex* stop_index;
3286 BlockFilterIndex* filter_index;
3287 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3288 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3289 stop_index, filter_index)) {
3290 return;
3291 }
3292
3293 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3294
3295 // Populate headers.
3296 const CBlockIndex* block_index = stop_index;
3297 for (int i = headers.size() - 1; i >= 0; i--) {
3298 int height = (i + 1) * CFCHECKPT_INTERVAL;
3299 block_index = block_index->GetAncestor(height);
3300
3301 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3302 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3303 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3304 return;
3305 }
3306 }
3307
3308 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3309 filter_type_ser,
3310 stop_index->GetBlockHash(),
3311 headers);
3312}
3313
3314void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3315{
3316 bool new_block{false};
3317 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3318 if (new_block) {
3319 node.m_last_block_time = GetTime<std::chrono::seconds>();
3320 // In case this block came from a different peer than we requested
3321 // from, we can erase the block request now anyway (as we just stored
3322 // this block to disk).
3323 LOCK(cs_main);
3324 RemoveBlockRequest(block->GetHash(), std::nullopt);
3325 } else {
3326 LOCK(cs_main);
3327 mapBlockSource.erase(block->GetHash());
3328 }
3329}
3330
3331void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3332{
3333 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3334 bool fBlockRead{false};
3335 {
3336 LOCK(cs_main);
3337
3338 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3339 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3340 bool requested_block_from_this_peer{false};
3341
3342 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3343 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3344
3345 while (range_flight.first != range_flight.second) {
3346 auto [node_id, block_it] = range_flight.first->second;
3347 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3348 requested_block_from_this_peer = true;
3349 break;
3350 }
3351 range_flight.first++;
3352 }
3353
3354 if (!requested_block_from_this_peer) {
3355 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3356 return;
3357 }
3358
3359 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3360 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3361 if (status == READ_STATUS_INVALID) {
3362 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3363 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3364 return;
3365 } else if (status == READ_STATUS_FAILED) {
3366 if (first_in_flight) {
3367 // Might have collided, fall back to getdata now :(
3368 std::vector<CInv> invs;
3369 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3370 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3371 } else {
3372 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3373 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3374 return;
3375 }
3376 } else {
3377 // Block is either okay, or possibly we received
3378 // READ_STATUS_CHECKBLOCK_FAILED.
3379 // Note that CheckBlock can only fail for one of a few reasons:
3380 // 1. bad-proof-of-work (impossible here, because we've already
3381 // accepted the header)
3382 // 2. merkleroot doesn't match the transactions given (already
3383 // caught in FillBlock with READ_STATUS_FAILED, so
3384 // impossible here)
3385 // 3. the block is otherwise invalid (eg invalid coinbase,
3386 // block is too big, too many legacy sigops, etc).
3387 // So if CheckBlock failed, #3 is the only possibility.
3388 // Under BIP 152, we don't discourage the peer unless proof of work is
3389 // invalid (we don't require all the stateless checks to have
3390 // been run). This is handled below, so just treat this as
3391 // though the block was successfully read, and rely on the
3392 // handling in ProcessNewBlock to ensure the block index is
3393 // updated, etc.
3394 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3395 fBlockRead = true;
3396 // mapBlockSource is used for potentially punishing peers and
3397 // updating which peers send us compact blocks, so the race
3398 // between here and cs_main in ProcessNewBlock is fine.
3399 // BIP 152 permits peers to relay compact blocks after validating
3400 // the header only; we should not punish peers if the block turns
3401 // out to be invalid.
3402 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3403 }
3404 } // Don't hold cs_main when we call into ProcessNewBlock
3405 if (fBlockRead) {
3406 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3407 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3408 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3409 // disk-space attacks), but this should be safe due to the
3410 // protections in the compact block handler -- see related comment
3411 // in compact block optimistic reconstruction handling.
3412 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3413 }
3414 return;
3415}
3416
3417void PeerManagerImpl::LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block) {
3418 // To prevent log spam, this function should only be called after it was determined that a
3419 // header is both new and valid.
3420 //
3421 // These messages are valuable for detecting potential selfish mining behavior;
3422 // if multiple displacing headers are seen near simultaneously across many
3423 // nodes in the network, this might be an indication of selfish mining.
3424 // In addition it can be used to identify peers which send us a header, but
3425 // don't followup with a complete and valid (compact) block.
3426 // Having this log by default when not in IBD ensures broad availability of
3427 // this data in case investigation is merited.
3428 const auto msg = strprintf(
3429 "Saw new %sheader hash=%s height=%d peer=%d%s",
3430 via_compact_block ? "cmpctblock " : "",
3431 index.GetBlockHash().ToString(),
3432 index.nHeight,
3433 peer.GetId(),
3434 peer.LogIP(fLogIPs)
3435 );
3436 if (m_chainman.IsInitialBlockDownload()) {
3438 } else {
3439 LogInfo("%s", msg);
3440 }
3441}
3442
3443void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3444 const std::chrono::microseconds time_received,
3445 const std::atomic<bool>& interruptMsgProc)
3446{
3447 AssertLockHeld(g_msgproc_mutex);
3448
3449 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3450
3451 PeerRef peer = GetPeerRef(pfrom.GetId());
3452 if (peer == nullptr) return;
3453
3454 if (msg_type == NetMsgType::VERSION) {
3455 if (pfrom.nVersion != 0) {
3456 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3457 return;
3458 }
3459
3460 int64_t nTime;
3461 CService addrMe;
3462 uint64_t nNonce = 1;
3463 ServiceFlags nServices;
3464 int nVersion;
3465 std::string cleanSubVer;
3466 int starting_height = -1;
3467 bool fRelay = true;
3468
3469 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3470 if (nTime < 0) {
3471 nTime = 0;
3472 }
3473 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3474 vRecv >> CNetAddr::V1(addrMe);
3475 if (!pfrom.IsInboundConn())
3476 {
3477 // Overwrites potentially existing services. In contrast to this,
3478 // unvalidated services received via gossip relay in ADDR/ADDRV2
3479 // messages are only ever added but cannot replace existing ones.
3480 m_addrman.SetServices(pfrom.addr, nServices);
3481 }
3482 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3483 {
3484 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3485 nServices,
3486 GetDesirableServiceFlags(nServices),
3487 pfrom.DisconnectMsg(fLogIPs));
3488 pfrom.fDisconnect = true;
3489 return;
3490 }
3491
3492 if (nVersion < MIN_PEER_PROTO_VERSION) {
3493 // disconnect from peers older than this proto version
3494 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3495 pfrom.fDisconnect = true;
3496 return;
3497 }
3498
3499 if (!vRecv.empty()) {
3500 // The version message includes information about the sending node which we don't use:
3501 // - 8 bytes (service bits)
3502 // - 16 bytes (ipv6 address)
3503 // - 2 bytes (port)
3504 vRecv.ignore(26);
3505 vRecv >> nNonce;
3506 }
3507 if (!vRecv.empty()) {
3508 std::string strSubVer;
3509 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3510 cleanSubVer = SanitizeString(strSubVer);
3511 }
3512 if (!vRecv.empty()) {
3513 vRecv >> starting_height;
3514 }
3515 if (!vRecv.empty())
3516 vRecv >> fRelay;
3517 // Disconnect if we connected to ourself
3518 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3519 {
3520 LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3521 pfrom.fDisconnect = true;
3522 return;
3523 }
3524
3525 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3526 {
3527 SeenLocal(addrMe);
3528 }
3529
3530 // Inbound peers send us their version message when they connect.
3531 // We send our version message in response.
3532 if (pfrom.IsInboundConn()) {
3533 PushNodeVersion(pfrom, *peer);
3534 }
3535
3536 // Change version
3537 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3538 pfrom.SetCommonVersion(greatest_common_version);
3539 pfrom.nVersion = nVersion;
3540
3541 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3542 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3543 }
3544
3545 // Signal ADDRv2 support (BIP155).
3546 if (greatest_common_version >= 70016) {
3547 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3548 // implementations reject messages they don't know. As a courtesy, don't send
3549 // it to nodes with a version before 70016, as no software is known to support
3550 // BIP155 that doesn't announce at least that protocol version number.
3551 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3552 }
3553
3554 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3555 peer->m_their_services = nServices;
3556 pfrom.SetAddrLocal(addrMe);
3557 {
3558 LOCK(pfrom.m_subver_mutex);
3559 pfrom.cleanSubVer = cleanSubVer;
3560 }
3561 peer->m_starting_height = starting_height;
3562
3563 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3564 // - this isn't an outbound block-relay-only connection, and
3565 // - this isn't an outbound feeler connection, and
3566 // - fRelay=true (the peer wishes to receive transaction announcements)
3567 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3568 // the peer may turn on transaction relay later.
3569 if (!pfrom.IsBlockOnlyConn() &&
3570 !pfrom.IsFeelerConn() &&
3571 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3572 auto* const tx_relay = peer->SetTxRelay();
3573 {
3574 LOCK(tx_relay->m_bloom_filter_mutex);
3575 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3576 }
3577 if (fRelay) pfrom.m_relays_txs = true;
3578 }
3579
3580 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3581 // Per BIP-330, we announce txreconciliation support if:
3582 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3583 // - transaction relay is supported per the peer's VERSION message
3584 // - this is not a block-relay-only connection and not a feeler
3585 // - this is not an addr fetch connection;
3586 // - we are not in -blocksonly mode.
3587 const auto* tx_relay = peer->GetTxRelay();
3588 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3589 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3590 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3591 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3592 TXRECONCILIATION_VERSION, recon_salt);
3593 }
3594 }
3595
3596 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3597
3598 // Potentially mark this peer as a preferred download peer.
3599 {
3600 LOCK(cs_main);
3601 CNodeState* state = State(pfrom.GetId());
3602 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3603 m_num_preferred_download_peers += state->fPreferredDownload;
3604 }
3605
3606 // Attempt to initialize address relay for outbound peers and use result
3607 // to decide whether to send GETADDR, so that we don't send it to
3608 // inbound or outbound block-relay-only peers.
3609 bool send_getaddr{false};
3610 if (!pfrom.IsInboundConn()) {
3611 send_getaddr = SetupAddressRelay(pfrom, *peer);
3612 }
3613 if (send_getaddr) {
3614 // Do a one-time address fetch to help populate/update our addrman.
3615 // If we're starting up for the first time, our addrman may be pretty
3616 // empty, so this mechanism is important to help us connect to the network.
3617 // We skip this for block-relay-only peers. We want to avoid
3618 // potentially leaking addr information and we do not want to
3619 // indicate to the peer that we will participate in addr relay.
3620 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3621 peer->m_getaddr_sent = true;
3622 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3623 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3624 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3625 }
3626
3627 if (!pfrom.IsInboundConn()) {
3628 // For non-inbound connections, we update the addrman to record
3629 // connection success so that addrman will have an up-to-date
3630 // notion of which peers are online and available.
3631 //
3632 // While we strive to not leak information about block-relay-only
3633 // connections via the addrman, not moving an address to the tried
3634 // table is also potentially detrimental because new-table entries
3635 // are subject to eviction in the event of addrman collisions. We
3636 // mitigate the information-leak by never calling
3637 // AddrMan::Connected() on block-relay-only peers; see
3638 // FinalizeNode().
3639 //
3640 // This moves an address from New to Tried table in Addrman,
3641 // resolves tried-table collisions, etc.
3642 m_addrman.Good(pfrom.addr);
3643 }
3644
3645 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3646 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3647 cleanSubVer, pfrom.nVersion,
3648 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3649 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3650
3651 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3652 if (!pfrom.IsInboundConn()) {
3653 // Don't use timedata samples from inbound peers to make it
3654 // harder for others to create false warnings about our clock being out of sync.
3655 m_outbound_time_offsets.Add(peer->m_time_offset);
3656 m_outbound_time_offsets.WarnIfOutOfSync();
3657 }
3658
3659 // If the peer is old enough to have the old alert system, send it the final alert.
3660 if (greatest_common_version <= 70012) {
3661 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3662 MakeAndPushMessage(pfrom, "alert", finalAlert);
3663 }
3664
3665 // Feeler connections exist only to verify if address is online.
3666 if (pfrom.IsFeelerConn()) {
3667 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3668 pfrom.fDisconnect = true;
3669 }
3670 return;
3671 }
3672
3673 if (pfrom.nVersion == 0) {
3674 // Must have a version message before anything else
3675 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3676 return;
3677 }
3678
3679 if (msg_type == NetMsgType::VERACK) {
3680 if (pfrom.fSuccessfullyConnected) {
3681 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3682 return;
3683 }
3684
3685 // Log successful connections unconditionally for outbound, but not for inbound as those
3686 // can be triggered by an attacker at high rate.
3688 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3689 LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3690 pfrom.ConnectionTypeAsString(),
3691 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3692 pfrom.nVersion.load(), peer->m_starting_height,
3693 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3694 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3695 }
3696
3698 // Tell our peer we are willing to provide version 2 cmpctblocks.
3699 // However, we do not request new block announcements using
3700 // cmpctblock messages.
3701 // We send this to non-NODE NETWORK peers as well, because
3702 // they may wish to request compact blocks from us
3703 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3704 }
3705
3706 if (m_txreconciliation) {
3707 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3708 // We could have optimistically pre-registered/registered the peer. In that case,
3709 // we should forget about the reconciliation state here if this wasn't followed
3710 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3711 m_txreconciliation->ForgetPeer(pfrom.GetId());
3712 }
3713 }
3714
3715 if (auto tx_relay = peer->GetTxRelay()) {
3716 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3717 // version handshake is completed as
3718 // `TxRelay::m_next_inv_send_time` is first initialised in
3719 // `SendMessages` after the verack is received. Any transactions
3720 // received during the version handshake would otherwise
3721 // immediately be advertised without random delay, potentially
3722 // leaking the time of arrival to a spy.
3724 tx_relay->m_tx_inventory_mutex,
3725 return tx_relay->m_tx_inventory_to_send.empty() &&
3726 tx_relay->m_next_inv_send_time == 0s));
3727 }
3728
3729 {
3730 LOCK2(::cs_main, m_tx_download_mutex);
3731 const CNodeState* state = State(pfrom.GetId());
3732 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3733 .m_preferred = state->fPreferredDownload,
3734 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3735 .m_wtxid_relay = peer->m_wtxid_relay,
3736 });
3737 }
3738
3739 pfrom.fSuccessfullyConnected = true;
3740 return;
3741 }
3742
3743 if (msg_type == NetMsgType::SENDHEADERS) {
3744 peer->m_prefers_headers = true;
3745 return;
3746 }
3747
3748 if (msg_type == NetMsgType::SENDCMPCT) {
3749 bool sendcmpct_hb{false};
3750 uint64_t sendcmpct_version{0};
3751 vRecv >> sendcmpct_hb >> sendcmpct_version;
3752
3753 // Only support compact block relay with witnesses
3754 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3755
3756 LOCK(cs_main);
3757 CNodeState* nodestate = State(pfrom.GetId());
3758 nodestate->m_provides_cmpctblocks = true;
3759 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3760 // save whether peer selects us as BIP152 high-bandwidth peer
3761 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3762 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3763 return;
3764 }
3765
3766 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3767 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3768 if (msg_type == NetMsgType::WTXIDRELAY) {
3769 if (pfrom.fSuccessfullyConnected) {
3770 // Disconnect peers that send a wtxidrelay message after VERACK.
3771 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3772 pfrom.fDisconnect = true;
3773 return;
3774 }
3775 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3776 if (!peer->m_wtxid_relay) {
3777 peer->m_wtxid_relay = true;
3778 m_wtxid_relay_peers++;
3779 } else {
3780 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3781 }
3782 } else {
3783 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3784 }
3785 return;
3786 }
3787
3788 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3789 // between VERSION and VERACK.
3790 if (msg_type == NetMsgType::SENDADDRV2) {
3791 if (pfrom.fSuccessfullyConnected) {
3792 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3793 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3794 pfrom.fDisconnect = true;
3795 return;
3796 }
3797 peer->m_wants_addrv2 = true;
3798 return;
3799 }
3800
3801 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3802 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3803 // from switching announcement protocols after the connection is up.
3804 if (msg_type == NetMsgType::SENDTXRCNCL) {
3805 if (!m_txreconciliation) {
3806 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3807 return;
3808 }
3809
3810 if (pfrom.fSuccessfullyConnected) {
3811 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3812 pfrom.fDisconnect = true;
3813 return;
3814 }
3815
3816 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3817 if (RejectIncomingTxs(pfrom)) {
3818 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3819 pfrom.fDisconnect = true;
3820 return;
3821 }
3822
3823 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3824 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3825 // eliminates them, so that this flag fully represents what we are looking for.
3826 const auto* tx_relay = peer->GetTxRelay();
3827 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3828 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3829 pfrom.fDisconnect = true;
3830 return;
3831 }
3832
3833 uint32_t peer_txreconcl_version;
3834 uint64_t remote_salt;
3835 vRecv >> peer_txreconcl_version >> remote_salt;
3836
3837 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3838 peer_txreconcl_version, remote_salt);
3839 switch (result) {
3841 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3842 break;
3844 break;
3846 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3847 pfrom.fDisconnect = true;
3848 return;
3850 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3851 pfrom.fDisconnect = true;
3852 return;
3853 }
3854 return;
3855 }
3856
3857 if (!pfrom.fSuccessfullyConnected) {
3858 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3859 return;
3860 }
3861
3862 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3863 const auto ser_params{
3864 msg_type == NetMsgType::ADDRV2 ?
3865 // Set V2 param so that the CNetAddr and CAddress
3866 // unserialize methods know that an address in v2 format is coming.
3869 };
3870
3871 std::vector<CAddress> vAddr;
3872
3873 vRecv >> ser_params(vAddr);
3874
3875 if (!SetupAddressRelay(pfrom, *peer)) {
3876 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3877 return;
3878 }
3879
3880 if (vAddr.size() > MAX_ADDR_TO_SEND)
3881 {
3882 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3883 return;
3884 }
3885
3886 // Store the new addresses
3887 std::vector<CAddress> vAddrOk;
3888 const auto current_a_time{Now<NodeSeconds>()};
3889
3890 // Update/increment addr rate limiting bucket.
3891 const auto current_time{GetTime<std::chrono::microseconds>()};
3892 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3893 // Don't increment bucket if it's already full
3894 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3895 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3896 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3897 }
3898 peer->m_addr_token_timestamp = current_time;
3899
3900 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3901 uint64_t num_proc = 0;
3902 uint64_t num_rate_limit = 0;
3903 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3904 for (CAddress& addr : vAddr)
3905 {
3906 if (interruptMsgProc)
3907 return;
3908
3909 // Apply rate limiting.
3910 if (peer->m_addr_token_bucket < 1.0) {
3911 if (rate_limited) {
3912 ++num_rate_limit;
3913 continue;
3914 }
3915 } else {
3916 peer->m_addr_token_bucket -= 1.0;
3917 }
3918 // We only bother storing full nodes, though this may include
3919 // things which we would not make an outbound connection to, in
3920 // part because we may make feeler connections to them.
3921 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3922 continue;
3923
3924 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3925 addr.nTime = current_a_time - 5 * 24h;
3926 }
3927 AddAddressKnown(*peer, addr);
3928 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3929 // Do not process banned/discouraged addresses beyond remembering we received them
3930 continue;
3931 }
3932 ++num_proc;
3933 const bool reachable{g_reachable_nets.Contains(addr)};
3934 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3935 // Relay to a limited number of other nodes
3936 RelayAddress(pfrom.GetId(), addr, reachable);
3937 }
3938 // Do not store addresses outside our network
3939 if (reachable) {
3940 vAddrOk.push_back(addr);
3941 }
3942 }
3943 peer->m_addr_processed += num_proc;
3944 peer->m_addr_rate_limited += num_rate_limit;
3945 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3946 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3947
3948 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3949 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3950
3951 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3952 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3953 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3954 pfrom.fDisconnect = true;
3955 }
3956 return;
3957 }
3958
3959 if (msg_type == NetMsgType::INV) {
3960 std::vector<CInv> vInv;
3961 vRecv >> vInv;
3962 if (vInv.size() > MAX_INV_SZ)
3963 {
3964 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3965 return;
3966 }
3967
3968 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3969
3970 LOCK2(cs_main, m_tx_download_mutex);
3971
3972 const auto current_time{GetTime<std::chrono::microseconds>()};
3973 uint256* best_block{nullptr};
3974
3975 for (CInv& inv : vInv) {
3976 if (interruptMsgProc) return;
3977
3978 // Ignore INVs that don't match wtxidrelay setting.
3979 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3980 // This is fine as no INV messages are involved in that process.
3981 if (peer->m_wtxid_relay) {
3982 if (inv.IsMsgTx()) continue;
3983 } else {
3984 if (inv.IsMsgWtx()) continue;
3985 }
3986
3987 if (inv.IsMsgBlk()) {
3988 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3989 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3990
3991 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3992 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3993 // Headers-first is the primary method of announcement on
3994 // the network. If a node fell back to sending blocks by
3995 // inv, it may be for a re-org, or because we haven't
3996 // completed initial headers sync. The final block hash
3997 // provided should be the highest, so send a getheaders and
3998 // then fetch the blocks we need to catch up.
3999 best_block = &inv.hash;
4000 }
4001 } else if (inv.IsGenTxMsg()) {
4002 if (reject_tx_invs) {
4003 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
4004 pfrom.fDisconnect = true;
4005 return;
4006 }
4007 const GenTxid gtxid = ToGenTxid(inv);
4008 AddKnownTx(*peer, inv.hash);
4009
4010 if (!m_chainman.IsInitialBlockDownload()) {
4011 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
4012 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4013 }
4014 } else {
4015 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
4016 }
4017 }
4018
4019 if (best_block != nullptr) {
4020 // If we haven't started initial headers-sync with this peer, then
4021 // consider sending a getheaders now. On initial startup, there's a
4022 // reliability vs bandwidth tradeoff, where we are only trying to do
4023 // initial headers sync with one peer at a time, with a long
4024 // timeout (at which point, if the sync hasn't completed, we will
4025 // disconnect the peer and then choose another). In the meantime,
4026 // as new blocks are found, we are willing to add one new peer per
4027 // block to sync with as well, to sync quicker in the case where
4028 // our initial peer is unresponsive (but less bandwidth than we'd
4029 // use if we turned on sync with all peers).
4030 CNodeState& state{*Assert(State(pfrom.GetId()))};
4031 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
4032 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
4033 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
4034 m_chainman.m_best_header->nHeight, best_block->ToString(),
4035 pfrom.GetId());
4036 }
4037 if (!state.fSyncStarted) {
4038 peer->m_inv_triggered_getheaders_before_sync = true;
4039 // Update the last block hash that triggered a new headers
4040 // sync, so that we don't turn on headers sync with more
4041 // than 1 new peer every new block.
4042 m_last_block_inv_triggering_headers_sync = *best_block;
4043 }
4044 }
4045 }
4046
4047 return;
4048 }
4049
4050 if (msg_type == NetMsgType::GETDATA) {
4051 std::vector<CInv> vInv;
4052 vRecv >> vInv;
4053 if (vInv.size() > MAX_INV_SZ)
4054 {
4055 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4056 return;
4057 }
4058
4059 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4060
4061 if (vInv.size() > 0) {
4062 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4063 }
4064
4065 {
4066 LOCK(peer->m_getdata_requests_mutex);
4067 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4068 ProcessGetData(pfrom, *peer, interruptMsgProc);
4069 }
4070
4071 return;
4072 }
4073
4074 if (msg_type == NetMsgType::GETBLOCKS) {
4075 CBlockLocator locator;
4076 uint256 hashStop;
4077 vRecv >> locator >> hashStop;
4078
4079 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4080 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4081 pfrom.fDisconnect = true;
4082 return;
4083 }
4084
4085 // We might have announced the currently-being-connected tip using a
4086 // compact block, which resulted in the peer sending a getblocks
4087 // request, which we would otherwise respond to without the new block.
4088 // To avoid this situation we simply verify that we are on our best
4089 // known chain now. This is super overkill, but we handle it better
4090 // for getheaders requests, and there are no known nodes which support
4091 // compact blocks but still use getblocks to request blocks.
4092 {
4093 std::shared_ptr<const CBlock> a_recent_block;
4094 {
4095 LOCK(m_most_recent_block_mutex);
4096 a_recent_block = m_most_recent_block;
4097 }
4099 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4100 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4101 }
4102 }
4103
4104 LOCK(cs_main);
4105
4106 // Find the last block the caller has in the main chain
4107 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4108
4109 // Send the rest of the chain
4110 if (pindex)
4111 pindex = m_chainman.ActiveChain().Next(pindex);
4112 int nLimit = 500;
4113 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4114 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4115 {
4116 if (pindex->GetBlockHash() == hashStop)
4117 {
4118 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4119 break;
4120 }
4121 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4122 // for some reasonable time window (1 hour) that block relay might require.
4123 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4124 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4125 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4126 break;
4127 }
4128 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4129 if (--nLimit <= 0) {
4130 // When this block is requested, we'll send an inv that'll
4131 // trigger the peer to getblocks the next batch of inventory.
4132 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4133 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4134 break;
4135 }
4136 }
4137 return;
4138 }
4139
4140 if (msg_type == NetMsgType::GETBLOCKTXN) {
4142 vRecv >> req;
4143
4144 std::shared_ptr<const CBlock> recent_block;
4145 {
4146 LOCK(m_most_recent_block_mutex);
4147 if (m_most_recent_block_hash == req.blockhash)
4148 recent_block = m_most_recent_block;
4149 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4150 }
4151 if (recent_block) {
4152 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4153 return;
4154 }
4155
4156 FlatFilePos block_pos{};
4157 {
4158 LOCK(cs_main);
4159
4160 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4161 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4162 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4163 return;
4164 }
4165
4166 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4167 block_pos = pindex->GetBlockPos();
4168 }
4169 }
4170
4171 if (!block_pos.IsNull()) {
4172 CBlock block;
4173 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos)};
4174 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4175 // pruned after we release cs_main above, so this read should never fail.
4176 assert(ret);
4177
4178 SendBlockTransactions(pfrom, *peer, block, req);
4179 return;
4180 }
4181
4182 // If an older block is requested (should never happen in practice,
4183 // but can happen in tests) send a block response instead of a
4184 // blocktxn response. Sending a full block response instead of a
4185 // small blocktxn response is preferable in the case where a peer
4186 // might maliciously send lots of getblocktxn requests to trigger
4187 // expensive disk reads, because it will require the peer to
4188 // actually receive all the data read from disk over the network.
4189 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4191 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4192 // The message processing loop will go around again (without pausing) and we'll respond then
4193 return;
4194 }
4195
4196 if (msg_type == NetMsgType::GETHEADERS) {
4197 CBlockLocator locator;
4198 uint256 hashStop;
4199 vRecv >> locator >> hashStop;
4200
4201 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4202 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4203 pfrom.fDisconnect = true;
4204 return;
4205 }
4206
4207 if (m_chainman.m_blockman.LoadingBlocks()) {
4208 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4209 return;
4210 }
4211
4212 LOCK(cs_main);
4213
4214 // Don't serve headers from our active chain until our chainwork is at least
4215 // the minimum chain work. This prevents us from starting a low-work headers
4216 // sync that will inevitably be aborted by our peer.
4217 if (m_chainman.ActiveTip() == nullptr ||
4218 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4219 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4220 // Just respond with an empty headers message, to tell the peer to
4221 // go away but not treat us as unresponsive.
4222 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4223 return;
4224 }
4225
4226 CNodeState *nodestate = State(pfrom.GetId());
4227 const CBlockIndex* pindex = nullptr;
4228 if (locator.IsNull())
4229 {
4230 // If locator is null, return the hashStop block
4231 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4232 if (!pindex) {
4233 return;
4234 }
4235
4236 if (!BlockRequestAllowed(pindex)) {
4237 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4238 return;
4239 }
4240 }
4241 else
4242 {
4243 // Find the last block the caller has in the main chain
4244 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4245 if (pindex)
4246 pindex = m_chainman.ActiveChain().Next(pindex);
4247 }
4248
4249 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4250 std::vector<CBlock> vHeaders;
4251 int nLimit = m_opts.max_headers_result;
4252 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4253 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4254 {
4255 vHeaders.emplace_back(pindex->GetBlockHeader());
4256 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4257 break;
4258 }
4259 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4260 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4261 // headers message). In both cases it's safe to update
4262 // pindexBestHeaderSent to be our tip.
4263 //
4264 // It is important that we simply reset the BestHeaderSent value here,
4265 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4266 // the currently-being-connected tip using a compact block, which
4267 // resulted in the peer sending a headers request, which we respond to
4268 // without the new block. By resetting the BestHeaderSent, we ensure we
4269 // will re-announce the new block via headers (or compact blocks again)
4270 // in the SendMessages logic.
4271 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4272 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4273 return;
4274 }
4275
4276 if (msg_type == NetMsgType::TX) {
4277 if (RejectIncomingTxs(pfrom)) {
4278 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4279 pfrom.fDisconnect = true;
4280 return;
4281 }
4282
4283 // Stop processing the transaction early if we are still in IBD since we don't
4284 // have enough information to validate it yet. Sending unsolicited transactions
4285 // is not considered a protocol violation, so don't punish the peer.
4286 if (m_chainman.IsInitialBlockDownload()) return;
4287
4288 CTransactionRef ptx;
4289 vRecv >> TX_WITH_WITNESS(ptx);
4290 const CTransaction& tx = *ptx;
4291
4292 const uint256& txid = ptx->GetHash();
4293 const uint256& wtxid = ptx->GetWitnessHash();
4294
4295 const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4296 AddKnownTx(*peer, hash);
4297
4298 LOCK2(cs_main, m_tx_download_mutex);
4299
4300 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4301 if (!should_validate) {
4303 // Always relay transactions received from peers with forcerelay
4304 // permission, even if they were already in the mempool, allowing
4305 // the node to function as a gateway for nodes hidden behind it.
4306 if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
4307 LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4308 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4309 } else {
4310 LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4311 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4312 RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4313 }
4314 }
4315
4316 if (package_to_validate) {
4317 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4318 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4319 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4320 ProcessPackageResult(package_to_validate.value(), package_result);
4321 }
4322 return;
4323 }
4324
4325 // ReceivedTx should not be telling us to validate the tx and a package.
4326 Assume(!package_to_validate.has_value());
4327
4328 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4329 const TxValidationState& state = result.m_state;
4330
4332 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4333 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4334 }
4335 if (state.IsInvalid()) {
4336 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4337 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4338 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4339 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4340 ProcessPackageResult(package_to_validate.value(), package_result);
4341 }
4342 }
4343
4344 return;
4345 }
4346
4347 if (msg_type == NetMsgType::CMPCTBLOCK)
4348 {
4349 // Ignore cmpctblock received while importing
4350 if (m_chainman.m_blockman.LoadingBlocks()) {
4351 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4352 return;
4353 }
4354
4355 CBlockHeaderAndShortTxIDs cmpctblock;
4356 vRecv >> cmpctblock;
4357
4358 bool received_new_header = false;
4359 const auto blockhash = cmpctblock.header.GetHash();
4360
4361 {
4362 LOCK(cs_main);
4363
4364 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4365 if (!prev_block) {
4366 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4367 if (!m_chainman.IsInitialBlockDownload()) {
4368 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4369 }
4370 return;
4371 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4372 // If we get a low-work header in a compact block, we can ignore it.
4373 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4374 return;
4375 }
4376
4377 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4378 received_new_header = true;
4379 }
4380 }
4381
4382 const CBlockIndex *pindex = nullptr;
4384 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4385 if (state.IsInvalid()) {
4386 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4387 return;
4388 }
4389 }
4390
4391 // If AcceptBlockHeader returned true, it set pindex
4392 Assert(pindex);
4393 if (received_new_header) {
4394 LogBlockHeader(*pindex, pfrom, /*via_compact_block=*/true);
4395 }
4396
4397 bool fProcessBLOCKTXN = false;
4398
4399 // If we end up treating this as a plain headers message, call that as well
4400 // without cs_main.
4401 bool fRevertToHeaderProcessing = false;
4402
4403 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4404 // below)
4405 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4406 bool fBlockReconstructed = false;
4407
4408 {
4409 LOCK(cs_main);
4410 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4411
4412 CNodeState *nodestate = State(pfrom.GetId());
4413
4414 // If this was a new header with more work than our tip, update the
4415 // peer's last block announcement time
4416 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4417 nodestate->m_last_block_announcement = GetTime();
4418 }
4419
4420 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4421 return;
4422
4423 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4424 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4425 bool requested_block_from_this_peer{false};
4426
4427 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4428 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4429
4430 while (range_flight.first != range_flight.second) {
4431 if (range_flight.first->second.first == pfrom.GetId()) {
4432 requested_block_from_this_peer = true;
4433 break;
4434 }
4435 range_flight.first++;
4436 }
4437
4438 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4439 pindex->nTx != 0) { // We had this block at some point, but pruned it
4440 if (requested_block_from_this_peer) {
4441 // We requested this block for some reason, but our mempool will probably be useless
4442 // so we just grab the block via normal getdata
4443 std::vector<CInv> vInv(1);
4444 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4445 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4446 }
4447 return;
4448 }
4449
4450 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4451 if (!already_in_flight && !CanDirectFetch()) {
4452 return;
4453 }
4454
4455 // We want to be a bit conservative just to be extra careful about DoS
4456 // possibilities in compact block processing...
4457 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4458 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4459 requested_block_from_this_peer) {
4460 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4461 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4462 if (!(*queuedBlockIt)->partialBlock)
4463 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4464 else {
4465 // The block was already in flight using compact blocks from the same peer
4466 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4467 return;
4468 }
4469 }
4470
4471 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4472 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4473 if (status == READ_STATUS_INVALID) {
4474 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4475 Misbehaving(*peer, "invalid compact block");
4476 return;
4477 } else if (status == READ_STATUS_FAILED) {
4478 if (first_in_flight) {
4479 // Duplicate txindexes, the block is now in-flight, so just request it
4480 std::vector<CInv> vInv(1);
4481 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4482 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4483 } else {
4484 // Give up for this peer and wait for other peer(s)
4485 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4486 }
4487 return;
4488 }
4489
4491 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4492 if (!partialBlock.IsTxAvailable(i))
4493 req.indexes.push_back(i);
4494 }
4495 if (req.indexes.empty()) {
4496 fProcessBLOCKTXN = true;
4497 } else if (first_in_flight) {
4498 // We will try to round-trip any compact blocks we get on failure,
4499 // as long as it's first...
4500 req.blockhash = pindex->GetBlockHash();
4501 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4502 } else if (pfrom.m_bip152_highbandwidth_to &&
4503 (!pfrom.IsInboundConn() ||
4504 IsBlockRequestedFromOutbound(blockhash) ||
4505 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4506 // ... or it's a hb relay peer and:
4507 // - peer is outbound, or
4508 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4509 // - it's not the final parallel download slot (which we may reserve for first outbound)
4510 req.blockhash = pindex->GetBlockHash();
4511 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4512 } else {
4513 // Give up for this peer and wait for other peer(s)
4514 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4515 }
4516 } else {
4517 // This block is either already in flight from a different
4518 // peer, or this peer has too many blocks outstanding to
4519 // download from.
4520 // Optimistically try to reconstruct anyway since we might be
4521 // able to without any round trips.
4522 PartiallyDownloadedBlock tempBlock(&m_mempool);
4523 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4524 if (status != READ_STATUS_OK) {
4525 // TODO: don't ignore failures
4526 return;
4527 }
4528 std::vector<CTransactionRef> dummy;
4529 status = tempBlock.FillBlock(*pblock, dummy);
4530 if (status == READ_STATUS_OK) {
4531 fBlockReconstructed = true;
4532 }
4533 }
4534 } else {
4535 if (requested_block_from_this_peer) {
4536 // We requested this block, but its far into the future, so our
4537 // mempool will probably be useless - request the block normally
4538 std::vector<CInv> vInv(1);
4539 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4540 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4541 return;
4542 } else {
4543 // If this was an announce-cmpctblock, we want the same treatment as a header message
4544 fRevertToHeaderProcessing = true;
4545 }
4546 }
4547 } // cs_main
4548
4549 if (fProcessBLOCKTXN) {
4551 txn.blockhash = blockhash;
4552 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4553 }
4554
4555 if (fRevertToHeaderProcessing) {
4556 // Headers received from HB compact block peers are permitted to be
4557 // relayed before full validation (see BIP 152), so we don't want to disconnect
4558 // the peer if the header turns out to be for an invalid block.
4559 // Note that if a peer tries to build on an invalid chain, that
4560 // will be detected and the peer will be disconnected/discouraged.
4561 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4562 }
4563
4564 if (fBlockReconstructed) {
4565 // If we got here, we were able to optimistically reconstruct a
4566 // block that is in flight from some other peer.
4567 {
4568 LOCK(cs_main);
4569 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4570 }
4571 // Setting force_processing to true means that we bypass some of
4572 // our anti-DoS protections in AcceptBlock, which filters
4573 // unrequested blocks that might be trying to waste our resources
4574 // (eg disk space). Because we only try to reconstruct blocks when
4575 // we're close to caught up (via the CanDirectFetch() requirement
4576 // above, combined with the behavior of not requesting blocks until
4577 // we have a chain with at least the minimum chain work), and we ignore
4578 // compact blocks with less work than our tip, it is safe to treat
4579 // reconstructed compact blocks as having been requested.
4580 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4581 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4582 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4583 // Clear download state for this block, which is in
4584 // process from some other peer. We do this after calling
4585 // ProcessNewBlock so that a malleated cmpctblock announcement
4586 // can't be used to interfere with block relay.
4587 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4588 }
4589 }
4590 return;
4591 }
4592
4593 if (msg_type == NetMsgType::BLOCKTXN)
4594 {
4595 // Ignore blocktxn received while importing
4596 if (m_chainman.m_blockman.LoadingBlocks()) {
4597 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4598 return;
4599 }
4600
4601 BlockTransactions resp;
4602 vRecv >> resp;
4603
4604 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4605 }
4606
4607 if (msg_type == NetMsgType::HEADERS)
4608 {
4609 // Ignore headers received while importing
4610 if (m_chainman.m_blockman.LoadingBlocks()) {
4611 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4612 return;
4613 }
4614
4615 std::vector<CBlockHeader> headers;
4616
4617 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4618 unsigned int nCount = ReadCompactSize(vRecv);
4619 if (nCount > m_opts.max_headers_result) {
4620 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4621 return;
4622 }
4623 headers.resize(nCount);
4624 for (unsigned int n = 0; n < nCount; n++) {
4625 vRecv >> headers[n];
4626 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4627 }
4628
4629 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4630
4631 // Check if the headers presync progress needs to be reported to validation.
4632 // This needs to be done without holding the m_headers_presync_mutex lock.
4633 if (m_headers_presync_should_signal.exchange(false)) {
4634 HeadersPresyncStats stats;
4635 {
4636 LOCK(m_headers_presync_mutex);
4637 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4638 if (it != m_headers_presync_stats.end()) stats = it->second;
4639 }
4640 if (stats.second) {
4641 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4642 }
4643 }
4644
4645 return;
4646 }
4647
4648 if (msg_type == NetMsgType::BLOCK)
4649 {
4650 // Ignore block received while importing
4651 if (m_chainman.m_blockman.LoadingBlocks()) {
4652 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4653 return;
4654 }
4655
4656 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4657 vRecv >> TX_WITH_WITNESS(*pblock);
4658
4659 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4660
4661 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4662
4663 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4664 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4665 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4666 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4667 Misbehaving(*peer, "mutated block");
4668 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4669 return;
4670 }
4671
4672 bool forceProcessing = false;
4673 const uint256 hash(pblock->GetHash());
4674 bool min_pow_checked = false;
4675 {
4676 LOCK(cs_main);
4677 // Always process the block if we requested it, since we may
4678 // need it even when it's not a candidate for a new best tip.
4679 forceProcessing = IsBlockRequested(hash);
4680 RemoveBlockRequest(hash, pfrom.GetId());
4681 // mapBlockSource is only used for punishing peers and setting
4682 // which peers send us compact blocks, so the race between here and
4683 // cs_main in ProcessNewBlock is fine.
4684 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4685
4686 // Check claimed work on this block against our anti-dos thresholds.
4687 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4688 min_pow_checked = true;
4689 }
4690 }
4691 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4692 return;
4693 }
4694
4695 if (msg_type == NetMsgType::GETADDR) {
4696 // This asymmetric behavior for inbound and outbound connections was introduced
4697 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4698 // to users' AddrMan and later request them by sending getaddr messages.
4699 // Making nodes which are behind NAT and can only make outgoing connections ignore
4700 // the getaddr message mitigates the attack.
4701 if (!pfrom.IsInboundConn()) {
4702 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4703 return;
4704 }
4705
4706 // Since this must be an inbound connection, SetupAddressRelay will
4707 // never fail.
4708 Assume(SetupAddressRelay(pfrom, *peer));
4709
4710 // Only send one GetAddr response per connection to reduce resource waste
4711 // and discourage addr stamping of INV announcements.
4712 if (peer->m_getaddr_recvd) {
4713 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4714 return;
4715 }
4716 peer->m_getaddr_recvd = true;
4717
4718 peer->m_addrs_to_send.clear();
4719 std::vector<CAddress> vAddr;
4721 vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4722 } else {
4723 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4724 }
4725 for (const CAddress &addr : vAddr) {
4726 PushAddress(*peer, addr);
4727 }
4728 return;
4729 }
4730
4731 if (msg_type == NetMsgType::MEMPOOL) {
4732 // Only process received mempool messages if we advertise NODE_BLOOM
4733 // or if the peer has mempool permissions.
4734 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4735 {
4737 {
4738 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4739 pfrom.fDisconnect = true;
4740 }
4741 return;
4742 }
4743
4744 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4745 {
4747 {
4748 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4749 pfrom.fDisconnect = true;
4750 }
4751 return;
4752 }
4753
4754 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4755 LOCK(tx_relay->m_tx_inventory_mutex);
4756 tx_relay->m_send_mempool = true;
4757 }
4758 return;
4759 }
4760
4761 if (msg_type == NetMsgType::PING) {
4762 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4763 uint64_t nonce = 0;
4764 vRecv >> nonce;
4765 // Echo the message back with the nonce. This allows for two useful features:
4766 //
4767 // 1) A remote node can quickly check if the connection is operational
4768 // 2) Remote nodes can measure the latency of the network thread. If this node
4769 // is overloaded it won't respond to pings quickly and the remote node can
4770 // avoid sending us more work, like chain download requests.
4771 //
4772 // The nonce stops the remote getting confused between different pings: without
4773 // it, if the remote node sends a ping once per second and this node takes 5
4774 // seconds to respond to each, the 5th ping the remote sends would appear to
4775 // return very quickly.
4776 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4777 }
4778 return;
4779 }
4780
4781 if (msg_type == NetMsgType::PONG) {
4782 const auto ping_end = time_received;
4783 uint64_t nonce = 0;
4784 size_t nAvail = vRecv.in_avail();
4785 bool bPingFinished = false;
4786 std::string sProblem;
4787
4788 if (nAvail >= sizeof(nonce)) {
4789 vRecv >> nonce;
4790
4791 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4792 if (peer->m_ping_nonce_sent != 0) {
4793 if (nonce == peer->m_ping_nonce_sent) {
4794 // Matching pong received, this ping is no longer outstanding
4795 bPingFinished = true;
4796 const auto ping_time = ping_end - peer->m_ping_start.load();
4797 if (ping_time.count() >= 0) {
4798 // Let connman know about this successful ping-pong
4799 pfrom.PongReceived(ping_time);
4800 } else {
4801 // This should never happen
4802 sProblem = "Timing mishap";
4803 }
4804 } else {
4805 // Nonce mismatches are normal when pings are overlapping
4806 sProblem = "Nonce mismatch";
4807 if (nonce == 0) {
4808 // This is most likely a bug in another implementation somewhere; cancel this ping
4809 bPingFinished = true;
4810 sProblem = "Nonce zero";
4811 }
4812 }
4813 } else {
4814 sProblem = "Unsolicited pong without ping";
4815 }
4816 } else {
4817 // This is most likely a bug in another implementation somewhere; cancel this ping
4818 bPingFinished = true;
4819 sProblem = "Short payload";
4820 }
4821
4822 if (!(sProblem.empty())) {
4823 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4824 pfrom.GetId(),
4825 sProblem,
4826 peer->m_ping_nonce_sent,
4827 nonce,
4828 nAvail);
4829 }
4830 if (bPingFinished) {
4831 peer->m_ping_nonce_sent = 0;
4832 }
4833 return;
4834 }
4835
4836 if (msg_type == NetMsgType::FILTERLOAD) {
4837 if (!(peer->m_our_services & NODE_BLOOM)) {
4838 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4839 pfrom.fDisconnect = true;
4840 return;
4841 }
4842 CBloomFilter filter;
4843 vRecv >> filter;
4844
4845 if (!filter.IsWithinSizeConstraints())
4846 {
4847 // There is no excuse for sending a too-large filter
4848 Misbehaving(*peer, "too-large bloom filter");
4849 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4850 {
4851 LOCK(tx_relay->m_bloom_filter_mutex);
4852 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4853 tx_relay->m_relay_txs = true;
4854 }
4855 pfrom.m_bloom_filter_loaded = true;
4856 pfrom.m_relays_txs = true;
4857 }
4858 return;
4859 }
4860
4861 if (msg_type == NetMsgType::FILTERADD) {
4862 if (!(peer->m_our_services & NODE_BLOOM)) {
4863 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4864 pfrom.fDisconnect = true;
4865 return;
4866 }
4867 std::vector<unsigned char> vData;
4868 vRecv >> vData;
4869
4870 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4871 // and thus, the maximum size any matched object can have) in a filteradd message
4872 bool bad = false;
4873 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4874 bad = true;
4875 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4876 LOCK(tx_relay->m_bloom_filter_mutex);
4877 if (tx_relay->m_bloom_filter) {
4878 tx_relay->m_bloom_filter->insert(vData);
4879 } else {
4880 bad = true;
4881 }
4882 }
4883 if (bad) {
4884 Misbehaving(*peer, "bad filteradd message");
4885 }
4886 return;
4887 }
4888
4889 if (msg_type == NetMsgType::FILTERCLEAR) {
4890 if (!(peer->m_our_services & NODE_BLOOM)) {
4891 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4892 pfrom.fDisconnect = true;
4893 return;
4894 }
4895 auto tx_relay = peer->GetTxRelay();
4896 if (!tx_relay) return;
4897
4898 {
4899 LOCK(tx_relay->m_bloom_filter_mutex);
4900 tx_relay->m_bloom_filter = nullptr;
4901 tx_relay->m_relay_txs = true;
4902 }
4903 pfrom.m_bloom_filter_loaded = false;
4904 pfrom.m_relays_txs = true;
4905 return;
4906 }
4907
4908 if (msg_type == NetMsgType::FEEFILTER) {
4909 CAmount newFeeFilter = 0;
4910 vRecv >> newFeeFilter;
4911 if (MoneyRange(newFeeFilter)) {
4912 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4913 tx_relay->m_fee_filter_received = newFeeFilter;
4914 }
4915 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4916 }
4917 return;
4918 }
4919
4920 if (msg_type == NetMsgType::GETCFILTERS) {
4921 ProcessGetCFilters(pfrom, *peer, vRecv);
4922 return;
4923 }
4924
4925 if (msg_type == NetMsgType::GETCFHEADERS) {
4926 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4927 return;
4928 }
4929
4930 if (msg_type == NetMsgType::GETCFCHECKPT) {
4931 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4932 return;
4933 }
4934
4935 if (msg_type == NetMsgType::NOTFOUND) {
4936 std::vector<CInv> vInv;
4937 vRecv >> vInv;
4938 std::vector<uint256> tx_invs;
4940 for (CInv &inv : vInv) {
4941 if (inv.IsGenTxMsg()) {
4942 tx_invs.emplace_back(inv.hash);
4943 }
4944 }
4945 }
4946 LOCK(m_tx_download_mutex);
4947 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4948 return;
4949 }
4950
4951 // Ignore unknown commands for extensibility
4952 LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4953 return;
4954}
4955
4956bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4957{
4958 {
4959 LOCK(peer.m_misbehavior_mutex);
4960
4961 // There's nothing to do if the m_should_discourage flag isn't set
4962 if (!peer.m_should_discourage) return false;
4963
4964 peer.m_should_discourage = false;
4965 } // peer.m_misbehavior_mutex
4966
4968 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4969 LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4970 return false;
4971 }
4972
4973 if (pnode.IsManualConn()) {
4974 // We never disconnect or discourage manual peers for bad behavior
4975 LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4976 return false;
4977 }
4978
4979 if (pnode.addr.IsLocal()) {
4980 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4981 // all peers on the same local address)
4982 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4983 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4984 pnode.fDisconnect = true;
4985 return true;
4986 }
4987
4988 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4989 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4990 if (m_banman) m_banman->Discourage(pnode.addr);
4991 m_connman.DisconnectNode(pnode.addr);
4992 return true;
4993}
4994
4995bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4996{
4997 AssertLockNotHeld(m_tx_download_mutex);
4998 AssertLockHeld(g_msgproc_mutex);
4999
5000 PeerRef peer = GetPeerRef(pfrom->GetId());
5001 if (peer == nullptr) return false;
5002
5003 // For outbound connections, ensure that the initial VERSION message
5004 // has been sent first before processing any incoming messages
5005 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
5006
5007 {
5008 LOCK(peer->m_getdata_requests_mutex);
5009 if (!peer->m_getdata_requests.empty()) {
5010 ProcessGetData(*pfrom, *peer, interruptMsgProc);
5011 }
5012 }
5013
5014 const bool processed_orphan = ProcessOrphanTx(*peer);
5015
5016 if (pfrom->fDisconnect)
5017 return false;
5018
5019 if (processed_orphan) return true;
5020
5021 // this maintains the order of responses
5022 // and prevents m_getdata_requests to grow unbounded
5023 {
5024 LOCK(peer->m_getdata_requests_mutex);
5025 if (!peer->m_getdata_requests.empty()) return true;
5026 }
5027
5028 // Don't bother if send buffer is too full to respond anyway
5029 if (pfrom->fPauseSend) return false;
5030
5031 auto poll_result{pfrom->PollMessage()};
5032 if (!poll_result) {
5033 // No message to process
5034 return false;
5035 }
5036
5037 CNetMessage& msg{poll_result->first};
5038 bool fMoreWork = poll_result->second;
5039
5040 TRACEPOINT(net, inbound_message,
5041 pfrom->GetId(),
5042 pfrom->m_addr_name.c_str(),
5043 pfrom->ConnectionTypeAsString().c_str(),
5044 msg.m_type.c_str(),
5045 msg.m_recv.size(),
5046 msg.m_recv.data()
5047 );
5048
5049 if (m_opts.capture_messages) {
5050 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5051 }
5052
5053 try {
5054 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5055 if (interruptMsgProc) return false;
5056 {
5057 LOCK(peer->m_getdata_requests_mutex);
5058 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5059 }
5060 // Does this peer has an orphan ready to reconsider?
5061 // (Note: we may have provided a parent for an orphan provided
5062 // by another peer that was already processed; in that case,
5063 // the extra work may not be noticed, possibly resulting in an
5064 // unnecessary 100ms delay)
5065 LOCK(m_tx_download_mutex);
5066 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5067 } catch (const std::exception& e) {
5068 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5069 } catch (...) {
5070 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5071 }
5072
5073 return fMoreWork;
5074}
5075
5076void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5077{
5079
5080 CNodeState &state = *State(pto.GetId());
5081
5082 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5083 // This is an outbound peer subject to disconnection if they don't
5084 // announce a block with as much work as the current tip within
5085 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5086 // their chain has more work than ours, we should sync to it,
5087 // unless it's invalid, in which case we should find that out and
5088 // disconnect from them elsewhere).
5089 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5090 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5091 if (state.m_chain_sync.m_timeout != 0s) {
5092 state.m_chain_sync.m_timeout = 0s;
5093 state.m_chain_sync.m_work_header = nullptr;
5094 state.m_chain_sync.m_sent_getheaders = false;
5095 }
5096 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5097 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5098 // AND
5099 // we are noticing this for the first time (m_timeout is 0)
5100 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5101 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5102 // Either way, set a new timeout based on our current tip.
5103 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5104 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5105 state.m_chain_sync.m_sent_getheaders = false;
5106 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5107 // No evidence yet that our peer has synced to a chain with work equal to that
5108 // of our tip, when we first detected it was behind. Send a single getheaders
5109 // message to give the peer a chance to update us.
5110 if (state.m_chain_sync.m_sent_getheaders) {
5111 // They've run out of time to catch up!
5112 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5113 pto.fDisconnect = true;
5114 } else {
5115 assert(state.m_chain_sync.m_work_header);
5116 // Here, we assume that the getheaders message goes out,
5117 // because it'll either go out or be skipped because of a
5118 // getheaders in-flight already, in which case the peer should
5119 // still respond to us with a sufficiently high work chain tip.
5120 MaybeSendGetHeaders(pto,
5121 GetLocator(state.m_chain_sync.m_work_header->pprev),
5122 peer);
5123 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5124 state.m_chain_sync.m_sent_getheaders = true;
5125 // Bump the timeout to allow a response, which could clear the timeout
5126 // (if the response shows the peer has synced), reset the timeout (if
5127 // the peer syncs to the required work but not to our tip), or result
5128 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5129 // has not sufficiently progressed)
5130 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5131 }
5132 }
5133 }
5134}
5135
5136void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5137{
5138 // If we have any extra block-relay-only peers, disconnect the youngest unless
5139 // it's given us a block -- in which case, compare with the second-youngest, and
5140 // out of those two, disconnect the peer who least recently gave us a block.
5141 // The youngest block-relay-only peer would be the extra peer we connected
5142 // to temporarily in order to sync our tip; see net.cpp.
5143 // Note that we use higher nodeid as a measure for most recent connection.
5144 if (m_connman.GetExtraBlockRelayCount() > 0) {
5145 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5146
5147 m_connman.ForEachNode([&](CNode* pnode) {
5148 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5149 if (pnode->GetId() > youngest_peer.first) {
5150 next_youngest_peer = youngest_peer;
5151 youngest_peer.first = pnode->GetId();
5152 youngest_peer.second = pnode->m_last_block_time;
5153 }
5154 });
5155 NodeId to_disconnect = youngest_peer.first;
5156 if (youngest_peer.second > next_youngest_peer.second) {
5157 // Our newest block-relay-only peer gave us a block more recently;
5158 // disconnect our second youngest.
5159 to_disconnect = next_youngest_peer.first;
5160 }
5161 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5163 // Make sure we're not getting a block right now, and that
5164 // we've been connected long enough for this eviction to happen
5165 // at all.
5166 // Note that we only request blocks from a peer if we learn of a
5167 // valid headers chain with at least as much work as our tip.
5168 CNodeState *node_state = State(pnode->GetId());
5169 if (node_state == nullptr ||
5170 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5171 pnode->fDisconnect = true;
5172 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5173 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5174 return true;
5175 } else {
5176 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5177 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5178 }
5179 return false;
5180 });
5181 }
5182
5183 // Check whether we have too many outbound-full-relay peers
5184 if (m_connman.GetExtraFullOutboundCount() > 0) {
5185 // If we have more outbound-full-relay peers than we target, disconnect one.
5186 // Pick the outbound-full-relay peer that least recently announced
5187 // us a new block, with ties broken by choosing the more recent
5188 // connection (higher node id)
5189 // Protect peers from eviction if we don't have another connection
5190 // to their network, counting both outbound-full-relay and manual peers.
5191 NodeId worst_peer = -1;
5192 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5193
5194 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5195 AssertLockHeld(::cs_main);
5196
5197 // Only consider outbound-full-relay peers that are not already
5198 // marked for disconnection
5199 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5200 CNodeState *state = State(pnode->GetId());
5201 if (state == nullptr) return; // shouldn't be possible, but just in case
5202 // Don't evict our protected peers
5203 if (state->m_chain_sync.m_protect) return;
5204 // If this is the only connection on a particular network that is
5205 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5206 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5207 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5208 worst_peer = pnode->GetId();
5209 oldest_block_announcement = state->m_last_block_announcement;
5210 }
5211 });
5212 if (worst_peer != -1) {
5213 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5215
5216 // Only disconnect a peer that has been connected to us for
5217 // some reasonable fraction of our check-frequency, to give
5218 // it time for new information to have arrived.
5219 // Also don't disconnect any peer we're trying to download a
5220 // block from.
5221 CNodeState &state = *State(pnode->GetId());
5222 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5223 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5224 pnode->fDisconnect = true;
5225 return true;
5226 } else {
5227 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5228 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5229 return false;
5230 }
5231 });
5232 if (disconnected) {
5233 // If we disconnected an extra peer, that means we successfully
5234 // connected to at least one peer after the last time we
5235 // detected a stale tip. Don't try any more extra peers until
5236 // we next detect a stale tip, to limit the load we put on the
5237 // network from these extra connections.
5238 m_connman.SetTryNewOutboundPeer(false);
5239 }
5240 }
5241 }
5242}
5243
5244void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5245{
5246 LOCK(cs_main);
5247
5248 auto now{GetTime<std::chrono::seconds>()};
5249
5250 EvictExtraOutboundPeers(now);
5251
5252 if (now > m_stale_tip_check_time) {
5253 // Check whether our tip is stale, and if so, allow using an extra
5254 // outbound peer
5255 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5256 LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5257 count_seconds(now - m_last_tip_update.load()));
5258 m_connman.SetTryNewOutboundPeer(true);
5259 } else if (m_connman.GetTryNewOutboundPeer()) {
5260 m_connman.SetTryNewOutboundPeer(false);
5261 }
5262 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5263 }
5264
5265 if (!m_initial_sync_finished && CanDirectFetch()) {
5266 m_connman.StartExtraBlockRelayPeers();
5267 m_initial_sync_finished = true;
5268 }
5269}
5270
5271void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5272{
5273 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5274 peer.m_ping_nonce_sent &&
5275 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5276 {
5277 // The ping timeout is using mocktime. To disable the check during
5278 // testing, increase -peertimeout.
5279 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5280 node_to.fDisconnect = true;
5281 return;
5282 }
5283
5284 bool pingSend = false;
5285
5286 if (peer.m_ping_queued) {
5287 // RPC ping request by user
5288 pingSend = true;
5289 }
5290
5291 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5292 // Ping automatically sent as a latency probe & keepalive.
5293 pingSend = true;
5294 }
5295
5296 if (pingSend) {
5297 uint64_t nonce;
5298 do {
5300 } while (nonce == 0);
5301 peer.m_ping_queued = false;
5302 peer.m_ping_start = now;
5303 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5304 peer.m_ping_nonce_sent = nonce;
5305 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5306 } else {
5307 // Peer is too old to support ping command with nonce, pong will never arrive.
5308 peer.m_ping_nonce_sent = 0;
5309 MakeAndPushMessage(node_to, NetMsgType::PING);
5310 }
5311 }
5312}
5313
5314void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5315{
5316 // Nothing to do for non-address-relay peers
5317 if (!peer.m_addr_relay_enabled) return;
5318
5319 LOCK(peer.m_addr_send_times_mutex);
5320 // Periodically advertise our local address to the peer.
5321 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5322 peer.m_next_local_addr_send < current_time) {
5323 // If we've sent before, clear the bloom filter for the peer, so that our
5324 // self-announcement will actually go out.
5325 // This might be unnecessary if the bloom filter has already rolled
5326 // over since our last self-announcement, but there is only a small
5327 // bandwidth cost that we can incur by doing this (which happens
5328 // once a day on average).
5329 if (peer.m_next_local_addr_send != 0us) {
5330 peer.m_addr_known->reset();
5331 }
5332 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5333 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5334 PushAddress(peer, local_addr);
5335 }
5336 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5337 }
5338
5339 // We sent an `addr` message to this peer recently. Nothing more to do.
5340 if (current_time <= peer.m_next_addr_send) return;
5341
5342 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5343
5344 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5345 // Should be impossible since we always check size before adding to
5346 // m_addrs_to_send. Recover by trimming the vector.
5347 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5348 }
5349
5350 // Remove addr records that the peer already knows about, and add new
5351 // addrs to the m_addr_known filter on the same pass.
5352 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5353 bool ret = peer.m_addr_known->contains(addr.GetKey());
5354 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5355 return ret;
5356 };
5357 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5358 peer.m_addrs_to_send.end());
5359
5360 // No addr messages to send
5361 if (peer.m_addrs_to_send.empty()) return;
5362
5363 if (peer.m_wants_addrv2) {
5364 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5365 } else {
5366 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5367 }
5368 peer.m_addrs_to_send.clear();
5369
5370 // we only send the big addr message once
5371 if (peer.m_addrs_to_send.capacity() > 40) {
5372 peer.m_addrs_to_send.shrink_to_fit();
5373 }
5374}
5375
5376void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5377{
5378 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5379 // initial-headers-sync with this peer. Receiving headers announcements for
5380 // new blocks while trying to sync their headers chain is problematic,
5381 // because of the state tracking done.
5382 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5383 LOCK(cs_main);
5384 CNodeState &state = *State(node.GetId());
5385 if (state.pindexBestKnownBlock != nullptr &&
5386 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5387 // Tell our peer we prefer to receive headers rather than inv's
5388 // We send this to non-NODE NETWORK peers as well, because even
5389 // non-NODE NETWORK peers can announce blocks (such as pruning
5390 // nodes)
5391 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5392 peer.m_sent_sendheaders = true;
5393 }
5394 }
5395}
5396
5397void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5398{
5399 if (m_opts.ignore_incoming_txs) return;
5400 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5401 // peers with the forcerelay permission should not filter txs to us
5403 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5404 // transactions to us, regardless of feefilter state.
5405 if (pto.IsBlockOnlyConn()) return;
5406
5407 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5408
5409 if (m_chainman.IsInitialBlockDownload()) {
5410 // Received tx-inv messages are discarded when the active
5411 // chainstate is in IBD, so tell the peer to not send them.
5412 currentFilter = MAX_MONEY;
5413 } else {
5414 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5415 if (peer.m_fee_filter_sent == MAX_FILTER) {
5416 // Send the current filter if we sent MAX_FILTER previously
5417 // and made it out of IBD.
5418 peer.m_next_send_feefilter = 0us;
5419 }
5420 }
5421 if (current_time > peer.m_next_send_feefilter) {
5422 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5423 // We always have a fee filter of at least the min relay fee
5424 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5425 if (filterToSend != peer.m_fee_filter_sent) {
5426 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5427 peer.m_fee_filter_sent = filterToSend;
5428 }
5429 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5430 }
5431 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5432 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5433 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5434 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5435 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5436 }
5437}
5438
5439namespace {
5440class CompareInvMempoolOrder
5441{
5442 CTxMemPool* mp;
5443 bool m_wtxid_relay;
5444public:
5445 explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5446 {
5447 mp = _mempool;
5448 m_wtxid_relay = use_wtxid;
5449 }
5450
5451 bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5452 {
5453 /* As std::make_heap produces a max-heap, we want the entries with the
5454 * fewest ancestors/highest fee to sort later. */
5455 return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5456 }
5457};
5458} // namespace
5459
5460bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5461{
5462 // block-relay-only peers may never send txs to us
5463 if (peer.IsBlockOnlyConn()) return true;
5464 if (peer.IsFeelerConn()) return true;
5465 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5466 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5467 return false;
5468}
5469
5470bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5471{
5472 // We don't participate in addr relay with outbound block-relay-only
5473 // connections to prevent providing adversaries with the additional
5474 // information of addr traffic to infer the link.
5475 if (node.IsBlockOnlyConn()) return false;
5476
5477 if (!peer.m_addr_relay_enabled.exchange(true)) {
5478 // During version message processing (non-block-relay-only outbound peers)
5479 // or on first addr-related message we have received (inbound peers), initialize
5480 // m_addr_known.
5481 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5482 }
5483
5484 return true;
5485}
5486
5487bool PeerManagerImpl::SendMessages(CNode* pto)
5488{
5489 AssertLockNotHeld(m_tx_download_mutex);
5490 AssertLockHeld(g_msgproc_mutex);
5491
5492 PeerRef peer = GetPeerRef(pto->GetId());
5493 if (!peer) return false;
5494 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5495
5496 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5497 // disconnect misbehaving peers even before the version handshake is complete.
5498 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5499
5500 // Initiate version handshake for outbound connections
5501 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5502 PushNodeVersion(*pto, *peer);
5503 peer->m_outbound_version_message_sent = true;
5504 }
5505
5506 // Don't send anything until the version handshake is complete
5507 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5508 return true;
5509
5510 const auto current_time{GetTime<std::chrono::microseconds>()};
5511
5512 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5513 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5514 pto->fDisconnect = true;
5515 return true;
5516 }
5517
5518 MaybeSendPing(*pto, *peer, current_time);
5519
5520 // MaybeSendPing may have marked peer for disconnection
5521 if (pto->fDisconnect) return true;
5522
5523 MaybeSendAddr(*pto, *peer, current_time);
5524
5525 MaybeSendSendHeaders(*pto, *peer);
5526
5527 {
5528 LOCK(cs_main);
5529
5530 CNodeState &state = *State(pto->GetId());
5531
5532 // Start block sync
5533 if (m_chainman.m_best_header == nullptr) {
5534 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5535 }
5536
5537 // Determine whether we might try initial headers sync or parallel
5538 // block download from this peer -- this mostly affects behavior while
5539 // in IBD (once out of IBD, we sync from all peers).
5540 bool sync_blocks_and_headers_from_peer = false;
5541 if (state.fPreferredDownload) {
5542 sync_blocks_and_headers_from_peer = true;
5543 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5544 // Typically this is an inbound peer. If we don't have any outbound
5545 // peers, or if we aren't downloading any blocks from such peers,
5546 // then allow block downloads from this peer, too.
5547 // We prefer downloading blocks from outbound peers to avoid
5548 // putting undue load on (say) some home user who is just making
5549 // outbound connections to the network, but if our only source of
5550 // the latest blocks is from an inbound peer, we have to be sure to
5551 // eventually download it (and not just wait indefinitely for an
5552 // outbound peer to have it).
5553 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5554 sync_blocks_and_headers_from_peer = true;
5555 }
5556 }
5557
5558 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5559 // Only actively request headers from a single peer, unless we're close to today.
5560 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5561 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5562 /* If possible, start at the block preceding the currently
5563 best known header. This ensures that we always get a
5564 non-empty list of headers back as long as the peer
5565 is up-to-date. With a non-empty response, we can initialise
5566 the peer's known best block. This wouldn't be possible
5567 if we requested starting at m_chainman.m_best_header and
5568 got back an empty response. */
5569 if (pindexStart->pprev)
5570 pindexStart = pindexStart->pprev;
5571 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5572 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5573
5574 state.fSyncStarted = true;
5575 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5576 (
5577 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5578 // to maintain precision
5579 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5580 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5581 );
5582 nSyncStarted++;
5583 }
5584 }
5585 }
5586
5587 //
5588 // Try sending block announcements via headers
5589 //
5590 {
5591 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5592 // list of block hashes we're relaying, and our peer wants
5593 // headers announcements, then find the first header
5594 // not yet known to our peer but would connect, and send.
5595 // If no header would connect, or if we have too many
5596 // blocks, or if the peer doesn't want headers, just
5597 // add all to the inv queue.
5598 LOCK(peer->m_block_inv_mutex);
5599 std::vector<CBlock> vHeaders;
5600 bool fRevertToInv = ((!peer->m_prefers_headers &&
5601 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5602 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5603 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5604 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5605
5606 if (!fRevertToInv) {
5607 bool fFoundStartingHeader = false;
5608 // Try to find first header that our peer doesn't have, and
5609 // then send all headers past that one. If we come across any
5610 // headers that aren't on m_chainman.ActiveChain(), give up.
5611 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5612 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5613 assert(pindex);
5614 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5615 // Bail out if we reorged away from this block
5616 fRevertToInv = true;
5617 break;
5618 }
5619 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5620 // This means that the list of blocks to announce don't
5621 // connect to each other.
5622 // This shouldn't really be possible to hit during
5623 // regular operation (because reorgs should take us to
5624 // a chain that has some block not on the prior chain,
5625 // which should be caught by the prior check), but one
5626 // way this could happen is by using invalidateblock /
5627 // reconsiderblock repeatedly on the tip, causing it to
5628 // be added multiple times to m_blocks_for_headers_relay.
5629 // Robustly deal with this rare situation by reverting
5630 // to an inv.
5631 fRevertToInv = true;
5632 break;
5633 }
5634 pBestIndex = pindex;
5635 if (fFoundStartingHeader) {
5636 // add this to the headers message
5637 vHeaders.emplace_back(pindex->GetBlockHeader());
5638 } else if (PeerHasHeader(&state, pindex)) {
5639 continue; // keep looking for the first new block
5640 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5641 // Peer doesn't have this header but they do have the prior one.
5642 // Start sending headers.
5643 fFoundStartingHeader = true;
5644 vHeaders.emplace_back(pindex->GetBlockHeader());
5645 } else {
5646 // Peer doesn't have this header or the prior one -- nothing will
5647 // connect, so bail out.
5648 fRevertToInv = true;
5649 break;
5650 }
5651 }
5652 }
5653 if (!fRevertToInv && !vHeaders.empty()) {
5654 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5655 // We only send up to 1 block as header-and-ids, as otherwise
5656 // probably means we're doing an initial-ish-sync or they're slow
5657 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5658 vHeaders.front().GetHash().ToString(), pto->GetId());
5659
5660 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5661 {
5662 LOCK(m_most_recent_block_mutex);
5663 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5664 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5665 }
5666 }
5667 if (cached_cmpctblock_msg.has_value()) {
5668 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5669 } else {
5670 CBlock block;
5671 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5672 assert(ret);
5673 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5674 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5675 }
5676 state.pindexBestHeaderSent = pBestIndex;
5677 } else if (peer->m_prefers_headers) {
5678 if (vHeaders.size() > 1) {
5679 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5680 vHeaders.size(),
5681 vHeaders.front().GetHash().ToString(),
5682 vHeaders.back().GetHash().ToString(), pto->GetId());
5683 } else {
5684 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5685 vHeaders.front().GetHash().ToString(), pto->GetId());
5686 }
5687 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5688 state.pindexBestHeaderSent = pBestIndex;
5689 } else
5690 fRevertToInv = true;
5691 }
5692 if (fRevertToInv) {
5693 // If falling back to using an inv, just try to inv the tip.
5694 // The last entry in m_blocks_for_headers_relay was our tip at some point
5695 // in the past.
5696 if (!peer->m_blocks_for_headers_relay.empty()) {
5697 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5698 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5699 assert(pindex);
5700
5701 // Warn if we're announcing a block that is not on the main chain.
5702 // This should be very rare and could be optimized out.
5703 // Just log for now.
5704 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5705 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5706 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5707 }
5708
5709 // If the peer's chain has this block, don't inv it back.
5710 if (!PeerHasHeader(&state, pindex)) {
5711 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5712 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5713 pto->GetId(), hashToAnnounce.ToString());
5714 }
5715 }
5716 }
5717 peer->m_blocks_for_headers_relay.clear();
5718 }
5719
5720 //
5721 // Message: inventory
5722 //
5723 std::vector<CInv> vInv;
5724 {
5725 LOCK(peer->m_block_inv_mutex);
5726 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5727
5728 // Add blocks
5729 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5730 vInv.emplace_back(MSG_BLOCK, hash);
5731 if (vInv.size() == MAX_INV_SZ) {
5732 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5733 vInv.clear();
5734 }
5735 }
5736 peer->m_blocks_for_inv_relay.clear();
5737 }
5738
5739 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5740 LOCK(tx_relay->m_tx_inventory_mutex);
5741 // Check whether periodic sends should happen
5742 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5743 if (tx_relay->m_next_inv_send_time < current_time) {
5744 fSendTrickle = true;
5745 if (pto->IsInboundConn()) {
5746 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5747 } else {
5748 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5749 }
5750 }
5751
5752 // Time to send but the peer has requested we not relay transactions.
5753 if (fSendTrickle) {
5754 LOCK(tx_relay->m_bloom_filter_mutex);
5755 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5756 }
5757
5758 // Respond to BIP35 mempool requests
5759 if (fSendTrickle && tx_relay->m_send_mempool) {
5760 auto vtxinfo = m_mempool.infoAll();
5761 tx_relay->m_send_mempool = false;
5762 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5763
5764 LOCK(tx_relay->m_bloom_filter_mutex);
5765
5766 for (const auto& txinfo : vtxinfo) {
5767 CInv inv{
5768 peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5769 peer->m_wtxid_relay ?
5770 txinfo.tx->GetWitnessHash().ToUint256() :
5771 txinfo.tx->GetHash().ToUint256(),
5772 };
5773 tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5774
5775 // Don't send transactions that peers will not put into their mempool
5776 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5777 continue;
5778 }
5779 if (tx_relay->m_bloom_filter) {
5780 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5781 }
5782 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5783 vInv.push_back(inv);
5784 if (vInv.size() == MAX_INV_SZ) {
5785 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5786 vInv.clear();
5787 }
5788 }
5789 }
5790
5791 // Determine transactions to relay
5792 if (fSendTrickle) {
5793 // Produce a vector with all candidates for sending
5794 std::vector<std::set<uint256>::iterator> vInvTx;
5795 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5796 for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5797 vInvTx.push_back(it);
5798 }
5799 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5800 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5801 // A heap is used so that not all items need sorting if only a few are being sent.
5802 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5803 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5804 // No reason to drain out at many times the network's capacity,
5805 // especially since we have many peers and some will draw much shorter delays.
5806 unsigned int nRelayedTransactions = 0;
5807 LOCK(tx_relay->m_bloom_filter_mutex);
5808 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5809 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5810 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5811 // Fetch the top element from the heap
5812 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5813 std::set<uint256>::iterator it = vInvTx.back();
5814 vInvTx.pop_back();
5815 uint256 hash = *it;
5816 CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5817 // Remove it from the to-be-sent set
5818 tx_relay->m_tx_inventory_to_send.erase(it);
5819 // Check if not in the filter already
5820 if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
5821 continue;
5822 }
5823 // Not in the mempool anymore? don't bother sending it.
5824 auto txinfo = m_mempool.info(ToGenTxid(inv));
5825 if (!txinfo.tx) {
5826 continue;
5827 }
5828 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5829 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5830 continue;
5831 }
5832 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5833 // Send
5834 vInv.push_back(inv);
5835 nRelayedTransactions++;
5836 if (vInv.size() == MAX_INV_SZ) {
5837 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5838 vInv.clear();
5839 }
5840 tx_relay->m_tx_inventory_known_filter.insert(hash);
5841 }
5842
5843 // Ensure we'll respond to GETDATA requests for anything we've just announced
5844 LOCK(m_mempool.cs);
5845 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5846 }
5847 }
5848 if (!vInv.empty())
5849 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5850
5851 // Detect whether we're stalling
5852 auto stalling_timeout = m_block_stalling_timeout.load();
5853 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5854 // Stalling only triggers when the block download window cannot move. During normal steady state,
5855 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5856 // should only happen during initial block download.
5857 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
5858 pto->fDisconnect = true;
5859 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5860 // bandwidth is insufficient.
5861 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5862 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5863 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5864 }
5865 return true;
5866 }
5867 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5868 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5869 // We compensate for other peers to prevent killing off peers due to our own downstream link
5870 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5871 // to unreasonably increase our timeout.
5872 if (state.vBlocksInFlight.size() > 0) {
5873 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5874 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5875 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5876 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
5877 pto->fDisconnect = true;
5878 return true;
5879 }
5880 }
5881 // Check for headers sync timeouts
5882 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5883 // Detect whether this is a stalling initial-headers-sync peer
5884 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5885 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5886 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5887 // and we have others we could be using instead.
5888 // Note: If all our peers are inbound, then we won't
5889 // disconnect our sync peer for stalling; we have bigger
5890 // problems if we can't get any outbound peers.
5892 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
5893 pto->fDisconnect = true;
5894 return true;
5895 } else {
5896 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
5897 // Reset the headers sync state so that we have a
5898 // chance to try downloading from a different peer.
5899 // Note: this will also result in at least one more
5900 // getheaders message to be sent to
5901 // this peer (eventually).
5902 state.fSyncStarted = false;
5903 nSyncStarted--;
5904 peer->m_headers_sync_timeout = 0us;
5905 }
5906 }
5907 } else {
5908 // After we've caught up once, reset the timeout so we can't trigger
5909 // disconnect later.
5910 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5911 }
5912 }
5913
5914 // Check that outbound peers have reasonable chains
5915 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5916 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5917
5918 //
5919 // Message: getdata (blocks)
5920 //
5921 std::vector<CInv> vGetData;
5922 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5923 std::vector<const CBlockIndex*> vToDownload;
5924 NodeId staller = -1;
5925 auto get_inflight_budget = [&state]() {
5926 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5927 };
5928
5929 // If a snapshot chainstate is in use, we want to find its next blocks
5930 // before the background chainstate to prioritize getting to network tip.
5931 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5932 if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5933 // If the background tip is not an ancestor of the snapshot block,
5934 // we need to start requesting blocks from their last common ancestor.
5935 const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5936 TryDownloadingHistoricalBlocks(
5937 *peer,
5938 get_inflight_budget(),
5939 vToDownload, from_tip,
5940 Assert(m_chainman.GetSnapshotBaseBlock()));
5941 }
5942 for (const CBlockIndex *pindex : vToDownload) {
5943 uint32_t nFetchFlags = GetFetchFlags(*peer);
5944 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5945 BlockRequested(pto->GetId(), *pindex);
5946 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5947 pindex->nHeight, pto->GetId());
5948 }
5949 if (state.vBlocksInFlight.empty() && staller != -1) {
5950 if (State(staller)->m_stalling_since == 0us) {
5951 State(staller)->m_stalling_since = current_time;
5952 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5953 }
5954 }
5955 }
5956
5957 //
5958 // Message: getdata (transactions)
5959 //
5960 {
5961 LOCK(m_tx_download_mutex);
5962 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5963 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5964 if (vGetData.size() >= MAX_GETDATA_SZ) {
5965 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5966 vGetData.clear();
5967 }
5968 }
5969 }
5970
5971 if (!vGetData.empty())
5972 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5973 } // release cs_main
5974 MaybeSendFeefilter(*pto, *peer, current_time);
5975 return true;
5976}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:93
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:131
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:50
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:146
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:165
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:111
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:107
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:115
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:97
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:121
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:106
#define Assume(val)
Assume is the identity function.
Definition: check.h:118
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:141
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:147
CBlockHeader GetBlockHeader() const
Definition: chain.h:230
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:165
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:259
uint256 GetBlockHash() const
Definition: chain.h:243
int64_t GetBlockTime() const
Definition: chain.h:266
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:170
bool IsValid(enum BlockStatus nUpTo=BLOCK_VALID_TRANSACTIONS) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:295
NodeSeconds Time() const
Definition: chain.h:261
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:120
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:153
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:208
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:417
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:433
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:453
int Height() const
Return the maximal height in the chain.
Definition: chain.h:462
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:447
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:69
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:81
Definition: net.h:1052
void ForEachNode(const NodeFn &func)
Definition: net.h:1151
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3920
bool GetNetworkActive() const
Definition: net.h:1136
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2418
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2423
int GetExtraBlockRelayCount() const
Definition: net.cpp:2468
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2239
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3739
void StartExtraBlockRelayPeers()
Definition: net.cpp:2429
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3639
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3933
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3622
int GetExtraFullOutboundCount() const
Definition: net.cpp:2454
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3506
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:373
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1997
bool GetUseAddrmanOutgoing() const
Definition: net.h:1137
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per kilovirtualbyte: CAmount / kvB.
Definition: feerate.h:33
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:63
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:126
std::vector< std::pair< unsigned int, uint256 > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:138
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:466
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:428
bool IsLocal() const
Definition: netaddress.cpp:402
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:481
Transport protocol agnostic message container.
Definition: net.h:231
Information about a peer.
Definition: net.h:673
bool IsFeelerConn() const
Definition: net.h:803
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
bool ExpectServicesFromConn() const
Definition: net.h:815
std::atomic< int > nVersion
Definition: net.h:716
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:851
bool IsInboundConn() const
Definition: net.h:811
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:724
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:760
NodeId GetId() const
Definition: net.h:894
bool IsManualConn() const
Definition: net.h:779
const std::string m_addr_name
Definition: net.h:711
std::string ConnectionTypeAsString() const
Definition: net.h:948
void SetCommonVersion(int greatest_common_version)
Definition: net.h:919
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:855
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:967
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
bool IsAddrFetchConn() const
Definition: net.h:807
uint64_t GetLocalNonce() const
Definition: net.h:898
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:600
bool IsBlockOnlyConn() const
Definition: net.h:799
int GetCommonVersion() const
Definition: net.h:924
bool IsFullOutboundConn() const
Definition: net.h:775
Mutex m_subver_mutex
Definition: net.h:717
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3854
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:859
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:710
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:715
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:899
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
The basic transaction that is broadcasted on the network and contained in blocks.
Definition: transaction.h:296
const Wtxid & GetWitnessHash() const LIFETIMEBOUND
Definition: transaction.h:344
const Txid & GetHash() const LIFETIMEBOUND
Definition: transaction.h:343
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:304
void RemoveUnbroadcastTx(const uint256 &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:1069
std::set< uint256 > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:687
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:390
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:1126
CTransactionRef get(const uint256 &hash) const
Definition: txmempool.cpp:884
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:1063
const Options m_opts
Definition: txmempool.h:439
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:863
TxMempoolInfo info(const GenTxid &gtxid) const
Definition: txmempool.cpp:893
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:705
TxMempoolInfo info_for_relay(const GenTxid &gtxid, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.cpp:902
bool exists(const GenTxid &gtxid) const
Definition: txmempool.h:647
unsigned long size() const
Definition: txmempool.h:629
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void BlockConnected(ChainstateRole role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
virtual void BlockChecked(const CBlock &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
Provides an interface for creating and interacting with one or two chainstates: an IBD chainstate gen...
Definition: validation.h:866
SnapshotCompletionResult MaybeCompleteSnapshotValidation() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(Chainstate ActiveChainstate)() const
Once the background validation chainstate has reached the height which is the base of the UTXO snapsh...
Definition: validation.h:1108
const CBlockIndex * GetBackgroundSyncTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The tip of the background sync chain.
Definition: validation.h:1119
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:999
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1111
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool BackgroundSyncInProgress() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The state of a background sync (for net processing)
Definition: validation.h:1114
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:977
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1109
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1005
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
bool empty() const
Definition: streams.h:182
size_type size() const
Definition: streams.h:181
void ignore(size_t num_ignore)
Definition: streams.h:236
int in_avail() const
Definition: streams.h:216
Fast randomness source.
Definition: random.h:377
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:395
A generic txid reference (txid or wtxid).
Definition: transaction.h:428
bool IsWtxid() const
Definition: transaction.h:436
const uint256 & GetHash() const LIFETIMEBOUND
Definition: transaction.h:437
static GenTxid Txid(const uint256 &hash)
Definition: transaction.h:434
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1011
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< CTransactionRef > &extra_txn)
bool IsTxAvailable(size_t index) const
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing)
virtual std::optional< std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual std::vector< TxOrphanage::OrphanTxBase > GetOrphanTransactions()=0
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
bool IsValid() const
Definition: validation.h:105
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool ReadRawBlock(std::vector< uint8_t > &block, const FlatFilePos &pos) const
bool LoadingBlocks() const
Definition: blockstorage.h:355
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:349
bool ReadBlock(CBlock &block, const FlatFilePos &pos) const
Functions for disk access for blocks.
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
256-bit opaque blob.
Definition: uint256.h:196
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_MEMPOOL_POLICY
violated mempool's fee/size/descendant/RBF/etc limits
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_PREMATURE_SPEND
transaction spends a coinbase too early, or violates locktime/sequence locks
@ TX_INPUTS_NOT_STANDARD
inputs (covered by txid) failed policy rules
@ TX_WITNESS_STRIPPED
Transaction is missing a witness.
@ TX_CONFLICT
Tx already in mempool or conflicts with a tx in the chain (if it conflicts with another tx in mempool...
@ TX_NOT_STANDARD
otherwise didn't meet our local policy rules
@ TX_WITNESS_MUTATED
Transaction might have a witness prior to SegWit activation, or witness may have been malleated (whic...
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
@ TX_CONSENSUS
invalid by consensus rules
@ TX_RECONSIDERABLE
fails some policy, but might be acceptable if submitted in a (different) package
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
ChainstateRole
This enum describes the various roles a specific Chainstate instance can take.
Definition: chain.h:25
bool fLogIPs
Definition: logging.cpp:45
#define LogInfo(...)
Definition: logging.h:261
#define LogError(...)
Definition: logging.h:263
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:233
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ TXPACKAGES
Definition: logging.h:73
@ VALIDATION
Definition: logging.h:64
@ MEMPOOLREJ
Definition: logging.h:59
@ MEMPOOL
Definition: logging.h:45
@ NET
Definition: logging.h:43
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:29
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Functions to serialize / deserialize common bitcoin types.
Definition: common-types.h:57
Definition: messages.h:20
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:427
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:233
bool fListen
Definition: net.cpp:123
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:126
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:246
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4021
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:65
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
int64_t NodeId
Definition: net.h:97
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:743
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:64
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:196
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:423
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" command for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" command and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:502
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:339
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:83
int64_t nPowTargetSpacing
Definition: params.h:119
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:121
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:124
const ResultType m_result_type
Result type.
Definition: validation.h:133
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:136
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:139
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:230
PackageValidationState m_state
Definition: validation.h:231
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:238
std::chrono::seconds median_outbound_time_offset
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:59
std::string ToString() const
Definition: txdownloadman.h:81
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK2(cs1, cs2)
Definition: sync.h:258
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:98
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
#define GUARDED_BY(x)
Definition: threadsafety.h:38
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:48
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:41
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:39
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it)
Definition: txmempool.cpp:847
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:76
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:84
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:69