Bitcoin Core 29.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/chain.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
39#include <node/warnings.h>
40#include <policy/feerate.h>
41#include <policy/fees.h>
42#include <policy/packages.h>
43#include <policy/policy.h>
44#include <primitives/block.h>
46#include <protocol.h>
47#include <random.h>
48#include <scheduler.h>
49#include <script/script.h>
50#include <serialize.h>
51#include <span.h>
52#include <streams.h>
53#include <sync.h>
54#include <tinyformat.h>
55#include <txmempool.h>
56#include <txorphanage.h>
57#include <uint256.h>
58#include <util/check.h>
59#include <util/strencodings.h>
60#include <util/time.h>
61#include <util/trace.h>
62#include <validation.h>
63
64#include <algorithm>
65#include <array>
66#include <atomic>
67#include <compare>
68#include <cstddef>
69#include <deque>
70#include <exception>
71#include <functional>
72#include <future>
73#include <initializer_list>
74#include <iterator>
75#include <limits>
76#include <list>
77#include <map>
78#include <memory>
79#include <optional>
80#include <queue>
81#include <ranges>
82#include <ratio>
83#include <set>
84#include <span>
85#include <typeinfo>
86#include <utility>
87
88using namespace util::hex_literals;
89
90TRACEPOINT_SEMAPHORE(net, inbound_message);
91TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
92
95static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
96static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
98static constexpr auto HEADERS_RESPONSE_TIME{2min};
104static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
106static constexpr auto STALE_CHECK_INTERVAL{10min};
108static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
110static constexpr auto MINIMUM_CONNECT_TIME{30s};
112static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
115static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
118static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
120static constexpr auto PING_INTERVAL{2min};
122static const unsigned int MAX_LOCATOR_SZ = 101;
124static const unsigned int MAX_INV_SZ = 50000;
126static const unsigned int MAX_GETDATA_SZ = 1000;
128static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
131static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
133static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
136static const int MAX_CMPCTBLOCK_DEPTH = 5;
138static const int MAX_BLOCKTXN_DEPTH = 10;
139static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
144static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
146static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
148static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
150static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
152static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
154static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
156static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
158static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
160static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
170static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
174static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
175static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
176static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
178static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
180static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
182static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
184static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
186static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
188static constexpr size_t MAX_ADDR_TO_SEND{1000};
191static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
197static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
198
199// Internal stuff
200namespace {
202struct QueuedBlock {
204 const CBlockIndex* pindex;
206 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
207};
208
221struct Peer {
223 const NodeId m_id{0};
224
238 const ServiceFlags m_our_services;
240 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
241
243 const bool m_is_inbound;
244
246 Mutex m_misbehavior_mutex;
248 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
249
251 Mutex m_block_inv_mutex;
255 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
259 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
264 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
265
267 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
268
270 std::atomic<int> m_starting_height{-1};
271
273 std::atomic<uint64_t> m_ping_nonce_sent{0};
275 std::atomic<std::chrono::microseconds> m_ping_start{0us};
277 std::atomic<bool> m_ping_queued{false};
278
280 std::atomic<bool> m_wtxid_relay{false};
287 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
288
289 struct TxRelay {
290 mutable RecursiveMutex m_bloom_filter_mutex;
292 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
294 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
295
296 mutable RecursiveMutex m_tx_inventory_mutex;
300 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
305 std::set<uint256> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
309 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
312 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
315 uint64_t m_last_inv_sequence GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1};
316
318 std::atomic<CAmount> m_fee_filter_received{0};
319 };
320
321 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
322 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
323 {
324 LOCK(m_tx_relay_mutex);
325 Assume(!m_tx_relay);
326 m_tx_relay = std::make_unique<Peer::TxRelay>();
327 return m_tx_relay.get();
328 };
329
330 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
331 {
332 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
333 };
334
336 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
346 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
361 std::atomic_bool m_addr_relay_enabled{false};
363 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
365 mutable Mutex m_addr_send_times_mutex;
367 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
369 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
372 std::atomic_bool m_wants_addrv2{false};
374 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
377 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
379 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
381 std::atomic<uint64_t> m_addr_rate_limited{0};
383 std::atomic<uint64_t> m_addr_processed{0};
384
386 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
387
389 Mutex m_getdata_requests_mutex;
391 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
392
395
397 Mutex m_headers_sync_mutex;
400 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
401
403 std::atomic<bool> m_sent_sendheaders{false};
404
406 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
407
409 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
410
413 std::atomic<std::chrono::seconds> m_time_offset{0s};
414
415 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
416 : m_id{id}
417 , m_our_services{our_services}
418 , m_is_inbound{is_inbound}
419 {}
420
421private:
422 mutable Mutex m_tx_relay_mutex;
423
425 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
426};
427
428using PeerRef = std::shared_ptr<Peer>;
429
436struct CNodeState {
438 const CBlockIndex* pindexBestKnownBlock{nullptr};
440 uint256 hashLastUnknownBlock{};
442 const CBlockIndex* pindexLastCommonBlock{nullptr};
444 const CBlockIndex* pindexBestHeaderSent{nullptr};
446 bool fSyncStarted{false};
448 std::chrono::microseconds m_stalling_since{0us};
449 std::list<QueuedBlock> vBlocksInFlight;
451 std::chrono::microseconds m_downloading_since{0us};
453 bool fPreferredDownload{false};
455 bool m_requested_hb_cmpctblocks{false};
457 bool m_provides_cmpctblocks{false};
458
483 struct ChainSyncTimeoutState {
485 std::chrono::seconds m_timeout{0s};
487 const CBlockIndex* m_work_header{nullptr};
489 bool m_sent_getheaders{false};
491 bool m_protect{false};
492 };
493
494 ChainSyncTimeoutState m_chain_sync;
495
497 int64_t m_last_block_announcement{0};
498};
499
500class PeerManagerImpl final : public PeerManager
501{
502public:
503 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
504 BanMan* banman, ChainstateManager& chainman,
505 CTxMemPool& pool, node::Warnings& warnings, Options opts);
506
508 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
509 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
510 void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
511 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
512 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
513 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
514 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
515 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516 void BlockChecked(const CBlock& block, const BlockValidationState& state) override
517 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
518 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
519 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
520
522 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
523 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
524 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
525 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
526 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
527 bool SendMessages(CNode* pto) override
528 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
529
531 void StartScheduledTasks(CScheduler& scheduler) override;
532 void CheckForStaleTipAndEvictPeers() override;
533 std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
534 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
535 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536 std::vector<TxOrphanage::OrphanTxBase> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
537 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
538 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539 void RelayTransaction(const uint256& txid, const uint256& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 void SetBestBlock(int height, std::chrono::seconds time) override
541 {
542 m_best_height = height;
543 m_best_block_time = time;
544 };
545 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
546 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
547 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
548 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
549 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
550 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
551
552private:
554 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
555
557 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
558
560 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
561
564 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
565
568 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
569
572 void Misbehaving(Peer& peer, const std::string& message);
573
582 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
583 bool via_compact_block, const std::string& message = "")
584 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
585
589 void MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
590 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
591
598 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
599
611 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
612 bool first_time_failure)
613 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
614
617 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
618 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
619
623 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
624 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
625
637 bool ProcessOrphanTx(Peer& peer)
638 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
639
647 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
648 std::vector<CBlockHeader>&& headers,
649 bool via_compact_block)
650 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
653 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
655 arith_uint256 GetAntiDoSWorkThreshold();
659 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
661 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
680 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
681 std::vector<CBlockHeader>& headers)
682 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
694 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
695 const CBlockIndex* chain_start_header,
696 std::vector<CBlockHeader>& headers)
697 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
698
701 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
702
707 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
709 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
711 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
712 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
713
714 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
715
717 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
718 template <typename... Args>
719 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
720 {
721 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
722 }
723
725 void PushNodeVersion(CNode& pnode, const Peer& peer);
726
731 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
732
734 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
735
737 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
738
746 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
747
749 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
750
752
754
755 const CChainParams& m_chainparams;
756 CConnman& m_connman;
757 AddrMan& m_addrman;
759 BanMan* const m_banman;
760 ChainstateManager& m_chainman;
761 CTxMemPool& m_mempool;
762
771 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
772 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
773
774 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
775
777 std::atomic<int> m_best_height{-1};
779 std::atomic<std::chrono::seconds> m_best_block_time{0s};
780
782 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
783
784 node::Warnings& m_warnings;
785 TimeOffsets m_outbound_time_offsets{m_warnings};
786
787 const Options m_opts;
788
789 bool RejectIncomingTxs(const CNode& peer) const;
790
793 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
794
797 mutable Mutex m_peer_mutex;
804 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
805
807 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
808
810 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
812 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
813
814 uint32_t GetFetchFlags(const Peer& peer) const;
815
816 std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us};
817
819 int nSyncStarted GUARDED_BY(cs_main) = 0;
820
822 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
823
830 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
831
833 std::atomic<int> m_wtxid_relay_peers{0};
834
836 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
837
839 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
840
842 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
843
850 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
851 std::chrono::seconds average_interval) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
852
853
854 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
855 Mutex m_most_recent_block_mutex;
856 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
857 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
858 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
859 std::unique_ptr<const std::map<uint256, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
860
861 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
863 Mutex m_headers_presync_mutex;
871 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
873 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
875 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
877 std::atomic_bool m_headers_presync_should_signal{false};
878
880 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
881
883 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
884
886 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
887
895 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
896
897 /* Mark a block as in flight
898 * Returns false, still setting pit, if the block was already in flight from the same peer
899 * pit will only be valid as long as the same cs_main lock is being held
900 */
901 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
902
903 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
904
908 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
909
911 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
912
940 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
941
942 /* Multimap used to preserve insertion order */
943 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
944 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
945
947 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
948
950 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
952
953 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
954 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
956
958 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
959
961 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
962 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
963
970 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
971
973 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
974
976 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
977
978 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
979
983 std::vector<CTransactionRef> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
985 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
986
988 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
990 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
991 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
992
997 int64_t ApproximateBestBlockDepth() const;
998
1005 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1006 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1007 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1008 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1009
1025 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1026 BlockFilterType filter_type, uint32_t start_height,
1027 const uint256& stop_hash, uint32_t max_height_diff,
1028 const CBlockIndex*& stop_index,
1029 BlockFilterIndex*& filter_index);
1030
1040 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1041
1051 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1052
1062 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1063
1070 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1071
1072 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1073 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1074};
1075
1076const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1077{
1078 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1079 if (it == m_node_states.end())
1080 return nullptr;
1081 return &it->second;
1082}
1083
1084CNodeState* PeerManagerImpl::State(NodeId pnode)
1085{
1086 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1087}
1088
1094static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1095{
1096 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1097}
1098
1099void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1100{
1101 assert(peer.m_addr_known);
1102 peer.m_addr_known->insert(addr.GetKey());
1103}
1104
1105void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1106{
1107 // Known checking here is only to save space from duplicates.
1108 // Before sending, we'll filter it again for known addresses that were
1109 // added after addresses were pushed.
1110 assert(peer.m_addr_known);
1111 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1112 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1113 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1114 } else {
1115 peer.m_addrs_to_send.push_back(addr);
1116 }
1117 }
1118}
1119
1120static void AddKnownTx(Peer& peer, const uint256& hash)
1121{
1122 auto tx_relay = peer.GetTxRelay();
1123 if (!tx_relay) return;
1124
1125 LOCK(tx_relay->m_tx_inventory_mutex);
1126 tx_relay->m_tx_inventory_known_filter.insert(hash);
1127}
1128
1130static bool CanServeBlocks(const Peer& peer)
1131{
1132 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1133}
1134
1137static bool IsLimitedPeer(const Peer& peer)
1138{
1139 return (!(peer.m_their_services & NODE_NETWORK) &&
1140 (peer.m_their_services & NODE_NETWORK_LIMITED));
1141}
1142
1144static bool CanServeWitnesses(const Peer& peer)
1145{
1146 return peer.m_their_services & NODE_WITNESS;
1147}
1148
1149std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1150 std::chrono::seconds average_interval)
1151{
1152 if (m_next_inv_to_inbounds.load() < now) {
1153 // If this function were called from multiple threads simultaneously
1154 // it would possible that both update the next send variable, and return a different result to their caller.
1155 // This is not possible in practice as only the net processing thread invokes this function.
1156 m_next_inv_to_inbounds = now + m_rng.rand_exp_duration(average_interval);
1157 }
1158 return m_next_inv_to_inbounds;
1159}
1160
1161bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1162{
1163 return mapBlocksInFlight.count(hash);
1164}
1165
1166bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1167{
1168 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1169 auto [nodeid, block_it] = range.first->second;
1170 PeerRef peer{GetPeerRef(nodeid)};
1171 if (peer && !peer->m_is_inbound) return true;
1172 }
1173
1174 return false;
1175}
1176
1177void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1178{
1179 auto range = mapBlocksInFlight.equal_range(hash);
1180 if (range.first == range.second) {
1181 // Block was not requested from any peer
1182 return;
1183 }
1184
1185 // We should not have requested too many of this block
1186 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1187
1188 while (range.first != range.second) {
1189 const auto& [node_id, list_it]{range.first->second};
1190
1191 if (from_peer && *from_peer != node_id) {
1192 range.first++;
1193 continue;
1194 }
1195
1196 CNodeState& state = *Assert(State(node_id));
1197
1198 if (state.vBlocksInFlight.begin() == list_it) {
1199 // First block on the queue was received, update the start download time for the next one
1200 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1201 }
1202 state.vBlocksInFlight.erase(list_it);
1203
1204 if (state.vBlocksInFlight.empty()) {
1205 // Last validated block on the queue for this peer was received.
1206 m_peers_downloading_from--;
1207 }
1208 state.m_stalling_since = 0us;
1209
1210 range.first = mapBlocksInFlight.erase(range.first);
1211 }
1212}
1213
1214bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1215{
1216 const uint256& hash{block.GetBlockHash()};
1217
1218 CNodeState *state = State(nodeid);
1219 assert(state != nullptr);
1220
1221 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1222
1223 // Short-circuit most stuff in case it is from the same node
1224 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1225 if (range.first->second.first == nodeid) {
1226 if (pit) {
1227 *pit = &range.first->second.second;
1228 }
1229 return false;
1230 }
1231 }
1232
1233 // Make sure it's not being fetched already from same peer.
1234 RemoveBlockRequest(hash, nodeid);
1235
1236 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1237 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1238 if (state->vBlocksInFlight.size() == 1) {
1239 // We're starting a block download (batch) from this peer.
1240 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1241 m_peers_downloading_from++;
1242 }
1243 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1244 if (pit) {
1245 *pit = &itInFlight->second.second;
1246 }
1247 return true;
1248}
1249
1250void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1251{
1253
1254 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1255 // mempool will not contain the transactions necessary to reconstruct the
1256 // compact block.
1257 if (m_opts.ignore_incoming_txs) return;
1258
1259 CNodeState* nodestate = State(nodeid);
1260 PeerRef peer{GetPeerRef(nodeid)};
1261 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1262 // Don't request compact blocks if the peer has not signalled support
1263 return;
1264 }
1265
1266 int num_outbound_hb_peers = 0;
1267 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1268 if (*it == nodeid) {
1269 lNodesAnnouncingHeaderAndIDs.erase(it);
1270 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1271 return;
1272 }
1273 PeerRef peer_ref{GetPeerRef(*it)};
1274 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1275 }
1276 if (peer && peer->m_is_inbound) {
1277 // If we're adding an inbound HB peer, make sure we're not removing
1278 // our last outbound HB peer in the process.
1279 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1280 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1281 if (remove_peer && !remove_peer->m_is_inbound) {
1282 // Put the HB outbound peer in the second slot, so that it
1283 // doesn't get removed.
1284 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1285 }
1286 }
1287 }
1288 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1290 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1291 // As per BIP152, we only get 3 of our peers to announce
1292 // blocks using compact encodings.
1293 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1294 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1295 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1296 pnodeStop->m_bip152_highbandwidth_to = false;
1297 return true;
1298 });
1299 lNodesAnnouncingHeaderAndIDs.pop_front();
1300 }
1301 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1302 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1303 pfrom->m_bip152_highbandwidth_to = true;
1304 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1305 return true;
1306 });
1307}
1308
1309bool PeerManagerImpl::TipMayBeStale()
1310{
1312 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1313 if (m_last_tip_update.load() == 0s) {
1314 m_last_tip_update = GetTime<std::chrono::seconds>();
1315 }
1316 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1317}
1318
1319int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1320{
1321 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1322}
1323
1324bool PeerManagerImpl::CanDirectFetch()
1325{
1326 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1327}
1328
1329static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1330{
1331 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1332 return true;
1333 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1334 return true;
1335 return false;
1336}
1337
1338void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1339 CNodeState *state = State(nodeid);
1340 assert(state != nullptr);
1341
1342 if (!state->hashLastUnknownBlock.IsNull()) {
1343 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1344 if (pindex && pindex->nChainWork > 0) {
1345 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1346 state->pindexBestKnownBlock = pindex;
1347 }
1348 state->hashLastUnknownBlock.SetNull();
1349 }
1350 }
1351}
1352
1353void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1354 CNodeState *state = State(nodeid);
1355 assert(state != nullptr);
1356
1357 ProcessBlockAvailability(nodeid);
1358
1359 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1360 if (pindex && pindex->nChainWork > 0) {
1361 // An actually better block was announced.
1362 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1363 state->pindexBestKnownBlock = pindex;
1364 }
1365 } else {
1366 // An unknown block was announced; just assume that the latest one is the best one.
1367 state->hashLastUnknownBlock = hash;
1368 }
1369}
1370
1371// Logic for calculating which blocks to download from a given peer, given our current tip.
1372void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1373{
1374 if (count == 0)
1375 return;
1376
1377 vBlocks.reserve(vBlocks.size() + count);
1378 CNodeState *state = State(peer.m_id);
1379 assert(state != nullptr);
1380
1381 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1382 ProcessBlockAvailability(peer.m_id);
1383
1384 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1385 // This peer has nothing interesting.
1386 return;
1387 }
1388
1389 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1390 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1391 // so downloading blocks from it would be futile.
1392 const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1393 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1394 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1395 return;
1396 }
1397
1398 // Bootstrap quickly by guessing a parent of our best tip is the forking point.
1399 // Guessing wrong in either direction is not a problem.
1400 // Also reset pindexLastCommonBlock after a snapshot was loaded, so that blocks after the snapshot will be prioritised for download.
1401 if (state->pindexLastCommonBlock == nullptr ||
1402 (snap_base && state->pindexLastCommonBlock->nHeight < snap_base->nHeight)) {
1403 state->pindexLastCommonBlock = m_chainman.ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())];
1404 }
1405
1406 // If the peer reorganized, our previous pindexLastCommonBlock may not be an ancestor
1407 // of its current tip anymore. Go back enough to fix that.
1408 state->pindexLastCommonBlock = LastCommonAncestor(state->pindexLastCommonBlock, state->pindexBestKnownBlock);
1409 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1410 return;
1411
1412 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1413 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1414 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1415 // download that next block if the window were 1 larger.
1416 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1417
1418 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1419}
1420
1421void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1422{
1423 Assert(from_tip);
1424 Assert(target_block);
1425
1426 if (vBlocks.size() >= count) {
1427 return;
1428 }
1429
1430 vBlocks.reserve(count);
1431 CNodeState *state = Assert(State(peer.m_id));
1432
1433 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1434 // This peer can't provide us the complete series of blocks leading up to the
1435 // assumeutxo snapshot base.
1436 //
1437 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1438 // will eventually crash when we try to reorg to it. Let other logic
1439 // deal with whether we disconnect this peer.
1440 //
1441 // TODO at some point in the future, we might choose to request what blocks
1442 // this peer does have from the historical chain, despite it not having a
1443 // complete history beneath the snapshot base.
1444 return;
1445 }
1446
1447 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1448}
1449
1450void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1451{
1452 std::vector<const CBlockIndex*> vToFetch;
1453 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1454 bool is_limited_peer = IsLimitedPeer(peer);
1455 NodeId waitingfor = -1;
1456 while (pindexWalk->nHeight < nMaxHeight) {
1457 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1458 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1459 // as iterating over ~100 CBlockIndex* entries anyway.
1460 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1461 vToFetch.resize(nToFetch);
1462 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1463 vToFetch[nToFetch - 1] = pindexWalk;
1464 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1465 vToFetch[i - 1] = vToFetch[i]->pprev;
1466 }
1467
1468 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1469 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1470 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1471 // already part of our chain (and therefore don't need it even if pruned).
1472 for (const CBlockIndex* pindex : vToFetch) {
1473 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1474 // We consider the chain that this peer is on invalid.
1475 return;
1476 }
1477
1478 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1479 // We wouldn't download this block or its descendants from this peer.
1480 return;
1481 }
1482
1483 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1484 if (activeChain && pindex->HaveNumChainTxs()) {
1485 state->pindexLastCommonBlock = pindex;
1486 }
1487 continue;
1488 }
1489
1490 // Is block in-flight?
1491 if (IsBlockRequested(pindex->GetBlockHash())) {
1492 if (waitingfor == -1) {
1493 // This is the first already-in-flight block.
1494 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1495 }
1496 continue;
1497 }
1498
1499 // The block is not already downloaded, and not yet in flight.
1500 if (pindex->nHeight > nWindowEnd) {
1501 // We reached the end of the window.
1502 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1503 // We aren't able to fetch anything, but we would be if the download window was one larger.
1504 if (nodeStaller) *nodeStaller = waitingfor;
1505 }
1506 return;
1507 }
1508
1509 // Don't request blocks that go further than what limited peers can provide
1510 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1511 continue;
1512 }
1513
1514 vBlocks.push_back(pindex);
1515 if (vBlocks.size() == count) {
1516 return;
1517 }
1518 }
1519 }
1520}
1521
1522} // namespace
1523
1524void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1525{
1526 uint64_t my_services{peer.m_our_services};
1527 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1528 uint64_t nonce = pnode.GetLocalNonce();
1529 const int nNodeStartingHeight{m_best_height};
1530 NodeId nodeid = pnode.GetId();
1531 CAddress addr = pnode.addr;
1532
1533 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1534 uint64_t your_services{addr.nServices};
1535
1536 const bool tx_relay{!RejectIncomingTxs(pnode)};
1537 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1538 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1539 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1540 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1541
1542 if (fLogIPs) {
1543 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1544 } else {
1545 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1546 }
1547}
1548
1549void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1550{
1551 LOCK(cs_main);
1552 CNodeState *state = State(node);
1553 if (state) state->m_last_block_announcement = time_in_seconds;
1554}
1555
1556void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1557{
1558 NodeId nodeid = node.GetId();
1559 {
1560 LOCK(cs_main); // For m_node_states
1561 m_node_states.try_emplace(m_node_states.end(), nodeid);
1562 }
1563 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1564
1566 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1567 }
1568
1569 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1570 {
1571 LOCK(m_peer_mutex);
1572 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1573 }
1574}
1575
1576void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1577{
1578 std::set<uint256> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1579
1580 for (const auto& txid : unbroadcast_txids) {
1581 CTransactionRef tx = m_mempool.get(txid);
1582
1583 if (tx != nullptr) {
1584 RelayTransaction(txid, tx->GetWitnessHash());
1585 } else {
1586 m_mempool.RemoveUnbroadcastTx(txid, true);
1587 }
1588 }
1589
1590 // Schedule next run for 10-15 minutes in the future.
1591 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1592 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1593 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1594}
1595
1596void PeerManagerImpl::FinalizeNode(const CNode& node)
1597{
1598 NodeId nodeid = node.GetId();
1599 {
1600 LOCK(cs_main);
1601 {
1602 // We remove the PeerRef from g_peer_map here, but we don't always
1603 // destruct the Peer. Sometimes another thread is still holding a
1604 // PeerRef, so the refcount is >= 1. Be careful not to do any
1605 // processing here that assumes Peer won't be changed before it's
1606 // destructed.
1607 PeerRef peer = RemovePeer(nodeid);
1608 assert(peer != nullptr);
1609 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1610 assert(m_wtxid_relay_peers >= 0);
1611 }
1612 CNodeState *state = State(nodeid);
1613 assert(state != nullptr);
1614
1615 if (state->fSyncStarted)
1616 nSyncStarted--;
1617
1618 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1619 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1620 while (range.first != range.second) {
1621 auto [node_id, list_it] = range.first->second;
1622 if (node_id != nodeid) {
1623 range.first++;
1624 } else {
1625 range.first = mapBlocksInFlight.erase(range.first);
1626 }
1627 }
1628 }
1629 {
1630 LOCK(m_tx_download_mutex);
1631 m_txdownloadman.DisconnectedPeer(nodeid);
1632 }
1633 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1634 m_num_preferred_download_peers -= state->fPreferredDownload;
1635 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1636 assert(m_peers_downloading_from >= 0);
1637 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1638 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1639
1640 m_node_states.erase(nodeid);
1641
1642 if (m_node_states.empty()) {
1643 // Do a consistency check after the last peer is removed.
1644 assert(mapBlocksInFlight.empty());
1645 assert(m_num_preferred_download_peers == 0);
1646 assert(m_peers_downloading_from == 0);
1647 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1648 assert(m_wtxid_relay_peers == 0);
1649 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1650 }
1651 } // cs_main
1652 if (node.fSuccessfullyConnected &&
1653 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1654 // Only change visible addrman state for full outbound peers. We don't
1655 // call Connected() for feeler connections since they don't have
1656 // fSuccessfullyConnected set.
1657 m_addrman.Connected(node.addr);
1658 }
1659 {
1660 LOCK(m_headers_presync_mutex);
1661 m_headers_presync_stats.erase(nodeid);
1662 }
1663 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1664}
1665
1666bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1667{
1668 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1669 return !(GetDesirableServiceFlags(services) & (~services));
1670}
1671
1672ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1673{
1674 if (services & NODE_NETWORK_LIMITED) {
1675 // Limited peers are desirable when we are close to the tip.
1676 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1678 }
1679 }
1681}
1682
1683PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1684{
1685 LOCK(m_peer_mutex);
1686 auto it = m_peer_map.find(id);
1687 return it != m_peer_map.end() ? it->second : nullptr;
1688}
1689
1690PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1691{
1692 PeerRef ret;
1693 LOCK(m_peer_mutex);
1694 auto it = m_peer_map.find(id);
1695 if (it != m_peer_map.end()) {
1696 ret = std::move(it->second);
1697 m_peer_map.erase(it);
1698 }
1699 return ret;
1700}
1701
1702bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1703{
1704 {
1705 LOCK(cs_main);
1706 const CNodeState* state = State(nodeid);
1707 if (state == nullptr)
1708 return false;
1709 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1710 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1711 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1712 if (queue.pindex)
1713 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1714 }
1715 }
1716
1717 PeerRef peer = GetPeerRef(nodeid);
1718 if (peer == nullptr) return false;
1719 stats.their_services = peer->m_their_services;
1720 stats.m_starting_height = peer->m_starting_height;
1721 // It is common for nodes with good ping times to suddenly become lagged,
1722 // due to a new block arriving or other large transfer.
1723 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1724 // since pingtime does not update until the ping is complete, which might take a while.
1725 // So, if a ping is taking an unusually long time in flight,
1726 // the caller can immediately detect that this is happening.
1727 auto ping_wait{0us};
1728 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1729 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1730 }
1731
1732 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1733 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1734 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1735 } else {
1736 stats.m_relay_txs = false;
1737 stats.m_fee_filter_received = 0;
1738 }
1739
1740 stats.m_ping_wait = ping_wait;
1741 stats.m_addr_processed = peer->m_addr_processed.load();
1742 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1743 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1744 {
1745 LOCK(peer->m_headers_sync_mutex);
1746 if (peer->m_headers_sync) {
1747 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1748 }
1749 }
1750 stats.time_offset = peer->m_time_offset;
1751
1752 return true;
1753}
1754
1755std::vector<TxOrphanage::OrphanTxBase> PeerManagerImpl::GetOrphanTransactions()
1756{
1757 LOCK(m_tx_download_mutex);
1758 return m_txdownloadman.GetOrphanTransactions();
1759}
1760
1762{
1763 return PeerManagerInfo{
1764 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1765 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1766 };
1767}
1768
1769void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1770{
1771 if (m_opts.max_extra_txs <= 0)
1772 return;
1773 if (!vExtraTxnForCompact.size())
1774 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1775 vExtraTxnForCompact[vExtraTxnForCompactIt] = tx;
1776 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1777}
1778
1779void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1780{
1781 LOCK(peer.m_misbehavior_mutex);
1782
1783 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1784 peer.m_should_discourage = true;
1785 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1786 TRACEPOINT(net, misbehaving_connection,
1787 peer.m_id,
1788 message.c_str()
1789 );
1790}
1791
1792void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1793 bool via_compact_block, const std::string& message)
1794{
1795 PeerRef peer{GetPeerRef(nodeid)};
1796 switch (state.GetResult()) {
1798 break;
1800 // We didn't try to process the block because the header chain may have
1801 // too little work.
1802 break;
1803 // The node is providing invalid data:
1806 if (!via_compact_block) {
1807 if (peer) Misbehaving(*peer, message);
1808 return;
1809 }
1810 break;
1812 {
1813 // Discourage outbound (but not inbound) peers if on an invalid chain.
1814 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1815 if (peer && !via_compact_block && !peer->m_is_inbound) {
1816 if (peer) Misbehaving(*peer, message);
1817 return;
1818 }
1819 break;
1820 }
1823 if (peer) Misbehaving(*peer, message);
1824 return;
1825 // Conflicting (but not necessarily invalid) data or different policy:
1827 if (peer) Misbehaving(*peer, message);
1828 return;
1830 break;
1831 }
1832 if (message != "") {
1833 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1834 }
1835}
1836
1837void PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState& state)
1838{
1839 PeerRef peer{GetPeerRef(nodeid)};
1840 switch (state.GetResult()) {
1842 break;
1843 // The node is providing invalid data:
1845 if (peer) Misbehaving(*peer, "");
1846 return;
1847 // Conflicting (but not necessarily invalid) data or different policy:
1859 break;
1860 }
1861}
1862
1863bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1864{
1866 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1867 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1868 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1869 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1870}
1871
1872std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1873{
1874 if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1875
1876 // Ensure this peer exists and hasn't been disconnected
1877 PeerRef peer = GetPeerRef(peer_id);
1878 if (peer == nullptr) return "Peer does not exist";
1879
1880 // Ignore pre-segwit peers
1881 if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1882
1883 LOCK(cs_main);
1884
1885 // Forget about all prior requests
1886 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1887
1888 // Mark block as in-flight
1889 if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1890
1891 // Construct message to request the block
1892 const uint256& hash{block_index.GetBlockHash()};
1893 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1894
1895 // Send block request message to the peer
1896 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1897 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1898 return true;
1899 });
1900
1901 if (!success) return "Peer not fully connected";
1902
1903 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1904 hash.ToString(), peer_id);
1905 return std::nullopt;
1906}
1907
1908std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1909 BanMan* banman, ChainstateManager& chainman,
1910 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1911{
1912 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1913}
1914
1915PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1916 BanMan* banman, ChainstateManager& chainman,
1917 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1918 : m_rng{opts.deterministic_rng},
1919 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1920 m_chainparams(chainman.GetParams()),
1921 m_connman(connman),
1922 m_addrman(addrman),
1923 m_banman(banman),
1924 m_chainman(chainman),
1925 m_mempool(pool),
1926 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.max_orphan_txs, opts.deterministic_rng}),
1927 m_warnings{warnings},
1928 m_opts{opts}
1929{
1930 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1931 // This argument can go away after Erlay support is complete.
1932 if (opts.reconcile_txs) {
1933 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1934 }
1935}
1936
1937void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1938{
1939 // Stale tip checking and peer eviction are on two different timers, but we
1940 // don't want them to get out of sync due to drift in the scheduler, so we
1941 // combine them in one function and schedule at the quicker (peer-eviction)
1942 // timer.
1943 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1944 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1945
1946 // schedule next run for 10-15 minutes in the future
1947 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1948 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1949}
1950
1951void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1952{
1953 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1954 // m_tx_download_mutex waits on the mempool mutex.
1955 AssertLockNotHeld(m_mempool.cs);
1956 AssertLockNotHeld(m_tx_download_mutex);
1957
1958 if (!is_ibd) {
1959 LOCK(m_tx_download_mutex);
1960 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1961 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1962 // see them again.
1963 m_txdownloadman.ActiveTipChange();
1964 }
1965}
1966
1973void PeerManagerImpl::BlockConnected(
1974 ChainstateRole role,
1975 const std::shared_ptr<const CBlock>& pblock,
1976 const CBlockIndex* pindex)
1977{
1978 // Update this for all chainstate roles so that we don't mistakenly see peers
1979 // helping us do background IBD as having a stale tip.
1980 m_last_tip_update = GetTime<std::chrono::seconds>();
1981
1982 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1983 auto stalling_timeout = m_block_stalling_timeout.load();
1984 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1985 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1986 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1987 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1988 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1989 }
1990 }
1991
1992 // The following task can be skipped since we don't maintain a mempool for
1993 // the ibd/background chainstate.
1994 if (role == ChainstateRole::BACKGROUND) {
1995 return;
1996 }
1997 LOCK(m_tx_download_mutex);
1998 m_txdownloadman.BlockConnected(pblock);
1999}
2000
2001void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
2002{
2003 LOCK(m_tx_download_mutex);
2004 m_txdownloadman.BlockDisconnected();
2005}
2006
2011void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
2012{
2013 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
2014
2015 LOCK(cs_main);
2016
2017 if (pindex->nHeight <= m_highest_fast_announce)
2018 return;
2019 m_highest_fast_announce = pindex->nHeight;
2020
2021 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
2022
2023 uint256 hashBlock(pblock->GetHash());
2024 const std::shared_future<CSerializedNetMsg> lazy_ser{
2025 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2026
2027 {
2028 auto most_recent_block_txs = std::make_unique<std::map<uint256, CTransactionRef>>();
2029 for (const auto& tx : pblock->vtx) {
2030 most_recent_block_txs->emplace(tx->GetHash(), tx);
2031 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2032 }
2033
2034 LOCK(m_most_recent_block_mutex);
2035 m_most_recent_block_hash = hashBlock;
2036 m_most_recent_block = pblock;
2037 m_most_recent_compact_block = pcmpctblock;
2038 m_most_recent_block_txs = std::move(most_recent_block_txs);
2039 }
2040
2041 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2043
2045 return;
2046 ProcessBlockAvailability(pnode->GetId());
2047 CNodeState &state = *State(pnode->GetId());
2048 // If the peer has, or we announced to them the previous block already,
2049 // but we don't think they have this one, go ahead and announce it
2050 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2051
2052 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2053 hashBlock.ToString(), pnode->GetId());
2054
2055 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2056 PushMessage(*pnode, ser_cmpctblock.Copy());
2057 state.pindexBestHeaderSent = pindex;
2058 }
2059 });
2060}
2061
2066void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2067{
2068 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2069
2070 // Don't relay inventory during initial block download.
2071 if (fInitialDownload) return;
2072
2073 // Find the hashes of all blocks that weren't previously in the best chain.
2074 std::vector<uint256> vHashes;
2075 const CBlockIndex *pindexToAnnounce = pindexNew;
2076 while (pindexToAnnounce != pindexFork) {
2077 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2078 pindexToAnnounce = pindexToAnnounce->pprev;
2079 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2080 // Limit announcements in case of a huge reorganization.
2081 // Rely on the peer's synchronization mechanism in that case.
2082 break;
2083 }
2084 }
2085
2086 {
2087 LOCK(m_peer_mutex);
2088 for (auto& it : m_peer_map) {
2089 Peer& peer = *it.second;
2090 LOCK(peer.m_block_inv_mutex);
2091 for (const uint256& hash : vHashes | std::views::reverse) {
2092 peer.m_blocks_for_headers_relay.push_back(hash);
2093 }
2094 }
2095 }
2096
2097 m_connman.WakeMessageHandler();
2098}
2099
2104void PeerManagerImpl::BlockChecked(const CBlock& block, const BlockValidationState& state)
2105{
2106 LOCK(cs_main);
2107
2108 const uint256 hash(block.GetHash());
2109 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2110
2111 // If the block failed validation, we know where it came from and we're still connected
2112 // to that peer, maybe punish.
2113 if (state.IsInvalid() &&
2114 it != mapBlockSource.end() &&
2115 State(it->second.first)) {
2116 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2117 }
2118 // Check that:
2119 // 1. The block is valid
2120 // 2. We're not in initial block download
2121 // 3. This is currently the best block we're aware of. We haven't updated
2122 // the tip yet so we have no way to check this directly here. Instead we
2123 // just check that there are currently no other blocks in flight.
2124 else if (state.IsValid() &&
2125 !m_chainman.IsInitialBlockDownload() &&
2126 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2127 if (it != mapBlockSource.end()) {
2128 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2129 }
2130 }
2131 if (it != mapBlockSource.end())
2132 mapBlockSource.erase(it);
2133}
2134
2136//
2137// Messages
2138//
2139
2140bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2141{
2142 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2143}
2144
2145void PeerManagerImpl::SendPings()
2146{
2147 LOCK(m_peer_mutex);
2148 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2149}
2150
2151void PeerManagerImpl::RelayTransaction(const uint256& txid, const uint256& wtxid)
2152{
2153 LOCK(m_peer_mutex);
2154 for(auto& it : m_peer_map) {
2155 Peer& peer = *it.second;
2156 auto tx_relay = peer.GetTxRelay();
2157 if (!tx_relay) continue;
2158
2159 LOCK(tx_relay->m_tx_inventory_mutex);
2160 // Only queue transactions for announcement once the version handshake
2161 // is completed. The time of arrival for these transactions is
2162 // otherwise at risk of leaking to a spy, if the spy is able to
2163 // distinguish transactions received during the handshake from the rest
2164 // in the announcement.
2165 if (tx_relay->m_next_inv_send_time == 0s) continue;
2166
2167 const uint256& hash{peer.m_wtxid_relay ? wtxid : txid};
2168 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2169 tx_relay->m_tx_inventory_to_send.insert(hash);
2170 }
2171 };
2172}
2173
2174void PeerManagerImpl::RelayAddress(NodeId originator,
2175 const CAddress& addr,
2176 bool fReachable)
2177{
2178 // We choose the same nodes within a given 24h window (if the list of connected
2179 // nodes does not change) and we don't relay to nodes that already know an
2180 // address. So within 24h we will likely relay a given address once. This is to
2181 // prevent a peer from unjustly giving their address better propagation by sending
2182 // it to us repeatedly.
2183
2184 if (!fReachable && !addr.IsRelayable()) return;
2185
2186 // Relay to a limited number of other nodes
2187 // Use deterministic randomness to send to the same nodes for 24 hours
2188 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2189 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2190 const auto current_time{GetTime<std::chrono::seconds>()};
2191 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2192 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2194 .Write(hash_addr)
2195 .Write(time_addr)};
2196
2197 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2198 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2199
2200 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2201 assert(nRelayNodes <= best.size());
2202
2203 LOCK(m_peer_mutex);
2204
2205 for (auto& [id, peer] : m_peer_map) {
2206 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2207 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2208 for (unsigned int i = 0; i < nRelayNodes; i++) {
2209 if (hashKey > best[i].first) {
2210 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2211 best[i] = std::make_pair(hashKey, peer.get());
2212 break;
2213 }
2214 }
2215 }
2216 };
2217
2218 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2219 PushAddress(*best[i].second, addr);
2220 }
2221}
2222
2223void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2224{
2225 std::shared_ptr<const CBlock> a_recent_block;
2226 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2227 {
2228 LOCK(m_most_recent_block_mutex);
2229 a_recent_block = m_most_recent_block;
2230 a_recent_compact_block = m_most_recent_compact_block;
2231 }
2232
2233 bool need_activate_chain = false;
2234 {
2235 LOCK(cs_main);
2236 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2237 if (pindex) {
2238 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2239 pindex->IsValid(BLOCK_VALID_TREE)) {
2240 // If we have the block and all of its parents, but have not yet validated it,
2241 // we might be in the middle of connecting it (ie in the unlock of cs_main
2242 // before ActivateBestChain but after AcceptBlock).
2243 // In this case, we need to run ActivateBestChain prior to checking the relay
2244 // conditions below.
2245 need_activate_chain = true;
2246 }
2247 }
2248 } // release cs_main before calling ActivateBestChain
2249 if (need_activate_chain) {
2251 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2252 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2253 }
2254 }
2255
2256 const CBlockIndex* pindex{nullptr};
2257 const CBlockIndex* tip{nullptr};
2258 bool can_direct_fetch{false};
2259 FlatFilePos block_pos{};
2260 {
2261 LOCK(cs_main);
2262 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2263 if (!pindex) {
2264 return;
2265 }
2266 if (!BlockRequestAllowed(pindex)) {
2267 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2268 return;
2269 }
2270 // disconnect node in case we have reached the outbound limit for serving historical blocks
2271 if (m_connman.OutboundTargetReached(true) &&
2272 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2273 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2274 ) {
2275 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2276 pfrom.fDisconnect = true;
2277 return;
2278 }
2279 tip = m_chainman.ActiveChain().Tip();
2280 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2282 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2283 )) {
2284 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2285 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2286 pfrom.fDisconnect = true;
2287 return;
2288 }
2289 // Pruned nodes may have deleted the block, so check whether
2290 // it's available before trying to send.
2291 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2292 return;
2293 }
2294 can_direct_fetch = CanDirectFetch();
2295 block_pos = pindex->GetBlockPos();
2296 }
2297
2298 std::shared_ptr<const CBlock> pblock;
2299 if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) {
2300 pblock = a_recent_block;
2301 } else if (inv.IsMsgWitnessBlk()) {
2302 // Fast-path: in this case it is possible to serve the block directly from disk,
2303 // as the network format matches the format on disk
2304 std::vector<uint8_t> block_data;
2305 if (!m_chainman.m_blockman.ReadRawBlock(block_data, block_pos)) {
2306 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2307 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2308 } else {
2309 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2310 }
2311 pfrom.fDisconnect = true;
2312 return;
2313 }
2314 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{block_data});
2315 // Don't set pblock as we've sent the block
2316 } else {
2317 // Send block from disk
2318 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2319 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos)) {
2320 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2321 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2322 } else {
2323 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2324 }
2325 pfrom.fDisconnect = true;
2326 return;
2327 }
2328 pblock = pblockRead;
2329 }
2330 if (pblock) {
2331 if (inv.IsMsgBlk()) {
2332 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2333 } else if (inv.IsMsgWitnessBlk()) {
2334 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2335 } else if (inv.IsMsgFilteredBlk()) {
2336 bool sendMerkleBlock = false;
2337 CMerkleBlock merkleBlock;
2338 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2339 LOCK(tx_relay->m_bloom_filter_mutex);
2340 if (tx_relay->m_bloom_filter) {
2341 sendMerkleBlock = true;
2342 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2343 }
2344 }
2345 if (sendMerkleBlock) {
2346 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2347 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2348 // This avoids hurting performance by pointlessly requiring a round-trip
2349 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2350 // they must either disconnect and retry or request the full block.
2351 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2352 // however we MUST always provide at least what the remote peer needs
2353 typedef std::pair<unsigned int, uint256> PairType;
2354 for (PairType& pair : merkleBlock.vMatchedTxn)
2355 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[pair.first]));
2356 }
2357 // else
2358 // no response
2359 } else if (inv.IsMsgCmpctBlk()) {
2360 // If a peer is asking for old blocks, we're almost guaranteed
2361 // they won't have a useful mempool to match against a compact block,
2362 // and we don't feel like constructing the object for them, so
2363 // instead we respond with the full, non-compact block.
2364 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2365 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) {
2366 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2367 } else {
2368 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2369 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2370 }
2371 } else {
2372 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2373 }
2374 }
2375 }
2376
2377 {
2378 LOCK(peer.m_block_inv_mutex);
2379 // Trigger the peer node to send a getblocks request for the next batch of inventory
2380 if (inv.hash == peer.m_continuation_block) {
2381 // Send immediately. This must send even if redundant,
2382 // and we want it right after the last block so they don't
2383 // wait for other stuff first.
2384 std::vector<CInv> vInv;
2385 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2386 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2387 peer.m_continuation_block.SetNull();
2388 }
2389 }
2390}
2391
2392CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2393{
2394 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2395 auto txinfo = m_mempool.info_for_relay(gtxid, tx_relay.m_last_inv_sequence);
2396 if (txinfo.tx) {
2397 return std::move(txinfo.tx);
2398 }
2399
2400 // Or it might be from the most recent block
2401 {
2402 LOCK(m_most_recent_block_mutex);
2403 if (m_most_recent_block_txs != nullptr) {
2404 auto it = m_most_recent_block_txs->find(gtxid.GetHash());
2405 if (it != m_most_recent_block_txs->end()) return it->second;
2406 }
2407 }
2408
2409 return {};
2410}
2411
2412void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2413{
2415
2416 auto tx_relay = peer.GetTxRelay();
2417
2418 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2419 std::vector<CInv> vNotFound;
2420
2421 // Process as many TX items from the front of the getdata queue as
2422 // possible, since they're common and it's efficient to batch process
2423 // them.
2424 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2425 if (interruptMsgProc) return;
2426 // The send buffer provides backpressure. If there's no space in
2427 // the buffer, pause processing until the next call.
2428 if (pfrom.fPauseSend) break;
2429
2430 const CInv &inv = *it++;
2431
2432 if (tx_relay == nullptr) {
2433 // Ignore GETDATA requests for transactions from block-relay-only
2434 // peers and peers that asked us not to announce transactions.
2435 continue;
2436 }
2437
2438 CTransactionRef tx = FindTxForGetData(*tx_relay, ToGenTxid(inv));
2439 if (tx) {
2440 // WTX and WITNESS_TX imply we serialize with witness
2441 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2442 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2443 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2444 } else {
2445 vNotFound.push_back(inv);
2446 }
2447 }
2448
2449 // Only process one BLOCK item per call, since they're uncommon and can be
2450 // expensive to process.
2451 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2452 const CInv &inv = *it++;
2453 if (inv.IsGenBlkMsg()) {
2454 ProcessGetBlockData(pfrom, peer, inv);
2455 }
2456 // else: If the first item on the queue is an unknown type, we erase it
2457 // and continue processing the queue on the next call.
2458 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2459 // result in never making progress and this thread using 100% allocated CPU. See
2460 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2461 }
2462
2463 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2464
2465 if (!vNotFound.empty()) {
2466 // Let the peer know that we didn't find what it asked for, so it doesn't
2467 // have to wait around forever.
2468 // SPV clients care about this message: it's needed when they are
2469 // recursively walking the dependencies of relevant unconfirmed
2470 // transactions. SPV clients want to do that because they want to know
2471 // about (and store and rebroadcast and risk analyze) the dependencies
2472 // of transactions relevant to them, without having to download the
2473 // entire memory pool.
2474 // Also, other nodes can use these messages to automatically request a
2475 // transaction from some other peer that announced it, and stop
2476 // waiting for us to respond.
2477 // In normal operation, we often send NOTFOUND messages for parents of
2478 // transactions that we relay; if a peer is missing a parent, they may
2479 // assume we have them and request the parents from us.
2480 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2481 }
2482}
2483
2484uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2485{
2486 uint32_t nFetchFlags = 0;
2487 if (CanServeWitnesses(peer)) {
2488 nFetchFlags |= MSG_WITNESS_FLAG;
2489 }
2490 return nFetchFlags;
2491}
2492
2493void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2494{
2495 BlockTransactions resp(req);
2496 for (size_t i = 0; i < req.indexes.size(); i++) {
2497 if (req.indexes[i] >= block.vtx.size()) {
2498 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2499 return;
2500 }
2501 resp.txn[i] = block.vtx[req.indexes[i]];
2502 }
2503
2504 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2505}
2506
2507bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2508{
2509 // Do these headers have proof-of-work matching what's claimed?
2510 if (!HasValidProofOfWork(headers, consensusParams)) {
2511 Misbehaving(peer, "header with invalid proof of work");
2512 return false;
2513 }
2514
2515 // Are these headers connected to each other?
2516 if (!CheckHeadersAreContinuous(headers)) {
2517 Misbehaving(peer, "non-continuous headers sequence");
2518 return false;
2519 }
2520 return true;
2521}
2522
2523arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2524{
2525 arith_uint256 near_chaintip_work = 0;
2526 LOCK(cs_main);
2527 if (m_chainman.ActiveChain().Tip() != nullptr) {
2528 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2529 // Use a 144 block buffer, so that we'll accept headers that fork from
2530 // near our tip.
2531 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2532 }
2533 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2534}
2535
2542void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2543 const std::vector<CBlockHeader>& headers)
2544{
2545 // Try to fill in the missing headers.
2546 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2547 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2548 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2549 headers[0].GetHash().ToString(),
2550 headers[0].hashPrevBlock.ToString(),
2551 best_header->nHeight,
2552 pfrom.GetId());
2553 }
2554
2555 // Set hashLastUnknownBlock for this peer, so that if we
2556 // eventually get the headers - even from a different peer -
2557 // we can use this peer to download.
2558 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2559}
2560
2561bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2562{
2563 uint256 hashLastBlock;
2564 for (const CBlockHeader& header : headers) {
2565 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2566 return false;
2567 }
2568 hashLastBlock = header.GetHash();
2569 }
2570 return true;
2571}
2572
2573bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2574{
2575 if (peer.m_headers_sync) {
2576 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2577 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2578 if (result.success) peer.m_last_getheaders_timestamp = {};
2579 if (result.request_more) {
2580 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2581 // If we were instructed to ask for a locator, it should not be empty.
2582 Assume(!locator.vHave.empty());
2583 // We can only be instructed to request more if processing was successful.
2584 Assume(result.success);
2585 if (!locator.vHave.empty()) {
2586 // It should be impossible for the getheaders request to fail,
2587 // because we just cleared the last getheaders timestamp.
2588 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2589 Assume(sent_getheaders);
2590 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2591 locator.vHave.front().ToString(), pfrom.GetId());
2592 }
2593 }
2594
2595 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2596 peer.m_headers_sync.reset(nullptr);
2597
2598 // Delete this peer's entry in m_headers_presync_stats.
2599 // If this is m_headers_presync_bestpeer, it will be replaced later
2600 // by the next peer that triggers the else{} branch below.
2601 LOCK(m_headers_presync_mutex);
2602 m_headers_presync_stats.erase(pfrom.GetId());
2603 } else {
2604 // Build statistics for this peer's sync.
2605 HeadersPresyncStats stats;
2606 stats.first = peer.m_headers_sync->GetPresyncWork();
2607 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2608 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2609 peer.m_headers_sync->GetPresyncTime()};
2610 }
2611
2612 // Update statistics in stats.
2613 LOCK(m_headers_presync_mutex);
2614 m_headers_presync_stats[pfrom.GetId()] = stats;
2615 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2616 bool best_updated = false;
2617 if (best_it == m_headers_presync_stats.end()) {
2618 // If the cached best peer is outdated, iterate over all remaining ones (including
2619 // newly updated one) to find the best one.
2620 NodeId peer_best{-1};
2621 const HeadersPresyncStats* stat_best{nullptr};
2622 for (const auto& [peer, stat] : m_headers_presync_stats) {
2623 if (!stat_best || stat > *stat_best) {
2624 peer_best = peer;
2625 stat_best = &stat;
2626 }
2627 }
2628 m_headers_presync_bestpeer = peer_best;
2629 best_updated = (peer_best == pfrom.GetId());
2630 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2631 // pfrom was and remains the best peer, or pfrom just became best.
2632 m_headers_presync_bestpeer = pfrom.GetId();
2633 best_updated = true;
2634 }
2635 if (best_updated && stats.second.has_value()) {
2636 // If the best peer updated, and it is in its first phase, signal.
2637 m_headers_presync_should_signal = true;
2638 }
2639 }
2640
2641 if (result.success) {
2642 // We only overwrite the headers passed in if processing was
2643 // successful.
2644 headers.swap(result.pow_validated_headers);
2645 }
2646
2647 return result.success;
2648 }
2649 // Either we didn't have a sync in progress, or something went wrong
2650 // processing these headers, or we are returning headers to the caller to
2651 // process.
2652 return false;
2653}
2654
2655bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2656{
2657 // Calculate the claimed total work on this chain.
2658 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2659
2660 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2661 // before we'll store it)
2662 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2663
2664 // Avoid DoS via low-difficulty-headers by only processing if the headers
2665 // are part of a chain with sufficient work.
2666 if (total_work < minimum_chain_work) {
2667 // Only try to sync with this peer if their headers message was full;
2668 // otherwise they don't have more headers after this so no point in
2669 // trying to sync their too-little-work chain.
2670 if (headers.size() == m_opts.max_headers_result) {
2671 // Note: we could advance to the last header in this set that is
2672 // known to us, rather than starting at the first header (which we
2673 // may already have); however this is unlikely to matter much since
2674 // ProcessHeadersMessage() already handles the case where all
2675 // headers in a received message are already known and are
2676 // ancestors of m_best_header or chainActive.Tip(), by skipping
2677 // this logic in that case. So even if the first header in this set
2678 // of headers is known, some header in this set must be new, so
2679 // advancing to the first unknown header would be a small effect.
2680 LOCK(peer.m_headers_sync_mutex);
2681 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2682 chain_start_header, minimum_chain_work));
2683
2684 // Now a HeadersSyncState object for tracking this synchronization
2685 // is created, process the headers using it as normal. Failures are
2686 // handled inside of IsContinuationOfLowWorkHeadersSync.
2687 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2688 } else {
2689 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2690 }
2691
2692 // The peer has not yet given us a chain that meets our work threshold,
2693 // so we want to prevent further processing of the headers in any case.
2694 headers = {};
2695 return true;
2696 }
2697
2698 return false;
2699}
2700
2701bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2702{
2703 if (header == nullptr) {
2704 return false;
2705 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2706 return true;
2707 } else if (m_chainman.ActiveChain().Contains(header)) {
2708 return true;
2709 }
2710 return false;
2711}
2712
2713bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2714{
2715 const auto current_time = NodeClock::now();
2716
2717 // Only allow a new getheaders message to go out if we don't have a recent
2718 // one already in-flight
2719 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2720 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2721 peer.m_last_getheaders_timestamp = current_time;
2722 return true;
2723 }
2724 return false;
2725}
2726
2727/*
2728 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2729 * We require that the given tip have at least as much work as our tip, and for
2730 * our current tip to be "close to synced" (see CanDirectFetch()).
2731 */
2732void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2733{
2734 LOCK(cs_main);
2735 CNodeState *nodestate = State(pfrom.GetId());
2736
2737 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2738 std::vector<const CBlockIndex*> vToFetch;
2739 const CBlockIndex* pindexWalk{&last_header};
2740 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2741 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2742 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2743 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2744 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2745 // We don't have this block, and it's not yet in flight.
2746 vToFetch.push_back(pindexWalk);
2747 }
2748 pindexWalk = pindexWalk->pprev;
2749 }
2750 // If pindexWalk still isn't on our main chain, we're looking at a
2751 // very large reorg at a time we think we're close to caught up to
2752 // the main chain -- this shouldn't really happen. Bail out on the
2753 // direct fetch and rely on parallel download instead.
2754 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2755 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2756 last_header.GetBlockHash().ToString(),
2757 last_header.nHeight);
2758 } else {
2759 std::vector<CInv> vGetData;
2760 // Download as much as possible, from earliest to latest.
2761 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2762 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2763 // Can't download any more from this peer
2764 break;
2765 }
2766 uint32_t nFetchFlags = GetFetchFlags(peer);
2767 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2768 BlockRequested(pfrom.GetId(), *pindex);
2769 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2770 pindex->GetBlockHash().ToString(), pfrom.GetId());
2771 }
2772 if (vGetData.size() > 1) {
2773 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2774 last_header.GetBlockHash().ToString(),
2775 last_header.nHeight);
2776 }
2777 if (vGetData.size() > 0) {
2778 if (!m_opts.ignore_incoming_txs &&
2779 nodestate->m_provides_cmpctblocks &&
2780 vGetData.size() == 1 &&
2781 mapBlocksInFlight.size() == 1 &&
2782 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2783 // In any case, we want to download using a compact block, not a regular one
2784 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2785 }
2786 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2787 }
2788 }
2789 }
2790}
2791
2797void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2798 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2799{
2800 LOCK(cs_main);
2801 CNodeState *nodestate = State(pfrom.GetId());
2802
2803 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2804
2805 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2806 // because it is set in UpdateBlockAvailability. Some nullptr checks
2807 // are still present, however, as belt-and-suspenders.
2808
2809 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2810 nodestate->m_last_block_announcement = GetTime();
2811 }
2812
2813 // If we're in IBD, we want outbound peers that will serve us a useful
2814 // chain. Disconnect peers that are on chains with insufficient work.
2815 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2816 // If the peer has no more headers to give us, then we know we have
2817 // their tip.
2818 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2819 // This peer has too little work on their headers chain to help
2820 // us sync -- disconnect if it is an outbound disconnection
2821 // candidate.
2822 // Note: We compare their tip to the minimum chain work (rather than
2823 // m_chainman.ActiveChain().Tip()) because we won't start block download
2824 // until we have a headers chain that has at least
2825 // the minimum chain work, even if a peer has a chain past our tip,
2826 // as an anti-DoS measure.
2827 if (pfrom.IsOutboundOrBlockRelayConn()) {
2828 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2829 pfrom.fDisconnect = true;
2830 }
2831 }
2832 }
2833
2834 // If this is an outbound full-relay peer, check to see if we should protect
2835 // it from the bad/lagging chain logic.
2836 // Note that outbound block-relay peers are excluded from this protection, and
2837 // thus always subject to eviction under the bad/lagging chain logic.
2838 // See ChainSyncTimeoutState.
2839 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2840 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2841 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2842 nodestate->m_chain_sync.m_protect = true;
2843 ++m_outbound_peers_with_protect_from_disconnect;
2844 }
2845 }
2846}
2847
2848void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2849 std::vector<CBlockHeader>&& headers,
2850 bool via_compact_block)
2851{
2852 size_t nCount = headers.size();
2853
2854 if (nCount == 0) {
2855 // Nothing interesting. Stop asking this peers for more headers.
2856 // If we were in the middle of headers sync, receiving an empty headers
2857 // message suggests that the peer suddenly has nothing to give us
2858 // (perhaps it reorged to our chain). Clear download state for this peer.
2859 LOCK(peer.m_headers_sync_mutex);
2860 if (peer.m_headers_sync) {
2861 peer.m_headers_sync.reset(nullptr);
2862 LOCK(m_headers_presync_mutex);
2863 m_headers_presync_stats.erase(pfrom.GetId());
2864 }
2865 // A headers message with no headers cannot be an announcement, so assume
2866 // it is a response to our last getheaders request, if there is one.
2867 peer.m_last_getheaders_timestamp = {};
2868 return;
2869 }
2870
2871 // Before we do any processing, make sure these pass basic sanity checks.
2872 // We'll rely on headers having valid proof-of-work further down, as an
2873 // anti-DoS criteria (note: this check is required before passing any
2874 // headers into HeadersSyncState).
2875 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2876 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2877 // just return. (Note that even if a header is announced via compact
2878 // block, the header itself should be valid, so this type of error can
2879 // always be punished.)
2880 return;
2881 }
2882
2883 const CBlockIndex *pindexLast = nullptr;
2884
2885 // We'll set already_validated_work to true if these headers are
2886 // successfully processed as part of a low-work headers sync in progress
2887 // (either in PRESYNC or REDOWNLOAD phase).
2888 // If true, this will mean that any headers returned to us (ie during
2889 // REDOWNLOAD) can be validated without further anti-DoS checks.
2890 bool already_validated_work = false;
2891
2892 // If we're in the middle of headers sync, let it do its magic.
2893 bool have_headers_sync = false;
2894 {
2895 LOCK(peer.m_headers_sync_mutex);
2896
2897 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2898
2899 // The headers we passed in may have been:
2900 // - untouched, perhaps if no headers-sync was in progress, or some
2901 // failure occurred
2902 // - erased, such as if the headers were successfully processed and no
2903 // additional headers processing needs to take place (such as if we
2904 // are still in PRESYNC)
2905 // - replaced with headers that are now ready for validation, such as
2906 // during the REDOWNLOAD phase of a low-work headers sync.
2907 // So just check whether we still have headers that we need to process,
2908 // or not.
2909 if (headers.empty()) {
2910 return;
2911 }
2912
2913 have_headers_sync = !!peer.m_headers_sync;
2914 }
2915
2916 // Do these headers connect to something in our block index?
2917 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2918 bool headers_connect_blockindex{chain_start_header != nullptr};
2919
2920 if (!headers_connect_blockindex) {
2921 // This could be a BIP 130 block announcement, use
2922 // special logic for handling headers that don't connect, as this
2923 // could be benign.
2924 HandleUnconnectingHeaders(pfrom, peer, headers);
2925 return;
2926 }
2927
2928 // If headers connect, assume that this is in response to any outstanding getheaders
2929 // request we may have sent, and clear out the time of our last request. Non-connecting
2930 // headers cannot be a response to a getheaders request.
2931 peer.m_last_getheaders_timestamp = {};
2932
2933 // If the headers we received are already in memory and an ancestor of
2934 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2935 // use any more memory (and we are not leaking information that could be
2936 // used to fingerprint us).
2937 const CBlockIndex *last_received_header{nullptr};
2938 {
2939 LOCK(cs_main);
2940 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2941 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2942 already_validated_work = true;
2943 }
2944 }
2945
2946 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2947 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2948 // on startup).
2950 already_validated_work = true;
2951 }
2952
2953 // At this point, the headers connect to something in our block index.
2954 // Do anti-DoS checks to determine if we should process or store for later
2955 // processing.
2956 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2957 chain_start_header, headers)) {
2958 // If we successfully started a low-work headers sync, then there
2959 // should be no headers to process any further.
2960 Assume(headers.empty());
2961 return;
2962 }
2963
2964 // At this point, we have a set of headers with sufficient work on them
2965 // which can be processed.
2966
2967 // If we don't have the last header, then this peer will have given us
2968 // something new (if these headers are valid).
2969 bool received_new_header{last_received_header == nullptr};
2970
2971 // Now process all the headers.
2973 if (!m_chainman.ProcessNewBlockHeaders(headers, /*min_pow_checked=*/true, state, &pindexLast)) {
2974 if (state.IsInvalid()) {
2975 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2976 return;
2977 }
2978 }
2979 assert(pindexLast);
2980
2981 // Consider fetching more headers if we are not using our headers-sync mechanism.
2982 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2983 // Headers message had its maximum size; the peer may have more headers.
2984 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2985 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2986 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2987 }
2988 }
2989
2990 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2991
2992 // Consider immediately downloading blocks.
2993 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2994
2995 return;
2996}
2997
2998std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2999 bool first_time_failure)
3000{
3001 AssertLockNotHeld(m_peer_mutex);
3002 AssertLockHeld(g_msgproc_mutex);
3003 AssertLockHeld(m_tx_download_mutex);
3004
3005 PeerRef peer{GetPeerRef(nodeid)};
3006
3007 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3008 ptx->GetHash().ToString(),
3009 ptx->GetWitnessHash().ToString(),
3010 nodeid,
3011 state.ToString());
3012
3013 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
3014
3015 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
3016 AddToCompactExtraTransactions(ptx);
3017 }
3018 for (const Txid& parent_txid : unique_parents) {
3019 if (peer) AddKnownTx(*peer, parent_txid);
3020 }
3021
3022 MaybePunishNodeForTx(nodeid, state);
3023
3024 return package_to_validate;
3025}
3026
3027void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3028{
3029 AssertLockNotHeld(m_peer_mutex);
3030 AssertLockHeld(g_msgproc_mutex);
3031 AssertLockHeld(m_tx_download_mutex);
3032
3033 m_txdownloadman.MempoolAcceptedTx(tx);
3034
3035 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3036 nodeid,
3037 tx->GetHash().ToString(),
3038 tx->GetWitnessHash().ToString(),
3039 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3040
3041 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3042
3043 for (const CTransactionRef& removedTx : replaced_transactions) {
3044 AddToCompactExtraTransactions(removedTx);
3045 }
3046}
3047
3048void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3049{
3050 AssertLockNotHeld(m_peer_mutex);
3051 AssertLockHeld(g_msgproc_mutex);
3052 AssertLockHeld(m_tx_download_mutex);
3053
3054 const auto& package = package_to_validate.m_txns;
3055 const auto& senders = package_to_validate.m_senders;
3056
3057 if (package_result.m_state.IsInvalid()) {
3058 m_txdownloadman.MempoolRejectedPackage(package);
3059 }
3060 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3061 if (!Assume(package.size() == 2)) return;
3062
3063 // Iterate backwards to erase in-package descendants from the orphanage before they become
3064 // relevant in AddChildrenToWorkSet.
3065 auto package_iter = package.rbegin();
3066 auto senders_iter = senders.rbegin();
3067 while (package_iter != package.rend()) {
3068 const auto& tx = *package_iter;
3069 const NodeId nodeid = *senders_iter;
3070 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3071
3072 // It is not guaranteed that a result exists for every transaction.
3073 if (it_result != package_result.m_tx_results.end()) {
3074 const auto& tx_result = it_result->second;
3075 switch (tx_result.m_result_type) {
3077 {
3078 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3079 break;
3080 }
3083 {
3084 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3085 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3086 // This should be updated if package submission is ever used for transactions
3087 // that haven't already been validated before.
3088 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3089 break;
3090 }
3092 {
3093 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3094 Assume(false);
3095 break;
3096 }
3097 }
3098 }
3099 package_iter++;
3100 senders_iter++;
3101 }
3102}
3103
3104// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3105// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3106bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3107{
3108 AssertLockHeld(g_msgproc_mutex);
3109 LOCK2(::cs_main, m_tx_download_mutex);
3110
3111 CTransactionRef porphanTx = nullptr;
3112
3113 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3114 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3115 const TxValidationState& state = result.m_state;
3116 const Txid& orphanHash = porphanTx->GetHash();
3117 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3118
3120 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3121 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3122 return true;
3123 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3124 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3125 orphanHash.ToString(),
3126 orphan_wtxid.ToString(),
3127 peer.m_id,
3128 state.ToString());
3129
3130 if (Assume(state.IsInvalid() &&
3134 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3135 }
3136 return true;
3137 }
3138 }
3139
3140 return false;
3141}
3142
3143bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3144 BlockFilterType filter_type, uint32_t start_height,
3145 const uint256& stop_hash, uint32_t max_height_diff,
3146 const CBlockIndex*& stop_index,
3147 BlockFilterIndex*& filter_index)
3148{
3149 const bool supported_filter_type =
3150 (filter_type == BlockFilterType::BASIC &&
3151 (peer.m_our_services & NODE_COMPACT_FILTERS));
3152 if (!supported_filter_type) {
3153 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3154 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3155 node.fDisconnect = true;
3156 return false;
3157 }
3158
3159 {
3160 LOCK(cs_main);
3161 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3162
3163 // Check that the stop block exists and the peer would be allowed to fetch it.
3164 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3165 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3166 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3167 node.fDisconnect = true;
3168 return false;
3169 }
3170 }
3171
3172 uint32_t stop_height = stop_index->nHeight;
3173 if (start_height > stop_height) {
3174 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3175 "start height %d and stop height %d, %s\n",
3176 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3177 node.fDisconnect = true;
3178 return false;
3179 }
3180 if (stop_height - start_height >= max_height_diff) {
3181 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3182 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3183 node.fDisconnect = true;
3184 return false;
3185 }
3186
3187 filter_index = GetBlockFilterIndex(filter_type);
3188 if (!filter_index) {
3189 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3190 return false;
3191 }
3192
3193 return true;
3194}
3195
3196void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3197{
3198 uint8_t filter_type_ser;
3199 uint32_t start_height;
3200 uint256 stop_hash;
3201
3202 vRecv >> filter_type_ser >> start_height >> stop_hash;
3203
3204 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3205
3206 const CBlockIndex* stop_index;
3207 BlockFilterIndex* filter_index;
3208 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3209 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3210 return;
3211 }
3212
3213 std::vector<BlockFilter> filters;
3214 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3215 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3216 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3217 return;
3218 }
3219
3220 for (const auto& filter : filters) {
3221 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3222 }
3223}
3224
3225void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3226{
3227 uint8_t filter_type_ser;
3228 uint32_t start_height;
3229 uint256 stop_hash;
3230
3231 vRecv >> filter_type_ser >> start_height >> stop_hash;
3232
3233 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3234
3235 const CBlockIndex* stop_index;
3236 BlockFilterIndex* filter_index;
3237 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3238 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3239 return;
3240 }
3241
3242 uint256 prev_header;
3243 if (start_height > 0) {
3244 const CBlockIndex* const prev_block =
3245 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3246 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3247 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3248 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3249 return;
3250 }
3251 }
3252
3253 std::vector<uint256> filter_hashes;
3254 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3255 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3256 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3257 return;
3258 }
3259
3260 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3261 filter_type_ser,
3262 stop_index->GetBlockHash(),
3263 prev_header,
3264 filter_hashes);
3265}
3266
3267void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3268{
3269 uint8_t filter_type_ser;
3270 uint256 stop_hash;
3271
3272 vRecv >> filter_type_ser >> stop_hash;
3273
3274 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3275
3276 const CBlockIndex* stop_index;
3277 BlockFilterIndex* filter_index;
3278 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3279 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3280 stop_index, filter_index)) {
3281 return;
3282 }
3283
3284 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3285
3286 // Populate headers.
3287 const CBlockIndex* block_index = stop_index;
3288 for (int i = headers.size() - 1; i >= 0; i--) {
3289 int height = (i + 1) * CFCHECKPT_INTERVAL;
3290 block_index = block_index->GetAncestor(height);
3291
3292 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3293 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3294 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3295 return;
3296 }
3297 }
3298
3299 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3300 filter_type_ser,
3301 stop_index->GetBlockHash(),
3302 headers);
3303}
3304
3305void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3306{
3307 bool new_block{false};
3308 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3309 if (new_block) {
3310 node.m_last_block_time = GetTime<std::chrono::seconds>();
3311 // In case this block came from a different peer than we requested
3312 // from, we can erase the block request now anyway (as we just stored
3313 // this block to disk).
3314 LOCK(cs_main);
3315 RemoveBlockRequest(block->GetHash(), std::nullopt);
3316 } else {
3317 LOCK(cs_main);
3318 mapBlockSource.erase(block->GetHash());
3319 }
3320}
3321
3322void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3323{
3324 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3325 bool fBlockRead{false};
3326 {
3327 LOCK(cs_main);
3328
3329 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3330 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3331 bool requested_block_from_this_peer{false};
3332
3333 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3334 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3335
3336 while (range_flight.first != range_flight.second) {
3337 auto [node_id, block_it] = range_flight.first->second;
3338 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3339 requested_block_from_this_peer = true;
3340 break;
3341 }
3342 range_flight.first++;
3343 }
3344
3345 if (!requested_block_from_this_peer) {
3346 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3347 return;
3348 }
3349
3350 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3351 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn);
3352 if (status == READ_STATUS_INVALID) {
3353 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3354 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3355 return;
3356 } else if (status == READ_STATUS_FAILED) {
3357 if (first_in_flight) {
3358 // Might have collided, fall back to getdata now :(
3359 std::vector<CInv> invs;
3360 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3361 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3362 } else {
3363 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3364 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3365 return;
3366 }
3367 } else {
3368 // Block is either okay, or possibly we received
3369 // READ_STATUS_CHECKBLOCK_FAILED.
3370 // Note that CheckBlock can only fail for one of a few reasons:
3371 // 1. bad-proof-of-work (impossible here, because we've already
3372 // accepted the header)
3373 // 2. merkleroot doesn't match the transactions given (already
3374 // caught in FillBlock with READ_STATUS_FAILED, so
3375 // impossible here)
3376 // 3. the block is otherwise invalid (eg invalid coinbase,
3377 // block is too big, too many legacy sigops, etc).
3378 // So if CheckBlock failed, #3 is the only possibility.
3379 // Under BIP 152, we don't discourage the peer unless proof of work is
3380 // invalid (we don't require all the stateless checks to have
3381 // been run). This is handled below, so just treat this as
3382 // though the block was successfully read, and rely on the
3383 // handling in ProcessNewBlock to ensure the block index is
3384 // updated, etc.
3385 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3386 fBlockRead = true;
3387 // mapBlockSource is used for potentially punishing peers and
3388 // updating which peers send us compact blocks, so the race
3389 // between here and cs_main in ProcessNewBlock is fine.
3390 // BIP 152 permits peers to relay compact blocks after validating
3391 // the header only; we should not punish peers if the block turns
3392 // out to be invalid.
3393 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3394 }
3395 } // Don't hold cs_main when we call into ProcessNewBlock
3396 if (fBlockRead) {
3397 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3398 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3399 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3400 // disk-space attacks), but this should be safe due to the
3401 // protections in the compact block handler -- see related comment
3402 // in compact block optimistic reconstruction handling.
3403 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3404 }
3405 return;
3406}
3407
3408void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3409 const std::chrono::microseconds time_received,
3410 const std::atomic<bool>& interruptMsgProc)
3411{
3412 AssertLockHeld(g_msgproc_mutex);
3413
3414 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3415
3416 PeerRef peer = GetPeerRef(pfrom.GetId());
3417 if (peer == nullptr) return;
3418
3419 if (msg_type == NetMsgType::VERSION) {
3420 if (pfrom.nVersion != 0) {
3421 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3422 return;
3423 }
3424
3425 int64_t nTime;
3426 CService addrMe;
3427 uint64_t nNonce = 1;
3428 ServiceFlags nServices;
3429 int nVersion;
3430 std::string cleanSubVer;
3431 int starting_height = -1;
3432 bool fRelay = true;
3433
3434 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3435 if (nTime < 0) {
3436 nTime = 0;
3437 }
3438 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3439 vRecv >> CNetAddr::V1(addrMe);
3440 if (!pfrom.IsInboundConn())
3441 {
3442 // Overwrites potentially existing services. In contrast to this,
3443 // unvalidated services received via gossip relay in ADDR/ADDRV2
3444 // messages are only ever added but cannot replace existing ones.
3445 m_addrman.SetServices(pfrom.addr, nServices);
3446 }
3447 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3448 {
3449 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3450 nServices,
3451 GetDesirableServiceFlags(nServices),
3452 pfrom.DisconnectMsg(fLogIPs));
3453 pfrom.fDisconnect = true;
3454 return;
3455 }
3456
3457 if (nVersion < MIN_PEER_PROTO_VERSION) {
3458 // disconnect from peers older than this proto version
3459 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3460 pfrom.fDisconnect = true;
3461 return;
3462 }
3463
3464 if (!vRecv.empty()) {
3465 // The version message includes information about the sending node which we don't use:
3466 // - 8 bytes (service bits)
3467 // - 16 bytes (ipv6 address)
3468 // - 2 bytes (port)
3469 vRecv.ignore(26);
3470 vRecv >> nNonce;
3471 }
3472 if (!vRecv.empty()) {
3473 std::string strSubVer;
3474 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3475 cleanSubVer = SanitizeString(strSubVer);
3476 }
3477 if (!vRecv.empty()) {
3478 vRecv >> starting_height;
3479 }
3480 if (!vRecv.empty())
3481 vRecv >> fRelay;
3482 // Disconnect if we connected to ourself
3483 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3484 {
3485 LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3486 pfrom.fDisconnect = true;
3487 return;
3488 }
3489
3490 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3491 {
3492 SeenLocal(addrMe);
3493 }
3494
3495 // Inbound peers send us their version message when they connect.
3496 // We send our version message in response.
3497 if (pfrom.IsInboundConn()) {
3498 PushNodeVersion(pfrom, *peer);
3499 }
3500
3501 // Change version
3502 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3503 pfrom.SetCommonVersion(greatest_common_version);
3504 pfrom.nVersion = nVersion;
3505
3506 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3507 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3508 }
3509
3510 // Signal ADDRv2 support (BIP155).
3511 if (greatest_common_version >= 70016) {
3512 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3513 // implementations reject messages they don't know. As a courtesy, don't send
3514 // it to nodes with a version before 70016, as no software is known to support
3515 // BIP155 that doesn't announce at least that protocol version number.
3516 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3517 }
3518
3519 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3520 peer->m_their_services = nServices;
3521 pfrom.SetAddrLocal(addrMe);
3522 {
3523 LOCK(pfrom.m_subver_mutex);
3524 pfrom.cleanSubVer = cleanSubVer;
3525 }
3526 peer->m_starting_height = starting_height;
3527
3528 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3529 // - this isn't an outbound block-relay-only connection, and
3530 // - this isn't an outbound feeler connection, and
3531 // - fRelay=true (the peer wishes to receive transaction announcements)
3532 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3533 // the peer may turn on transaction relay later.
3534 if (!pfrom.IsBlockOnlyConn() &&
3535 !pfrom.IsFeelerConn() &&
3536 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3537 auto* const tx_relay = peer->SetTxRelay();
3538 {
3539 LOCK(tx_relay->m_bloom_filter_mutex);
3540 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3541 }
3542 if (fRelay) pfrom.m_relays_txs = true;
3543 }
3544
3545 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3546 // Per BIP-330, we announce txreconciliation support if:
3547 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3548 // - transaction relay is supported per the peer's VERSION message
3549 // - this is not a block-relay-only connection and not a feeler
3550 // - this is not an addr fetch connection;
3551 // - we are not in -blocksonly mode.
3552 const auto* tx_relay = peer->GetTxRelay();
3553 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3554 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3555 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3556 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3557 TXRECONCILIATION_VERSION, recon_salt);
3558 }
3559 }
3560
3561 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3562
3563 // Potentially mark this peer as a preferred download peer.
3564 {
3565 LOCK(cs_main);
3566 CNodeState* state = State(pfrom.GetId());
3567 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3568 m_num_preferred_download_peers += state->fPreferredDownload;
3569 }
3570
3571 // Attempt to initialize address relay for outbound peers and use result
3572 // to decide whether to send GETADDR, so that we don't send it to
3573 // inbound or outbound block-relay-only peers.
3574 bool send_getaddr{false};
3575 if (!pfrom.IsInboundConn()) {
3576 send_getaddr = SetupAddressRelay(pfrom, *peer);
3577 }
3578 if (send_getaddr) {
3579 // Do a one-time address fetch to help populate/update our addrman.
3580 // If we're starting up for the first time, our addrman may be pretty
3581 // empty, so this mechanism is important to help us connect to the network.
3582 // We skip this for block-relay-only peers. We want to avoid
3583 // potentially leaking addr information and we do not want to
3584 // indicate to the peer that we will participate in addr relay.
3585 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3586 peer->m_getaddr_sent = true;
3587 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3588 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3589 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3590 }
3591
3592 if (!pfrom.IsInboundConn()) {
3593 // For non-inbound connections, we update the addrman to record
3594 // connection success so that addrman will have an up-to-date
3595 // notion of which peers are online and available.
3596 //
3597 // While we strive to not leak information about block-relay-only
3598 // connections via the addrman, not moving an address to the tried
3599 // table is also potentially detrimental because new-table entries
3600 // are subject to eviction in the event of addrman collisions. We
3601 // mitigate the information-leak by never calling
3602 // AddrMan::Connected() on block-relay-only peers; see
3603 // FinalizeNode().
3604 //
3605 // This moves an address from New to Tried table in Addrman,
3606 // resolves tried-table collisions, etc.
3607 m_addrman.Good(pfrom.addr);
3608 }
3609
3610 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3611 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3612 cleanSubVer, pfrom.nVersion,
3613 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3614 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3615
3616 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3617 if (!pfrom.IsInboundConn()) {
3618 // Don't use timedata samples from inbound peers to make it
3619 // harder for others to create false warnings about our clock being out of sync.
3620 m_outbound_time_offsets.Add(peer->m_time_offset);
3621 m_outbound_time_offsets.WarnIfOutOfSync();
3622 }
3623
3624 // If the peer is old enough to have the old alert system, send it the final alert.
3625 if (greatest_common_version <= 70012) {
3626 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3627 MakeAndPushMessage(pfrom, "alert", finalAlert);
3628 }
3629
3630 // Feeler connections exist only to verify if address is online.
3631 if (pfrom.IsFeelerConn()) {
3632 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3633 pfrom.fDisconnect = true;
3634 }
3635 return;
3636 }
3637
3638 if (pfrom.nVersion == 0) {
3639 // Must have a version message before anything else
3640 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3641 return;
3642 }
3643
3644 if (msg_type == NetMsgType::VERACK) {
3645 if (pfrom.fSuccessfullyConnected) {
3646 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3647 return;
3648 }
3649
3650 // Log successful connections unconditionally for outbound, but not for inbound as those
3651 // can be triggered by an attacker at high rate.
3653 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3654 LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3655 pfrom.ConnectionTypeAsString(),
3656 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3657 pfrom.nVersion.load(), peer->m_starting_height,
3658 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3659 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3660 }
3661
3663 // Tell our peer we are willing to provide version 2 cmpctblocks.
3664 // However, we do not request new block announcements using
3665 // cmpctblock messages.
3666 // We send this to non-NODE NETWORK peers as well, because
3667 // they may wish to request compact blocks from us
3668 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3669 }
3670
3671 if (m_txreconciliation) {
3672 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3673 // We could have optimistically pre-registered/registered the peer. In that case,
3674 // we should forget about the reconciliation state here if this wasn't followed
3675 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3676 m_txreconciliation->ForgetPeer(pfrom.GetId());
3677 }
3678 }
3679
3680 if (auto tx_relay = peer->GetTxRelay()) {
3681 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3682 // version handshake is completed as
3683 // `TxRelay::m_next_inv_send_time` is first initialised in
3684 // `SendMessages` after the verack is received. Any transactions
3685 // received during the version handshake would otherwise
3686 // immediately be advertised without random delay, potentially
3687 // leaking the time of arrival to a spy.
3689 tx_relay->m_tx_inventory_mutex,
3690 return tx_relay->m_tx_inventory_to_send.empty() &&
3691 tx_relay->m_next_inv_send_time == 0s));
3692 }
3693
3694 {
3695 LOCK2(::cs_main, m_tx_download_mutex);
3696 const CNodeState* state = State(pfrom.GetId());
3697 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3698 .m_preferred = state->fPreferredDownload,
3699 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3700 .m_wtxid_relay = peer->m_wtxid_relay,
3701 });
3702 }
3703
3704 pfrom.fSuccessfullyConnected = true;
3705 return;
3706 }
3707
3708 if (msg_type == NetMsgType::SENDHEADERS) {
3709 peer->m_prefers_headers = true;
3710 return;
3711 }
3712
3713 if (msg_type == NetMsgType::SENDCMPCT) {
3714 bool sendcmpct_hb{false};
3715 uint64_t sendcmpct_version{0};
3716 vRecv >> sendcmpct_hb >> sendcmpct_version;
3717
3718 // Only support compact block relay with witnesses
3719 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3720
3721 LOCK(cs_main);
3722 CNodeState* nodestate = State(pfrom.GetId());
3723 nodestate->m_provides_cmpctblocks = true;
3724 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3725 // save whether peer selects us as BIP152 high-bandwidth peer
3726 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3727 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3728 return;
3729 }
3730
3731 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3732 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3733 if (msg_type == NetMsgType::WTXIDRELAY) {
3734 if (pfrom.fSuccessfullyConnected) {
3735 // Disconnect peers that send a wtxidrelay message after VERACK.
3736 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3737 pfrom.fDisconnect = true;
3738 return;
3739 }
3740 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3741 if (!peer->m_wtxid_relay) {
3742 peer->m_wtxid_relay = true;
3743 m_wtxid_relay_peers++;
3744 } else {
3745 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3746 }
3747 } else {
3748 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3749 }
3750 return;
3751 }
3752
3753 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3754 // between VERSION and VERACK.
3755 if (msg_type == NetMsgType::SENDADDRV2) {
3756 if (pfrom.fSuccessfullyConnected) {
3757 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3758 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3759 pfrom.fDisconnect = true;
3760 return;
3761 }
3762 peer->m_wants_addrv2 = true;
3763 return;
3764 }
3765
3766 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3767 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3768 // from switching announcement protocols after the connection is up.
3769 if (msg_type == NetMsgType::SENDTXRCNCL) {
3770 if (!m_txreconciliation) {
3771 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3772 return;
3773 }
3774
3775 if (pfrom.fSuccessfullyConnected) {
3776 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3777 pfrom.fDisconnect = true;
3778 return;
3779 }
3780
3781 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3782 if (RejectIncomingTxs(pfrom)) {
3783 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3784 pfrom.fDisconnect = true;
3785 return;
3786 }
3787
3788 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3789 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3790 // eliminates them, so that this flag fully represents what we are looking for.
3791 const auto* tx_relay = peer->GetTxRelay();
3792 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3793 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3794 pfrom.fDisconnect = true;
3795 return;
3796 }
3797
3798 uint32_t peer_txreconcl_version;
3799 uint64_t remote_salt;
3800 vRecv >> peer_txreconcl_version >> remote_salt;
3801
3802 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3803 peer_txreconcl_version, remote_salt);
3804 switch (result) {
3806 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3807 break;
3809 break;
3811 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3812 pfrom.fDisconnect = true;
3813 return;
3815 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3816 pfrom.fDisconnect = true;
3817 return;
3818 }
3819 return;
3820 }
3821
3822 if (!pfrom.fSuccessfullyConnected) {
3823 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3824 return;
3825 }
3826
3827 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3828 const auto ser_params{
3829 msg_type == NetMsgType::ADDRV2 ?
3830 // Set V2 param so that the CNetAddr and CAddress
3831 // unserialize methods know that an address in v2 format is coming.
3834 };
3835
3836 std::vector<CAddress> vAddr;
3837
3838 vRecv >> ser_params(vAddr);
3839
3840 if (!SetupAddressRelay(pfrom, *peer)) {
3841 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3842 return;
3843 }
3844
3845 if (vAddr.size() > MAX_ADDR_TO_SEND)
3846 {
3847 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3848 return;
3849 }
3850
3851 // Store the new addresses
3852 std::vector<CAddress> vAddrOk;
3853 const auto current_a_time{Now<NodeSeconds>()};
3854
3855 // Update/increment addr rate limiting bucket.
3856 const auto current_time{GetTime<std::chrono::microseconds>()};
3857 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3858 // Don't increment bucket if it's already full
3859 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3860 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3861 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3862 }
3863 peer->m_addr_token_timestamp = current_time;
3864
3865 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3866 uint64_t num_proc = 0;
3867 uint64_t num_rate_limit = 0;
3868 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3869 for (CAddress& addr : vAddr)
3870 {
3871 if (interruptMsgProc)
3872 return;
3873
3874 // Apply rate limiting.
3875 if (peer->m_addr_token_bucket < 1.0) {
3876 if (rate_limited) {
3877 ++num_rate_limit;
3878 continue;
3879 }
3880 } else {
3881 peer->m_addr_token_bucket -= 1.0;
3882 }
3883 // We only bother storing full nodes, though this may include
3884 // things which we would not make an outbound connection to, in
3885 // part because we may make feeler connections to them.
3886 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3887 continue;
3888
3889 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3890 addr.nTime = current_a_time - 5 * 24h;
3891 }
3892 AddAddressKnown(*peer, addr);
3893 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3894 // Do not process banned/discouraged addresses beyond remembering we received them
3895 continue;
3896 }
3897 ++num_proc;
3898 const bool reachable{g_reachable_nets.Contains(addr)};
3899 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3900 // Relay to a limited number of other nodes
3901 RelayAddress(pfrom.GetId(), addr, reachable);
3902 }
3903 // Do not store addresses outside our network
3904 if (reachable) {
3905 vAddrOk.push_back(addr);
3906 }
3907 }
3908 peer->m_addr_processed += num_proc;
3909 peer->m_addr_rate_limited += num_rate_limit;
3910 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3911 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3912
3913 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3914 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3915
3916 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3917 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3918 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3919 pfrom.fDisconnect = true;
3920 }
3921 return;
3922 }
3923
3924 if (msg_type == NetMsgType::INV) {
3925 std::vector<CInv> vInv;
3926 vRecv >> vInv;
3927 if (vInv.size() > MAX_INV_SZ)
3928 {
3929 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3930 return;
3931 }
3932
3933 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3934
3935 LOCK2(cs_main, m_tx_download_mutex);
3936
3937 const auto current_time{GetTime<std::chrono::microseconds>()};
3938 uint256* best_block{nullptr};
3939
3940 for (CInv& inv : vInv) {
3941 if (interruptMsgProc) return;
3942
3943 // Ignore INVs that don't match wtxidrelay setting.
3944 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3945 // This is fine as no INV messages are involved in that process.
3946 if (peer->m_wtxid_relay) {
3947 if (inv.IsMsgTx()) continue;
3948 } else {
3949 if (inv.IsMsgWtx()) continue;
3950 }
3951
3952 if (inv.IsMsgBlk()) {
3953 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3954 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3955
3956 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3957 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3958 // Headers-first is the primary method of announcement on
3959 // the network. If a node fell back to sending blocks by
3960 // inv, it may be for a re-org, or because we haven't
3961 // completed initial headers sync. The final block hash
3962 // provided should be the highest, so send a getheaders and
3963 // then fetch the blocks we need to catch up.
3964 best_block = &inv.hash;
3965 }
3966 } else if (inv.IsGenTxMsg()) {
3967 if (reject_tx_invs) {
3968 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
3969 pfrom.fDisconnect = true;
3970 return;
3971 }
3972 const GenTxid gtxid = ToGenTxid(inv);
3973 AddKnownTx(*peer, inv.hash);
3974
3975 if (!m_chainman.IsInitialBlockDownload()) {
3976 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
3977 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3978 }
3979 } else {
3980 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3981 }
3982 }
3983
3984 if (best_block != nullptr) {
3985 // If we haven't started initial headers-sync with this peer, then
3986 // consider sending a getheaders now. On initial startup, there's a
3987 // reliability vs bandwidth tradeoff, where we are only trying to do
3988 // initial headers sync with one peer at a time, with a long
3989 // timeout (at which point, if the sync hasn't completed, we will
3990 // disconnect the peer and then choose another). In the meantime,
3991 // as new blocks are found, we are willing to add one new peer per
3992 // block to sync with as well, to sync quicker in the case where
3993 // our initial peer is unresponsive (but less bandwidth than we'd
3994 // use if we turned on sync with all peers).
3995 CNodeState& state{*Assert(State(pfrom.GetId()))};
3996 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
3997 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
3998 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
3999 m_chainman.m_best_header->nHeight, best_block->ToString(),
4000 pfrom.GetId());
4001 }
4002 if (!state.fSyncStarted) {
4003 peer->m_inv_triggered_getheaders_before_sync = true;
4004 // Update the last block hash that triggered a new headers
4005 // sync, so that we don't turn on headers sync with more
4006 // than 1 new peer every new block.
4007 m_last_block_inv_triggering_headers_sync = *best_block;
4008 }
4009 }
4010 }
4011
4012 return;
4013 }
4014
4015 if (msg_type == NetMsgType::GETDATA) {
4016 std::vector<CInv> vInv;
4017 vRecv >> vInv;
4018 if (vInv.size() > MAX_INV_SZ)
4019 {
4020 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4021 return;
4022 }
4023
4024 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4025
4026 if (vInv.size() > 0) {
4027 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4028 }
4029
4030 {
4031 LOCK(peer->m_getdata_requests_mutex);
4032 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4033 ProcessGetData(pfrom, *peer, interruptMsgProc);
4034 }
4035
4036 return;
4037 }
4038
4039 if (msg_type == NetMsgType::GETBLOCKS) {
4040 CBlockLocator locator;
4041 uint256 hashStop;
4042 vRecv >> locator >> hashStop;
4043
4044 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4045 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4046 pfrom.fDisconnect = true;
4047 return;
4048 }
4049
4050 // We might have announced the currently-being-connected tip using a
4051 // compact block, which resulted in the peer sending a getblocks
4052 // request, which we would otherwise respond to without the new block.
4053 // To avoid this situation we simply verify that we are on our best
4054 // known chain now. This is super overkill, but we handle it better
4055 // for getheaders requests, and there are no known nodes which support
4056 // compact blocks but still use getblocks to request blocks.
4057 {
4058 std::shared_ptr<const CBlock> a_recent_block;
4059 {
4060 LOCK(m_most_recent_block_mutex);
4061 a_recent_block = m_most_recent_block;
4062 }
4064 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4065 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4066 }
4067 }
4068
4069 LOCK(cs_main);
4070
4071 // Find the last block the caller has in the main chain
4072 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4073
4074 // Send the rest of the chain
4075 if (pindex)
4076 pindex = m_chainman.ActiveChain().Next(pindex);
4077 int nLimit = 500;
4078 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4079 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4080 {
4081 if (pindex->GetBlockHash() == hashStop)
4082 {
4083 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4084 break;
4085 }
4086 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4087 // for some reasonable time window (1 hour) that block relay might require.
4088 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4089 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4090 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4091 break;
4092 }
4093 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4094 if (--nLimit <= 0) {
4095 // When this block is requested, we'll send an inv that'll
4096 // trigger the peer to getblocks the next batch of inventory.
4097 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4098 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4099 break;
4100 }
4101 }
4102 return;
4103 }
4104
4105 if (msg_type == NetMsgType::GETBLOCKTXN) {
4107 vRecv >> req;
4108
4109 std::shared_ptr<const CBlock> recent_block;
4110 {
4111 LOCK(m_most_recent_block_mutex);
4112 if (m_most_recent_block_hash == req.blockhash)
4113 recent_block = m_most_recent_block;
4114 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4115 }
4116 if (recent_block) {
4117 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4118 return;
4119 }
4120
4121 FlatFilePos block_pos{};
4122 {
4123 LOCK(cs_main);
4124
4125 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4126 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4127 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4128 return;
4129 }
4130
4131 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4132 block_pos = pindex->GetBlockPos();
4133 }
4134 }
4135
4136 if (!block_pos.IsNull()) {
4137 CBlock block;
4138 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos)};
4139 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4140 // pruned after we release cs_main above, so this read should never fail.
4141 assert(ret);
4142
4143 SendBlockTransactions(pfrom, *peer, block, req);
4144 return;
4145 }
4146
4147 // If an older block is requested (should never happen in practice,
4148 // but can happen in tests) send a block response instead of a
4149 // blocktxn response. Sending a full block response instead of a
4150 // small blocktxn response is preferable in the case where a peer
4151 // might maliciously send lots of getblocktxn requests to trigger
4152 // expensive disk reads, because it will require the peer to
4153 // actually receive all the data read from disk over the network.
4154 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4156 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4157 // The message processing loop will go around again (without pausing) and we'll respond then
4158 return;
4159 }
4160
4161 if (msg_type == NetMsgType::GETHEADERS) {
4162 CBlockLocator locator;
4163 uint256 hashStop;
4164 vRecv >> locator >> hashStop;
4165
4166 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4167 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4168 pfrom.fDisconnect = true;
4169 return;
4170 }
4171
4172 if (m_chainman.m_blockman.LoadingBlocks()) {
4173 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4174 return;
4175 }
4176
4177 LOCK(cs_main);
4178
4179 // Don't serve headers from our active chain until our chainwork is at least
4180 // the minimum chain work. This prevents us from starting a low-work headers
4181 // sync that will inevitably be aborted by our peer.
4182 if (m_chainman.ActiveTip() == nullptr ||
4183 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4184 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4185 // Just respond with an empty headers message, to tell the peer to
4186 // go away but not treat us as unresponsive.
4187 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4188 return;
4189 }
4190
4191 CNodeState *nodestate = State(pfrom.GetId());
4192 const CBlockIndex* pindex = nullptr;
4193 if (locator.IsNull())
4194 {
4195 // If locator is null, return the hashStop block
4196 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4197 if (!pindex) {
4198 return;
4199 }
4200
4201 if (!BlockRequestAllowed(pindex)) {
4202 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4203 return;
4204 }
4205 }
4206 else
4207 {
4208 // Find the last block the caller has in the main chain
4209 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4210 if (pindex)
4211 pindex = m_chainman.ActiveChain().Next(pindex);
4212 }
4213
4214 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4215 std::vector<CBlock> vHeaders;
4216 int nLimit = m_opts.max_headers_result;
4217 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4218 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4219 {
4220 vHeaders.emplace_back(pindex->GetBlockHeader());
4221 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4222 break;
4223 }
4224 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4225 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4226 // headers message). In both cases it's safe to update
4227 // pindexBestHeaderSent to be our tip.
4228 //
4229 // It is important that we simply reset the BestHeaderSent value here,
4230 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4231 // the currently-being-connected tip using a compact block, which
4232 // resulted in the peer sending a headers request, which we respond to
4233 // without the new block. By resetting the BestHeaderSent, we ensure we
4234 // will re-announce the new block via headers (or compact blocks again)
4235 // in the SendMessages logic.
4236 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4237 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4238 return;
4239 }
4240
4241 if (msg_type == NetMsgType::TX) {
4242 if (RejectIncomingTxs(pfrom)) {
4243 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4244 pfrom.fDisconnect = true;
4245 return;
4246 }
4247
4248 // Stop processing the transaction early if we are still in IBD since we don't
4249 // have enough information to validate it yet. Sending unsolicited transactions
4250 // is not considered a protocol violation, so don't punish the peer.
4251 if (m_chainman.IsInitialBlockDownload()) return;
4252
4253 CTransactionRef ptx;
4254 vRecv >> TX_WITH_WITNESS(ptx);
4255 const CTransaction& tx = *ptx;
4256
4257 const uint256& txid = ptx->GetHash();
4258 const uint256& wtxid = ptx->GetWitnessHash();
4259
4260 const uint256& hash = peer->m_wtxid_relay ? wtxid : txid;
4261 AddKnownTx(*peer, hash);
4262
4263 LOCK2(cs_main, m_tx_download_mutex);
4264
4265 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4266 if (!should_validate) {
4268 // Always relay transactions received from peers with forcerelay
4269 // permission, even if they were already in the mempool, allowing
4270 // the node to function as a gateway for nodes hidden behind it.
4271 if (!m_mempool.exists(GenTxid::Txid(tx.GetHash()))) {
4272 LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4273 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4274 } else {
4275 LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4276 tx.GetHash().ToString(), tx.GetWitnessHash().ToString(), pfrom.GetId());
4277 RelayTransaction(tx.GetHash(), tx.GetWitnessHash());
4278 }
4279 }
4280
4281 if (package_to_validate) {
4282 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4283 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4284 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4285 ProcessPackageResult(package_to_validate.value(), package_result);
4286 }
4287 return;
4288 }
4289
4290 // ReceivedTx should not be telling us to validate the tx and a package.
4291 Assume(!package_to_validate.has_value());
4292
4293 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4294 const TxValidationState& state = result.m_state;
4295
4297 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4298 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4299 }
4300 if (state.IsInvalid()) {
4301 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4302 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4303 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4304 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4305 ProcessPackageResult(package_to_validate.value(), package_result);
4306 }
4307 }
4308
4309 return;
4310 }
4311
4312 if (msg_type == NetMsgType::CMPCTBLOCK)
4313 {
4314 // Ignore cmpctblock received while importing
4315 if (m_chainman.m_blockman.LoadingBlocks()) {
4316 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4317 return;
4318 }
4319
4320 CBlockHeaderAndShortTxIDs cmpctblock;
4321 vRecv >> cmpctblock;
4322
4323 bool received_new_header = false;
4324 const auto blockhash = cmpctblock.header.GetHash();
4325
4326 {
4327 LOCK(cs_main);
4328
4329 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4330 if (!prev_block) {
4331 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4332 if (!m_chainman.IsInitialBlockDownload()) {
4333 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4334 }
4335 return;
4336 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4337 // If we get a low-work header in a compact block, we can ignore it.
4338 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4339 return;
4340 }
4341
4342 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4343 received_new_header = true;
4344 }
4345 }
4346
4347 const CBlockIndex *pindex = nullptr;
4349 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4350 if (state.IsInvalid()) {
4351 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4352 return;
4353 }
4354 }
4355
4356 if (received_new_header) {
4357 LogInfo("Saw new cmpctblock header hash=%s peer=%d\n",
4358 blockhash.ToString(), pfrom.GetId());
4359 }
4360
4361 bool fProcessBLOCKTXN = false;
4362
4363 // If we end up treating this as a plain headers message, call that as well
4364 // without cs_main.
4365 bool fRevertToHeaderProcessing = false;
4366
4367 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4368 // below)
4369 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4370 bool fBlockReconstructed = false;
4371
4372 {
4373 LOCK(cs_main);
4374 // If AcceptBlockHeader returned true, it set pindex
4375 assert(pindex);
4376 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4377
4378 CNodeState *nodestate = State(pfrom.GetId());
4379
4380 // If this was a new header with more work than our tip, update the
4381 // peer's last block announcement time
4382 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4383 nodestate->m_last_block_announcement = GetTime();
4384 }
4385
4386 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4387 return;
4388
4389 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4390 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4391 bool requested_block_from_this_peer{false};
4392
4393 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4394 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4395
4396 while (range_flight.first != range_flight.second) {
4397 if (range_flight.first->second.first == pfrom.GetId()) {
4398 requested_block_from_this_peer = true;
4399 break;
4400 }
4401 range_flight.first++;
4402 }
4403
4404 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4405 pindex->nTx != 0) { // We had this block at some point, but pruned it
4406 if (requested_block_from_this_peer) {
4407 // We requested this block for some reason, but our mempool will probably be useless
4408 // so we just grab the block via normal getdata
4409 std::vector<CInv> vInv(1);
4410 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4411 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4412 }
4413 return;
4414 }
4415
4416 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4417 if (!already_in_flight && !CanDirectFetch()) {
4418 return;
4419 }
4420
4421 // We want to be a bit conservative just to be extra careful about DoS
4422 // possibilities in compact block processing...
4423 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4424 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4425 requested_block_from_this_peer) {
4426 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4427 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4428 if (!(*queuedBlockIt)->partialBlock)
4429 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4430 else {
4431 // The block was already in flight using compact blocks from the same peer
4432 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4433 return;
4434 }
4435 }
4436
4437 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4438 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4439 if (status == READ_STATUS_INVALID) {
4440 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4441 Misbehaving(*peer, "invalid compact block");
4442 return;
4443 } else if (status == READ_STATUS_FAILED) {
4444 if (first_in_flight) {
4445 // Duplicate txindexes, the block is now in-flight, so just request it
4446 std::vector<CInv> vInv(1);
4447 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4448 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4449 } else {
4450 // Give up for this peer and wait for other peer(s)
4451 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4452 }
4453 return;
4454 }
4455
4457 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4458 if (!partialBlock.IsTxAvailable(i))
4459 req.indexes.push_back(i);
4460 }
4461 if (req.indexes.empty()) {
4462 fProcessBLOCKTXN = true;
4463 } else if (first_in_flight) {
4464 // We will try to round-trip any compact blocks we get on failure,
4465 // as long as it's first...
4466 req.blockhash = pindex->GetBlockHash();
4467 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4468 } else if (pfrom.m_bip152_highbandwidth_to &&
4469 (!pfrom.IsInboundConn() ||
4470 IsBlockRequestedFromOutbound(blockhash) ||
4471 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4472 // ... or it's a hb relay peer and:
4473 // - peer is outbound, or
4474 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4475 // - it's not the final parallel download slot (which we may reserve for first outbound)
4476 req.blockhash = pindex->GetBlockHash();
4477 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4478 } else {
4479 // Give up for this peer and wait for other peer(s)
4480 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4481 }
4482 } else {
4483 // This block is either already in flight from a different
4484 // peer, or this peer has too many blocks outstanding to
4485 // download from.
4486 // Optimistically try to reconstruct anyway since we might be
4487 // able to without any round trips.
4488 PartiallyDownloadedBlock tempBlock(&m_mempool);
4489 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4490 if (status != READ_STATUS_OK) {
4491 // TODO: don't ignore failures
4492 return;
4493 }
4494 std::vector<CTransactionRef> dummy;
4495 status = tempBlock.FillBlock(*pblock, dummy);
4496 if (status == READ_STATUS_OK) {
4497 fBlockReconstructed = true;
4498 }
4499 }
4500 } else {
4501 if (requested_block_from_this_peer) {
4502 // We requested this block, but its far into the future, so our
4503 // mempool will probably be useless - request the block normally
4504 std::vector<CInv> vInv(1);
4505 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4506 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4507 return;
4508 } else {
4509 // If this was an announce-cmpctblock, we want the same treatment as a header message
4510 fRevertToHeaderProcessing = true;
4511 }
4512 }
4513 } // cs_main
4514
4515 if (fProcessBLOCKTXN) {
4517 txn.blockhash = blockhash;
4518 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4519 }
4520
4521 if (fRevertToHeaderProcessing) {
4522 // Headers received from HB compact block peers are permitted to be
4523 // relayed before full validation (see BIP 152), so we don't want to disconnect
4524 // the peer if the header turns out to be for an invalid block.
4525 // Note that if a peer tries to build on an invalid chain, that
4526 // will be detected and the peer will be disconnected/discouraged.
4527 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4528 }
4529
4530 if (fBlockReconstructed) {
4531 // If we got here, we were able to optimistically reconstruct a
4532 // block that is in flight from some other peer.
4533 {
4534 LOCK(cs_main);
4535 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4536 }
4537 // Setting force_processing to true means that we bypass some of
4538 // our anti-DoS protections in AcceptBlock, which filters
4539 // unrequested blocks that might be trying to waste our resources
4540 // (eg disk space). Because we only try to reconstruct blocks when
4541 // we're close to caught up (via the CanDirectFetch() requirement
4542 // above, combined with the behavior of not requesting blocks until
4543 // we have a chain with at least the minimum chain work), and we ignore
4544 // compact blocks with less work than our tip, it is safe to treat
4545 // reconstructed compact blocks as having been requested.
4546 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4547 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4548 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4549 // Clear download state for this block, which is in
4550 // process from some other peer. We do this after calling
4551 // ProcessNewBlock so that a malleated cmpctblock announcement
4552 // can't be used to interfere with block relay.
4553 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4554 }
4555 }
4556 return;
4557 }
4558
4559 if (msg_type == NetMsgType::BLOCKTXN)
4560 {
4561 // Ignore blocktxn received while importing
4562 if (m_chainman.m_blockman.LoadingBlocks()) {
4563 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4564 return;
4565 }
4566
4567 BlockTransactions resp;
4568 vRecv >> resp;
4569
4570 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4571 }
4572
4573 if (msg_type == NetMsgType::HEADERS)
4574 {
4575 // Ignore headers received while importing
4576 if (m_chainman.m_blockman.LoadingBlocks()) {
4577 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4578 return;
4579 }
4580
4581 std::vector<CBlockHeader> headers;
4582
4583 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4584 unsigned int nCount = ReadCompactSize(vRecv);
4585 if (nCount > m_opts.max_headers_result) {
4586 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4587 return;
4588 }
4589 headers.resize(nCount);
4590 for (unsigned int n = 0; n < nCount; n++) {
4591 vRecv >> headers[n];
4592 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4593 }
4594
4595 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4596
4597 // Check if the headers presync progress needs to be reported to validation.
4598 // This needs to be done without holding the m_headers_presync_mutex lock.
4599 if (m_headers_presync_should_signal.exchange(false)) {
4600 HeadersPresyncStats stats;
4601 {
4602 LOCK(m_headers_presync_mutex);
4603 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4604 if (it != m_headers_presync_stats.end()) stats = it->second;
4605 }
4606 if (stats.second) {
4607 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4608 }
4609 }
4610
4611 return;
4612 }
4613
4614 if (msg_type == NetMsgType::BLOCK)
4615 {
4616 // Ignore block received while importing
4617 if (m_chainman.m_blockman.LoadingBlocks()) {
4618 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4619 return;
4620 }
4621
4622 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4623 vRecv >> TX_WITH_WITNESS(*pblock);
4624
4625 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4626
4627 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4628
4629 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4630 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4631 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4632 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4633 Misbehaving(*peer, "mutated block");
4634 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4635 return;
4636 }
4637
4638 bool forceProcessing = false;
4639 const uint256 hash(pblock->GetHash());
4640 bool min_pow_checked = false;
4641 {
4642 LOCK(cs_main);
4643 // Always process the block if we requested it, since we may
4644 // need it even when it's not a candidate for a new best tip.
4645 forceProcessing = IsBlockRequested(hash);
4646 RemoveBlockRequest(hash, pfrom.GetId());
4647 // mapBlockSource is only used for punishing peers and setting
4648 // which peers send us compact blocks, so the race between here and
4649 // cs_main in ProcessNewBlock is fine.
4650 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4651
4652 // Check claimed work on this block against our anti-dos thresholds.
4653 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4654 min_pow_checked = true;
4655 }
4656 }
4657 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4658 return;
4659 }
4660
4661 if (msg_type == NetMsgType::GETADDR) {
4662 // This asymmetric behavior for inbound and outbound connections was introduced
4663 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4664 // to users' AddrMan and later request them by sending getaddr messages.
4665 // Making nodes which are behind NAT and can only make outgoing connections ignore
4666 // the getaddr message mitigates the attack.
4667 if (!pfrom.IsInboundConn()) {
4668 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4669 return;
4670 }
4671
4672 // Since this must be an inbound connection, SetupAddressRelay will
4673 // never fail.
4674 Assume(SetupAddressRelay(pfrom, *peer));
4675
4676 // Only send one GetAddr response per connection to reduce resource waste
4677 // and discourage addr stamping of INV announcements.
4678 if (peer->m_getaddr_recvd) {
4679 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4680 return;
4681 }
4682 peer->m_getaddr_recvd = true;
4683
4684 peer->m_addrs_to_send.clear();
4685 std::vector<CAddress> vAddr;
4687 vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4688 } else {
4689 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4690 }
4691 for (const CAddress &addr : vAddr) {
4692 PushAddress(*peer, addr);
4693 }
4694 return;
4695 }
4696
4697 if (msg_type == NetMsgType::MEMPOOL) {
4698 // Only process received mempool messages if we advertise NODE_BLOOM
4699 // or if the peer has mempool permissions.
4700 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4701 {
4703 {
4704 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4705 pfrom.fDisconnect = true;
4706 }
4707 return;
4708 }
4709
4710 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4711 {
4713 {
4714 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4715 pfrom.fDisconnect = true;
4716 }
4717 return;
4718 }
4719
4720 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4721 LOCK(tx_relay->m_tx_inventory_mutex);
4722 tx_relay->m_send_mempool = true;
4723 }
4724 return;
4725 }
4726
4727 if (msg_type == NetMsgType::PING) {
4728 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4729 uint64_t nonce = 0;
4730 vRecv >> nonce;
4731 // Echo the message back with the nonce. This allows for two useful features:
4732 //
4733 // 1) A remote node can quickly check if the connection is operational
4734 // 2) Remote nodes can measure the latency of the network thread. If this node
4735 // is overloaded it won't respond to pings quickly and the remote node can
4736 // avoid sending us more work, like chain download requests.
4737 //
4738 // The nonce stops the remote getting confused between different pings: without
4739 // it, if the remote node sends a ping once per second and this node takes 5
4740 // seconds to respond to each, the 5th ping the remote sends would appear to
4741 // return very quickly.
4742 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4743 }
4744 return;
4745 }
4746
4747 if (msg_type == NetMsgType::PONG) {
4748 const auto ping_end = time_received;
4749 uint64_t nonce = 0;
4750 size_t nAvail = vRecv.in_avail();
4751 bool bPingFinished = false;
4752 std::string sProblem;
4753
4754 if (nAvail >= sizeof(nonce)) {
4755 vRecv >> nonce;
4756
4757 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4758 if (peer->m_ping_nonce_sent != 0) {
4759 if (nonce == peer->m_ping_nonce_sent) {
4760 // Matching pong received, this ping is no longer outstanding
4761 bPingFinished = true;
4762 const auto ping_time = ping_end - peer->m_ping_start.load();
4763 if (ping_time.count() >= 0) {
4764 // Let connman know about this successful ping-pong
4765 pfrom.PongReceived(ping_time);
4766 } else {
4767 // This should never happen
4768 sProblem = "Timing mishap";
4769 }
4770 } else {
4771 // Nonce mismatches are normal when pings are overlapping
4772 sProblem = "Nonce mismatch";
4773 if (nonce == 0) {
4774 // This is most likely a bug in another implementation somewhere; cancel this ping
4775 bPingFinished = true;
4776 sProblem = "Nonce zero";
4777 }
4778 }
4779 } else {
4780 sProblem = "Unsolicited pong without ping";
4781 }
4782 } else {
4783 // This is most likely a bug in another implementation somewhere; cancel this ping
4784 bPingFinished = true;
4785 sProblem = "Short payload";
4786 }
4787
4788 if (!(sProblem.empty())) {
4789 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4790 pfrom.GetId(),
4791 sProblem,
4792 peer->m_ping_nonce_sent,
4793 nonce,
4794 nAvail);
4795 }
4796 if (bPingFinished) {
4797 peer->m_ping_nonce_sent = 0;
4798 }
4799 return;
4800 }
4801
4802 if (msg_type == NetMsgType::FILTERLOAD) {
4803 if (!(peer->m_our_services & NODE_BLOOM)) {
4804 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4805 pfrom.fDisconnect = true;
4806 return;
4807 }
4808 CBloomFilter filter;
4809 vRecv >> filter;
4810
4811 if (!filter.IsWithinSizeConstraints())
4812 {
4813 // There is no excuse for sending a too-large filter
4814 Misbehaving(*peer, "too-large bloom filter");
4815 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4816 {
4817 LOCK(tx_relay->m_bloom_filter_mutex);
4818 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4819 tx_relay->m_relay_txs = true;
4820 }
4821 pfrom.m_bloom_filter_loaded = true;
4822 pfrom.m_relays_txs = true;
4823 }
4824 return;
4825 }
4826
4827 if (msg_type == NetMsgType::FILTERADD) {
4828 if (!(peer->m_our_services & NODE_BLOOM)) {
4829 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4830 pfrom.fDisconnect = true;
4831 return;
4832 }
4833 std::vector<unsigned char> vData;
4834 vRecv >> vData;
4835
4836 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4837 // and thus, the maximum size any matched object can have) in a filteradd message
4838 bool bad = false;
4839 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4840 bad = true;
4841 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4842 LOCK(tx_relay->m_bloom_filter_mutex);
4843 if (tx_relay->m_bloom_filter) {
4844 tx_relay->m_bloom_filter->insert(vData);
4845 } else {
4846 bad = true;
4847 }
4848 }
4849 if (bad) {
4850 Misbehaving(*peer, "bad filteradd message");
4851 }
4852 return;
4853 }
4854
4855 if (msg_type == NetMsgType::FILTERCLEAR) {
4856 if (!(peer->m_our_services & NODE_BLOOM)) {
4857 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4858 pfrom.fDisconnect = true;
4859 return;
4860 }
4861 auto tx_relay = peer->GetTxRelay();
4862 if (!tx_relay) return;
4863
4864 {
4865 LOCK(tx_relay->m_bloom_filter_mutex);
4866 tx_relay->m_bloom_filter = nullptr;
4867 tx_relay->m_relay_txs = true;
4868 }
4869 pfrom.m_bloom_filter_loaded = false;
4870 pfrom.m_relays_txs = true;
4871 return;
4872 }
4873
4874 if (msg_type == NetMsgType::FEEFILTER) {
4875 CAmount newFeeFilter = 0;
4876 vRecv >> newFeeFilter;
4877 if (MoneyRange(newFeeFilter)) {
4878 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4879 tx_relay->m_fee_filter_received = newFeeFilter;
4880 }
4881 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4882 }
4883 return;
4884 }
4885
4886 if (msg_type == NetMsgType::GETCFILTERS) {
4887 ProcessGetCFilters(pfrom, *peer, vRecv);
4888 return;
4889 }
4890
4891 if (msg_type == NetMsgType::GETCFHEADERS) {
4892 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4893 return;
4894 }
4895
4896 if (msg_type == NetMsgType::GETCFCHECKPT) {
4897 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4898 return;
4899 }
4900
4901 if (msg_type == NetMsgType::NOTFOUND) {
4902 std::vector<CInv> vInv;
4903 vRecv >> vInv;
4904 std::vector<uint256> tx_invs;
4906 for (CInv &inv : vInv) {
4907 if (inv.IsGenTxMsg()) {
4908 tx_invs.emplace_back(inv.hash);
4909 }
4910 }
4911 }
4912 LOCK(m_tx_download_mutex);
4913 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4914 return;
4915 }
4916
4917 // Ignore unknown commands for extensibility
4918 LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4919 return;
4920}
4921
4922bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4923{
4924 {
4925 LOCK(peer.m_misbehavior_mutex);
4926
4927 // There's nothing to do if the m_should_discourage flag isn't set
4928 if (!peer.m_should_discourage) return false;
4929
4930 peer.m_should_discourage = false;
4931 } // peer.m_misbehavior_mutex
4932
4934 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4935 LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4936 return false;
4937 }
4938
4939 if (pnode.IsManualConn()) {
4940 // We never disconnect or discourage manual peers for bad behavior
4941 LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4942 return false;
4943 }
4944
4945 if (pnode.addr.IsLocal()) {
4946 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4947 // all peers on the same local address)
4948 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4949 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4950 pnode.fDisconnect = true;
4951 return true;
4952 }
4953
4954 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4955 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4956 if (m_banman) m_banman->Discourage(pnode.addr);
4957 m_connman.DisconnectNode(pnode.addr);
4958 return true;
4959}
4960
4961bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4962{
4963 AssertLockNotHeld(m_tx_download_mutex);
4964 AssertLockHeld(g_msgproc_mutex);
4965
4966 PeerRef peer = GetPeerRef(pfrom->GetId());
4967 if (peer == nullptr) return false;
4968
4969 // For outbound connections, ensure that the initial VERSION message
4970 // has been sent first before processing any incoming messages
4971 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
4972
4973 {
4974 LOCK(peer->m_getdata_requests_mutex);
4975 if (!peer->m_getdata_requests.empty()) {
4976 ProcessGetData(*pfrom, *peer, interruptMsgProc);
4977 }
4978 }
4979
4980 const bool processed_orphan = ProcessOrphanTx(*peer);
4981
4982 if (pfrom->fDisconnect)
4983 return false;
4984
4985 if (processed_orphan) return true;
4986
4987 // this maintains the order of responses
4988 // and prevents m_getdata_requests to grow unbounded
4989 {
4990 LOCK(peer->m_getdata_requests_mutex);
4991 if (!peer->m_getdata_requests.empty()) return true;
4992 }
4993
4994 // Don't bother if send buffer is too full to respond anyway
4995 if (pfrom->fPauseSend) return false;
4996
4997 auto poll_result{pfrom->PollMessage()};
4998 if (!poll_result) {
4999 // No message to process
5000 return false;
5001 }
5002
5003 CNetMessage& msg{poll_result->first};
5004 bool fMoreWork = poll_result->second;
5005
5006 TRACEPOINT(net, inbound_message,
5007 pfrom->GetId(),
5008 pfrom->m_addr_name.c_str(),
5009 pfrom->ConnectionTypeAsString().c_str(),
5010 msg.m_type.c_str(),
5011 msg.m_recv.size(),
5012 msg.m_recv.data()
5013 );
5014
5015 if (m_opts.capture_messages) {
5016 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5017 }
5018
5019 try {
5020 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5021 if (interruptMsgProc) return false;
5022 {
5023 LOCK(peer->m_getdata_requests_mutex);
5024 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5025 }
5026 // Does this peer has an orphan ready to reconsider?
5027 // (Note: we may have provided a parent for an orphan provided
5028 // by another peer that was already processed; in that case,
5029 // the extra work may not be noticed, possibly resulting in an
5030 // unnecessary 100ms delay)
5031 LOCK(m_tx_download_mutex);
5032 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5033 } catch (const std::exception& e) {
5034 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5035 } catch (...) {
5036 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5037 }
5038
5039 return fMoreWork;
5040}
5041
5042void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5043{
5045
5046 CNodeState &state = *State(pto.GetId());
5047
5048 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5049 // This is an outbound peer subject to disconnection if they don't
5050 // announce a block with as much work as the current tip within
5051 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5052 // their chain has more work than ours, we should sync to it,
5053 // unless it's invalid, in which case we should find that out and
5054 // disconnect from them elsewhere).
5055 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5056 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5057 if (state.m_chain_sync.m_timeout != 0s) {
5058 state.m_chain_sync.m_timeout = 0s;
5059 state.m_chain_sync.m_work_header = nullptr;
5060 state.m_chain_sync.m_sent_getheaders = false;
5061 }
5062 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5063 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5064 // AND
5065 // we are noticing this for the first time (m_timeout is 0)
5066 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5067 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5068 // Either way, set a new timeout based on our current tip.
5069 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5070 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5071 state.m_chain_sync.m_sent_getheaders = false;
5072 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5073 // No evidence yet that our peer has synced to a chain with work equal to that
5074 // of our tip, when we first detected it was behind. Send a single getheaders
5075 // message to give the peer a chance to update us.
5076 if (state.m_chain_sync.m_sent_getheaders) {
5077 // They've run out of time to catch up!
5078 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5079 pto.fDisconnect = true;
5080 } else {
5081 assert(state.m_chain_sync.m_work_header);
5082 // Here, we assume that the getheaders message goes out,
5083 // because it'll either go out or be skipped because of a
5084 // getheaders in-flight already, in which case the peer should
5085 // still respond to us with a sufficiently high work chain tip.
5086 MaybeSendGetHeaders(pto,
5087 GetLocator(state.m_chain_sync.m_work_header->pprev),
5088 peer);
5089 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5090 state.m_chain_sync.m_sent_getheaders = true;
5091 // Bump the timeout to allow a response, which could clear the timeout
5092 // (if the response shows the peer has synced), reset the timeout (if
5093 // the peer syncs to the required work but not to our tip), or result
5094 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5095 // has not sufficiently progressed)
5096 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5097 }
5098 }
5099 }
5100}
5101
5102void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5103{
5104 // If we have any extra block-relay-only peers, disconnect the youngest unless
5105 // it's given us a block -- in which case, compare with the second-youngest, and
5106 // out of those two, disconnect the peer who least recently gave us a block.
5107 // The youngest block-relay-only peer would be the extra peer we connected
5108 // to temporarily in order to sync our tip; see net.cpp.
5109 // Note that we use higher nodeid as a measure for most recent connection.
5110 if (m_connman.GetExtraBlockRelayCount() > 0) {
5111 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5112
5113 m_connman.ForEachNode([&](CNode* pnode) {
5114 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5115 if (pnode->GetId() > youngest_peer.first) {
5116 next_youngest_peer = youngest_peer;
5117 youngest_peer.first = pnode->GetId();
5118 youngest_peer.second = pnode->m_last_block_time;
5119 }
5120 });
5121 NodeId to_disconnect = youngest_peer.first;
5122 if (youngest_peer.second > next_youngest_peer.second) {
5123 // Our newest block-relay-only peer gave us a block more recently;
5124 // disconnect our second youngest.
5125 to_disconnect = next_youngest_peer.first;
5126 }
5127 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5129 // Make sure we're not getting a block right now, and that
5130 // we've been connected long enough for this eviction to happen
5131 // at all.
5132 // Note that we only request blocks from a peer if we learn of a
5133 // valid headers chain with at least as much work as our tip.
5134 CNodeState *node_state = State(pnode->GetId());
5135 if (node_state == nullptr ||
5136 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5137 pnode->fDisconnect = true;
5138 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5139 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5140 return true;
5141 } else {
5142 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5143 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5144 }
5145 return false;
5146 });
5147 }
5148
5149 // Check whether we have too many outbound-full-relay peers
5150 if (m_connman.GetExtraFullOutboundCount() > 0) {
5151 // If we have more outbound-full-relay peers than we target, disconnect one.
5152 // Pick the outbound-full-relay peer that least recently announced
5153 // us a new block, with ties broken by choosing the more recent
5154 // connection (higher node id)
5155 // Protect peers from eviction if we don't have another connection
5156 // to their network, counting both outbound-full-relay and manual peers.
5157 NodeId worst_peer = -1;
5158 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5159
5160 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5161 AssertLockHeld(::cs_main);
5162
5163 // Only consider outbound-full-relay peers that are not already
5164 // marked for disconnection
5165 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5166 CNodeState *state = State(pnode->GetId());
5167 if (state == nullptr) return; // shouldn't be possible, but just in case
5168 // Don't evict our protected peers
5169 if (state->m_chain_sync.m_protect) return;
5170 // If this is the only connection on a particular network that is
5171 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5172 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5173 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5174 worst_peer = pnode->GetId();
5175 oldest_block_announcement = state->m_last_block_announcement;
5176 }
5177 });
5178 if (worst_peer != -1) {
5179 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5181
5182 // Only disconnect a peer that has been connected to us for
5183 // some reasonable fraction of our check-frequency, to give
5184 // it time for new information to have arrived.
5185 // Also don't disconnect any peer we're trying to download a
5186 // block from.
5187 CNodeState &state = *State(pnode->GetId());
5188 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5189 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5190 pnode->fDisconnect = true;
5191 return true;
5192 } else {
5193 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5194 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5195 return false;
5196 }
5197 });
5198 if (disconnected) {
5199 // If we disconnected an extra peer, that means we successfully
5200 // connected to at least one peer after the last time we
5201 // detected a stale tip. Don't try any more extra peers until
5202 // we next detect a stale tip, to limit the load we put on the
5203 // network from these extra connections.
5204 m_connman.SetTryNewOutboundPeer(false);
5205 }
5206 }
5207 }
5208}
5209
5210void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5211{
5212 LOCK(cs_main);
5213
5214 auto now{GetTime<std::chrono::seconds>()};
5215
5216 EvictExtraOutboundPeers(now);
5217
5218 if (now > m_stale_tip_check_time) {
5219 // Check whether our tip is stale, and if so, allow using an extra
5220 // outbound peer
5221 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5222 LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5223 count_seconds(now - m_last_tip_update.load()));
5224 m_connman.SetTryNewOutboundPeer(true);
5225 } else if (m_connman.GetTryNewOutboundPeer()) {
5226 m_connman.SetTryNewOutboundPeer(false);
5227 }
5228 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5229 }
5230
5231 if (!m_initial_sync_finished && CanDirectFetch()) {
5232 m_connman.StartExtraBlockRelayPeers();
5233 m_initial_sync_finished = true;
5234 }
5235}
5236
5237void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5238{
5239 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5240 peer.m_ping_nonce_sent &&
5241 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5242 {
5243 // The ping timeout is using mocktime. To disable the check during
5244 // testing, increase -peertimeout.
5245 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5246 node_to.fDisconnect = true;
5247 return;
5248 }
5249
5250 bool pingSend = false;
5251
5252 if (peer.m_ping_queued) {
5253 // RPC ping request by user
5254 pingSend = true;
5255 }
5256
5257 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5258 // Ping automatically sent as a latency probe & keepalive.
5259 pingSend = true;
5260 }
5261
5262 if (pingSend) {
5263 uint64_t nonce;
5264 do {
5266 } while (nonce == 0);
5267 peer.m_ping_queued = false;
5268 peer.m_ping_start = now;
5269 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5270 peer.m_ping_nonce_sent = nonce;
5271 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5272 } else {
5273 // Peer is too old to support ping command with nonce, pong will never arrive.
5274 peer.m_ping_nonce_sent = 0;
5275 MakeAndPushMessage(node_to, NetMsgType::PING);
5276 }
5277 }
5278}
5279
5280void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5281{
5282 // Nothing to do for non-address-relay peers
5283 if (!peer.m_addr_relay_enabled) return;
5284
5285 LOCK(peer.m_addr_send_times_mutex);
5286 // Periodically advertise our local address to the peer.
5287 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5288 peer.m_next_local_addr_send < current_time) {
5289 // If we've sent before, clear the bloom filter for the peer, so that our
5290 // self-announcement will actually go out.
5291 // This might be unnecessary if the bloom filter has already rolled
5292 // over since our last self-announcement, but there is only a small
5293 // bandwidth cost that we can incur by doing this (which happens
5294 // once a day on average).
5295 if (peer.m_next_local_addr_send != 0us) {
5296 peer.m_addr_known->reset();
5297 }
5298 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5299 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5300 PushAddress(peer, local_addr);
5301 }
5302 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5303 }
5304
5305 // We sent an `addr` message to this peer recently. Nothing more to do.
5306 if (current_time <= peer.m_next_addr_send) return;
5307
5308 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5309
5310 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5311 // Should be impossible since we always check size before adding to
5312 // m_addrs_to_send. Recover by trimming the vector.
5313 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5314 }
5315
5316 // Remove addr records that the peer already knows about, and add new
5317 // addrs to the m_addr_known filter on the same pass.
5318 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5319 bool ret = peer.m_addr_known->contains(addr.GetKey());
5320 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5321 return ret;
5322 };
5323 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5324 peer.m_addrs_to_send.end());
5325
5326 // No addr messages to send
5327 if (peer.m_addrs_to_send.empty()) return;
5328
5329 if (peer.m_wants_addrv2) {
5330 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5331 } else {
5332 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5333 }
5334 peer.m_addrs_to_send.clear();
5335
5336 // we only send the big addr message once
5337 if (peer.m_addrs_to_send.capacity() > 40) {
5338 peer.m_addrs_to_send.shrink_to_fit();
5339 }
5340}
5341
5342void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5343{
5344 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5345 // initial-headers-sync with this peer. Receiving headers announcements for
5346 // new blocks while trying to sync their headers chain is problematic,
5347 // because of the state tracking done.
5348 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5349 LOCK(cs_main);
5350 CNodeState &state = *State(node.GetId());
5351 if (state.pindexBestKnownBlock != nullptr &&
5352 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5353 // Tell our peer we prefer to receive headers rather than inv's
5354 // We send this to non-NODE NETWORK peers as well, because even
5355 // non-NODE NETWORK peers can announce blocks (such as pruning
5356 // nodes)
5357 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5358 peer.m_sent_sendheaders = true;
5359 }
5360 }
5361}
5362
5363void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5364{
5365 if (m_opts.ignore_incoming_txs) return;
5366 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5367 // peers with the forcerelay permission should not filter txs to us
5369 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5370 // transactions to us, regardless of feefilter state.
5371 if (pto.IsBlockOnlyConn()) return;
5372
5373 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5374
5375 if (m_chainman.IsInitialBlockDownload()) {
5376 // Received tx-inv messages are discarded when the active
5377 // chainstate is in IBD, so tell the peer to not send them.
5378 currentFilter = MAX_MONEY;
5379 } else {
5380 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5381 if (peer.m_fee_filter_sent == MAX_FILTER) {
5382 // Send the current filter if we sent MAX_FILTER previously
5383 // and made it out of IBD.
5384 peer.m_next_send_feefilter = 0us;
5385 }
5386 }
5387 if (current_time > peer.m_next_send_feefilter) {
5388 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5389 // We always have a fee filter of at least the min relay fee
5390 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5391 if (filterToSend != peer.m_fee_filter_sent) {
5392 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5393 peer.m_fee_filter_sent = filterToSend;
5394 }
5395 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5396 }
5397 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5398 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5399 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5400 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5401 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5402 }
5403}
5404
5405namespace {
5406class CompareInvMempoolOrder
5407{
5408 CTxMemPool* mp;
5409 bool m_wtxid_relay;
5410public:
5411 explicit CompareInvMempoolOrder(CTxMemPool *_mempool, bool use_wtxid)
5412 {
5413 mp = _mempool;
5414 m_wtxid_relay = use_wtxid;
5415 }
5416
5417 bool operator()(std::set<uint256>::iterator a, std::set<uint256>::iterator b)
5418 {
5419 /* As std::make_heap produces a max-heap, we want the entries with the
5420 * fewest ancestors/highest fee to sort later. */
5421 return mp->CompareDepthAndScore(*b, *a, m_wtxid_relay);
5422 }
5423};
5424} // namespace
5425
5426bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5427{
5428 // block-relay-only peers may never send txs to us
5429 if (peer.IsBlockOnlyConn()) return true;
5430 if (peer.IsFeelerConn()) return true;
5431 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5432 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5433 return false;
5434}
5435
5436bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5437{
5438 // We don't participate in addr relay with outbound block-relay-only
5439 // connections to prevent providing adversaries with the additional
5440 // information of addr traffic to infer the link.
5441 if (node.IsBlockOnlyConn()) return false;
5442
5443 if (!peer.m_addr_relay_enabled.exchange(true)) {
5444 // During version message processing (non-block-relay-only outbound peers)
5445 // or on first addr-related message we have received (inbound peers), initialize
5446 // m_addr_known.
5447 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5448 }
5449
5450 return true;
5451}
5452
5453bool PeerManagerImpl::SendMessages(CNode* pto)
5454{
5455 AssertLockNotHeld(m_tx_download_mutex);
5456 AssertLockHeld(g_msgproc_mutex);
5457
5458 PeerRef peer = GetPeerRef(pto->GetId());
5459 if (!peer) return false;
5460 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5461
5462 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5463 // disconnect misbehaving peers even before the version handshake is complete.
5464 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5465
5466 // Initiate version handshake for outbound connections
5467 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5468 PushNodeVersion(*pto, *peer);
5469 peer->m_outbound_version_message_sent = true;
5470 }
5471
5472 // Don't send anything until the version handshake is complete
5473 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5474 return true;
5475
5476 const auto current_time{GetTime<std::chrono::microseconds>()};
5477
5478 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5479 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5480 pto->fDisconnect = true;
5481 return true;
5482 }
5483
5484 MaybeSendPing(*pto, *peer, current_time);
5485
5486 // MaybeSendPing may have marked peer for disconnection
5487 if (pto->fDisconnect) return true;
5488
5489 MaybeSendAddr(*pto, *peer, current_time);
5490
5491 MaybeSendSendHeaders(*pto, *peer);
5492
5493 {
5494 LOCK(cs_main);
5495
5496 CNodeState &state = *State(pto->GetId());
5497
5498 // Start block sync
5499 if (m_chainman.m_best_header == nullptr) {
5500 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5501 }
5502
5503 // Determine whether we might try initial headers sync or parallel
5504 // block download from this peer -- this mostly affects behavior while
5505 // in IBD (once out of IBD, we sync from all peers).
5506 bool sync_blocks_and_headers_from_peer = false;
5507 if (state.fPreferredDownload) {
5508 sync_blocks_and_headers_from_peer = true;
5509 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5510 // Typically this is an inbound peer. If we don't have any outbound
5511 // peers, or if we aren't downloading any blocks from such peers,
5512 // then allow block downloads from this peer, too.
5513 // We prefer downloading blocks from outbound peers to avoid
5514 // putting undue load on (say) some home user who is just making
5515 // outbound connections to the network, but if our only source of
5516 // the latest blocks is from an inbound peer, we have to be sure to
5517 // eventually download it (and not just wait indefinitely for an
5518 // outbound peer to have it).
5519 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5520 sync_blocks_and_headers_from_peer = true;
5521 }
5522 }
5523
5524 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5525 // Only actively request headers from a single peer, unless we're close to today.
5526 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5527 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5528 /* If possible, start at the block preceding the currently
5529 best known header. This ensures that we always get a
5530 non-empty list of headers back as long as the peer
5531 is up-to-date. With a non-empty response, we can initialise
5532 the peer's known best block. This wouldn't be possible
5533 if we requested starting at m_chainman.m_best_header and
5534 got back an empty response. */
5535 if (pindexStart->pprev)
5536 pindexStart = pindexStart->pprev;
5537 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5538 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5539
5540 state.fSyncStarted = true;
5541 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5542 (
5543 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5544 // to maintain precision
5545 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5546 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5547 );
5548 nSyncStarted++;
5549 }
5550 }
5551 }
5552
5553 //
5554 // Try sending block announcements via headers
5555 //
5556 {
5557 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5558 // list of block hashes we're relaying, and our peer wants
5559 // headers announcements, then find the first header
5560 // not yet known to our peer but would connect, and send.
5561 // If no header would connect, or if we have too many
5562 // blocks, or if the peer doesn't want headers, just
5563 // add all to the inv queue.
5564 LOCK(peer->m_block_inv_mutex);
5565 std::vector<CBlock> vHeaders;
5566 bool fRevertToInv = ((!peer->m_prefers_headers &&
5567 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5568 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5569 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5570 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5571
5572 if (!fRevertToInv) {
5573 bool fFoundStartingHeader = false;
5574 // Try to find first header that our peer doesn't have, and
5575 // then send all headers past that one. If we come across any
5576 // headers that aren't on m_chainman.ActiveChain(), give up.
5577 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5578 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5579 assert(pindex);
5580 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5581 // Bail out if we reorged away from this block
5582 fRevertToInv = true;
5583 break;
5584 }
5585 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5586 // This means that the list of blocks to announce don't
5587 // connect to each other.
5588 // This shouldn't really be possible to hit during
5589 // regular operation (because reorgs should take us to
5590 // a chain that has some block not on the prior chain,
5591 // which should be caught by the prior check), but one
5592 // way this could happen is by using invalidateblock /
5593 // reconsiderblock repeatedly on the tip, causing it to
5594 // be added multiple times to m_blocks_for_headers_relay.
5595 // Robustly deal with this rare situation by reverting
5596 // to an inv.
5597 fRevertToInv = true;
5598 break;
5599 }
5600 pBestIndex = pindex;
5601 if (fFoundStartingHeader) {
5602 // add this to the headers message
5603 vHeaders.emplace_back(pindex->GetBlockHeader());
5604 } else if (PeerHasHeader(&state, pindex)) {
5605 continue; // keep looking for the first new block
5606 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5607 // Peer doesn't have this header but they do have the prior one.
5608 // Start sending headers.
5609 fFoundStartingHeader = true;
5610 vHeaders.emplace_back(pindex->GetBlockHeader());
5611 } else {
5612 // Peer doesn't have this header or the prior one -- nothing will
5613 // connect, so bail out.
5614 fRevertToInv = true;
5615 break;
5616 }
5617 }
5618 }
5619 if (!fRevertToInv && !vHeaders.empty()) {
5620 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5621 // We only send up to 1 block as header-and-ids, as otherwise
5622 // probably means we're doing an initial-ish-sync or they're slow
5623 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5624 vHeaders.front().GetHash().ToString(), pto->GetId());
5625
5626 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5627 {
5628 LOCK(m_most_recent_block_mutex);
5629 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5630 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5631 }
5632 }
5633 if (cached_cmpctblock_msg.has_value()) {
5634 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5635 } else {
5636 CBlock block;
5637 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5638 assert(ret);
5639 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5640 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5641 }
5642 state.pindexBestHeaderSent = pBestIndex;
5643 } else if (peer->m_prefers_headers) {
5644 if (vHeaders.size() > 1) {
5645 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5646 vHeaders.size(),
5647 vHeaders.front().GetHash().ToString(),
5648 vHeaders.back().GetHash().ToString(), pto->GetId());
5649 } else {
5650 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5651 vHeaders.front().GetHash().ToString(), pto->GetId());
5652 }
5653 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5654 state.pindexBestHeaderSent = pBestIndex;
5655 } else
5656 fRevertToInv = true;
5657 }
5658 if (fRevertToInv) {
5659 // If falling back to using an inv, just try to inv the tip.
5660 // The last entry in m_blocks_for_headers_relay was our tip at some point
5661 // in the past.
5662 if (!peer->m_blocks_for_headers_relay.empty()) {
5663 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5664 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5665 assert(pindex);
5666
5667 // Warn if we're announcing a block that is not on the main chain.
5668 // This should be very rare and could be optimized out.
5669 // Just log for now.
5670 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5671 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5672 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5673 }
5674
5675 // If the peer's chain has this block, don't inv it back.
5676 if (!PeerHasHeader(&state, pindex)) {
5677 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5678 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5679 pto->GetId(), hashToAnnounce.ToString());
5680 }
5681 }
5682 }
5683 peer->m_blocks_for_headers_relay.clear();
5684 }
5685
5686 //
5687 // Message: inventory
5688 //
5689 std::vector<CInv> vInv;
5690 {
5691 LOCK(peer->m_block_inv_mutex);
5692 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5693
5694 // Add blocks
5695 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5696 vInv.emplace_back(MSG_BLOCK, hash);
5697 if (vInv.size() == MAX_INV_SZ) {
5698 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5699 vInv.clear();
5700 }
5701 }
5702 peer->m_blocks_for_inv_relay.clear();
5703 }
5704
5705 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5706 LOCK(tx_relay->m_tx_inventory_mutex);
5707 // Check whether periodic sends should happen
5708 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5709 if (tx_relay->m_next_inv_send_time < current_time) {
5710 fSendTrickle = true;
5711 if (pto->IsInboundConn()) {
5712 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL);
5713 } else {
5714 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5715 }
5716 }
5717
5718 // Time to send but the peer has requested we not relay transactions.
5719 if (fSendTrickle) {
5720 LOCK(tx_relay->m_bloom_filter_mutex);
5721 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5722 }
5723
5724 // Respond to BIP35 mempool requests
5725 if (fSendTrickle && tx_relay->m_send_mempool) {
5726 auto vtxinfo = m_mempool.infoAll();
5727 tx_relay->m_send_mempool = false;
5728 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5729
5730 LOCK(tx_relay->m_bloom_filter_mutex);
5731
5732 for (const auto& txinfo : vtxinfo) {
5733 CInv inv{
5734 peer->m_wtxid_relay ? MSG_WTX : MSG_TX,
5735 peer->m_wtxid_relay ?
5736 txinfo.tx->GetWitnessHash().ToUint256() :
5737 txinfo.tx->GetHash().ToUint256(),
5738 };
5739 tx_relay->m_tx_inventory_to_send.erase(inv.hash);
5740
5741 // Don't send transactions that peers will not put into their mempool
5742 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5743 continue;
5744 }
5745 if (tx_relay->m_bloom_filter) {
5746 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5747 }
5748 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5749 vInv.push_back(inv);
5750 if (vInv.size() == MAX_INV_SZ) {
5751 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5752 vInv.clear();
5753 }
5754 }
5755 }
5756
5757 // Determine transactions to relay
5758 if (fSendTrickle) {
5759 // Produce a vector with all candidates for sending
5760 std::vector<std::set<uint256>::iterator> vInvTx;
5761 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5762 for (std::set<uint256>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5763 vInvTx.push_back(it);
5764 }
5765 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5766 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5767 // A heap is used so that not all items need sorting if only a few are being sent.
5768 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool, peer->m_wtxid_relay);
5769 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5770 // No reason to drain out at many times the network's capacity,
5771 // especially since we have many peers and some will draw much shorter delays.
5772 unsigned int nRelayedTransactions = 0;
5773 LOCK(tx_relay->m_bloom_filter_mutex);
5774 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5775 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5776 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5777 // Fetch the top element from the heap
5778 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5779 std::set<uint256>::iterator it = vInvTx.back();
5780 vInvTx.pop_back();
5781 uint256 hash = *it;
5782 CInv inv(peer->m_wtxid_relay ? MSG_WTX : MSG_TX, hash);
5783 // Remove it from the to-be-sent set
5784 tx_relay->m_tx_inventory_to_send.erase(it);
5785 // Check if not in the filter already
5786 if (tx_relay->m_tx_inventory_known_filter.contains(hash)) {
5787 continue;
5788 }
5789 // Not in the mempool anymore? don't bother sending it.
5790 auto txinfo = m_mempool.info(ToGenTxid(inv));
5791 if (!txinfo.tx) {
5792 continue;
5793 }
5794 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5795 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5796 continue;
5797 }
5798 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5799 // Send
5800 vInv.push_back(inv);
5801 nRelayedTransactions++;
5802 if (vInv.size() == MAX_INV_SZ) {
5803 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5804 vInv.clear();
5805 }
5806 tx_relay->m_tx_inventory_known_filter.insert(hash);
5807 }
5808
5809 // Ensure we'll respond to GETDATA requests for anything we've just announced
5810 LOCK(m_mempool.cs);
5811 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5812 }
5813 }
5814 if (!vInv.empty())
5815 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5816
5817 // Detect whether we're stalling
5818 auto stalling_timeout = m_block_stalling_timeout.load();
5819 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5820 // Stalling only triggers when the block download window cannot move. During normal steady state,
5821 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5822 // should only happen during initial block download.
5823 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
5824 pto->fDisconnect = true;
5825 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5826 // bandwidth is insufficient.
5827 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5828 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5829 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5830 }
5831 return true;
5832 }
5833 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5834 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5835 // We compensate for other peers to prevent killing off peers due to our own downstream link
5836 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5837 // to unreasonably increase our timeout.
5838 if (state.vBlocksInFlight.size() > 0) {
5839 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5840 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5841 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5842 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
5843 pto->fDisconnect = true;
5844 return true;
5845 }
5846 }
5847 // Check for headers sync timeouts
5848 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5849 // Detect whether this is a stalling initial-headers-sync peer
5850 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5851 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5852 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5853 // and we have others we could be using instead.
5854 // Note: If all our peers are inbound, then we won't
5855 // disconnect our sync peer for stalling; we have bigger
5856 // problems if we can't get any outbound peers.
5858 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
5859 pto->fDisconnect = true;
5860 return true;
5861 } else {
5862 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
5863 // Reset the headers sync state so that we have a
5864 // chance to try downloading from a different peer.
5865 // Note: this will also result in at least one more
5866 // getheaders message to be sent to
5867 // this peer (eventually).
5868 state.fSyncStarted = false;
5869 nSyncStarted--;
5870 peer->m_headers_sync_timeout = 0us;
5871 }
5872 }
5873 } else {
5874 // After we've caught up once, reset the timeout so we can't trigger
5875 // disconnect later.
5876 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5877 }
5878 }
5879
5880 // Check that outbound peers have reasonable chains
5881 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5882 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5883
5884 //
5885 // Message: getdata (blocks)
5886 //
5887 std::vector<CInv> vGetData;
5888 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5889 std::vector<const CBlockIndex*> vToDownload;
5890 NodeId staller = -1;
5891 auto get_inflight_budget = [&state]() {
5892 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5893 };
5894
5895 // If a snapshot chainstate is in use, we want to find its next blocks
5896 // before the background chainstate to prioritize getting to network tip.
5897 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5898 if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5899 // If the background tip is not an ancestor of the snapshot block,
5900 // we need to start requesting blocks from their last common ancestor.
5901 const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5902 TryDownloadingHistoricalBlocks(
5903 *peer,
5904 get_inflight_budget(),
5905 vToDownload, from_tip,
5906 Assert(m_chainman.GetSnapshotBaseBlock()));
5907 }
5908 for (const CBlockIndex *pindex : vToDownload) {
5909 uint32_t nFetchFlags = GetFetchFlags(*peer);
5910 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5911 BlockRequested(pto->GetId(), *pindex);
5912 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5913 pindex->nHeight, pto->GetId());
5914 }
5915 if (state.vBlocksInFlight.empty() && staller != -1) {
5916 if (State(staller)->m_stalling_since == 0us) {
5917 State(staller)->m_stalling_since = current_time;
5918 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5919 }
5920 }
5921 }
5922
5923 //
5924 // Message: getdata (transactions)
5925 //
5926 {
5927 LOCK(m_tx_download_mutex);
5928 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5929 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.GetHash());
5930 if (vGetData.size() >= MAX_GETDATA_SZ) {
5931 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5932 vGetData.clear();
5933 }
5934 }
5935 }
5936
5937 if (!vGetData.empty())
5938 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5939 } // release cs_main
5940 MaybeSendFeefilter(*pto, *peer, current_time);
5941 return true;
5942}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:93
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:131
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:50
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:146
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:165
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:111
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:107
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:115
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:97
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:121
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:85
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:141
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:147
CBlockHeader GetBlockHeader() const
Definition: chain.h:230
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:165
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:259
uint256 GetBlockHash() const
Definition: chain.h:243
int64_t GetBlockTime() const
Definition: chain.h:266
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:170
bool IsValid(enum BlockStatus nUpTo=BLOCK_VALID_TRANSACTIONS) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:295
NodeSeconds Time() const
Definition: chain.h:261
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:120
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:153
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:208
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:417
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:433
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:453
int Height() const
Return the maximal height in the chain.
Definition: chain.h:462
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:447
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:69
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:81
Definition: net.h:1052
void ForEachNode(const NodeFn &func)
Definition: net.h:1151
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3920
bool GetNetworkActive() const
Definition: net.h:1136
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2418
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2423
int GetExtraBlockRelayCount() const
Definition: net.cpp:2468
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2239
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3739
void StartExtraBlockRelayPeers()
Definition: net.cpp:2429
bool DisconnectNode(const std::string &node)
Definition: net.cpp:3639
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3933
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3622
int GetExtraFullOutboundCount() const
Definition: net.cpp:2454
std::vector< CAddress > GetAddresses(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return all or many randomly selected addresses, optionally by network.
Definition: net.cpp:3506
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:373
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:1997
bool GetUseAddrmanOutgoing() const
Definition: net.h:1137
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per kilovirtualbyte: CAmount / kvB.
Definition: feerate.h:33
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:63
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:126
std::vector< std::pair< unsigned int, uint256 > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:138
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:466
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:428
bool IsLocal() const
Definition: netaddress.cpp:402
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:481
Transport protocol agnostic message container.
Definition: net.h:231
Information about a peer.
Definition: net.h:673
bool IsFeelerConn() const
Definition: net.h:803
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:706
bool ExpectServicesFromConn() const
Definition: net.h:815
std::atomic< int > nVersion
Definition: net.h:716
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:851
bool IsInboundConn() const
Definition: net.h:811
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:724
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:760
NodeId GetId() const
Definition: net.h:894
bool IsManualConn() const
Definition: net.h:779
const std::string m_addr_name
Definition: net.h:711
std::string ConnectionTypeAsString() const
Definition: net.h:948
void SetCommonVersion(int greatest_common_version)
Definition: net.h:919
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:846
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:855
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:848
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:967
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:728
bool IsAddrFetchConn() const
Definition: net.h:807
uint64_t GetLocalNonce() const
Definition: net.h:898
const CAddress addr
Definition: net.h:708
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:600
bool IsBlockOnlyConn() const
Definition: net.h:799
int GetCommonVersion() const
Definition: net.h:924
bool IsFullOutboundConn() const
Definition: net.h:775
Mutex m_subver_mutex
Definition: net.h:717
std::atomic_bool fPauseSend
Definition: net.h:737
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3854
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:859
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:710
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:677
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:715
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:866
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:715
std::atomic_bool fDisconnect
Definition: net.h:731
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:872
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:531
std::string ToStringAddrPort() const
Definition: netaddress.cpp:907
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:899
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:77
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:28
The basic transaction that is broadcasted on the network and contained in blocks.
Definition: transaction.h:296
const Wtxid & GetWitnessHash() const LIFETIMEBOUND
Definition: transaction.h:344
const Txid & GetHash() const LIFETIMEBOUND
Definition: transaction.h:343
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:304
void RemoveUnbroadcastTx(const uint256 &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:1069
std::set< uint256 > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:687
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:390
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:1126
CTransactionRef get(const uint256 &hash) const
Definition: txmempool.cpp:884
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:1063
const Options m_opts
Definition: txmempool.h:439
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:863
TxMempoolInfo info(const GenTxid &gtxid) const
Definition: txmempool.cpp:893
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:705
TxMempoolInfo info_for_relay(const GenTxid &gtxid, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.cpp:902
bool exists(const GenTxid &gtxid) const
Definition: txmempool.h:647
unsigned long size() const
Definition: txmempool.h:629
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void BlockConnected(ChainstateRole role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
virtual void BlockChecked(const CBlock &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
Provides an interface for creating and interacting with one or two chainstates: an IBD chainstate gen...
Definition: validation.h:866
SnapshotCompletionResult MaybeCompleteSnapshotValidation() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(Chainstate ActiveChainstate)() const
Once the background validation chainstate has reached the height which is the base of the UTXO snapsh...
Definition: validation.h:1110
const CBlockIndex * GetBackgroundSyncTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The tip of the background sync chain.
Definition: validation.h:1121
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1001
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1113
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool BackgroundSyncInProgress() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The state of a background sync (for net processing)
Definition: validation.h:1116
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:979
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1111
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1007
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:147
bool empty() const
Definition: streams.h:182
size_type size() const
Definition: streams.h:181
void ignore(size_t num_ignore)
Definition: streams.h:236
int in_avail() const
Definition: streams.h:216
Fast randomness source.
Definition: random.h:377
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:395
A generic txid reference (txid or wtxid).
Definition: transaction.h:428
bool IsWtxid() const
Definition: transaction.h:436
const uint256 & GetHash() const LIFETIMEBOUND
Definition: transaction.h:437
static GenTxid Txid(const uint256 &hash)
Definition: transaction.h:434
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1011
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< CTransactionRef > &extra_txn)
bool IsTxAvailable(size_t index) const
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing)
virtual std::optional< std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual std::vector< TxOrphanage::OrphanTxBase > GetOrphanTransactions()=0
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:124
bool IsValid() const
Definition: validation.h:105
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool ReadRawBlock(std::vector< uint8_t > &block, const FlatFilePos &pos) const
bool LoadingBlocks() const
Definition: blockstorage.h:355
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:349
bool ReadBlock(CBlock &block, const FlatFilePos &pos) const
Functions for disk access for blocks.
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
256-bit opaque blob.
Definition: uint256.h:196
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_MEMPOOL_POLICY
violated mempool's fee/size/descendant/RBF/etc limits
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_PREMATURE_SPEND
transaction spends a coinbase too early, or violates locktime/sequence locks
@ TX_INPUTS_NOT_STANDARD
inputs (covered by txid) failed policy rules
@ TX_WITNESS_STRIPPED
Transaction is missing a witness.
@ TX_CONFLICT
Tx already in mempool or conflicts with a tx in the chain (if it conflicts with another tx in mempool...
@ TX_NOT_STANDARD
otherwise didn't meet our local policy rules
@ TX_WITNESS_MUTATED
Transaction might have a witness prior to SegWit activation, or witness may have been malleated (whic...
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
@ TX_CONSENSUS
invalid by consensus rules
@ TX_RECONSIDERABLE
fails some policy, but might be acceptable if submitted in a (different) package
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
ChainstateRole
This enum describes the various roles a specific Chainstate instance can take.
Definition: chain.h:25
bool fLogIPs
Definition: logging.cpp:45
#define LogInfo(...)
Definition: logging.h:261
#define LogError(...)
Definition: logging.h:263
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:233
#define LogDebug(category,...)
Definition: logging.h:280
#define LogPrintf(...)
Definition: logging.h:266
unsigned int nonce
Definition: miner_tests.cpp:74
@ TXPACKAGES
Definition: logging.h:73
@ MEMPOOLREJ
Definition: logging.h:59
@ MEMPOOL
Definition: logging.h:45
@ NET
Definition: logging.h:43
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:28
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Functions to serialize / deserialize common bitcoin types.
Definition: common-types.h:57
Definition: messages.h:20
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:427
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:233
bool fListen
Definition: net.cpp:123
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:126
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:246
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4021
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:65
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:57
int64_t NodeId
Definition: net.h:97
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:743
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:64
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:196
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:423
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" command for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" command and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:502
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:339
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:74
int64_t nPowTargetSpacing
Definition: params.h:117
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:119
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:123
const ResultType m_result_type
Result type.
Definition: validation.h:132
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:135
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:138
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:229
PackageValidationState m_state
Definition: validation.h:230
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:237
std::chrono::seconds median_outbound_time_offset
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:59
std::string ToString() const
Definition: txdownloadman.h:81
#define AssertLockNotHeld(cs)
Definition: sync.h:147
#define LOCK2(cs1, cs2)
Definition: sync.h:258
#define LOCK(cs)
Definition: sync.h:257
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:301
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:98
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:49
#define GUARDED_BY(x)
Definition: threadsafety.h:38
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:48
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:41
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:39
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:49
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it)
Definition: txmempool.cpp:847
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:76
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:84
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:68