Bitcoin Core 30.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/types.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
38#include <node/txorphanage.h>
40#include <node/warnings.h>
41#include <policy/feerate.h>
43#include <policy/packages.h>
44#include <policy/policy.h>
45#include <primitives/block.h>
47#include <protocol.h>
48#include <random.h>
49#include <scheduler.h>
50#include <script/script.h>
51#include <serialize.h>
52#include <span.h>
53#include <streams.h>
54#include <sync.h>
55#include <tinyformat.h>
56#include <txmempool.h>
57#include <uint256.h>
58#include <util/check.h>
59#include <util/strencodings.h>
60#include <util/time.h>
61#include <util/trace.h>
62#include <validation.h>
63
64#include <algorithm>
65#include <array>
66#include <atomic>
67#include <compare>
68#include <cstddef>
69#include <deque>
70#include <exception>
71#include <functional>
72#include <future>
73#include <initializer_list>
74#include <iterator>
75#include <limits>
76#include <list>
77#include <map>
78#include <memory>
79#include <optional>
80#include <queue>
81#include <ranges>
82#include <ratio>
83#include <set>
84#include <span>
85#include <typeinfo>
86#include <utility>
87
89using namespace util::hex_literals;
90
91TRACEPOINT_SEMAPHORE(net, inbound_message);
92TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
93
96static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
97static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
99static constexpr auto HEADERS_RESPONSE_TIME{2min};
105static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
107static constexpr auto STALE_CHECK_INTERVAL{10min};
109static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
111static constexpr auto MINIMUM_CONNECT_TIME{30s};
113static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
116static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
119static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
121static constexpr auto PING_INTERVAL{2min};
123static const unsigned int MAX_LOCATOR_SZ = 101;
125static const unsigned int MAX_INV_SZ = 50000;
127static const unsigned int MAX_GETDATA_SZ = 1000;
129static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
132static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
134static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
137static const int MAX_CMPCTBLOCK_DEPTH = 5;
139static const int MAX_BLOCKTXN_DEPTH = 10;
140static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
145static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
147static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
149static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
151static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
153static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
155static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
157static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
159static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
161static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
171static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND{14};
175static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
176static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
177static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
179static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
181static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
183static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
185static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
187static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
189static constexpr size_t MAX_ADDR_TO_SEND{1000};
192static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
198static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
199
200// Internal stuff
201namespace {
203struct QueuedBlock {
205 const CBlockIndex* pindex;
207 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
208};
209
222struct Peer {
224 const NodeId m_id{0};
225
239 const ServiceFlags m_our_services;
241 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
242
244 const bool m_is_inbound;
245
247 Mutex m_misbehavior_mutex;
249 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
250
252 Mutex m_block_inv_mutex;
256 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
260 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
265 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
266
268 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
269
271 // TODO: remove in v32.0, only show reported height once in "receive version message: ..." debug log
272 std::atomic<int> m_starting_height{-1};
273
275 std::atomic<uint64_t> m_ping_nonce_sent{0};
277 std::atomic<std::chrono::microseconds> m_ping_start{0us};
279 std::atomic<bool> m_ping_queued{false};
280
282 std::atomic<bool> m_wtxid_relay{false};
289 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
290
291 struct TxRelay {
292 mutable RecursiveMutex m_bloom_filter_mutex;
294 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
296 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
297
298 mutable RecursiveMutex m_tx_inventory_mutex;
302 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
307 std::set<Wtxid> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
311 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
314 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
317 uint64_t m_last_inv_sequence GUARDED_BY(m_tx_inventory_mutex){1};
318
320 std::atomic<CAmount> m_fee_filter_received{0};
321 };
322
323 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
324 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
325 {
326 LOCK(m_tx_relay_mutex);
327 Assume(!m_tx_relay);
328 m_tx_relay = std::make_unique<Peer::TxRelay>();
329 return m_tx_relay.get();
330 };
331
332 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
333 {
334 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
335 };
336
338 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
348 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
363 std::atomic_bool m_addr_relay_enabled{false};
365 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
367 mutable Mutex m_addr_send_times_mutex;
369 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
371 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
374 std::atomic_bool m_wants_addrv2{false};
376 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
379 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
381 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
383 std::atomic<uint64_t> m_addr_rate_limited{0};
385 std::atomic<uint64_t> m_addr_processed{0};
386
388 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
389
391 Mutex m_getdata_requests_mutex;
393 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
394
397
399 Mutex m_headers_sync_mutex;
402 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
403
405 std::atomic<bool> m_sent_sendheaders{false};
406
408 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
409
411 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
412
415 std::atomic<std::chrono::seconds> m_time_offset{0s};
416
417 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
418 : m_id{id}
419 , m_our_services{our_services}
420 , m_is_inbound{is_inbound}
421 {}
422
423private:
424 mutable Mutex m_tx_relay_mutex;
425
427 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
428};
429
430using PeerRef = std::shared_ptr<Peer>;
431
438struct CNodeState {
440 const CBlockIndex* pindexBestKnownBlock{nullptr};
442 uint256 hashLastUnknownBlock{};
444 const CBlockIndex* pindexLastCommonBlock{nullptr};
446 const CBlockIndex* pindexBestHeaderSent{nullptr};
448 bool fSyncStarted{false};
450 std::chrono::microseconds m_stalling_since{0us};
451 std::list<QueuedBlock> vBlocksInFlight;
453 std::chrono::microseconds m_downloading_since{0us};
455 bool fPreferredDownload{false};
457 bool m_requested_hb_cmpctblocks{false};
459 bool m_provides_cmpctblocks{false};
460
485 struct ChainSyncTimeoutState {
487 std::chrono::seconds m_timeout{0s};
489 const CBlockIndex* m_work_header{nullptr};
491 bool m_sent_getheaders{false};
493 bool m_protect{false};
494 };
495
496 ChainSyncTimeoutState m_chain_sync;
497
499 int64_t m_last_block_announcement{0};
500};
501
502class PeerManagerImpl final : public PeerManager
503{
504public:
505 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
506 BanMan* banman, ChainstateManager& chainman,
507 CTxMemPool& pool, node::Warnings& warnings, Options opts);
508
510 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
511 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
512 void BlockConnected(const ChainstateRole& role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
513 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
514 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
515 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
516 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
517 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
518 void BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state) override
519 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
520 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
521 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
522
524 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
525 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
526 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
527 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
528 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
529 bool SendMessages(CNode* pto) override
530 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
531
533 void StartScheduledTasks(CScheduler& scheduler) override;
534 void CheckForStaleTipAndEvictPeers() override;
535 util::Expected<void, std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
536 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
537 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
538 std::vector<node::TxOrphanage::OrphanInfo> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
539 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
541 void RelayTransaction(const Txid& txid, const Wtxid& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
542 void SetBestBlock(int height, std::chrono::seconds time) override
543 {
544 m_best_height = height;
545 m_best_block_time = time;
546 };
547 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
548 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
549 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
550 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
551 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
552 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
553
554private:
556 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
557
559 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
560
562 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
563
566 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
567
570 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
571
574 void Misbehaving(Peer& peer, const std::string& message);
575
584 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
585 bool via_compact_block, const std::string& message = "")
586 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
587
594 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
595
607 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
608 bool first_time_failure)
609 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
610
613 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
614 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
615
619 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
620 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
621
633 bool ProcessOrphanTx(Peer& peer)
634 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
635
643 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
644 std::vector<CBlockHeader>&& headers,
645 bool via_compact_block)
646 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
649 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
651 arith_uint256 GetAntiDoSWorkThreshold();
655 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
657 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
676 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
677 std::vector<CBlockHeader>& headers)
678 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
690 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
691 const CBlockIndex* chain_start_header,
692 std::vector<CBlockHeader>& headers)
693 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
694
697 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
698
703 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
705 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
707 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
708 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
709
710 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
711
713 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
714 template <typename... Args>
715 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
716 {
717 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
718 }
719
721 void PushNodeVersion(CNode& pnode, const Peer& peer);
722
727 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
728
730 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
731
733 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
734
742 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
743
745 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
746
748
750
751 const CChainParams& m_chainparams;
752 CConnman& m_connman;
753 AddrMan& m_addrman;
755 BanMan* const m_banman;
756 ChainstateManager& m_chainman;
757 CTxMemPool& m_mempool;
758
767 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
768 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
769
770 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
771
773 std::atomic<int> m_best_height{-1};
775 std::atomic<std::chrono::seconds> m_best_block_time{0s};
776
778 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
779
780 node::Warnings& m_warnings;
781 TimeOffsets m_outbound_time_offsets{m_warnings};
782
783 const Options m_opts;
784
785 bool RejectIncomingTxs(const CNode& peer) const;
786
789 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
790
793 mutable Mutex m_peer_mutex;
800 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
801
803 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
804
806 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
808 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
809
810 uint32_t GetFetchFlags(const Peer& peer) const;
811
812 std::map<uint64_t, std::chrono::microseconds> m_next_inv_to_inbounds_per_network_key GUARDED_BY(g_msgproc_mutex);
813
815 int nSyncStarted GUARDED_BY(cs_main) = 0;
816
818 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
819
826 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
827
829 std::atomic<int> m_wtxid_relay_peers{0};
830
832 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
833
835 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
836
838 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
839
847 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
848 std::chrono::seconds average_interval,
849 uint64_t network_key) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
850
851
852 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
853 Mutex m_most_recent_block_mutex;
854 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
855 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
856 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
857 std::unique_ptr<const std::map<GenTxid, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
858
859 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
861 Mutex m_headers_presync_mutex;
869 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
871 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
873 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
875 std::atomic_bool m_headers_presync_should_signal{false};
876
878 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
879
881 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
882
884 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
885
893 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
894
895 /* Mark a block as in flight
896 * Returns false, still setting pit, if the block was already in flight from the same peer
897 * pit will only be valid as long as the same cs_main lock is being held
898 */
899 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
900
901 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
902
906 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
907
909 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
910
938 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
939
940 /* Multimap used to preserve insertion order */
941 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
942 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
943
945 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
946
948 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
949 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, !tx_relay.m_tx_inventory_mutex);
950
951 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
952 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
954
956 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
957
959 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
960 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
961
968 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
969
971 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
972
974 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
975
976 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
977
981 std::vector<std::pair<Wtxid, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
983 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
984
986 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
988 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
989 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
990
995 int64_t ApproximateBestBlockDepth() const;
996
1003 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1004 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1005 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1006 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1007
1023 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1024 BlockFilterType filter_type, uint32_t start_height,
1025 const uint256& stop_hash, uint32_t max_height_diff,
1026 const CBlockIndex*& stop_index,
1027 BlockFilterIndex*& filter_index);
1028
1038 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1039
1049 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1050
1060 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1061
1068 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1069
1070 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1071 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1072
1073 void LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block);
1074};
1075
1076const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1077{
1078 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1079 if (it == m_node_states.end())
1080 return nullptr;
1081 return &it->second;
1082}
1083
1084CNodeState* PeerManagerImpl::State(NodeId pnode)
1085{
1086 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1087}
1088
1094static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1095{
1096 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1097}
1098
1099void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1100{
1101 assert(peer.m_addr_known);
1102 peer.m_addr_known->insert(addr.GetKey());
1103}
1104
1105void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1106{
1107 // Known checking here is only to save space from duplicates.
1108 // Before sending, we'll filter it again for known addresses that were
1109 // added after addresses were pushed.
1110 assert(peer.m_addr_known);
1111 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1112 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1113 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1114 } else {
1115 peer.m_addrs_to_send.push_back(addr);
1116 }
1117 }
1118}
1119
1120static void AddKnownTx(Peer& peer, const uint256& hash)
1121{
1122 auto tx_relay = peer.GetTxRelay();
1123 if (!tx_relay) return;
1124
1125 LOCK(tx_relay->m_tx_inventory_mutex);
1126 tx_relay->m_tx_inventory_known_filter.insert(hash);
1127}
1128
1130static bool CanServeBlocks(const Peer& peer)
1131{
1132 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1133}
1134
1137static bool IsLimitedPeer(const Peer& peer)
1138{
1139 return (!(peer.m_their_services & NODE_NETWORK) &&
1140 (peer.m_their_services & NODE_NETWORK_LIMITED));
1141}
1142
1144static bool CanServeWitnesses(const Peer& peer)
1145{
1146 return peer.m_their_services & NODE_WITNESS;
1147}
1148
1149std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1150 std::chrono::seconds average_interval,
1151 uint64_t network_key)
1152{
1153 auto [it, inserted] = m_next_inv_to_inbounds_per_network_key.try_emplace(network_key, 0us);
1154 auto& timer{it->second};
1155 if (timer < now) {
1156 timer = now + m_rng.rand_exp_duration(average_interval);
1157 }
1158 return timer;
1159}
1160
1161bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1162{
1163 return mapBlocksInFlight.contains(hash);
1164}
1165
1166bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1167{
1168 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1169 auto [nodeid, block_it] = range.first->second;
1170 PeerRef peer{GetPeerRef(nodeid)};
1171 if (peer && !peer->m_is_inbound) return true;
1172 }
1173
1174 return false;
1175}
1176
1177void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1178{
1179 auto range = mapBlocksInFlight.equal_range(hash);
1180 if (range.first == range.second) {
1181 // Block was not requested from any peer
1182 return;
1183 }
1184
1185 // We should not have requested too many of this block
1186 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1187
1188 while (range.first != range.second) {
1189 const auto& [node_id, list_it]{range.first->second};
1190
1191 if (from_peer && *from_peer != node_id) {
1192 range.first++;
1193 continue;
1194 }
1195
1196 CNodeState& state = *Assert(State(node_id));
1197
1198 if (state.vBlocksInFlight.begin() == list_it) {
1199 // First block on the queue was received, update the start download time for the next one
1200 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1201 }
1202 state.vBlocksInFlight.erase(list_it);
1203
1204 if (state.vBlocksInFlight.empty()) {
1205 // Last validated block on the queue for this peer was received.
1206 m_peers_downloading_from--;
1207 }
1208 state.m_stalling_since = 0us;
1209
1210 range.first = mapBlocksInFlight.erase(range.first);
1211 }
1212}
1213
1214bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1215{
1216 const uint256& hash{block.GetBlockHash()};
1217
1218 CNodeState *state = State(nodeid);
1219 assert(state != nullptr);
1220
1221 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1222
1223 // Short-circuit most stuff in case it is from the same node
1224 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1225 if (range.first->second.first == nodeid) {
1226 if (pit) {
1227 *pit = &range.first->second.second;
1228 }
1229 return false;
1230 }
1231 }
1232
1233 // Make sure it's not being fetched already from same peer.
1234 RemoveBlockRequest(hash, nodeid);
1235
1236 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1237 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1238 if (state->vBlocksInFlight.size() == 1) {
1239 // We're starting a block download (batch) from this peer.
1240 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1241 m_peers_downloading_from++;
1242 }
1243 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1244 if (pit) {
1245 *pit = &itInFlight->second.second;
1246 }
1247 return true;
1248}
1249
1250void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1251{
1253
1254 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1255 // mempool will not contain the transactions necessary to reconstruct the
1256 // compact block.
1257 if (m_opts.ignore_incoming_txs) return;
1258
1259 CNodeState* nodestate = State(nodeid);
1260 PeerRef peer{GetPeerRef(nodeid)};
1261 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1262 // Don't request compact blocks if the peer has not signalled support
1263 return;
1264 }
1265
1266 int num_outbound_hb_peers = 0;
1267 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1268 if (*it == nodeid) {
1269 lNodesAnnouncingHeaderAndIDs.erase(it);
1270 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1271 return;
1272 }
1273 PeerRef peer_ref{GetPeerRef(*it)};
1274 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1275 }
1276 if (peer && peer->m_is_inbound) {
1277 // If we're adding an inbound HB peer, make sure we're not removing
1278 // our last outbound HB peer in the process.
1279 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1280 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1281 if (remove_peer && !remove_peer->m_is_inbound) {
1282 // Put the HB outbound peer in the second slot, so that it
1283 // doesn't get removed.
1284 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1285 }
1286 }
1287 }
1288 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1290 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1291 // As per BIP152, we only get 3 of our peers to announce
1292 // blocks using compact encodings.
1293 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1294 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1295 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1296 pnodeStop->m_bip152_highbandwidth_to = false;
1297 return true;
1298 });
1299 lNodesAnnouncingHeaderAndIDs.pop_front();
1300 }
1301 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1302 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1303 pfrom->m_bip152_highbandwidth_to = true;
1304 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1305 return true;
1306 });
1307}
1308
1309bool PeerManagerImpl::TipMayBeStale()
1310{
1312 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1313 if (m_last_tip_update.load() == 0s) {
1314 m_last_tip_update = GetTime<std::chrono::seconds>();
1315 }
1316 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1317}
1318
1319int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1320{
1321 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1322}
1323
1324bool PeerManagerImpl::CanDirectFetch()
1325{
1326 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1327}
1328
1329static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1330{
1331 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1332 return true;
1333 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1334 return true;
1335 return false;
1336}
1337
1338void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1339 CNodeState *state = State(nodeid);
1340 assert(state != nullptr);
1341
1342 if (!state->hashLastUnknownBlock.IsNull()) {
1343 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1344 if (pindex && pindex->nChainWork > 0) {
1345 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1346 state->pindexBestKnownBlock = pindex;
1347 }
1348 state->hashLastUnknownBlock.SetNull();
1349 }
1350 }
1351}
1352
1353void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1354 CNodeState *state = State(nodeid);
1355 assert(state != nullptr);
1356
1357 ProcessBlockAvailability(nodeid);
1358
1359 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1360 if (pindex && pindex->nChainWork > 0) {
1361 // An actually better block was announced.
1362 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1363 state->pindexBestKnownBlock = pindex;
1364 }
1365 } else {
1366 // An unknown block was announced; just assume that the latest one is the best one.
1367 state->hashLastUnknownBlock = hash;
1368 }
1369}
1370
1371// Logic for calculating which blocks to download from a given peer, given our current tip.
1372void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1373{
1374 if (count == 0)
1375 return;
1376
1377 vBlocks.reserve(vBlocks.size() + count);
1378 CNodeState *state = State(peer.m_id);
1379 assert(state != nullptr);
1380
1381 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1382 ProcessBlockAvailability(peer.m_id);
1383
1384 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1385 // This peer has nothing interesting.
1386 return;
1387 }
1388
1389 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1390 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1391 // so downloading blocks from it would be futile.
1392 const CBlockIndex* snap_base{m_chainman.CurrentChainstate().SnapshotBase()};
1393 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1394 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1395 return;
1396 }
1397
1398 // Determine the forking point between the peer's chain and our chain:
1399 // pindexLastCommonBlock is required to be an ancestor of pindexBestKnownBlock, and will be used as a starting point.
1400 // It is being set to the fork point between the peer's best known block and the current tip, unless it is already set to
1401 // an ancestor with more work than the fork point.
1402 auto fork_point = LastCommonAncestor(state->pindexBestKnownBlock, m_chainman.ActiveTip());
1403 if (state->pindexLastCommonBlock == nullptr ||
1404 fork_point->nChainWork > state->pindexLastCommonBlock->nChainWork ||
1405 state->pindexBestKnownBlock->GetAncestor(state->pindexLastCommonBlock->nHeight) != state->pindexLastCommonBlock) {
1406 state->pindexLastCommonBlock = fork_point;
1407 }
1408 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1409 return;
1410
1411 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1412 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1413 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1414 // download that next block if the window were 1 larger.
1415 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1416
1417 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1418}
1419
1420void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1421{
1422 Assert(from_tip);
1423 Assert(target_block);
1424
1425 if (vBlocks.size() >= count) {
1426 return;
1427 }
1428
1429 vBlocks.reserve(count);
1430 CNodeState *state = Assert(State(peer.m_id));
1431
1432 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1433 // This peer can't provide us the complete series of blocks leading up to the
1434 // assumeutxo snapshot base.
1435 //
1436 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1437 // will eventually crash when we try to reorg to it. Let other logic
1438 // deal with whether we disconnect this peer.
1439 //
1440 // TODO at some point in the future, we might choose to request what blocks
1441 // this peer does have from the historical chain, despite it not having a
1442 // complete history beneath the snapshot base.
1443 return;
1444 }
1445
1446 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1447}
1448
1449void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1450{
1451 std::vector<const CBlockIndex*> vToFetch;
1452 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1453 bool is_limited_peer = IsLimitedPeer(peer);
1454 NodeId waitingfor = -1;
1455 while (pindexWalk->nHeight < nMaxHeight) {
1456 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1457 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1458 // as iterating over ~100 CBlockIndex* entries anyway.
1459 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1460 vToFetch.resize(nToFetch);
1461 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1462 vToFetch[nToFetch - 1] = pindexWalk;
1463 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1464 vToFetch[i - 1] = vToFetch[i]->pprev;
1465 }
1466
1467 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1468 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1469 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1470 // already part of our chain (and therefore don't need it even if pruned).
1471 for (const CBlockIndex* pindex : vToFetch) {
1472 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1473 // We consider the chain that this peer is on invalid.
1474 return;
1475 }
1476
1477 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1478 // We wouldn't download this block or its descendants from this peer.
1479 return;
1480 }
1481
1482 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1483 if (activeChain && pindex->HaveNumChainTxs()) {
1484 state->pindexLastCommonBlock = pindex;
1485 }
1486 continue;
1487 }
1488
1489 // Is block in-flight?
1490 if (IsBlockRequested(pindex->GetBlockHash())) {
1491 if (waitingfor == -1) {
1492 // This is the first already-in-flight block.
1493 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1494 }
1495 continue;
1496 }
1497
1498 // The block is not already downloaded, and not yet in flight.
1499 if (pindex->nHeight > nWindowEnd) {
1500 // We reached the end of the window.
1501 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1502 // We aren't able to fetch anything, but we would be if the download window was one larger.
1503 if (nodeStaller) *nodeStaller = waitingfor;
1504 }
1505 return;
1506 }
1507
1508 // Don't request blocks that go further than what limited peers can provide
1509 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1510 continue;
1511 }
1512
1513 vBlocks.push_back(pindex);
1514 if (vBlocks.size() == count) {
1515 return;
1516 }
1517 }
1518 }
1519}
1520
1521} // namespace
1522
1523void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1524{
1525 uint64_t my_services{peer.m_our_services};
1526 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1527 uint64_t nonce = pnode.GetLocalNonce();
1528 const int nNodeStartingHeight{m_best_height};
1529 NodeId nodeid = pnode.GetId();
1530 CAddress addr = pnode.addr;
1531
1532 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1533 uint64_t your_services{addr.nServices};
1534
1535 const bool tx_relay{!RejectIncomingTxs(pnode)};
1536 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1537 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1538 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1539 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1540
1541 if (fLogIPs) {
1542 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1543 } else {
1544 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1545 }
1546}
1547
1548void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1549{
1550 LOCK(cs_main);
1551 CNodeState *state = State(node);
1552 if (state) state->m_last_block_announcement = time_in_seconds;
1553}
1554
1555void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1556{
1557 NodeId nodeid = node.GetId();
1558 {
1559 LOCK(cs_main); // For m_node_states
1560 m_node_states.try_emplace(m_node_states.end(), nodeid);
1561 }
1562 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1563
1565 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1566 }
1567
1568 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1569 {
1570 LOCK(m_peer_mutex);
1571 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1572 }
1573}
1574
1575void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1576{
1577 std::set<Txid> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1578
1579 for (const auto& txid : unbroadcast_txids) {
1580 CTransactionRef tx = m_mempool.get(txid);
1581
1582 if (tx != nullptr) {
1583 RelayTransaction(txid, tx->GetWitnessHash());
1584 } else {
1585 m_mempool.RemoveUnbroadcastTx(txid, true);
1586 }
1587 }
1588
1589 // Schedule next run for 10-15 minutes in the future.
1590 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1591 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1592 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1593}
1594
1595void PeerManagerImpl::FinalizeNode(const CNode& node)
1596{
1597 NodeId nodeid = node.GetId();
1598 {
1599 LOCK(cs_main);
1600 {
1601 // We remove the PeerRef from g_peer_map here, but we don't always
1602 // destruct the Peer. Sometimes another thread is still holding a
1603 // PeerRef, so the refcount is >= 1. Be careful not to do any
1604 // processing here that assumes Peer won't be changed before it's
1605 // destructed.
1606 PeerRef peer = RemovePeer(nodeid);
1607 assert(peer != nullptr);
1608 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1609 assert(m_wtxid_relay_peers >= 0);
1610 }
1611 CNodeState *state = State(nodeid);
1612 assert(state != nullptr);
1613
1614 if (state->fSyncStarted)
1615 nSyncStarted--;
1616
1617 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1618 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1619 while (range.first != range.second) {
1620 auto [node_id, list_it] = range.first->second;
1621 if (node_id != nodeid) {
1622 range.first++;
1623 } else {
1624 range.first = mapBlocksInFlight.erase(range.first);
1625 }
1626 }
1627 }
1628 {
1629 LOCK(m_tx_download_mutex);
1630 m_txdownloadman.DisconnectedPeer(nodeid);
1631 }
1632 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1633 m_num_preferred_download_peers -= state->fPreferredDownload;
1634 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1635 assert(m_peers_downloading_from >= 0);
1636 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1637 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1638
1639 m_node_states.erase(nodeid);
1640
1641 if (m_node_states.empty()) {
1642 // Do a consistency check after the last peer is removed.
1643 assert(mapBlocksInFlight.empty());
1644 assert(m_num_preferred_download_peers == 0);
1645 assert(m_peers_downloading_from == 0);
1646 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1647 assert(m_wtxid_relay_peers == 0);
1648 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1649 }
1650 } // cs_main
1651 if (node.fSuccessfullyConnected &&
1652 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1653 // Only change visible addrman state for full outbound peers. We don't
1654 // call Connected() for feeler connections since they don't have
1655 // fSuccessfullyConnected set.
1656 m_addrman.Connected(node.addr);
1657 }
1658 {
1659 LOCK(m_headers_presync_mutex);
1660 m_headers_presync_stats.erase(nodeid);
1661 }
1662 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1663}
1664
1665bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1666{
1667 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1668 return !(GetDesirableServiceFlags(services) & (~services));
1669}
1670
1671ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1672{
1673 if (services & NODE_NETWORK_LIMITED) {
1674 // Limited peers are desirable when we are close to the tip.
1675 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1677 }
1678 }
1680}
1681
1682PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1683{
1684 LOCK(m_peer_mutex);
1685 auto it = m_peer_map.find(id);
1686 return it != m_peer_map.end() ? it->second : nullptr;
1687}
1688
1689PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1690{
1691 PeerRef ret;
1692 LOCK(m_peer_mutex);
1693 auto it = m_peer_map.find(id);
1694 if (it != m_peer_map.end()) {
1695 ret = std::move(it->second);
1696 m_peer_map.erase(it);
1697 }
1698 return ret;
1699}
1700
1701bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1702{
1703 {
1704 LOCK(cs_main);
1705 const CNodeState* state = State(nodeid);
1706 if (state == nullptr)
1707 return false;
1708 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1709 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1710 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1711 if (queue.pindex)
1712 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1713 }
1714 }
1715
1716 PeerRef peer = GetPeerRef(nodeid);
1717 if (peer == nullptr) return false;
1718 stats.their_services = peer->m_their_services;
1719 stats.m_starting_height = peer->m_starting_height;
1720 // It is common for nodes with good ping times to suddenly become lagged,
1721 // due to a new block arriving or other large transfer.
1722 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1723 // since pingtime does not update until the ping is complete, which might take a while.
1724 // So, if a ping is taking an unusually long time in flight,
1725 // the caller can immediately detect that this is happening.
1726 auto ping_wait{0us};
1727 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1728 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1729 }
1730
1731 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1732 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1733 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1734 LOCK(tx_relay->m_tx_inventory_mutex);
1735 stats.m_last_inv_seq = tx_relay->m_last_inv_sequence;
1736 stats.m_inv_to_send = tx_relay->m_tx_inventory_to_send.size();
1737 } else {
1738 stats.m_relay_txs = false;
1739 stats.m_fee_filter_received = 0;
1740 stats.m_inv_to_send = 0;
1741 }
1742
1743 stats.m_ping_wait = ping_wait;
1744 stats.m_addr_processed = peer->m_addr_processed.load();
1745 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1746 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1747 {
1748 LOCK(peer->m_headers_sync_mutex);
1749 if (peer->m_headers_sync) {
1750 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1751 }
1752 }
1753 stats.time_offset = peer->m_time_offset;
1754
1755 return true;
1756}
1757
1758std::vector<node::TxOrphanage::OrphanInfo> PeerManagerImpl::GetOrphanTransactions()
1759{
1760 LOCK(m_tx_download_mutex);
1761 return m_txdownloadman.GetOrphanTransactions();
1762}
1763
1764PeerManagerInfo PeerManagerImpl::GetInfo() const
1765{
1766 return PeerManagerInfo{
1767 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1768 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1769 };
1770}
1771
1772void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1773{
1774 if (m_opts.max_extra_txs <= 0)
1775 return;
1776 if (!vExtraTxnForCompact.size())
1777 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1778 vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1779 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1780}
1781
1782void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1783{
1784 LOCK(peer.m_misbehavior_mutex);
1785
1786 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1787 peer.m_should_discourage = true;
1788 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1789 TRACEPOINT(net, misbehaving_connection,
1790 peer.m_id,
1791 message.c_str()
1792 );
1793}
1794
1795void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1796 bool via_compact_block, const std::string& message)
1797{
1798 PeerRef peer{GetPeerRef(nodeid)};
1799 switch (state.GetResult()) {
1801 break;
1803 // We didn't try to process the block because the header chain may have
1804 // too little work.
1805 break;
1806 // The node is providing invalid data:
1809 if (!via_compact_block) {
1810 if (peer) Misbehaving(*peer, message);
1811 return;
1812 }
1813 break;
1815 {
1816 // Discourage outbound (but not inbound) peers if on an invalid chain.
1817 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1818 if (peer && !via_compact_block && !peer->m_is_inbound) {
1819 if (peer) Misbehaving(*peer, message);
1820 return;
1821 }
1822 break;
1823 }
1826 if (peer) Misbehaving(*peer, message);
1827 return;
1828 // Conflicting (but not necessarily invalid) data or different policy:
1830 if (peer) Misbehaving(*peer, message);
1831 return;
1833 break;
1834 }
1835 if (message != "") {
1836 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1837 }
1838}
1839
1840bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1841{
1843 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1844 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1845 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1846 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1847}
1848
1849util::Expected<void, std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1850{
1851 if (m_chainman.m_blockman.LoadingBlocks()) return util::Unexpected{"Loading blocks ..."};
1852
1853 // Ensure this peer exists and hasn't been disconnected
1854 PeerRef peer = GetPeerRef(peer_id);
1855 if (peer == nullptr) return util::Unexpected{"Peer does not exist"};
1856
1857 // Ignore pre-segwit peers
1858 if (!CanServeWitnesses(*peer)) return util::Unexpected{"Pre-SegWit peer"};
1859
1860 LOCK(cs_main);
1861
1862 // Forget about all prior requests
1863 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1864
1865 // Mark block as in-flight
1866 if (!BlockRequested(peer_id, block_index)) return util::Unexpected{"Already requested from this peer"};
1867
1868 // Construct message to request the block
1869 const uint256& hash{block_index.GetBlockHash()};
1870 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1871
1872 // Send block request message to the peer
1873 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1874 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1875 return true;
1876 });
1877
1878 if (!success) return util::Unexpected{"Peer not fully connected"};
1879
1880 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1881 hash.ToString(), peer_id);
1882 return {};
1883}
1884
1885std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1886 BanMan* banman, ChainstateManager& chainman,
1887 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1888{
1889 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1890}
1891
1892PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1893 BanMan* banman, ChainstateManager& chainman,
1894 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1895 : m_rng{opts.deterministic_rng},
1896 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1897 m_chainparams(chainman.GetParams()),
1898 m_connman(connman),
1899 m_addrman(addrman),
1900 m_banman(banman),
1901 m_chainman(chainman),
1902 m_mempool(pool),
1903 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.deterministic_rng}),
1904 m_warnings{warnings},
1905 m_opts{opts}
1906{
1907 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1908 // This argument can go away after Erlay support is complete.
1909 if (opts.reconcile_txs) {
1910 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1911 }
1912}
1913
1914void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1915{
1916 // Stale tip checking and peer eviction are on two different timers, but we
1917 // don't want them to get out of sync due to drift in the scheduler, so we
1918 // combine them in one function and schedule at the quicker (peer-eviction)
1919 // timer.
1920 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1921 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1922
1923 // schedule next run for 10-15 minutes in the future
1924 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1925 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1926}
1927
1928void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1929{
1930 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1931 // m_tx_download_mutex waits on the mempool mutex.
1932 AssertLockNotHeld(m_mempool.cs);
1933 AssertLockNotHeld(m_tx_download_mutex);
1934
1935 if (!is_ibd) {
1936 LOCK(m_tx_download_mutex);
1937 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1938 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1939 // see them again.
1940 m_txdownloadman.ActiveTipChange();
1941 }
1942}
1943
1950void PeerManagerImpl::BlockConnected(
1951 const ChainstateRole& role,
1952 const std::shared_ptr<const CBlock>& pblock,
1953 const CBlockIndex* pindex)
1954{
1955 // Update this for all chainstate roles so that we don't mistakenly see peers
1956 // helping us do background IBD as having a stale tip.
1957 m_last_tip_update = GetTime<std::chrono::seconds>();
1958
1959 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1960 auto stalling_timeout = m_block_stalling_timeout.load();
1961 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1962 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1963 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1964 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1965 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1966 }
1967 }
1968
1969 // The following task can be skipped since we don't maintain a mempool for
1970 // the historical chainstate.
1971 if (role.historical) {
1972 return;
1973 }
1974 LOCK(m_tx_download_mutex);
1975 m_txdownloadman.BlockConnected(pblock);
1976}
1977
1978void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1979{
1980 LOCK(m_tx_download_mutex);
1981 m_txdownloadman.BlockDisconnected();
1982}
1983
1988void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1989{
1990 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
1991
1992 LOCK(cs_main);
1993
1994 if (pindex->nHeight <= m_highest_fast_announce)
1995 return;
1996 m_highest_fast_announce = pindex->nHeight;
1997
1998 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1999
2000 uint256 hashBlock(pblock->GetHash());
2001 const std::shared_future<CSerializedNetMsg> lazy_ser{
2002 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2003
2004 {
2005 auto most_recent_block_txs = std::make_unique<std::map<GenTxid, CTransactionRef>>();
2006 for (const auto& tx : pblock->vtx) {
2007 most_recent_block_txs->emplace(tx->GetHash(), tx);
2008 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2009 }
2010
2011 LOCK(m_most_recent_block_mutex);
2012 m_most_recent_block_hash = hashBlock;
2013 m_most_recent_block = pblock;
2014 m_most_recent_compact_block = pcmpctblock;
2015 m_most_recent_block_txs = std::move(most_recent_block_txs);
2016 }
2017
2018 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2020
2022 return;
2023 ProcessBlockAvailability(pnode->GetId());
2024 CNodeState &state = *State(pnode->GetId());
2025 // If the peer has, or we announced to them the previous block already,
2026 // but we don't think they have this one, go ahead and announce it
2027 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2028
2029 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2030 hashBlock.ToString(), pnode->GetId());
2031
2032 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2033 PushMessage(*pnode, ser_cmpctblock.Copy());
2034 state.pindexBestHeaderSent = pindex;
2035 }
2036 });
2037}
2038
2043void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2044{
2045 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2046
2047 // Don't relay inventory during initial block download.
2048 if (fInitialDownload) return;
2049
2050 // Find the hashes of all blocks that weren't previously in the best chain.
2051 std::vector<uint256> vHashes;
2052 const CBlockIndex *pindexToAnnounce = pindexNew;
2053 while (pindexToAnnounce != pindexFork) {
2054 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2055 pindexToAnnounce = pindexToAnnounce->pprev;
2056 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2057 // Limit announcements in case of a huge reorganization.
2058 // Rely on the peer's synchronization mechanism in that case.
2059 break;
2060 }
2061 }
2062
2063 {
2064 LOCK(m_peer_mutex);
2065 for (auto& it : m_peer_map) {
2066 Peer& peer = *it.second;
2067 LOCK(peer.m_block_inv_mutex);
2068 for (const uint256& hash : vHashes | std::views::reverse) {
2069 peer.m_blocks_for_headers_relay.push_back(hash);
2070 }
2071 }
2072 }
2073
2074 m_connman.WakeMessageHandler();
2075}
2076
2081void PeerManagerImpl::BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state)
2082{
2083 LOCK(cs_main);
2084
2085 const uint256 hash(block->GetHash());
2086 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2087
2088 // If the block failed validation, we know where it came from and we're still connected
2089 // to that peer, maybe punish.
2090 if (state.IsInvalid() &&
2091 it != mapBlockSource.end() &&
2092 State(it->second.first)) {
2093 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2094 }
2095 // Check that:
2096 // 1. The block is valid
2097 // 2. We're not in initial block download
2098 // 3. This is currently the best block we're aware of. We haven't updated
2099 // the tip yet so we have no way to check this directly here. Instead we
2100 // just check that there are currently no other blocks in flight.
2101 else if (state.IsValid() &&
2102 !m_chainman.IsInitialBlockDownload() &&
2103 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2104 if (it != mapBlockSource.end()) {
2105 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2106 }
2107 }
2108 if (it != mapBlockSource.end())
2109 mapBlockSource.erase(it);
2110}
2111
2113//
2114// Messages
2115//
2116
2117bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2118{
2119 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2120}
2121
2122void PeerManagerImpl::SendPings()
2123{
2124 LOCK(m_peer_mutex);
2125 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2126}
2127
2128void PeerManagerImpl::RelayTransaction(const Txid& txid, const Wtxid& wtxid)
2129{
2130 LOCK(m_peer_mutex);
2131 for(auto& it : m_peer_map) {
2132 Peer& peer = *it.second;
2133 auto tx_relay = peer.GetTxRelay();
2134 if (!tx_relay) continue;
2135
2136 LOCK(tx_relay->m_tx_inventory_mutex);
2137 // Only queue transactions for announcement once the version handshake
2138 // is completed. The time of arrival for these transactions is
2139 // otherwise at risk of leaking to a spy, if the spy is able to
2140 // distinguish transactions received during the handshake from the rest
2141 // in the announcement.
2142 if (tx_relay->m_next_inv_send_time == 0s) continue;
2143
2144 const uint256& hash{peer.m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256()};
2145 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2146 tx_relay->m_tx_inventory_to_send.insert(wtxid);
2147 }
2148 }
2149}
2150
2151void PeerManagerImpl::RelayAddress(NodeId originator,
2152 const CAddress& addr,
2153 bool fReachable)
2154{
2155 // We choose the same nodes within a given 24h window (if the list of connected
2156 // nodes does not change) and we don't relay to nodes that already know an
2157 // address. So within 24h we will likely relay a given address once. This is to
2158 // prevent a peer from unjustly giving their address better propagation by sending
2159 // it to us repeatedly.
2160
2161 if (!fReachable && !addr.IsRelayable()) return;
2162
2163 // Relay to a limited number of other nodes
2164 // Use deterministic randomness to send to the same nodes for 24 hours
2165 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2166 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2167 const auto current_time{GetTime<std::chrono::seconds>()};
2168 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2169 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2171 .Write(hash_addr)
2172 .Write(time_addr)};
2173
2174 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2175 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2176
2177 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2178 assert(nRelayNodes <= best.size());
2179
2180 LOCK(m_peer_mutex);
2181
2182 for (auto& [id, peer] : m_peer_map) {
2183 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2184 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2185 for (unsigned int i = 0; i < nRelayNodes; i++) {
2186 if (hashKey > best[i].first) {
2187 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2188 best[i] = std::make_pair(hashKey, peer.get());
2189 break;
2190 }
2191 }
2192 }
2193 };
2194
2195 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2196 PushAddress(*best[i].second, addr);
2197 }
2198}
2199
2200void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2201{
2202 std::shared_ptr<const CBlock> a_recent_block;
2203 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2204 {
2205 LOCK(m_most_recent_block_mutex);
2206 a_recent_block = m_most_recent_block;
2207 a_recent_compact_block = m_most_recent_compact_block;
2208 }
2209
2210 bool need_activate_chain = false;
2211 {
2212 LOCK(cs_main);
2213 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2214 if (pindex) {
2215 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2216 pindex->IsValid(BLOCK_VALID_TREE)) {
2217 // If we have the block and all of its parents, but have not yet validated it,
2218 // we might be in the middle of connecting it (ie in the unlock of cs_main
2219 // before ActivateBestChain but after AcceptBlock).
2220 // In this case, we need to run ActivateBestChain prior to checking the relay
2221 // conditions below.
2222 need_activate_chain = true;
2223 }
2224 }
2225 } // release cs_main before calling ActivateBestChain
2226 if (need_activate_chain) {
2228 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2229 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2230 }
2231 }
2232
2233 const CBlockIndex* pindex{nullptr};
2234 const CBlockIndex* tip{nullptr};
2235 bool can_direct_fetch{false};
2236 FlatFilePos block_pos{};
2237 {
2238 LOCK(cs_main);
2239 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2240 if (!pindex) {
2241 return;
2242 }
2243 if (!BlockRequestAllowed(pindex)) {
2244 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2245 return;
2246 }
2247 // disconnect node in case we have reached the outbound limit for serving historical blocks
2248 if (m_connman.OutboundTargetReached(true) &&
2249 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2250 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2251 ) {
2252 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2253 pfrom.fDisconnect = true;
2254 return;
2255 }
2256 tip = m_chainman.ActiveChain().Tip();
2257 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2259 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2260 )) {
2261 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2262 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2263 pfrom.fDisconnect = true;
2264 return;
2265 }
2266 // Pruned nodes may have deleted the block, so check whether
2267 // it's available before trying to send.
2268 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2269 return;
2270 }
2271 can_direct_fetch = CanDirectFetch();
2272 block_pos = pindex->GetBlockPos();
2273 }
2274
2275 std::shared_ptr<const CBlock> pblock;
2276 if (a_recent_block && a_recent_block->GetHash() == inv.hash) {
2277 pblock = a_recent_block;
2278 } else if (inv.IsMsgWitnessBlk()) {
2279 // Fast-path: in this case it is possible to serve the block directly from disk,
2280 // as the network format matches the format on disk
2281 if (const auto block_data{m_chainman.m_blockman.ReadRawBlock(block_pos)}) {
2282 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{*block_data});
2283 } else {
2284 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2285 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2286 } else {
2287 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2288 }
2289 pfrom.fDisconnect = true;
2290 return;
2291 }
2292 // Don't set pblock as we've sent the block
2293 } else {
2294 // Send block from disk
2295 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2296 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos, inv.hash)) {
2297 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2298 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2299 } else {
2300 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2301 }
2302 pfrom.fDisconnect = true;
2303 return;
2304 }
2305 pblock = pblockRead;
2306 }
2307 if (pblock) {
2308 if (inv.IsMsgBlk()) {
2309 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2310 } else if (inv.IsMsgWitnessBlk()) {
2311 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2312 } else if (inv.IsMsgFilteredBlk()) {
2313 bool sendMerkleBlock = false;
2314 CMerkleBlock merkleBlock;
2315 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2316 LOCK(tx_relay->m_bloom_filter_mutex);
2317 if (tx_relay->m_bloom_filter) {
2318 sendMerkleBlock = true;
2319 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2320 }
2321 }
2322 if (sendMerkleBlock) {
2323 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2324 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2325 // This avoids hurting performance by pointlessly requiring a round-trip
2326 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2327 // they must either disconnect and retry or request the full block.
2328 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2329 // however we MUST always provide at least what the remote peer needs
2330 for (const auto& [tx_idx, _] : merkleBlock.vMatchedTxn)
2331 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[tx_idx]));
2332 }
2333 // else
2334 // no response
2335 } else if (inv.IsMsgCmpctBlk()) {
2336 // If a peer is asking for old blocks, we're almost guaranteed
2337 // they won't have a useful mempool to match against a compact block,
2338 // and we don't feel like constructing the object for them, so
2339 // instead we respond with the full, non-compact block.
2340 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2341 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == inv.hash) {
2342 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2343 } else {
2344 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2345 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2346 }
2347 } else {
2348 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2349 }
2350 }
2351 }
2352
2353 {
2354 LOCK(peer.m_block_inv_mutex);
2355 // Trigger the peer node to send a getblocks request for the next batch of inventory
2356 if (inv.hash == peer.m_continuation_block) {
2357 // Send immediately. This must send even if redundant,
2358 // and we want it right after the last block so they don't
2359 // wait for other stuff first.
2360 std::vector<CInv> vInv;
2361 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2362 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2363 peer.m_continuation_block.SetNull();
2364 }
2365 }
2366}
2367
2368CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2369{
2370 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2371 auto txinfo{std::visit(
2372 [&](const auto& id) {
2373 return m_mempool.info_for_relay(id, WITH_LOCK(tx_relay.m_tx_inventory_mutex, return tx_relay.m_last_inv_sequence));
2374 },
2375 gtxid)};
2376 if (txinfo.tx) {
2377 return std::move(txinfo.tx);
2378 }
2379
2380 // Or it might be from the most recent block
2381 {
2382 LOCK(m_most_recent_block_mutex);
2383 if (m_most_recent_block_txs != nullptr) {
2384 auto it = m_most_recent_block_txs->find(gtxid);
2385 if (it != m_most_recent_block_txs->end()) return it->second;
2386 }
2387 }
2388
2389 return {};
2390}
2391
2392void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2393{
2395
2396 auto tx_relay = peer.GetTxRelay();
2397
2398 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2399 std::vector<CInv> vNotFound;
2400
2401 // Process as many TX items from the front of the getdata queue as
2402 // possible, since they're common and it's efficient to batch process
2403 // them.
2404 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2405 if (interruptMsgProc) return;
2406 // The send buffer provides backpressure. If there's no space in
2407 // the buffer, pause processing until the next call.
2408 if (pfrom.fPauseSend) break;
2409
2410 const CInv &inv = *it++;
2411
2412 if (tx_relay == nullptr) {
2413 // Ignore GETDATA requests for transactions from block-relay-only
2414 // peers and peers that asked us not to announce transactions.
2415 continue;
2416 }
2417
2418 if (auto tx{FindTxForGetData(*tx_relay, ToGenTxid(inv))}) {
2419 // WTX and WITNESS_TX imply we serialize with witness
2420 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2421 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2422 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2423 } else {
2424 vNotFound.push_back(inv);
2425 }
2426 }
2427
2428 // Only process one BLOCK item per call, since they're uncommon and can be
2429 // expensive to process.
2430 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2431 const CInv &inv = *it++;
2432 if (inv.IsGenBlkMsg()) {
2433 ProcessGetBlockData(pfrom, peer, inv);
2434 }
2435 // else: If the first item on the queue is an unknown type, we erase it
2436 // and continue processing the queue on the next call.
2437 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2438 // result in never making progress and this thread using 100% allocated CPU. See
2439 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2440 }
2441
2442 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2443
2444 if (!vNotFound.empty()) {
2445 // Let the peer know that we didn't find what it asked for, so it doesn't
2446 // have to wait around forever.
2447 // SPV clients care about this message: it's needed when they are
2448 // recursively walking the dependencies of relevant unconfirmed
2449 // transactions. SPV clients want to do that because they want to know
2450 // about (and store and rebroadcast and risk analyze) the dependencies
2451 // of transactions relevant to them, without having to download the
2452 // entire memory pool.
2453 // Also, other nodes can use these messages to automatically request a
2454 // transaction from some other peer that announced it, and stop
2455 // waiting for us to respond.
2456 // In normal operation, we often send NOTFOUND messages for parents of
2457 // transactions that we relay; if a peer is missing a parent, they may
2458 // assume we have them and request the parents from us.
2459 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2460 }
2461}
2462
2463uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2464{
2465 uint32_t nFetchFlags = 0;
2466 if (CanServeWitnesses(peer)) {
2467 nFetchFlags |= MSG_WITNESS_FLAG;
2468 }
2469 return nFetchFlags;
2470}
2471
2472void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2473{
2474 BlockTransactions resp(req);
2475 unsigned int tx_requested_size = 0;
2476 for (size_t i = 0; i < req.indexes.size(); i++) {
2477 if (req.indexes[i] >= block.vtx.size()) {
2478 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2479 return;
2480 }
2481 resp.txn[i] = block.vtx[req.indexes[i]];
2482 tx_requested_size += resp.txn[i]->GetTotalSize();
2483 }
2484
2485 LogDebug(BCLog::CMPCTBLOCK, "Peer %d sent us a GETBLOCKTXN for block %s, sending a BLOCKTXN with %u txns. (%u bytes)\n", pfrom.GetId(), block.GetHash().ToString(), resp.txn.size(), tx_requested_size);
2486 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2487}
2488
2489bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2490{
2491 // Do these headers have proof-of-work matching what's claimed?
2492 if (!HasValidProofOfWork(headers, consensusParams)) {
2493 Misbehaving(peer, "header with invalid proof of work");
2494 return false;
2495 }
2496
2497 // Are these headers connected to each other?
2498 if (!CheckHeadersAreContinuous(headers)) {
2499 Misbehaving(peer, "non-continuous headers sequence");
2500 return false;
2501 }
2502 return true;
2503}
2504
2505arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2506{
2507 arith_uint256 near_chaintip_work = 0;
2508 LOCK(cs_main);
2509 if (m_chainman.ActiveChain().Tip() != nullptr) {
2510 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2511 // Use a 144 block buffer, so that we'll accept headers that fork from
2512 // near our tip.
2513 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2514 }
2515 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2516}
2517
2524void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2525 const std::vector<CBlockHeader>& headers)
2526{
2527 // Try to fill in the missing headers.
2528 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2529 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2530 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2531 headers[0].GetHash().ToString(),
2532 headers[0].hashPrevBlock.ToString(),
2533 best_header->nHeight,
2534 pfrom.GetId());
2535 }
2536
2537 // Set hashLastUnknownBlock for this peer, so that if we
2538 // eventually get the headers - even from a different peer -
2539 // we can use this peer to download.
2540 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2541}
2542
2543bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2544{
2545 uint256 hashLastBlock;
2546 for (const CBlockHeader& header : headers) {
2547 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2548 return false;
2549 }
2550 hashLastBlock = header.GetHash();
2551 }
2552 return true;
2553}
2554
2555bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2556{
2557 if (peer.m_headers_sync) {
2558 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2559 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2560 if (result.success) peer.m_last_getheaders_timestamp = {};
2561 if (result.request_more) {
2562 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2563 // If we were instructed to ask for a locator, it should not be empty.
2564 Assume(!locator.vHave.empty());
2565 // We can only be instructed to request more if processing was successful.
2566 Assume(result.success);
2567 if (!locator.vHave.empty()) {
2568 // It should be impossible for the getheaders request to fail,
2569 // because we just cleared the last getheaders timestamp.
2570 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2571 Assume(sent_getheaders);
2572 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2573 locator.vHave.front().ToString(), pfrom.GetId());
2574 }
2575 }
2576
2577 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2578 peer.m_headers_sync.reset(nullptr);
2579
2580 // Delete this peer's entry in m_headers_presync_stats.
2581 // If this is m_headers_presync_bestpeer, it will be replaced later
2582 // by the next peer that triggers the else{} branch below.
2583 LOCK(m_headers_presync_mutex);
2584 m_headers_presync_stats.erase(pfrom.GetId());
2585 } else {
2586 // Build statistics for this peer's sync.
2587 HeadersPresyncStats stats;
2588 stats.first = peer.m_headers_sync->GetPresyncWork();
2589 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2590 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2591 peer.m_headers_sync->GetPresyncTime()};
2592 }
2593
2594 // Update statistics in stats.
2595 LOCK(m_headers_presync_mutex);
2596 m_headers_presync_stats[pfrom.GetId()] = stats;
2597 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2598 bool best_updated = false;
2599 if (best_it == m_headers_presync_stats.end()) {
2600 // If the cached best peer is outdated, iterate over all remaining ones (including
2601 // newly updated one) to find the best one.
2602 NodeId peer_best{-1};
2603 const HeadersPresyncStats* stat_best{nullptr};
2604 for (const auto& [peer, stat] : m_headers_presync_stats) {
2605 if (!stat_best || stat > *stat_best) {
2606 peer_best = peer;
2607 stat_best = &stat;
2608 }
2609 }
2610 m_headers_presync_bestpeer = peer_best;
2611 best_updated = (peer_best == pfrom.GetId());
2612 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2613 // pfrom was and remains the best peer, or pfrom just became best.
2614 m_headers_presync_bestpeer = pfrom.GetId();
2615 best_updated = true;
2616 }
2617 if (best_updated && stats.second.has_value()) {
2618 // If the best peer updated, and it is in its first phase, signal.
2619 m_headers_presync_should_signal = true;
2620 }
2621 }
2622
2623 if (result.success) {
2624 // We only overwrite the headers passed in if processing was
2625 // successful.
2626 headers.swap(result.pow_validated_headers);
2627 }
2628
2629 return result.success;
2630 }
2631 // Either we didn't have a sync in progress, or something went wrong
2632 // processing these headers, or we are returning headers to the caller to
2633 // process.
2634 return false;
2635}
2636
2637bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2638{
2639 // Calculate the claimed total work on this chain.
2640 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2641
2642 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2643 // before we'll store it)
2644 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2645
2646 // Avoid DoS via low-difficulty-headers by only processing if the headers
2647 // are part of a chain with sufficient work.
2648 if (total_work < minimum_chain_work) {
2649 // Only try to sync with this peer if their headers message was full;
2650 // otherwise they don't have more headers after this so no point in
2651 // trying to sync their too-little-work chain.
2652 if (headers.size() == m_opts.max_headers_result) {
2653 // Note: we could advance to the last header in this set that is
2654 // known to us, rather than starting at the first header (which we
2655 // may already have); however this is unlikely to matter much since
2656 // ProcessHeadersMessage() already handles the case where all
2657 // headers in a received message are already known and are
2658 // ancestors of m_best_header or chainActive.Tip(), by skipping
2659 // this logic in that case. So even if the first header in this set
2660 // of headers is known, some header in this set must be new, so
2661 // advancing to the first unknown header would be a small effect.
2662 LOCK(peer.m_headers_sync_mutex);
2663 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2664 m_chainparams.HeadersSync(), chain_start_header, minimum_chain_work));
2665
2666 // Now a HeadersSyncState object for tracking this synchronization
2667 // is created, process the headers using it as normal. Failures are
2668 // handled inside of IsContinuationOfLowWorkHeadersSync.
2669 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2670 } else {
2671 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2672 }
2673
2674 // The peer has not yet given us a chain that meets our work threshold,
2675 // so we want to prevent further processing of the headers in any case.
2676 headers = {};
2677 return true;
2678 }
2679
2680 return false;
2681}
2682
2683bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2684{
2685 if (header == nullptr) {
2686 return false;
2687 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2688 return true;
2689 } else if (m_chainman.ActiveChain().Contains(header)) {
2690 return true;
2691 }
2692 return false;
2693}
2694
2695bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2696{
2697 const auto current_time = NodeClock::now();
2698
2699 // Only allow a new getheaders message to go out if we don't have a recent
2700 // one already in-flight
2701 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2702 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2703 peer.m_last_getheaders_timestamp = current_time;
2704 return true;
2705 }
2706 return false;
2707}
2708
2709/*
2710 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2711 * We require that the given tip have at least as much work as our tip, and for
2712 * our current tip to be "close to synced" (see CanDirectFetch()).
2713 */
2714void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2715{
2716 LOCK(cs_main);
2717 CNodeState *nodestate = State(pfrom.GetId());
2718
2719 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2720 std::vector<const CBlockIndex*> vToFetch;
2721 const CBlockIndex* pindexWalk{&last_header};
2722 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2723 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2724 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2725 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2726 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2727 // We don't have this block, and it's not yet in flight.
2728 vToFetch.push_back(pindexWalk);
2729 }
2730 pindexWalk = pindexWalk->pprev;
2731 }
2732 // If pindexWalk still isn't on our main chain, we're looking at a
2733 // very large reorg at a time we think we're close to caught up to
2734 // the main chain -- this shouldn't really happen. Bail out on the
2735 // direct fetch and rely on parallel download instead.
2736 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2737 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2738 last_header.GetBlockHash().ToString(),
2739 last_header.nHeight);
2740 } else {
2741 std::vector<CInv> vGetData;
2742 // Download as much as possible, from earliest to latest.
2743 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2744 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2745 // Can't download any more from this peer
2746 break;
2747 }
2748 uint32_t nFetchFlags = GetFetchFlags(peer);
2749 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2750 BlockRequested(pfrom.GetId(), *pindex);
2751 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2752 pindex->GetBlockHash().ToString(), pfrom.GetId());
2753 }
2754 if (vGetData.size() > 1) {
2755 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2756 last_header.GetBlockHash().ToString(),
2757 last_header.nHeight);
2758 }
2759 if (vGetData.size() > 0) {
2760 if (!m_opts.ignore_incoming_txs &&
2761 nodestate->m_provides_cmpctblocks &&
2762 vGetData.size() == 1 &&
2763 mapBlocksInFlight.size() == 1 &&
2764 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2765 // In any case, we want to download using a compact block, not a regular one
2766 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2767 }
2768 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2769 }
2770 }
2771 }
2772}
2773
2779void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2780 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2781{
2782 LOCK(cs_main);
2783 CNodeState *nodestate = State(pfrom.GetId());
2784
2785 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2786
2787 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2788 // because it is set in UpdateBlockAvailability. Some nullptr checks
2789 // are still present, however, as belt-and-suspenders.
2790
2791 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2792 nodestate->m_last_block_announcement = GetTime();
2793 }
2794
2795 // If we're in IBD, we want outbound peers that will serve us a useful
2796 // chain. Disconnect peers that are on chains with insufficient work.
2797 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2798 // If the peer has no more headers to give us, then we know we have
2799 // their tip.
2800 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2801 // This peer has too little work on their headers chain to help
2802 // us sync -- disconnect if it is an outbound disconnection
2803 // candidate.
2804 // Note: We compare their tip to the minimum chain work (rather than
2805 // m_chainman.ActiveChain().Tip()) because we won't start block download
2806 // until we have a headers chain that has at least
2807 // the minimum chain work, even if a peer has a chain past our tip,
2808 // as an anti-DoS measure.
2809 if (pfrom.IsOutboundOrBlockRelayConn()) {
2810 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2811 pfrom.fDisconnect = true;
2812 }
2813 }
2814 }
2815
2816 // If this is an outbound full-relay peer, check to see if we should protect
2817 // it from the bad/lagging chain logic.
2818 // Note that outbound block-relay peers are excluded from this protection, and
2819 // thus always subject to eviction under the bad/lagging chain logic.
2820 // See ChainSyncTimeoutState.
2821 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2822 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2823 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2824 nodestate->m_chain_sync.m_protect = true;
2825 ++m_outbound_peers_with_protect_from_disconnect;
2826 }
2827 }
2828}
2829
2830void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2831 std::vector<CBlockHeader>&& headers,
2832 bool via_compact_block)
2833{
2834 size_t nCount = headers.size();
2835
2836 if (nCount == 0) {
2837 // Nothing interesting. Stop asking this peers for more headers.
2838 // If we were in the middle of headers sync, receiving an empty headers
2839 // message suggests that the peer suddenly has nothing to give us
2840 // (perhaps it reorged to our chain). Clear download state for this peer.
2841 LOCK(peer.m_headers_sync_mutex);
2842 if (peer.m_headers_sync) {
2843 peer.m_headers_sync.reset(nullptr);
2844 LOCK(m_headers_presync_mutex);
2845 m_headers_presync_stats.erase(pfrom.GetId());
2846 }
2847 // A headers message with no headers cannot be an announcement, so assume
2848 // it is a response to our last getheaders request, if there is one.
2849 peer.m_last_getheaders_timestamp = {};
2850 return;
2851 }
2852
2853 // Before we do any processing, make sure these pass basic sanity checks.
2854 // We'll rely on headers having valid proof-of-work further down, as an
2855 // anti-DoS criteria (note: this check is required before passing any
2856 // headers into HeadersSyncState).
2857 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2858 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2859 // just return. (Note that even if a header is announced via compact
2860 // block, the header itself should be valid, so this type of error can
2861 // always be punished.)
2862 return;
2863 }
2864
2865 const CBlockIndex *pindexLast = nullptr;
2866
2867 // We'll set already_validated_work to true if these headers are
2868 // successfully processed as part of a low-work headers sync in progress
2869 // (either in PRESYNC or REDOWNLOAD phase).
2870 // If true, this will mean that any headers returned to us (ie during
2871 // REDOWNLOAD) can be validated without further anti-DoS checks.
2872 bool already_validated_work = false;
2873
2874 // If we're in the middle of headers sync, let it do its magic.
2875 bool have_headers_sync = false;
2876 {
2877 LOCK(peer.m_headers_sync_mutex);
2878
2879 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2880
2881 // The headers we passed in may have been:
2882 // - untouched, perhaps if no headers-sync was in progress, or some
2883 // failure occurred
2884 // - erased, such as if the headers were successfully processed and no
2885 // additional headers processing needs to take place (such as if we
2886 // are still in PRESYNC)
2887 // - replaced with headers that are now ready for validation, such as
2888 // during the REDOWNLOAD phase of a low-work headers sync.
2889 // So just check whether we still have headers that we need to process,
2890 // or not.
2891 if (headers.empty()) {
2892 return;
2893 }
2894
2895 have_headers_sync = !!peer.m_headers_sync;
2896 }
2897
2898 // Do these headers connect to something in our block index?
2899 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2900 bool headers_connect_blockindex{chain_start_header != nullptr};
2901
2902 if (!headers_connect_blockindex) {
2903 // This could be a BIP 130 block announcement, use
2904 // special logic for handling headers that don't connect, as this
2905 // could be benign.
2906 HandleUnconnectingHeaders(pfrom, peer, headers);
2907 return;
2908 }
2909
2910 // If headers connect, assume that this is in response to any outstanding getheaders
2911 // request we may have sent, and clear out the time of our last request. Non-connecting
2912 // headers cannot be a response to a getheaders request.
2913 peer.m_last_getheaders_timestamp = {};
2914
2915 // If the headers we received are already in memory and an ancestor of
2916 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2917 // use any more memory (and we are not leaking information that could be
2918 // used to fingerprint us).
2919 const CBlockIndex *last_received_header{nullptr};
2920 {
2921 LOCK(cs_main);
2922 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2923 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2924 already_validated_work = true;
2925 }
2926 }
2927
2928 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2929 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2930 // on startup).
2932 already_validated_work = true;
2933 }
2934
2935 // At this point, the headers connect to something in our block index.
2936 // Do anti-DoS checks to determine if we should process or store for later
2937 // processing.
2938 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2939 chain_start_header, headers)) {
2940 // If we successfully started a low-work headers sync, then there
2941 // should be no headers to process any further.
2942 Assume(headers.empty());
2943 return;
2944 }
2945
2946 // At this point, we have a set of headers with sufficient work on them
2947 // which can be processed.
2948
2949 // If we don't have the last header, then this peer will have given us
2950 // something new (if these headers are valid).
2951 bool received_new_header{last_received_header == nullptr};
2952
2953 // Now process all the headers.
2955 const bool processed{m_chainman.ProcessNewBlockHeaders(headers,
2956 /*min_pow_checked=*/true,
2957 state, &pindexLast)};
2958 if (!processed) {
2959 if (state.IsInvalid()) {
2961 // Warn user if outgoing peers send us headers of blocks that we previously marked as invalid.
2962 LogWarning("%s (received from peer=%i). "
2963 "If this happens with all peers, consider database corruption (that -reindex may fix) "
2964 "or a potential consensus incompatibility.",
2965 state.GetDebugMessage(), pfrom.GetId());
2966 }
2967 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2968 return;
2969 }
2970 }
2971 assert(pindexLast);
2972
2973 if (processed && received_new_header) {
2974 LogBlockHeader(*pindexLast, pfrom, /*via_compact_block=*/false);
2975 }
2976
2977 // Consider fetching more headers if we are not using our headers-sync mechanism.
2978 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2979 // Headers message had its maximum size; the peer may have more headers.
2980 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2981 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2982 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2983 }
2984 }
2985
2986 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2987
2988 // Consider immediately downloading blocks.
2989 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2990
2991 return;
2992}
2993
2994std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2995 bool first_time_failure)
2996{
2997 AssertLockNotHeld(m_peer_mutex);
2998 AssertLockHeld(g_msgproc_mutex);
2999 AssertLockHeld(m_tx_download_mutex);
3000
3001 PeerRef peer{GetPeerRef(nodeid)};
3002
3003 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
3004 ptx->GetHash().ToString(),
3005 ptx->GetWitnessHash().ToString(),
3006 nodeid,
3007 state.ToString());
3008
3009 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
3010
3011 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
3012 AddToCompactExtraTransactions(ptx);
3013 }
3014 for (const Txid& parent_txid : unique_parents) {
3015 if (peer) AddKnownTx(*peer, parent_txid.ToUint256());
3016 }
3017
3018 return package_to_validate;
3019}
3020
3021void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3022{
3023 AssertLockNotHeld(m_peer_mutex);
3024 AssertLockHeld(g_msgproc_mutex);
3025 AssertLockHeld(m_tx_download_mutex);
3026
3027 m_txdownloadman.MempoolAcceptedTx(tx);
3028
3029 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3030 nodeid,
3031 tx->GetHash().ToString(),
3032 tx->GetWitnessHash().ToString(),
3033 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3034
3035 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3036
3037 for (const CTransactionRef& removedTx : replaced_transactions) {
3038 AddToCompactExtraTransactions(removedTx);
3039 }
3040}
3041
3042void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3043{
3044 AssertLockNotHeld(m_peer_mutex);
3045 AssertLockHeld(g_msgproc_mutex);
3046 AssertLockHeld(m_tx_download_mutex);
3047
3048 const auto& package = package_to_validate.m_txns;
3049 const auto& senders = package_to_validate.m_senders;
3050
3051 if (package_result.m_state.IsInvalid()) {
3052 m_txdownloadman.MempoolRejectedPackage(package);
3053 }
3054 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3055 if (!Assume(package.size() == 2)) return;
3056
3057 // Iterate backwards to erase in-package descendants from the orphanage before they become
3058 // relevant in AddChildrenToWorkSet.
3059 auto package_iter = package.rbegin();
3060 auto senders_iter = senders.rbegin();
3061 while (package_iter != package.rend()) {
3062 const auto& tx = *package_iter;
3063 const NodeId nodeid = *senders_iter;
3064 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3065
3066 // It is not guaranteed that a result exists for every transaction.
3067 if (it_result != package_result.m_tx_results.end()) {
3068 const auto& tx_result = it_result->second;
3069 switch (tx_result.m_result_type) {
3071 {
3072 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3073 break;
3074 }
3077 {
3078 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3079 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3080 // This should be updated if package submission is ever used for transactions
3081 // that haven't already been validated before.
3082 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3083 break;
3084 }
3086 {
3087 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3088 Assume(false);
3089 break;
3090 }
3091 }
3092 }
3093 package_iter++;
3094 senders_iter++;
3095 }
3096}
3097
3098// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3099// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3100bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3101{
3102 AssertLockHeld(g_msgproc_mutex);
3103 LOCK2(::cs_main, m_tx_download_mutex);
3104
3105 CTransactionRef porphanTx = nullptr;
3106
3107 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3108 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3109 const TxValidationState& state = result.m_state;
3110 const Txid& orphanHash = porphanTx->GetHash();
3111 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3112
3114 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3115 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3116 return true;
3117 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3118 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3119 orphanHash.ToString(),
3120 orphan_wtxid.ToString(),
3121 peer.m_id,
3122 state.ToString());
3123
3124 if (Assume(state.IsInvalid() &&
3128 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3129 }
3130 return true;
3131 }
3132 }
3133
3134 return false;
3135}
3136
3137bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3138 BlockFilterType filter_type, uint32_t start_height,
3139 const uint256& stop_hash, uint32_t max_height_diff,
3140 const CBlockIndex*& stop_index,
3141 BlockFilterIndex*& filter_index)
3142{
3143 const bool supported_filter_type =
3144 (filter_type == BlockFilterType::BASIC &&
3145 (peer.m_our_services & NODE_COMPACT_FILTERS));
3146 if (!supported_filter_type) {
3147 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3148 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3149 node.fDisconnect = true;
3150 return false;
3151 }
3152
3153 {
3154 LOCK(cs_main);
3155 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3156
3157 // Check that the stop block exists and the peer would be allowed to fetch it.
3158 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3159 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3160 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3161 node.fDisconnect = true;
3162 return false;
3163 }
3164 }
3165
3166 uint32_t stop_height = stop_index->nHeight;
3167 if (start_height > stop_height) {
3168 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3169 "start height %d and stop height %d, %s\n",
3170 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3171 node.fDisconnect = true;
3172 return false;
3173 }
3174 if (stop_height - start_height >= max_height_diff) {
3175 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3176 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3177 node.fDisconnect = true;
3178 return false;
3179 }
3180
3181 filter_index = GetBlockFilterIndex(filter_type);
3182 if (!filter_index) {
3183 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3184 return false;
3185 }
3186
3187 return true;
3188}
3189
3190void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3191{
3192 uint8_t filter_type_ser;
3193 uint32_t start_height;
3194 uint256 stop_hash;
3195
3196 vRecv >> filter_type_ser >> start_height >> stop_hash;
3197
3198 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3199
3200 const CBlockIndex* stop_index;
3201 BlockFilterIndex* filter_index;
3202 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3203 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3204 return;
3205 }
3206
3207 std::vector<BlockFilter> filters;
3208 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3209 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3210 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3211 return;
3212 }
3213
3214 for (const auto& filter : filters) {
3215 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3216 }
3217}
3218
3219void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3220{
3221 uint8_t filter_type_ser;
3222 uint32_t start_height;
3223 uint256 stop_hash;
3224
3225 vRecv >> filter_type_ser >> start_height >> stop_hash;
3226
3227 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3228
3229 const CBlockIndex* stop_index;
3230 BlockFilterIndex* filter_index;
3231 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3232 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3233 return;
3234 }
3235
3236 uint256 prev_header;
3237 if (start_height > 0) {
3238 const CBlockIndex* const prev_block =
3239 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3240 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3241 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3242 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3243 return;
3244 }
3245 }
3246
3247 std::vector<uint256> filter_hashes;
3248 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3249 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3250 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3251 return;
3252 }
3253
3254 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3255 filter_type_ser,
3256 stop_index->GetBlockHash(),
3257 prev_header,
3258 filter_hashes);
3259}
3260
3261void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3262{
3263 uint8_t filter_type_ser;
3264 uint256 stop_hash;
3265
3266 vRecv >> filter_type_ser >> stop_hash;
3267
3268 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3269
3270 const CBlockIndex* stop_index;
3271 BlockFilterIndex* filter_index;
3272 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3273 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3274 stop_index, filter_index)) {
3275 return;
3276 }
3277
3278 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3279
3280 // Populate headers.
3281 const CBlockIndex* block_index = stop_index;
3282 for (int i = headers.size() - 1; i >= 0; i--) {
3283 int height = (i + 1) * CFCHECKPT_INTERVAL;
3284 block_index = block_index->GetAncestor(height);
3285
3286 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3287 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3288 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3289 return;
3290 }
3291 }
3292
3293 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3294 filter_type_ser,
3295 stop_index->GetBlockHash(),
3296 headers);
3297}
3298
3299void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3300{
3301 bool new_block{false};
3302 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3303 if (new_block) {
3304 node.m_last_block_time = GetTime<std::chrono::seconds>();
3305 // In case this block came from a different peer than we requested
3306 // from, we can erase the block request now anyway (as we just stored
3307 // this block to disk).
3308 LOCK(cs_main);
3309 RemoveBlockRequest(block->GetHash(), std::nullopt);
3310 } else {
3311 LOCK(cs_main);
3312 mapBlockSource.erase(block->GetHash());
3313 }
3314}
3315
3316void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3317{
3318 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3319 bool fBlockRead{false};
3320 {
3321 LOCK(cs_main);
3322
3323 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3324 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3325 bool requested_block_from_this_peer{false};
3326
3327 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3328 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3329
3330 while (range_flight.first != range_flight.second) {
3331 auto [node_id, block_it] = range_flight.first->second;
3332 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3333 requested_block_from_this_peer = true;
3334 break;
3335 }
3336 range_flight.first++;
3337 }
3338
3339 if (!requested_block_from_this_peer) {
3340 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3341 return;
3342 }
3343
3344 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3345
3346 if (partialBlock.header.IsNull()) {
3347 // It is possible for the header to be empty if a previous call to FillBlock wiped the header, but left
3348 // the PartiallyDownloadedBlock pointer around (i.e. did not call RemoveBlockRequest). In this case, we
3349 // should not call LookupBlockIndex below.
3350 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3351 Misbehaving(peer, "previous compact block reconstruction attempt failed");
3352 LogDebug(BCLog::NET, "Peer %d sent compact block transactions multiple times", pfrom.GetId());
3353 return;
3354 }
3355
3356 // We should not have gotten this far in compact block processing unless it's attached to a known header
3357 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(partialBlock.header.hashPrevBlock))};
3358 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn,
3359 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
3360 if (status == READ_STATUS_INVALID) {
3361 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3362 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3363 return;
3364 } else if (status == READ_STATUS_FAILED) {
3365 if (first_in_flight) {
3366 // Might have collided, fall back to getdata now :(
3367 // We keep the failed partialBlock to disallow processing another compact block announcement from the same
3368 // peer for the same block. We let the full block download below continue under the same m_downloading_since
3369 // timer.
3370 std::vector<CInv> invs;
3371 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3372 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3373 } else {
3374 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3375 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3376 return;
3377 }
3378 } else {
3379 // Block is okay for further processing
3380 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3381 fBlockRead = true;
3382 // mapBlockSource is used for potentially punishing peers and
3383 // updating which peers send us compact blocks, so the race
3384 // between here and cs_main in ProcessNewBlock is fine.
3385 // BIP 152 permits peers to relay compact blocks after validating
3386 // the header only; we should not punish peers if the block turns
3387 // out to be invalid.
3388 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3389 }
3390 } // Don't hold cs_main when we call into ProcessNewBlock
3391 if (fBlockRead) {
3392 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3393 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3394 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3395 // disk-space attacks), but this should be safe due to the
3396 // protections in the compact block handler -- see related comment
3397 // in compact block optimistic reconstruction handling.
3398 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3399 }
3400 return;
3401}
3402
3403void PeerManagerImpl::LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block) {
3404 // To prevent log spam, this function should only be called after it was determined that a
3405 // header is both new and valid.
3406 //
3407 // These messages are valuable for detecting potential selfish mining behavior;
3408 // if multiple displacing headers are seen near simultaneously across many
3409 // nodes in the network, this might be an indication of selfish mining.
3410 // In addition it can be used to identify peers which send us a header, but
3411 // don't followup with a complete and valid (compact) block.
3412 // Having this log by default when not in IBD ensures broad availability of
3413 // this data in case investigation is merited.
3414 const auto msg = strprintf(
3415 "Saw new %sheader hash=%s height=%d peer=%d%s",
3416 via_compact_block ? "cmpctblock " : "",
3417 index.GetBlockHash().ToString(),
3418 index.nHeight,
3419 peer.GetId(),
3420 peer.LogIP(fLogIPs)
3421 );
3422 if (m_chainman.IsInitialBlockDownload()) {
3424 } else {
3425 LogInfo("%s", msg);
3426 }
3427}
3428
3429void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3430 const std::chrono::microseconds time_received,
3431 const std::atomic<bool>& interruptMsgProc)
3432{
3433 AssertLockHeld(g_msgproc_mutex);
3434
3435 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3436
3437 PeerRef peer = GetPeerRef(pfrom.GetId());
3438 if (peer == nullptr) return;
3439
3440 if (msg_type == NetMsgType::VERSION) {
3441 if (pfrom.nVersion != 0) {
3442 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3443 return;
3444 }
3445
3446 int64_t nTime;
3447 CService addrMe;
3448 uint64_t nNonce = 1;
3449 ServiceFlags nServices;
3450 int nVersion;
3451 std::string cleanSubVer;
3452 int starting_height = -1;
3453 bool fRelay = true;
3454
3455 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3456 if (nTime < 0) {
3457 nTime = 0;
3458 }
3459 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3460 vRecv >> CNetAddr::V1(addrMe);
3461 if (!pfrom.IsInboundConn())
3462 {
3463 // Overwrites potentially existing services. In contrast to this,
3464 // unvalidated services received via gossip relay in ADDR/ADDRV2
3465 // messages are only ever added but cannot replace existing ones.
3466 m_addrman.SetServices(pfrom.addr, nServices);
3467 }
3468 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3469 {
3470 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3471 nServices,
3472 GetDesirableServiceFlags(nServices),
3473 pfrom.DisconnectMsg(fLogIPs));
3474 pfrom.fDisconnect = true;
3475 return;
3476 }
3477
3478 if (nVersion < MIN_PEER_PROTO_VERSION) {
3479 // disconnect from peers older than this proto version
3480 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3481 pfrom.fDisconnect = true;
3482 return;
3483 }
3484
3485 if (!vRecv.empty()) {
3486 // The version message includes information about the sending node which we don't use:
3487 // - 8 bytes (service bits)
3488 // - 16 bytes (ipv6 address)
3489 // - 2 bytes (port)
3490 vRecv.ignore(26);
3491 vRecv >> nNonce;
3492 }
3493 if (!vRecv.empty()) {
3494 std::string strSubVer;
3495 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3496 cleanSubVer = SanitizeString(strSubVer);
3497 }
3498 if (!vRecv.empty()) {
3499 vRecv >> starting_height;
3500 }
3501 if (!vRecv.empty())
3502 vRecv >> fRelay;
3503 // Disconnect if we connected to ourself
3504 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3505 {
3506 LogInfo("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3507 pfrom.fDisconnect = true;
3508 return;
3509 }
3510
3511 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3512 {
3513 SeenLocal(addrMe);
3514 }
3515
3516 // Inbound peers send us their version message when they connect.
3517 // We send our version message in response.
3518 if (pfrom.IsInboundConn()) {
3519 PushNodeVersion(pfrom, *peer);
3520 }
3521
3522 // Change version
3523 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3524 pfrom.SetCommonVersion(greatest_common_version);
3525 pfrom.nVersion = nVersion;
3526
3527 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3528 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3529 }
3530
3531 // Signal ADDRv2 support (BIP155).
3532 if (greatest_common_version >= 70016) {
3533 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3534 // implementations reject messages they don't know. As a courtesy, don't send
3535 // it to nodes with a version before 70016, as no software is known to support
3536 // BIP155 that doesn't announce at least that protocol version number.
3537 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3538 }
3539
3540 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3541 peer->m_their_services = nServices;
3542 pfrom.SetAddrLocal(addrMe);
3543 {
3544 LOCK(pfrom.m_subver_mutex);
3545 pfrom.cleanSubVer = cleanSubVer;
3546 }
3547 peer->m_starting_height = starting_height;
3548
3549 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3550 // - this isn't an outbound block-relay-only connection, and
3551 // - this isn't an outbound feeler connection, and
3552 // - fRelay=true (the peer wishes to receive transaction announcements)
3553 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3554 // the peer may turn on transaction relay later.
3555 if (!pfrom.IsBlockOnlyConn() &&
3556 !pfrom.IsFeelerConn() &&
3557 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3558 auto* const tx_relay = peer->SetTxRelay();
3559 {
3560 LOCK(tx_relay->m_bloom_filter_mutex);
3561 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3562 }
3563 if (fRelay) pfrom.m_relays_txs = true;
3564 }
3565
3566 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3567 // Per BIP-330, we announce txreconciliation support if:
3568 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3569 // - transaction relay is supported per the peer's VERSION message
3570 // - this is not a block-relay-only connection and not a feeler
3571 // - this is not an addr fetch connection;
3572 // - we are not in -blocksonly mode.
3573 const auto* tx_relay = peer->GetTxRelay();
3574 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3575 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3576 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3577 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3578 TXRECONCILIATION_VERSION, recon_salt);
3579 }
3580 }
3581
3582 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3583
3584 // Potentially mark this peer as a preferred download peer.
3585 {
3586 LOCK(cs_main);
3587 CNodeState* state = State(pfrom.GetId());
3588 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3589 m_num_preferred_download_peers += state->fPreferredDownload;
3590 }
3591
3592 // Attempt to initialize address relay for outbound peers and use result
3593 // to decide whether to send GETADDR, so that we don't send it to
3594 // inbound or outbound block-relay-only peers.
3595 bool send_getaddr{false};
3596 if (!pfrom.IsInboundConn()) {
3597 send_getaddr = SetupAddressRelay(pfrom, *peer);
3598 }
3599 if (send_getaddr) {
3600 // Do a one-time address fetch to help populate/update our addrman.
3601 // If we're starting up for the first time, our addrman may be pretty
3602 // empty, so this mechanism is important to help us connect to the network.
3603 // We skip this for block-relay-only peers. We want to avoid
3604 // potentially leaking addr information and we do not want to
3605 // indicate to the peer that we will participate in addr relay.
3606 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3607 peer->m_getaddr_sent = true;
3608 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3609 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3610 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3611 }
3612
3613 if (!pfrom.IsInboundConn()) {
3614 // For non-inbound connections, we update the addrman to record
3615 // connection success so that addrman will have an up-to-date
3616 // notion of which peers are online and available.
3617 //
3618 // While we strive to not leak information about block-relay-only
3619 // connections via the addrman, not moving an address to the tried
3620 // table is also potentially detrimental because new-table entries
3621 // are subject to eviction in the event of addrman collisions. We
3622 // mitigate the information-leak by never calling
3623 // AddrMan::Connected() on block-relay-only peers; see
3624 // FinalizeNode().
3625 //
3626 // This moves an address from New to Tried table in Addrman,
3627 // resolves tried-table collisions, etc.
3628 m_addrman.Good(pfrom.addr);
3629 }
3630
3631 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3632 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3633 cleanSubVer, pfrom.nVersion,
3634 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3635 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3636
3637 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3638 if (!pfrom.IsInboundConn()) {
3639 // Don't use timedata samples from inbound peers to make it
3640 // harder for others to create false warnings about our clock being out of sync.
3641 m_outbound_time_offsets.Add(peer->m_time_offset);
3642 m_outbound_time_offsets.WarnIfOutOfSync();
3643 }
3644
3645 // If the peer is old enough to have the old alert system, send it the final alert.
3646 if (greatest_common_version <= 70012) {
3647 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3648 MakeAndPushMessage(pfrom, "alert", finalAlert);
3649 }
3650
3651 // Feeler connections exist only to verify if address is online.
3652 if (pfrom.IsFeelerConn()) {
3653 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3654 pfrom.fDisconnect = true;
3655 }
3656 return;
3657 }
3658
3659 if (pfrom.nVersion == 0) {
3660 // Must have a version message before anything else
3661 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3662 return;
3663 }
3664
3665 if (msg_type == NetMsgType::VERACK) {
3666 if (pfrom.fSuccessfullyConnected) {
3667 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3668 return;
3669 }
3670
3671 auto new_peer_msg = [&]() {
3672 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3673 return strprintf("New %s peer connected: transport: %s, version: %d, blocks=%d peer=%d%s%s\n",
3674 pfrom.ConnectionTypeAsString(),
3675 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3676 pfrom.nVersion.load(), peer->m_starting_height,
3677 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3678 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3679 };
3680
3681 // Log successful connections unconditionally for outbound, but not for inbound as those
3682 // can be triggered by an attacker at high rate.
3683 if (pfrom.IsInboundConn()) {
3684 LogDebug(BCLog::NET, "%s", new_peer_msg());
3685 } else {
3686 LogInfo("%s", new_peer_msg());
3687 }
3688
3690 // Tell our peer we are willing to provide version 2 cmpctblocks.
3691 // However, we do not request new block announcements using
3692 // cmpctblock messages.
3693 // We send this to non-NODE NETWORK peers as well, because
3694 // they may wish to request compact blocks from us
3695 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3696 }
3697
3698 if (m_txreconciliation) {
3699 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3700 // We could have optimistically pre-registered/registered the peer. In that case,
3701 // we should forget about the reconciliation state here if this wasn't followed
3702 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3703 m_txreconciliation->ForgetPeer(pfrom.GetId());
3704 }
3705 }
3706
3707 if (auto tx_relay = peer->GetTxRelay()) {
3708 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3709 // version handshake is completed as
3710 // `TxRelay::m_next_inv_send_time` is first initialised in
3711 // `SendMessages` after the verack is received. Any transactions
3712 // received during the version handshake would otherwise
3713 // immediately be advertised without random delay, potentially
3714 // leaking the time of arrival to a spy.
3716 tx_relay->m_tx_inventory_mutex,
3717 return tx_relay->m_tx_inventory_to_send.empty() &&
3718 tx_relay->m_next_inv_send_time == 0s));
3719 }
3720
3721 {
3722 LOCK2(::cs_main, m_tx_download_mutex);
3723 const CNodeState* state = State(pfrom.GetId());
3724 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3725 .m_preferred = state->fPreferredDownload,
3726 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3727 .m_wtxid_relay = peer->m_wtxid_relay,
3728 });
3729 }
3730
3731 pfrom.fSuccessfullyConnected = true;
3732 return;
3733 }
3734
3735 if (msg_type == NetMsgType::SENDHEADERS) {
3736 peer->m_prefers_headers = true;
3737 return;
3738 }
3739
3740 if (msg_type == NetMsgType::SENDCMPCT) {
3741 bool sendcmpct_hb{false};
3742 uint64_t sendcmpct_version{0};
3743 vRecv >> sendcmpct_hb >> sendcmpct_version;
3744
3745 // Only support compact block relay with witnesses
3746 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3747
3748 LOCK(cs_main);
3749 CNodeState* nodestate = State(pfrom.GetId());
3750 nodestate->m_provides_cmpctblocks = true;
3751 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3752 // save whether peer selects us as BIP152 high-bandwidth peer
3753 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3754 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3755 return;
3756 }
3757
3758 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3759 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3760 if (msg_type == NetMsgType::WTXIDRELAY) {
3761 if (pfrom.fSuccessfullyConnected) {
3762 // Disconnect peers that send a wtxidrelay message after VERACK.
3763 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3764 pfrom.fDisconnect = true;
3765 return;
3766 }
3767 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3768 if (!peer->m_wtxid_relay) {
3769 peer->m_wtxid_relay = true;
3770 m_wtxid_relay_peers++;
3771 } else {
3772 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3773 }
3774 } else {
3775 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3776 }
3777 return;
3778 }
3779
3780 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3781 // between VERSION and VERACK.
3782 if (msg_type == NetMsgType::SENDADDRV2) {
3783 if (pfrom.fSuccessfullyConnected) {
3784 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3785 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3786 pfrom.fDisconnect = true;
3787 return;
3788 }
3789 peer->m_wants_addrv2 = true;
3790 return;
3791 }
3792
3793 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3794 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3795 // from switching announcement protocols after the connection is up.
3796 if (msg_type == NetMsgType::SENDTXRCNCL) {
3797 if (!m_txreconciliation) {
3798 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3799 return;
3800 }
3801
3802 if (pfrom.fSuccessfullyConnected) {
3803 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3804 pfrom.fDisconnect = true;
3805 return;
3806 }
3807
3808 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3809 if (RejectIncomingTxs(pfrom)) {
3810 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3811 pfrom.fDisconnect = true;
3812 return;
3813 }
3814
3815 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3816 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3817 // eliminates them, so that this flag fully represents what we are looking for.
3818 const auto* tx_relay = peer->GetTxRelay();
3819 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3820 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3821 pfrom.fDisconnect = true;
3822 return;
3823 }
3824
3825 uint32_t peer_txreconcl_version;
3826 uint64_t remote_salt;
3827 vRecv >> peer_txreconcl_version >> remote_salt;
3828
3829 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3830 peer_txreconcl_version, remote_salt);
3831 switch (result) {
3833 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3834 break;
3836 break;
3838 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3839 pfrom.fDisconnect = true;
3840 return;
3842 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3843 pfrom.fDisconnect = true;
3844 return;
3845 }
3846 return;
3847 }
3848
3849 if (!pfrom.fSuccessfullyConnected) {
3850 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3851 return;
3852 }
3853
3854 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3855 const auto ser_params{
3856 msg_type == NetMsgType::ADDRV2 ?
3857 // Set V2 param so that the CNetAddr and CAddress
3858 // unserialize methods know that an address in v2 format is coming.
3861 };
3862
3863 std::vector<CAddress> vAddr;
3864
3865 vRecv >> ser_params(vAddr);
3866
3867 if (!SetupAddressRelay(pfrom, *peer)) {
3868 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3869 return;
3870 }
3871
3872 if (vAddr.size() > MAX_ADDR_TO_SEND)
3873 {
3874 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3875 return;
3876 }
3877
3878 // Store the new addresses
3879 std::vector<CAddress> vAddrOk;
3880 const auto current_a_time{Now<NodeSeconds>()};
3881
3882 // Update/increment addr rate limiting bucket.
3883 const auto current_time{GetTime<std::chrono::microseconds>()};
3884 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3885 // Don't increment bucket if it's already full
3886 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3887 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3888 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3889 }
3890 peer->m_addr_token_timestamp = current_time;
3891
3892 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3893 uint64_t num_proc = 0;
3894 uint64_t num_rate_limit = 0;
3895 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3896 for (CAddress& addr : vAddr)
3897 {
3898 if (interruptMsgProc)
3899 return;
3900
3901 // Apply rate limiting.
3902 if (peer->m_addr_token_bucket < 1.0) {
3903 if (rate_limited) {
3904 ++num_rate_limit;
3905 continue;
3906 }
3907 } else {
3908 peer->m_addr_token_bucket -= 1.0;
3909 }
3910 // We only bother storing full nodes, though this may include
3911 // things which we would not make an outbound connection to, in
3912 // part because we may make feeler connections to them.
3913 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3914 continue;
3915
3916 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3917 addr.nTime = current_a_time - 5 * 24h;
3918 }
3919 AddAddressKnown(*peer, addr);
3920 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3921 // Do not process banned/discouraged addresses beyond remembering we received them
3922 continue;
3923 }
3924 ++num_proc;
3925 const bool reachable{g_reachable_nets.Contains(addr)};
3926 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3927 // Relay to a limited number of other nodes
3928 RelayAddress(pfrom.GetId(), addr, reachable);
3929 }
3930 // Do not store addresses outside our network
3931 if (reachable) {
3932 vAddrOk.push_back(addr);
3933 }
3934 }
3935 peer->m_addr_processed += num_proc;
3936 peer->m_addr_rate_limited += num_rate_limit;
3937 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3938 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3939
3940 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3941 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3942
3943 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3944 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3945 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3946 pfrom.fDisconnect = true;
3947 }
3948 return;
3949 }
3950
3951 if (msg_type == NetMsgType::INV) {
3952 std::vector<CInv> vInv;
3953 vRecv >> vInv;
3954 if (vInv.size() > MAX_INV_SZ)
3955 {
3956 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3957 return;
3958 }
3959
3960 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3961
3962 LOCK2(cs_main, m_tx_download_mutex);
3963
3964 const auto current_time{GetTime<std::chrono::microseconds>()};
3965 uint256* best_block{nullptr};
3966
3967 for (CInv& inv : vInv) {
3968 if (interruptMsgProc) return;
3969
3970 // Ignore INVs that don't match wtxidrelay setting.
3971 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3972 // This is fine as no INV messages are involved in that process.
3973 if (peer->m_wtxid_relay) {
3974 if (inv.IsMsgTx()) continue;
3975 } else {
3976 if (inv.IsMsgWtx()) continue;
3977 }
3978
3979 if (inv.IsMsgBlk()) {
3980 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3981 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3982
3983 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3984 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3985 // Headers-first is the primary method of announcement on
3986 // the network. If a node fell back to sending blocks by
3987 // inv, it may be for a re-org, or because we haven't
3988 // completed initial headers sync. The final block hash
3989 // provided should be the highest, so send a getheaders and
3990 // then fetch the blocks we need to catch up.
3991 best_block = &inv.hash;
3992 }
3993 } else if (inv.IsGenTxMsg()) {
3994 if (reject_tx_invs) {
3995 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
3996 pfrom.fDisconnect = true;
3997 return;
3998 }
3999 const GenTxid gtxid = ToGenTxid(inv);
4000 AddKnownTx(*peer, inv.hash);
4001
4002 if (!m_chainman.IsInitialBlockDownload()) {
4003 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
4004 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
4005 }
4006 } else {
4007 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
4008 }
4009 }
4010
4011 if (best_block != nullptr) {
4012 // If we haven't started initial headers-sync with this peer, then
4013 // consider sending a getheaders now. On initial startup, there's a
4014 // reliability vs bandwidth tradeoff, where we are only trying to do
4015 // initial headers sync with one peer at a time, with a long
4016 // timeout (at which point, if the sync hasn't completed, we will
4017 // disconnect the peer and then choose another). In the meantime,
4018 // as new blocks are found, we are willing to add one new peer per
4019 // block to sync with as well, to sync quicker in the case where
4020 // our initial peer is unresponsive (but less bandwidth than we'd
4021 // use if we turned on sync with all peers).
4022 CNodeState& state{*Assert(State(pfrom.GetId()))};
4023 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
4024 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
4025 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
4026 m_chainman.m_best_header->nHeight, best_block->ToString(),
4027 pfrom.GetId());
4028 }
4029 if (!state.fSyncStarted) {
4030 peer->m_inv_triggered_getheaders_before_sync = true;
4031 // Update the last block hash that triggered a new headers
4032 // sync, so that we don't turn on headers sync with more
4033 // than 1 new peer every new block.
4034 m_last_block_inv_triggering_headers_sync = *best_block;
4035 }
4036 }
4037 }
4038
4039 return;
4040 }
4041
4042 if (msg_type == NetMsgType::GETDATA) {
4043 std::vector<CInv> vInv;
4044 vRecv >> vInv;
4045 if (vInv.size() > MAX_INV_SZ)
4046 {
4047 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4048 return;
4049 }
4050
4051 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4052
4053 if (vInv.size() > 0) {
4054 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4055 }
4056
4057 {
4058 LOCK(peer->m_getdata_requests_mutex);
4059 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4060 ProcessGetData(pfrom, *peer, interruptMsgProc);
4061 }
4062
4063 return;
4064 }
4065
4066 if (msg_type == NetMsgType::GETBLOCKS) {
4067 CBlockLocator locator;
4068 uint256 hashStop;
4069 vRecv >> locator >> hashStop;
4070
4071 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4072 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4073 pfrom.fDisconnect = true;
4074 return;
4075 }
4076
4077 // We might have announced the currently-being-connected tip using a
4078 // compact block, which resulted in the peer sending a getblocks
4079 // request, which we would otherwise respond to without the new block.
4080 // To avoid this situation we simply verify that we are on our best
4081 // known chain now. This is super overkill, but we handle it better
4082 // for getheaders requests, and there are no known nodes which support
4083 // compact blocks but still use getblocks to request blocks.
4084 {
4085 std::shared_ptr<const CBlock> a_recent_block;
4086 {
4087 LOCK(m_most_recent_block_mutex);
4088 a_recent_block = m_most_recent_block;
4089 }
4091 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4092 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4093 }
4094 }
4095
4096 LOCK(cs_main);
4097
4098 // Find the last block the caller has in the main chain
4099 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4100
4101 // Send the rest of the chain
4102 if (pindex)
4103 pindex = m_chainman.ActiveChain().Next(pindex);
4104 int nLimit = 500;
4105 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4106 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4107 {
4108 if (pindex->GetBlockHash() == hashStop)
4109 {
4110 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4111 break;
4112 }
4113 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4114 // for some reasonable time window (1 hour) that block relay might require.
4115 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4116 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4117 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4118 break;
4119 }
4120 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4121 if (--nLimit <= 0) {
4122 // When this block is requested, we'll send an inv that'll
4123 // trigger the peer to getblocks the next batch of inventory.
4124 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4125 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4126 break;
4127 }
4128 }
4129 return;
4130 }
4131
4132 if (msg_type == NetMsgType::GETBLOCKTXN) {
4134 vRecv >> req;
4135 // Verify differential encoding invariant: indexes must be strictly increasing
4136 // DifferenceFormatter should guarantee this property during deserialization
4137 for (size_t i = 1; i < req.indexes.size(); ++i) {
4138 Assume(req.indexes[i] > req.indexes[i-1]);
4139 }
4140
4141 std::shared_ptr<const CBlock> recent_block;
4142 {
4143 LOCK(m_most_recent_block_mutex);
4144 if (m_most_recent_block_hash == req.blockhash)
4145 recent_block = m_most_recent_block;
4146 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4147 }
4148 if (recent_block) {
4149 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4150 return;
4151 }
4152
4153 FlatFilePos block_pos{};
4154 {
4155 LOCK(cs_main);
4156
4157 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4158 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4159 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4160 return;
4161 }
4162
4163 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4164 block_pos = pindex->GetBlockPos();
4165 }
4166 }
4167
4168 if (!block_pos.IsNull()) {
4169 CBlock block;
4170 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos, req.blockhash)};
4171 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4172 // pruned after we release cs_main above, so this read should never fail.
4173 assert(ret);
4174
4175 SendBlockTransactions(pfrom, *peer, block, req);
4176 return;
4177 }
4178
4179 // If an older block is requested (should never happen in practice,
4180 // but can happen in tests) send a block response instead of a
4181 // blocktxn response. Sending a full block response instead of a
4182 // small blocktxn response is preferable in the case where a peer
4183 // might maliciously send lots of getblocktxn requests to trigger
4184 // expensive disk reads, because it will require the peer to
4185 // actually receive all the data read from disk over the network.
4186 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4188 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4189 // The message processing loop will go around again (without pausing) and we'll respond then
4190 return;
4191 }
4192
4193 if (msg_type == NetMsgType::GETHEADERS) {
4194 CBlockLocator locator;
4195 uint256 hashStop;
4196 vRecv >> locator >> hashStop;
4197
4198 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4199 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4200 pfrom.fDisconnect = true;
4201 return;
4202 }
4203
4204 if (m_chainman.m_blockman.LoadingBlocks()) {
4205 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4206 return;
4207 }
4208
4209 LOCK(cs_main);
4210
4211 // Don't serve headers from our active chain until our chainwork is at least
4212 // the minimum chain work. This prevents us from starting a low-work headers
4213 // sync that will inevitably be aborted by our peer.
4214 if (m_chainman.ActiveTip() == nullptr ||
4215 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4216 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4217 // Just respond with an empty headers message, to tell the peer to
4218 // go away but not treat us as unresponsive.
4219 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4220 return;
4221 }
4222
4223 CNodeState *nodestate = State(pfrom.GetId());
4224 const CBlockIndex* pindex = nullptr;
4225 if (locator.IsNull())
4226 {
4227 // If locator is null, return the hashStop block
4228 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4229 if (!pindex) {
4230 return;
4231 }
4232
4233 if (!BlockRequestAllowed(pindex)) {
4234 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4235 return;
4236 }
4237 }
4238 else
4239 {
4240 // Find the last block the caller has in the main chain
4241 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4242 if (pindex)
4243 pindex = m_chainman.ActiveChain().Next(pindex);
4244 }
4245
4246 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4247 std::vector<CBlock> vHeaders;
4248 int nLimit = m_opts.max_headers_result;
4249 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4250 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4251 {
4252 vHeaders.emplace_back(pindex->GetBlockHeader());
4253 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4254 break;
4255 }
4256 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4257 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4258 // headers message). In both cases it's safe to update
4259 // pindexBestHeaderSent to be our tip.
4260 //
4261 // It is important that we simply reset the BestHeaderSent value here,
4262 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4263 // the currently-being-connected tip using a compact block, which
4264 // resulted in the peer sending a headers request, which we respond to
4265 // without the new block. By resetting the BestHeaderSent, we ensure we
4266 // will re-announce the new block via headers (or compact blocks again)
4267 // in the SendMessages logic.
4268 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4269 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4270 return;
4271 }
4272
4273 if (msg_type == NetMsgType::TX) {
4274 if (RejectIncomingTxs(pfrom)) {
4275 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4276 pfrom.fDisconnect = true;
4277 return;
4278 }
4279
4280 // Stop processing the transaction early if we are still in IBD since we don't
4281 // have enough information to validate it yet. Sending unsolicited transactions
4282 // is not considered a protocol violation, so don't punish the peer.
4283 if (m_chainman.IsInitialBlockDownload()) return;
4284
4285 CTransactionRef ptx;
4286 vRecv >> TX_WITH_WITNESS(ptx);
4287
4288 const Txid& txid = ptx->GetHash();
4289 const Wtxid& wtxid = ptx->GetWitnessHash();
4290
4291 const uint256& hash = peer->m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256();
4292 AddKnownTx(*peer, hash);
4293
4294 LOCK2(cs_main, m_tx_download_mutex);
4295
4296 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4297 if (!should_validate) {
4299 // Always relay transactions received from peers with forcerelay
4300 // permission, even if they were already in the mempool, allowing
4301 // the node to function as a gateway for nodes hidden behind it.
4302 if (!m_mempool.exists(txid)) {
4303 LogInfo("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4304 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4305 } else {
4306 LogInfo("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4307 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4308 RelayTransaction(txid, wtxid);
4309 }
4310 }
4311
4312 if (package_to_validate) {
4313 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4314 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4315 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4316 ProcessPackageResult(package_to_validate.value(), package_result);
4317 }
4318 return;
4319 }
4320
4321 // ReceivedTx should not be telling us to validate the tx and a package.
4322 Assume(!package_to_validate.has_value());
4323
4324 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4325 const TxValidationState& state = result.m_state;
4326
4328 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4329 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4330 }
4331 if (state.IsInvalid()) {
4332 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4333 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4334 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4335 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4336 ProcessPackageResult(package_to_validate.value(), package_result);
4337 }
4338 }
4339
4340 return;
4341 }
4342
4343 if (msg_type == NetMsgType::CMPCTBLOCK)
4344 {
4345 // Ignore cmpctblock received while importing
4346 if (m_chainman.m_blockman.LoadingBlocks()) {
4347 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4348 return;
4349 }
4350
4351 CBlockHeaderAndShortTxIDs cmpctblock;
4352 vRecv >> cmpctblock;
4353
4354 bool received_new_header = false;
4355 const auto blockhash = cmpctblock.header.GetHash();
4356
4357 {
4358 LOCK(cs_main);
4359
4360 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4361 if (!prev_block) {
4362 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4363 if (!m_chainman.IsInitialBlockDownload()) {
4364 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4365 }
4366 return;
4367 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4368 // If we get a low-work header in a compact block, we can ignore it.
4369 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4370 return;
4371 }
4372
4373 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4374 received_new_header = true;
4375 }
4376 }
4377
4378 const CBlockIndex *pindex = nullptr;
4380 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4381 if (state.IsInvalid()) {
4382 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4383 return;
4384 }
4385 }
4386
4387 // If AcceptBlockHeader returned true, it set pindex
4388 Assert(pindex);
4389 if (received_new_header) {
4390 LogBlockHeader(*pindex, pfrom, /*via_compact_block=*/true);
4391 }
4392
4393 bool fProcessBLOCKTXN = false;
4394
4395 // If we end up treating this as a plain headers message, call that as well
4396 // without cs_main.
4397 bool fRevertToHeaderProcessing = false;
4398
4399 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4400 // below)
4401 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4402 bool fBlockReconstructed = false;
4403
4404 {
4405 LOCK(cs_main);
4406 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4407
4408 CNodeState *nodestate = State(pfrom.GetId());
4409
4410 // If this was a new header with more work than our tip, update the
4411 // peer's last block announcement time
4412 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4413 nodestate->m_last_block_announcement = GetTime();
4414 }
4415
4416 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4417 return;
4418
4419 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4420 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4421 bool requested_block_from_this_peer{false};
4422
4423 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4424 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4425
4426 while (range_flight.first != range_flight.second) {
4427 if (range_flight.first->second.first == pfrom.GetId()) {
4428 requested_block_from_this_peer = true;
4429 break;
4430 }
4431 range_flight.first++;
4432 }
4433
4434 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4435 pindex->nTx != 0) { // We had this block at some point, but pruned it
4436 if (requested_block_from_this_peer) {
4437 // We requested this block for some reason, but our mempool will probably be useless
4438 // so we just grab the block via normal getdata
4439 std::vector<CInv> vInv(1);
4440 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4441 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4442 }
4443 return;
4444 }
4445
4446 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4447 if (!already_in_flight && !CanDirectFetch()) {
4448 return;
4449 }
4450
4451 // We want to be a bit conservative just to be extra careful about DoS
4452 // possibilities in compact block processing...
4453 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4454 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4455 requested_block_from_this_peer) {
4456 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4457 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4458 if (!(*queuedBlockIt)->partialBlock)
4459 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4460 else {
4461 // The block was already in flight using compact blocks from the same peer
4462 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4463 return;
4464 }
4465 }
4466
4467 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4468 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4469 if (status == READ_STATUS_INVALID) {
4470 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4471 Misbehaving(*peer, "invalid compact block");
4472 return;
4473 } else if (status == READ_STATUS_FAILED) {
4474 if (first_in_flight) {
4475 // Duplicate txindexes, the block is now in-flight, so just request it
4476 std::vector<CInv> vInv(1);
4477 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4478 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4479 } else {
4480 // Give up for this peer and wait for other peer(s)
4481 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4482 }
4483 return;
4484 }
4485
4487 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4488 if (!partialBlock.IsTxAvailable(i))
4489 req.indexes.push_back(i);
4490 }
4491 if (req.indexes.empty()) {
4492 fProcessBLOCKTXN = true;
4493 } else if (first_in_flight) {
4494 // We will try to round-trip any compact blocks we get on failure,
4495 // as long as it's first...
4496 req.blockhash = pindex->GetBlockHash();
4497 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4498 } else if (pfrom.m_bip152_highbandwidth_to &&
4499 (!pfrom.IsInboundConn() ||
4500 IsBlockRequestedFromOutbound(blockhash) ||
4501 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4502 // ... or it's a hb relay peer and:
4503 // - peer is outbound, or
4504 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4505 // - it's not the final parallel download slot (which we may reserve for first outbound)
4506 req.blockhash = pindex->GetBlockHash();
4507 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4508 } else {
4509 // Give up for this peer and wait for other peer(s)
4510 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4511 }
4512 } else {
4513 // This block is either already in flight from a different
4514 // peer, or this peer has too many blocks outstanding to
4515 // download from.
4516 // Optimistically try to reconstruct anyway since we might be
4517 // able to without any round trips.
4518 PartiallyDownloadedBlock tempBlock(&m_mempool);
4519 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4520 if (status != READ_STATUS_OK) {
4521 // TODO: don't ignore failures
4522 return;
4523 }
4524 std::vector<CTransactionRef> dummy;
4525 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock))};
4526 status = tempBlock.FillBlock(*pblock, dummy,
4527 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
4528 if (status == READ_STATUS_OK) {
4529 fBlockReconstructed = true;
4530 }
4531 }
4532 } else {
4533 if (requested_block_from_this_peer) {
4534 // We requested this block, but its far into the future, so our
4535 // mempool will probably be useless - request the block normally
4536 std::vector<CInv> vInv(1);
4537 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4538 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4539 return;
4540 } else {
4541 // If this was an announce-cmpctblock, we want the same treatment as a header message
4542 fRevertToHeaderProcessing = true;
4543 }
4544 }
4545 } // cs_main
4546
4547 if (fProcessBLOCKTXN) {
4549 txn.blockhash = blockhash;
4550 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4551 }
4552
4553 if (fRevertToHeaderProcessing) {
4554 // Headers received from HB compact block peers are permitted to be
4555 // relayed before full validation (see BIP 152), so we don't want to disconnect
4556 // the peer if the header turns out to be for an invalid block.
4557 // Note that if a peer tries to build on an invalid chain, that
4558 // will be detected and the peer will be disconnected/discouraged.
4559 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4560 }
4561
4562 if (fBlockReconstructed) {
4563 // If we got here, we were able to optimistically reconstruct a
4564 // block that is in flight from some other peer.
4565 {
4566 LOCK(cs_main);
4567 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4568 }
4569 // Setting force_processing to true means that we bypass some of
4570 // our anti-DoS protections in AcceptBlock, which filters
4571 // unrequested blocks that might be trying to waste our resources
4572 // (eg disk space). Because we only try to reconstruct blocks when
4573 // we're close to caught up (via the CanDirectFetch() requirement
4574 // above, combined with the behavior of not requesting blocks until
4575 // we have a chain with at least the minimum chain work), and we ignore
4576 // compact blocks with less work than our tip, it is safe to treat
4577 // reconstructed compact blocks as having been requested.
4578 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4579 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4580 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4581 // Clear download state for this block, which is in
4582 // process from some other peer. We do this after calling
4583 // ProcessNewBlock so that a malleated cmpctblock announcement
4584 // can't be used to interfere with block relay.
4585 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4586 }
4587 }
4588 return;
4589 }
4590
4591 if (msg_type == NetMsgType::BLOCKTXN)
4592 {
4593 // Ignore blocktxn received while importing
4594 if (m_chainman.m_blockman.LoadingBlocks()) {
4595 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4596 return;
4597 }
4598
4599 BlockTransactions resp;
4600 vRecv >> resp;
4601
4602 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4603 }
4604
4605 if (msg_type == NetMsgType::HEADERS)
4606 {
4607 // Ignore headers received while importing
4608 if (m_chainman.m_blockman.LoadingBlocks()) {
4609 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4610 return;
4611 }
4612
4613 std::vector<CBlockHeader> headers;
4614
4615 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4616 unsigned int nCount = ReadCompactSize(vRecv);
4617 if (nCount > m_opts.max_headers_result) {
4618 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4619 return;
4620 }
4621 headers.resize(nCount);
4622 for (unsigned int n = 0; n < nCount; n++) {
4623 vRecv >> headers[n];
4624 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4625 }
4626
4627 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4628
4629 // Check if the headers presync progress needs to be reported to validation.
4630 // This needs to be done without holding the m_headers_presync_mutex lock.
4631 if (m_headers_presync_should_signal.exchange(false)) {
4632 HeadersPresyncStats stats;
4633 {
4634 LOCK(m_headers_presync_mutex);
4635 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4636 if (it != m_headers_presync_stats.end()) stats = it->second;
4637 }
4638 if (stats.second) {
4639 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4640 }
4641 }
4642
4643 return;
4644 }
4645
4646 if (msg_type == NetMsgType::BLOCK)
4647 {
4648 // Ignore block received while importing
4649 if (m_chainman.m_blockman.LoadingBlocks()) {
4650 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4651 return;
4652 }
4653
4654 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4655 vRecv >> TX_WITH_WITNESS(*pblock);
4656
4657 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4658
4659 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4660
4661 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4662 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4663 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4664 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4665 Misbehaving(*peer, "mutated block");
4666 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4667 return;
4668 }
4669
4670 bool forceProcessing = false;
4671 const uint256 hash(pblock->GetHash());
4672 bool min_pow_checked = false;
4673 {
4674 LOCK(cs_main);
4675 // Always process the block if we requested it, since we may
4676 // need it even when it's not a candidate for a new best tip.
4677 forceProcessing = IsBlockRequested(hash);
4678 RemoveBlockRequest(hash, pfrom.GetId());
4679 // mapBlockSource is only used for punishing peers and setting
4680 // which peers send us compact blocks, so the race between here and
4681 // cs_main in ProcessNewBlock is fine.
4682 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4683
4684 // Check claimed work on this block against our anti-dos thresholds.
4685 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4686 min_pow_checked = true;
4687 }
4688 }
4689 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4690 return;
4691 }
4692
4693 if (msg_type == NetMsgType::GETADDR) {
4694 // This asymmetric behavior for inbound and outbound connections was introduced
4695 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4696 // to users' AddrMan and later request them by sending getaddr messages.
4697 // Making nodes which are behind NAT and can only make outgoing connections ignore
4698 // the getaddr message mitigates the attack.
4699 if (!pfrom.IsInboundConn()) {
4700 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4701 return;
4702 }
4703
4704 // Since this must be an inbound connection, SetupAddressRelay will
4705 // never fail.
4706 Assume(SetupAddressRelay(pfrom, *peer));
4707
4708 // Only send one GetAddr response per connection to reduce resource waste
4709 // and discourage addr stamping of INV announcements.
4710 if (peer->m_getaddr_recvd) {
4711 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4712 return;
4713 }
4714 peer->m_getaddr_recvd = true;
4715
4716 peer->m_addrs_to_send.clear();
4717 std::vector<CAddress> vAddr;
4719 vAddr = m_connman.GetAddressesUnsafe(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4720 } else {
4721 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4722 }
4723 for (const CAddress &addr : vAddr) {
4724 PushAddress(*peer, addr);
4725 }
4726 return;
4727 }
4728
4729 if (msg_type == NetMsgType::MEMPOOL) {
4730 // Only process received mempool messages if we advertise NODE_BLOOM
4731 // or if the peer has mempool permissions.
4732 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4733 {
4735 {
4736 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4737 pfrom.fDisconnect = true;
4738 }
4739 return;
4740 }
4741
4742 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4743 {
4745 {
4746 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4747 pfrom.fDisconnect = true;
4748 }
4749 return;
4750 }
4751
4752 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4753 LOCK(tx_relay->m_tx_inventory_mutex);
4754 tx_relay->m_send_mempool = true;
4755 }
4756 return;
4757 }
4758
4759 if (msg_type == NetMsgType::PING) {
4760 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4761 uint64_t nonce = 0;
4762 vRecv >> nonce;
4763 // Echo the message back with the nonce. This allows for two useful features:
4764 //
4765 // 1) A remote node can quickly check if the connection is operational
4766 // 2) Remote nodes can measure the latency of the network thread. If this node
4767 // is overloaded it won't respond to pings quickly and the remote node can
4768 // avoid sending us more work, like chain download requests.
4769 //
4770 // The nonce stops the remote getting confused between different pings: without
4771 // it, if the remote node sends a ping once per second and this node takes 5
4772 // seconds to respond to each, the 5th ping the remote sends would appear to
4773 // return very quickly.
4774 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4775 }
4776 return;
4777 }
4778
4779 if (msg_type == NetMsgType::PONG) {
4780 const auto ping_end = time_received;
4781 uint64_t nonce = 0;
4782 size_t nAvail = vRecv.in_avail();
4783 bool bPingFinished = false;
4784 std::string sProblem;
4785
4786 if (nAvail >= sizeof(nonce)) {
4787 vRecv >> nonce;
4788
4789 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4790 if (peer->m_ping_nonce_sent != 0) {
4791 if (nonce == peer->m_ping_nonce_sent) {
4792 // Matching pong received, this ping is no longer outstanding
4793 bPingFinished = true;
4794 const auto ping_time = ping_end - peer->m_ping_start.load();
4795 if (ping_time.count() >= 0) {
4796 // Let connman know about this successful ping-pong
4797 pfrom.PongReceived(ping_time);
4798 } else {
4799 // This should never happen
4800 sProblem = "Timing mishap";
4801 }
4802 } else {
4803 // Nonce mismatches are normal when pings are overlapping
4804 sProblem = "Nonce mismatch";
4805 if (nonce == 0) {
4806 // This is most likely a bug in another implementation somewhere; cancel this ping
4807 bPingFinished = true;
4808 sProblem = "Nonce zero";
4809 }
4810 }
4811 } else {
4812 sProblem = "Unsolicited pong without ping";
4813 }
4814 } else {
4815 // This is most likely a bug in another implementation somewhere; cancel this ping
4816 bPingFinished = true;
4817 sProblem = "Short payload";
4818 }
4819
4820 if (!(sProblem.empty())) {
4821 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4822 pfrom.GetId(),
4823 sProblem,
4824 peer->m_ping_nonce_sent,
4825 nonce,
4826 nAvail);
4827 }
4828 if (bPingFinished) {
4829 peer->m_ping_nonce_sent = 0;
4830 }
4831 return;
4832 }
4833
4834 if (msg_type == NetMsgType::FILTERLOAD) {
4835 if (!(peer->m_our_services & NODE_BLOOM)) {
4836 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4837 pfrom.fDisconnect = true;
4838 return;
4839 }
4840 CBloomFilter filter;
4841 vRecv >> filter;
4842
4843 if (!filter.IsWithinSizeConstraints())
4844 {
4845 // There is no excuse for sending a too-large filter
4846 Misbehaving(*peer, "too-large bloom filter");
4847 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4848 {
4849 LOCK(tx_relay->m_bloom_filter_mutex);
4850 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4851 tx_relay->m_relay_txs = true;
4852 }
4853 pfrom.m_bloom_filter_loaded = true;
4854 pfrom.m_relays_txs = true;
4855 }
4856 return;
4857 }
4858
4859 if (msg_type == NetMsgType::FILTERADD) {
4860 if (!(peer->m_our_services & NODE_BLOOM)) {
4861 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4862 pfrom.fDisconnect = true;
4863 return;
4864 }
4865 std::vector<unsigned char> vData;
4866 vRecv >> vData;
4867
4868 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4869 // and thus, the maximum size any matched object can have) in a filteradd message
4870 bool bad = false;
4871 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4872 bad = true;
4873 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4874 LOCK(tx_relay->m_bloom_filter_mutex);
4875 if (tx_relay->m_bloom_filter) {
4876 tx_relay->m_bloom_filter->insert(vData);
4877 } else {
4878 bad = true;
4879 }
4880 }
4881 if (bad) {
4882 Misbehaving(*peer, "bad filteradd message");
4883 }
4884 return;
4885 }
4886
4887 if (msg_type == NetMsgType::FILTERCLEAR) {
4888 if (!(peer->m_our_services & NODE_BLOOM)) {
4889 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4890 pfrom.fDisconnect = true;
4891 return;
4892 }
4893 auto tx_relay = peer->GetTxRelay();
4894 if (!tx_relay) return;
4895
4896 {
4897 LOCK(tx_relay->m_bloom_filter_mutex);
4898 tx_relay->m_bloom_filter = nullptr;
4899 tx_relay->m_relay_txs = true;
4900 }
4901 pfrom.m_bloom_filter_loaded = false;
4902 pfrom.m_relays_txs = true;
4903 return;
4904 }
4905
4906 if (msg_type == NetMsgType::FEEFILTER) {
4907 CAmount newFeeFilter = 0;
4908 vRecv >> newFeeFilter;
4909 if (MoneyRange(newFeeFilter)) {
4910 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4911 tx_relay->m_fee_filter_received = newFeeFilter;
4912 }
4913 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4914 }
4915 return;
4916 }
4917
4918 if (msg_type == NetMsgType::GETCFILTERS) {
4919 ProcessGetCFilters(pfrom, *peer, vRecv);
4920 return;
4921 }
4922
4923 if (msg_type == NetMsgType::GETCFHEADERS) {
4924 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4925 return;
4926 }
4927
4928 if (msg_type == NetMsgType::GETCFCHECKPT) {
4929 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4930 return;
4931 }
4932
4933 if (msg_type == NetMsgType::NOTFOUND) {
4934 std::vector<CInv> vInv;
4935 vRecv >> vInv;
4936 std::vector<GenTxid> tx_invs;
4938 for (CInv &inv : vInv) {
4939 if (inv.IsGenTxMsg()) {
4940 tx_invs.emplace_back(ToGenTxid(inv));
4941 }
4942 }
4943 }
4944 LOCK(m_tx_download_mutex);
4945 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4946 return;
4947 }
4948
4949 // Ignore unknown message types for extensibility
4950 LogDebug(BCLog::NET, "Unknown message type \"%s\" from peer=%d", SanitizeString(msg_type), pfrom.GetId());
4951 return;
4952}
4953
4954bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4955{
4956 {
4957 LOCK(peer.m_misbehavior_mutex);
4958
4959 // There's nothing to do if the m_should_discourage flag isn't set
4960 if (!peer.m_should_discourage) return false;
4961
4962 peer.m_should_discourage = false;
4963 } // peer.m_misbehavior_mutex
4964
4966 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4967 LogWarning("Not punishing noban peer %d!", peer.m_id);
4968 return false;
4969 }
4970
4971 if (pnode.IsManualConn()) {
4972 // We never disconnect or discourage manual peers for bad behavior
4973 LogWarning("Not punishing manually connected peer %d!", peer.m_id);
4974 return false;
4975 }
4976
4977 if (pnode.addr.IsLocal()) {
4978 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4979 // all peers on the same local address)
4980 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4981 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4982 pnode.fDisconnect = true;
4983 return true;
4984 }
4985
4986 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4987 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4988 if (m_banman) m_banman->Discourage(pnode.addr);
4989 m_connman.DisconnectNode(pnode.addr);
4990 return true;
4991}
4992
4993bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4994{
4995 AssertLockNotHeld(m_tx_download_mutex);
4996 AssertLockHeld(g_msgproc_mutex);
4997
4998 PeerRef peer = GetPeerRef(pfrom->GetId());
4999 if (peer == nullptr) return false;
5000
5001 // For outbound connections, ensure that the initial VERSION message
5002 // has been sent first before processing any incoming messages
5003 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
5004
5005 {
5006 LOCK(peer->m_getdata_requests_mutex);
5007 if (!peer->m_getdata_requests.empty()) {
5008 ProcessGetData(*pfrom, *peer, interruptMsgProc);
5009 }
5010 }
5011
5012 const bool processed_orphan = ProcessOrphanTx(*peer);
5013
5014 if (pfrom->fDisconnect)
5015 return false;
5016
5017 if (processed_orphan) return true;
5018
5019 // this maintains the order of responses
5020 // and prevents m_getdata_requests to grow unbounded
5021 {
5022 LOCK(peer->m_getdata_requests_mutex);
5023 if (!peer->m_getdata_requests.empty()) return true;
5024 }
5025
5026 // Don't bother if send buffer is too full to respond anyway
5027 if (pfrom->fPauseSend) return false;
5028
5029 auto poll_result{pfrom->PollMessage()};
5030 if (!poll_result) {
5031 // No message to process
5032 return false;
5033 }
5034
5035 CNetMessage& msg{poll_result->first};
5036 bool fMoreWork = poll_result->second;
5037
5038 TRACEPOINT(net, inbound_message,
5039 pfrom->GetId(),
5040 pfrom->m_addr_name.c_str(),
5041 pfrom->ConnectionTypeAsString().c_str(),
5042 msg.m_type.c_str(),
5043 msg.m_recv.size(),
5044 msg.m_recv.data()
5045 );
5046
5047 if (m_opts.capture_messages) {
5048 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5049 }
5050
5051 try {
5052 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5053 if (interruptMsgProc) return false;
5054 {
5055 LOCK(peer->m_getdata_requests_mutex);
5056 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5057 }
5058 // Does this peer has an orphan ready to reconsider?
5059 // (Note: we may have provided a parent for an orphan provided
5060 // by another peer that was already processed; in that case,
5061 // the extra work may not be noticed, possibly resulting in an
5062 // unnecessary 100ms delay)
5063 LOCK(m_tx_download_mutex);
5064 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5065 } catch (const std::exception& e) {
5066 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5067 } catch (...) {
5068 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5069 }
5070
5071 return fMoreWork;
5072}
5073
5074void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5075{
5077
5078 CNodeState &state = *State(pto.GetId());
5079
5080 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5081 // This is an outbound peer subject to disconnection if they don't
5082 // announce a block with as much work as the current tip within
5083 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5084 // their chain has more work than ours, we should sync to it,
5085 // unless it's invalid, in which case we should find that out and
5086 // disconnect from them elsewhere).
5087 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5088 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5089 if (state.m_chain_sync.m_timeout != 0s) {
5090 state.m_chain_sync.m_timeout = 0s;
5091 state.m_chain_sync.m_work_header = nullptr;
5092 state.m_chain_sync.m_sent_getheaders = false;
5093 }
5094 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5095 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5096 // AND
5097 // we are noticing this for the first time (m_timeout is 0)
5098 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5099 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5100 // Either way, set a new timeout based on our current tip.
5101 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5102 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5103 state.m_chain_sync.m_sent_getheaders = false;
5104 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5105 // No evidence yet that our peer has synced to a chain with work equal to that
5106 // of our tip, when we first detected it was behind. Send a single getheaders
5107 // message to give the peer a chance to update us.
5108 if (state.m_chain_sync.m_sent_getheaders) {
5109 // They've run out of time to catch up!
5110 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5111 pto.fDisconnect = true;
5112 } else {
5113 assert(state.m_chain_sync.m_work_header);
5114 // Here, we assume that the getheaders message goes out,
5115 // because it'll either go out or be skipped because of a
5116 // getheaders in-flight already, in which case the peer should
5117 // still respond to us with a sufficiently high work chain tip.
5118 MaybeSendGetHeaders(pto,
5119 GetLocator(state.m_chain_sync.m_work_header->pprev),
5120 peer);
5121 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5122 state.m_chain_sync.m_sent_getheaders = true;
5123 // Bump the timeout to allow a response, which could clear the timeout
5124 // (if the response shows the peer has synced), reset the timeout (if
5125 // the peer syncs to the required work but not to our tip), or result
5126 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5127 // has not sufficiently progressed)
5128 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5129 }
5130 }
5131 }
5132}
5133
5134void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5135{
5136 // If we have any extra block-relay-only peers, disconnect the youngest unless
5137 // it's given us a block -- in which case, compare with the second-youngest, and
5138 // out of those two, disconnect the peer who least recently gave us a block.
5139 // The youngest block-relay-only peer would be the extra peer we connected
5140 // to temporarily in order to sync our tip; see net.cpp.
5141 // Note that we use higher nodeid as a measure for most recent connection.
5142 if (m_connman.GetExtraBlockRelayCount() > 0) {
5143 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5144
5145 m_connman.ForEachNode([&](CNode* pnode) {
5146 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5147 if (pnode->GetId() > youngest_peer.first) {
5148 next_youngest_peer = youngest_peer;
5149 youngest_peer.first = pnode->GetId();
5150 youngest_peer.second = pnode->m_last_block_time;
5151 }
5152 });
5153 NodeId to_disconnect = youngest_peer.first;
5154 if (youngest_peer.second > next_youngest_peer.second) {
5155 // Our newest block-relay-only peer gave us a block more recently;
5156 // disconnect our second youngest.
5157 to_disconnect = next_youngest_peer.first;
5158 }
5159 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5161 // Make sure we're not getting a block right now, and that
5162 // we've been connected long enough for this eviction to happen
5163 // at all.
5164 // Note that we only request blocks from a peer if we learn of a
5165 // valid headers chain with at least as much work as our tip.
5166 CNodeState *node_state = State(pnode->GetId());
5167 if (node_state == nullptr ||
5168 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5169 pnode->fDisconnect = true;
5170 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5171 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5172 return true;
5173 } else {
5174 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5175 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5176 }
5177 return false;
5178 });
5179 }
5180
5181 // Check whether we have too many outbound-full-relay peers
5182 if (m_connman.GetExtraFullOutboundCount() > 0) {
5183 // If we have more outbound-full-relay peers than we target, disconnect one.
5184 // Pick the outbound-full-relay peer that least recently announced
5185 // us a new block, with ties broken by choosing the more recent
5186 // connection (higher node id)
5187 // Protect peers from eviction if we don't have another connection
5188 // to their network, counting both outbound-full-relay and manual peers.
5189 NodeId worst_peer = -1;
5190 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5191
5192 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5193 AssertLockHeld(::cs_main);
5194
5195 // Only consider outbound-full-relay peers that are not already
5196 // marked for disconnection
5197 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5198 CNodeState *state = State(pnode->GetId());
5199 if (state == nullptr) return; // shouldn't be possible, but just in case
5200 // Don't evict our protected peers
5201 if (state->m_chain_sync.m_protect) return;
5202 // If this is the only connection on a particular network that is
5203 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5204 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5205 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5206 worst_peer = pnode->GetId();
5207 oldest_block_announcement = state->m_last_block_announcement;
5208 }
5209 });
5210 if (worst_peer != -1) {
5211 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5213
5214 // Only disconnect a peer that has been connected to us for
5215 // some reasonable fraction of our check-frequency, to give
5216 // it time for new information to have arrived.
5217 // Also don't disconnect any peer we're trying to download a
5218 // block from.
5219 CNodeState &state = *State(pnode->GetId());
5220 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5221 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5222 pnode->fDisconnect = true;
5223 return true;
5224 } else {
5225 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5226 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5227 return false;
5228 }
5229 });
5230 if (disconnected) {
5231 // If we disconnected an extra peer, that means we successfully
5232 // connected to at least one peer after the last time we
5233 // detected a stale tip. Don't try any more extra peers until
5234 // we next detect a stale tip, to limit the load we put on the
5235 // network from these extra connections.
5236 m_connman.SetTryNewOutboundPeer(false);
5237 }
5238 }
5239 }
5240}
5241
5242void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5243{
5244 LOCK(cs_main);
5245
5246 auto now{GetTime<std::chrono::seconds>()};
5247
5248 EvictExtraOutboundPeers(now);
5249
5250 if (now > m_stale_tip_check_time) {
5251 // Check whether our tip is stale, and if so, allow using an extra
5252 // outbound peer
5253 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5254 LogInfo("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5255 count_seconds(now - m_last_tip_update.load()));
5256 m_connman.SetTryNewOutboundPeer(true);
5257 } else if (m_connman.GetTryNewOutboundPeer()) {
5258 m_connman.SetTryNewOutboundPeer(false);
5259 }
5260 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5261 }
5262
5263 if (!m_initial_sync_finished && CanDirectFetch()) {
5264 m_connman.StartExtraBlockRelayPeers();
5265 m_initial_sync_finished = true;
5266 }
5267}
5268
5269void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5270{
5271 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5272 peer.m_ping_nonce_sent &&
5273 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5274 {
5275 // The ping timeout is using mocktime. To disable the check during
5276 // testing, increase -peertimeout.
5277 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5278 node_to.fDisconnect = true;
5279 return;
5280 }
5281
5282 bool pingSend = false;
5283
5284 if (peer.m_ping_queued) {
5285 // RPC ping request by user
5286 pingSend = true;
5287 }
5288
5289 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5290 // Ping automatically sent as a latency probe & keepalive.
5291 pingSend = true;
5292 }
5293
5294 if (pingSend) {
5295 uint64_t nonce;
5296 do {
5298 } while (nonce == 0);
5299 peer.m_ping_queued = false;
5300 peer.m_ping_start = now;
5301 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5302 peer.m_ping_nonce_sent = nonce;
5303 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5304 } else {
5305 // Peer is too old to support ping message type with nonce, pong will never arrive.
5306 peer.m_ping_nonce_sent = 0;
5307 MakeAndPushMessage(node_to, NetMsgType::PING);
5308 }
5309 }
5310}
5311
5312void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5313{
5314 // Nothing to do for non-address-relay peers
5315 if (!peer.m_addr_relay_enabled) return;
5316
5317 LOCK(peer.m_addr_send_times_mutex);
5318 // Periodically advertise our local address to the peer.
5319 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5320 peer.m_next_local_addr_send < current_time) {
5321 // If we've sent before, clear the bloom filter for the peer, so that our
5322 // self-announcement will actually go out.
5323 // This might be unnecessary if the bloom filter has already rolled
5324 // over since our last self-announcement, but there is only a small
5325 // bandwidth cost that we can incur by doing this (which happens
5326 // once a day on average).
5327 if (peer.m_next_local_addr_send != 0us) {
5328 peer.m_addr_known->reset();
5329 }
5330 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5331 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5332 PushAddress(peer, local_addr);
5333 }
5334 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5335 }
5336
5337 // We sent an `addr` message to this peer recently. Nothing more to do.
5338 if (current_time <= peer.m_next_addr_send) return;
5339
5340 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5341
5342 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5343 // Should be impossible since we always check size before adding to
5344 // m_addrs_to_send. Recover by trimming the vector.
5345 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5346 }
5347
5348 // Remove addr records that the peer already knows about, and add new
5349 // addrs to the m_addr_known filter on the same pass.
5350 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5351 bool ret = peer.m_addr_known->contains(addr.GetKey());
5352 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5353 return ret;
5354 };
5355 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5356 peer.m_addrs_to_send.end());
5357
5358 // No addr messages to send
5359 if (peer.m_addrs_to_send.empty()) return;
5360
5361 if (peer.m_wants_addrv2) {
5362 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5363 } else {
5364 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5365 }
5366 peer.m_addrs_to_send.clear();
5367
5368 // we only send the big addr message once
5369 if (peer.m_addrs_to_send.capacity() > 40) {
5370 peer.m_addrs_to_send.shrink_to_fit();
5371 }
5372}
5373
5374void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5375{
5376 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5377 // initial-headers-sync with this peer. Receiving headers announcements for
5378 // new blocks while trying to sync their headers chain is problematic,
5379 // because of the state tracking done.
5380 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5381 LOCK(cs_main);
5382 CNodeState &state = *State(node.GetId());
5383 if (state.pindexBestKnownBlock != nullptr &&
5384 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5385 // Tell our peer we prefer to receive headers rather than inv's
5386 // We send this to non-NODE NETWORK peers as well, because even
5387 // non-NODE NETWORK peers can announce blocks (such as pruning
5388 // nodes)
5389 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5390 peer.m_sent_sendheaders = true;
5391 }
5392 }
5393}
5394
5395void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5396{
5397 if (m_opts.ignore_incoming_txs) return;
5398 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5399 // peers with the forcerelay permission should not filter txs to us
5401 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5402 // transactions to us, regardless of feefilter state.
5403 if (pto.IsBlockOnlyConn()) return;
5404
5405 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5406
5407 if (m_chainman.IsInitialBlockDownload()) {
5408 // Received tx-inv messages are discarded when the active
5409 // chainstate is in IBD, so tell the peer to not send them.
5410 currentFilter = MAX_MONEY;
5411 } else {
5412 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5413 if (peer.m_fee_filter_sent == MAX_FILTER) {
5414 // Send the current filter if we sent MAX_FILTER previously
5415 // and made it out of IBD.
5416 peer.m_next_send_feefilter = 0us;
5417 }
5418 }
5419 if (current_time > peer.m_next_send_feefilter) {
5420 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5421 // We always have a fee filter of at least the min relay fee
5422 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5423 if (filterToSend != peer.m_fee_filter_sent) {
5424 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5425 peer.m_fee_filter_sent = filterToSend;
5426 }
5427 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5428 }
5429 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5430 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5431 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5432 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5433 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5434 }
5435}
5436
5437namespace {
5438class CompareInvMempoolOrder
5439{
5440 const CTxMemPool* m_mempool;
5441public:
5442 explicit CompareInvMempoolOrder(CTxMemPool* mempool) : m_mempool{mempool} {}
5443
5444 bool operator()(std::set<Wtxid>::iterator a, std::set<Wtxid>::iterator b)
5445 {
5446 /* As std::make_heap produces a max-heap, we want the entries with the
5447 * higher mining score to sort later. */
5448 return m_mempool->CompareMiningScoreWithTopology(*b, *a);
5449 }
5450};
5451} // namespace
5452
5453bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5454{
5455 // block-relay-only peers may never send txs to us
5456 if (peer.IsBlockOnlyConn()) return true;
5457 if (peer.IsFeelerConn()) return true;
5458 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5459 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5460 return false;
5461}
5462
5463bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5464{
5465 // We don't participate in addr relay with outbound block-relay-only
5466 // connections to prevent providing adversaries with the additional
5467 // information of addr traffic to infer the link.
5468 if (node.IsBlockOnlyConn()) return false;
5469
5470 if (!peer.m_addr_relay_enabled.exchange(true)) {
5471 // During version message processing (non-block-relay-only outbound peers)
5472 // or on first addr-related message we have received (inbound peers), initialize
5473 // m_addr_known.
5474 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5475 }
5476
5477 return true;
5478}
5479
5480bool PeerManagerImpl::SendMessages(CNode* pto)
5481{
5482 AssertLockNotHeld(m_tx_download_mutex);
5483 AssertLockHeld(g_msgproc_mutex);
5484
5485 PeerRef peer = GetPeerRef(pto->GetId());
5486 if (!peer) return false;
5487 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5488
5489 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5490 // disconnect misbehaving peers even before the version handshake is complete.
5491 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5492
5493 // Initiate version handshake for outbound connections
5494 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5495 PushNodeVersion(*pto, *peer);
5496 peer->m_outbound_version_message_sent = true;
5497 }
5498
5499 // Don't send anything until the version handshake is complete
5500 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5501 return true;
5502
5503 const auto current_time{GetTime<std::chrono::microseconds>()};
5504
5505 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5506 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5507 pto->fDisconnect = true;
5508 return true;
5509 }
5510
5511 MaybeSendPing(*pto, *peer, current_time);
5512
5513 // MaybeSendPing may have marked peer for disconnection
5514 if (pto->fDisconnect) return true;
5515
5516 MaybeSendAddr(*pto, *peer, current_time);
5517
5518 MaybeSendSendHeaders(*pto, *peer);
5519
5520 {
5521 LOCK(cs_main);
5522
5523 CNodeState &state = *State(pto->GetId());
5524
5525 // Start block sync
5526 if (m_chainman.m_best_header == nullptr) {
5527 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5528 }
5529
5530 // Determine whether we might try initial headers sync or parallel
5531 // block download from this peer -- this mostly affects behavior while
5532 // in IBD (once out of IBD, we sync from all peers).
5533 bool sync_blocks_and_headers_from_peer = false;
5534 if (state.fPreferredDownload) {
5535 sync_blocks_and_headers_from_peer = true;
5536 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5537 // Typically this is an inbound peer. If we don't have any outbound
5538 // peers, or if we aren't downloading any blocks from such peers,
5539 // then allow block downloads from this peer, too.
5540 // We prefer downloading blocks from outbound peers to avoid
5541 // putting undue load on (say) some home user who is just making
5542 // outbound connections to the network, but if our only source of
5543 // the latest blocks is from an inbound peer, we have to be sure to
5544 // eventually download it (and not just wait indefinitely for an
5545 // outbound peer to have it).
5546 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5547 sync_blocks_and_headers_from_peer = true;
5548 }
5549 }
5550
5551 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5552 // Only actively request headers from a single peer, unless we're close to today.
5553 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5554 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5555 /* If possible, start at the block preceding the currently
5556 best known header. This ensures that we always get a
5557 non-empty list of headers back as long as the peer
5558 is up-to-date. With a non-empty response, we can initialise
5559 the peer's known best block. This wouldn't be possible
5560 if we requested starting at m_chainman.m_best_header and
5561 got back an empty response. */
5562 if (pindexStart->pprev)
5563 pindexStart = pindexStart->pprev;
5564 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5565 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5566
5567 state.fSyncStarted = true;
5568 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5569 (
5570 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5571 // to maintain precision
5572 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5573 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5574 );
5575 nSyncStarted++;
5576 }
5577 }
5578 }
5579
5580 //
5581 // Try sending block announcements via headers
5582 //
5583 {
5584 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5585 // list of block hashes we're relaying, and our peer wants
5586 // headers announcements, then find the first header
5587 // not yet known to our peer but would connect, and send.
5588 // If no header would connect, or if we have too many
5589 // blocks, or if the peer doesn't want headers, just
5590 // add all to the inv queue.
5591 LOCK(peer->m_block_inv_mutex);
5592 std::vector<CBlock> vHeaders;
5593 bool fRevertToInv = ((!peer->m_prefers_headers &&
5594 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5595 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5596 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5597 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5598
5599 if (!fRevertToInv) {
5600 bool fFoundStartingHeader = false;
5601 // Try to find first header that our peer doesn't have, and
5602 // then send all headers past that one. If we come across any
5603 // headers that aren't on m_chainman.ActiveChain(), give up.
5604 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5605 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5606 assert(pindex);
5607 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5608 // Bail out if we reorged away from this block
5609 fRevertToInv = true;
5610 break;
5611 }
5612 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5613 // This means that the list of blocks to announce don't
5614 // connect to each other.
5615 // This shouldn't really be possible to hit during
5616 // regular operation (because reorgs should take us to
5617 // a chain that has some block not on the prior chain,
5618 // which should be caught by the prior check), but one
5619 // way this could happen is by using invalidateblock /
5620 // reconsiderblock repeatedly on the tip, causing it to
5621 // be added multiple times to m_blocks_for_headers_relay.
5622 // Robustly deal with this rare situation by reverting
5623 // to an inv.
5624 fRevertToInv = true;
5625 break;
5626 }
5627 pBestIndex = pindex;
5628 if (fFoundStartingHeader) {
5629 // add this to the headers message
5630 vHeaders.emplace_back(pindex->GetBlockHeader());
5631 } else if (PeerHasHeader(&state, pindex)) {
5632 continue; // keep looking for the first new block
5633 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5634 // Peer doesn't have this header but they do have the prior one.
5635 // Start sending headers.
5636 fFoundStartingHeader = true;
5637 vHeaders.emplace_back(pindex->GetBlockHeader());
5638 } else {
5639 // Peer doesn't have this header or the prior one -- nothing will
5640 // connect, so bail out.
5641 fRevertToInv = true;
5642 break;
5643 }
5644 }
5645 }
5646 if (!fRevertToInv && !vHeaders.empty()) {
5647 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5648 // We only send up to 1 block as header-and-ids, as otherwise
5649 // probably means we're doing an initial-ish-sync or they're slow
5650 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5651 vHeaders.front().GetHash().ToString(), pto->GetId());
5652
5653 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5654 {
5655 LOCK(m_most_recent_block_mutex);
5656 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5657 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5658 }
5659 }
5660 if (cached_cmpctblock_msg.has_value()) {
5661 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5662 } else {
5663 CBlock block;
5664 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5665 assert(ret);
5666 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5667 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5668 }
5669 state.pindexBestHeaderSent = pBestIndex;
5670 } else if (peer->m_prefers_headers) {
5671 if (vHeaders.size() > 1) {
5672 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5673 vHeaders.size(),
5674 vHeaders.front().GetHash().ToString(),
5675 vHeaders.back().GetHash().ToString(), pto->GetId());
5676 } else {
5677 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5678 vHeaders.front().GetHash().ToString(), pto->GetId());
5679 }
5680 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5681 state.pindexBestHeaderSent = pBestIndex;
5682 } else
5683 fRevertToInv = true;
5684 }
5685 if (fRevertToInv) {
5686 // If falling back to using an inv, just try to inv the tip.
5687 // The last entry in m_blocks_for_headers_relay was our tip at some point
5688 // in the past.
5689 if (!peer->m_blocks_for_headers_relay.empty()) {
5690 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5691 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5692 assert(pindex);
5693
5694 // Warn if we're announcing a block that is not on the main chain.
5695 // This should be very rare and could be optimized out.
5696 // Just log for now.
5697 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5698 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5699 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5700 }
5701
5702 // If the peer's chain has this block, don't inv it back.
5703 if (!PeerHasHeader(&state, pindex)) {
5704 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5705 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5706 pto->GetId(), hashToAnnounce.ToString());
5707 }
5708 }
5709 }
5710 peer->m_blocks_for_headers_relay.clear();
5711 }
5712
5713 //
5714 // Message: inventory
5715 //
5716 std::vector<CInv> vInv;
5717 {
5718 LOCK(peer->m_block_inv_mutex);
5719 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5720
5721 // Add blocks
5722 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5723 vInv.emplace_back(MSG_BLOCK, hash);
5724 if (vInv.size() == MAX_INV_SZ) {
5725 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5726 vInv.clear();
5727 }
5728 }
5729 peer->m_blocks_for_inv_relay.clear();
5730 }
5731
5732 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5733 LOCK(tx_relay->m_tx_inventory_mutex);
5734 // Check whether periodic sends should happen
5735 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5736 if (tx_relay->m_next_inv_send_time < current_time) {
5737 fSendTrickle = true;
5738 if (pto->IsInboundConn()) {
5739 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL, pto->m_network_key);
5740 } else {
5741 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5742 }
5743 }
5744
5745 // Time to send but the peer has requested we not relay transactions.
5746 if (fSendTrickle) {
5747 LOCK(tx_relay->m_bloom_filter_mutex);
5748 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5749 }
5750
5751 // Respond to BIP35 mempool requests
5752 if (fSendTrickle && tx_relay->m_send_mempool) {
5753 auto vtxinfo = m_mempool.infoAll();
5754 tx_relay->m_send_mempool = false;
5755 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5756
5757 LOCK(tx_relay->m_bloom_filter_mutex);
5758
5759 for (const auto& txinfo : vtxinfo) {
5760 const Txid& txid{txinfo.tx->GetHash()};
5761 const Wtxid& wtxid{txinfo.tx->GetWitnessHash()};
5762 const auto inv = peer->m_wtxid_relay ?
5763 CInv{MSG_WTX, wtxid.ToUint256()} :
5764 CInv{MSG_TX, txid.ToUint256()};
5765 tx_relay->m_tx_inventory_to_send.erase(wtxid);
5766
5767 // Don't send transactions that peers will not put into their mempool
5768 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5769 continue;
5770 }
5771 if (tx_relay->m_bloom_filter) {
5772 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5773 }
5774 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5775 vInv.push_back(inv);
5776 if (vInv.size() == MAX_INV_SZ) {
5777 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5778 vInv.clear();
5779 }
5780 }
5781 }
5782
5783 // Determine transactions to relay
5784 if (fSendTrickle) {
5785 // Produce a vector with all candidates for sending
5786 std::vector<std::set<Wtxid>::iterator> vInvTx;
5787 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5788 for (std::set<Wtxid>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5789 vInvTx.push_back(it);
5790 }
5791 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5792 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5793 // A heap is used so that not all items need sorting if only a few are being sent.
5794 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
5795 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5796 // No reason to drain out at many times the network's capacity,
5797 // especially since we have many peers and some will draw much shorter delays.
5798 unsigned int nRelayedTransactions = 0;
5799 LOCK(tx_relay->m_bloom_filter_mutex);
5800 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5801 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5802 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5803 // Fetch the top element from the heap
5804 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5805 std::set<Wtxid>::iterator it = vInvTx.back();
5806 vInvTx.pop_back();
5807 auto wtxid = *it;
5808 // Remove it from the to-be-sent set
5809 tx_relay->m_tx_inventory_to_send.erase(it);
5810 // Not in the mempool anymore? don't bother sending it.
5811 auto txinfo = m_mempool.info(wtxid);
5812 if (!txinfo.tx) {
5813 continue;
5814 }
5815 // `TxRelay::m_tx_inventory_known_filter` contains either txids or wtxids
5816 // depending on whether our peer supports wtxid-relay. Therefore, first
5817 // construct the inv and then use its hash for the filter check.
5818 const auto inv = peer->m_wtxid_relay ?
5819 CInv{MSG_WTX, wtxid.ToUint256()} :
5820 CInv{MSG_TX, txinfo.tx->GetHash().ToUint256()};
5821 // Check if not in the filter already
5822 if (tx_relay->m_tx_inventory_known_filter.contains(inv.hash)) {
5823 continue;
5824 }
5825 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5826 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5827 continue;
5828 }
5829 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5830 // Send
5831 vInv.push_back(inv);
5832 nRelayedTransactions++;
5833 if (vInv.size() == MAX_INV_SZ) {
5834 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5835 vInv.clear();
5836 }
5837 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5838 }
5839
5840 // Ensure we'll respond to GETDATA requests for anything we've just announced
5841 LOCK(m_mempool.cs);
5842 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5843 }
5844 }
5845 if (!vInv.empty())
5846 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5847
5848 // Detect whether we're stalling
5849 auto stalling_timeout = m_block_stalling_timeout.load();
5850 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5851 // Stalling only triggers when the block download window cannot move. During normal steady state,
5852 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5853 // should only happen during initial block download.
5854 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
5855 pto->fDisconnect = true;
5856 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5857 // bandwidth is insufficient.
5858 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5859 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5860 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5861 }
5862 return true;
5863 }
5864 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5865 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5866 // We compensate for other peers to prevent killing off peers due to our own downstream link
5867 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5868 // to unreasonably increase our timeout.
5869 if (state.vBlocksInFlight.size() > 0) {
5870 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5871 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5872 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5873 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
5874 pto->fDisconnect = true;
5875 return true;
5876 }
5877 }
5878 // Check for headers sync timeouts
5879 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5880 // Detect whether this is a stalling initial-headers-sync peer
5881 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5882 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5883 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5884 // and we have others we could be using instead.
5885 // Note: If all our peers are inbound, then we won't
5886 // disconnect our sync peer for stalling; we have bigger
5887 // problems if we can't get any outbound peers.
5889 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
5890 pto->fDisconnect = true;
5891 return true;
5892 } else {
5893 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
5894 // Reset the headers sync state so that we have a
5895 // chance to try downloading from a different peer.
5896 // Note: this will also result in at least one more
5897 // getheaders message to be sent to
5898 // this peer (eventually).
5899 state.fSyncStarted = false;
5900 nSyncStarted--;
5901 peer->m_headers_sync_timeout = 0us;
5902 }
5903 }
5904 } else {
5905 // After we've caught up once, reset the timeout so we can't trigger
5906 // disconnect later.
5907 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5908 }
5909 }
5910
5911 // Check that outbound peers have reasonable chains
5912 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5913 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5914
5915 //
5916 // Message: getdata (blocks)
5917 //
5918 std::vector<CInv> vGetData;
5919 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5920 std::vector<const CBlockIndex*> vToDownload;
5921 NodeId staller = -1;
5922 auto get_inflight_budget = [&state]() {
5923 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5924 };
5925
5926 // If there are multiple chainstates, download blocks for the
5927 // current chainstate first, to prioritize getting to network tip
5928 // before downloading historical blocks.
5929 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5930 auto historical_blocks{m_chainman.GetHistoricalBlockRange()};
5931 if (historical_blocks && !IsLimitedPeer(*peer)) {
5932 // If the first needed historical block is not an ancestor of the last,
5933 // we need to start requesting blocks from their last common ancestor.
5934 const CBlockIndex* from_tip = LastCommonAncestor(historical_blocks->first, historical_blocks->second);
5935 TryDownloadingHistoricalBlocks(
5936 *peer,
5937 get_inflight_budget(),
5938 vToDownload, from_tip, historical_blocks->second);
5939 }
5940 for (const CBlockIndex *pindex : vToDownload) {
5941 uint32_t nFetchFlags = GetFetchFlags(*peer);
5942 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5943 BlockRequested(pto->GetId(), *pindex);
5944 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5945 pindex->nHeight, pto->GetId());
5946 }
5947 if (state.vBlocksInFlight.empty() && staller != -1) {
5948 if (State(staller)->m_stalling_since == 0us) {
5949 State(staller)->m_stalling_since = current_time;
5950 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5951 }
5952 }
5953 }
5954
5955 //
5956 // Message: getdata (transactions)
5957 //
5958 {
5959 LOCK(m_tx_download_mutex);
5960 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5961 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.ToUint256());
5962 if (vGetData.size() >= MAX_GETDATA_SZ) {
5963 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5964 vGetData.clear();
5965 }
5966 }
5967 }
5968
5969 if (!vGetData.empty())
5970 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5971 } // release cs_main
5972 MaybeSendFeefilter(*pto, *peer, current_time);
5973 return true;
5974}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:94
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:121
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:45
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:136
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:155
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:65
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:61
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:69
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:51
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:75
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:113
#define Assume(val)
Assume is the identity function.
Definition: check.h:125
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
bool IsNull() const
Definition: block.h:49
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:95
bool IsValid(enum BlockStatus nUpTo) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:251
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:101
CBlockHeader GetBlockHeader() const
Definition: chain.h:186
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:119
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:215
uint256 GetBlockHash() const
Definition: chain.h:199
int64_t GetBlockTime() const
Definition: chain.h:222
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:124
NodeSeconds Time() const
Definition: chain.h:217
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:110
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:107
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:164
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:373
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:389
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:409
int Height() const
Return the maximal height in the chain.
Definition: chain.h:418
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:403
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:78
const HeadersSyncParams & HeadersSync() const
Definition: chainparams.h:118
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:90
Definition: net.h:1060
void ForEachNode(const NodeFn &func)
Definition: net.h:1191
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3946
bool GetNetworkActive() const
Definition: net.h:1155
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::microseconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:2003
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2426
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3535
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3546
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2431
int GetExtraBlockRelayCount() const
Definition: net.cpp:2476
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2246
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3763
void StartExtraBlockRelayPeers()
Definition: net.cpp:2437
bool DisconnectNode(std::string_view node)
Definition: net.cpp:3661
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3959
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3644
int GetExtraFullOutboundCount() const
Definition: net.cpp:2462
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:353
bool GetUseAddrmanOutgoing() const
Definition: net.h:1156
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per virtualbyte: CAmount / vB the feerate is represented internally as FeeFrac.
Definition: feerate.h:35
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:65
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:127
std::vector< std::pair< unsigned int, Txid > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:139
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:218
bool IsRoutable() const
Definition: netaddress.cpp:462
static constexpr SerParams V1
Definition: netaddress.h:231
bool IsValid() const
Definition: netaddress.cpp:424
bool IsLocal() const
Definition: netaddress.cpp:398
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:477
Transport protocol agnostic message container.
Definition: net.h:234
Information about a peer.
Definition: net.h:676
bool IsFeelerConn() const
Definition: net.h:810
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:709
bool ExpectServicesFromConn() const
Definition: net.h:822
std::atomic< int > nVersion
Definition: net.h:719
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:858
bool IsInboundConn() const
Definition: net.h:818
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:727
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:767
NodeId GetId() const
Definition: net.h:902
bool IsManualConn() const
Definition: net.h:786
const std::string m_addr_name
Definition: net.h:714
std::string ConnectionTypeAsString() const
Definition: net.h:956
void SetCommonVersion(int greatest_common_version)
Definition: net.h:927
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:853
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:862
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:855
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:975
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:731
bool IsAddrFetchConn() const
Definition: net.h:814
uint64_t GetLocalNonce() const
Definition: net.h:906
const CAddress addr
Definition: net.h:711
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:595
bool IsBlockOnlyConn() const
Definition: net.h:806
int GetCommonVersion() const
Definition: net.h:932
bool IsFullOutboundConn() const
Definition: net.h:782
Mutex m_subver_mutex
Definition: net.h:720
const uint64_t m_network_key
Network key used to prevent fingerprinting our node across networks.
Definition: net.h:744
std::atomic_bool fPauseSend
Definition: net.h:740
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3880
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:866
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:705
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:680
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:718
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:873
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:710
std::atomic_bool fDisconnect
Definition: net.h:734
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:879
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:530
std::string ToStringAddrPort() const
Definition: netaddress.cpp:903
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:895
General SipHash-2-4 implementation.
Definition: siphash.h:27
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:73
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data.
Definition: siphash.cpp:24
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:189
bool CompareMiningScoreWithTopology(const Wtxid &hasha, const Wtxid &hashb) const
Definition: txmempool.cpp:539
TxMempoolInfo info_for_relay(const T &id, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.h:532
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:263
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:812
CTransactionRef get(const Txid &hash) const
Definition: txmempool.cpp:604
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:761
const Options m_opts
Definition: txmempool.h:306
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:583
TxMempoolInfo info(const T &id) const
Definition: txmempool.h:523
void RemoveUnbroadcastTx(const Txid &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:767
bool exists(const Txid &txid) const
Definition: txmempool.h:506
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:577
std::set< Txid > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:559
unsigned long size() const
Definition: txmempool.h:488
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void BlockChecked(const std::shared_ptr< const CBlock > &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
virtual void BlockConnected(const kernel::ChainstateRole &role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
void ClearBlockIndexCandidates() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex * FindForkInGlobalIndex(const CBlockLocator &locator) const EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Find the last common block of this chain and a locator.
Definition: validation.cpp:122
Interface for managing multiple Chainstate objects, where each chainstate is associated with chainsta...
Definition: validation.h:930
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1022
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1157
Chainstate & ActiveChainstate() const
Alternatives to CurrentChainstate() used by older code to query latest chainstate information without...
SnapshotCompletionResult MaybeValidateSnapshot(Chainstate &validated_cs, Chainstate &unvalidated_cs) EXCLUSIVE_LOCKS_REQUIRED(Chainstate & CurrentChainstate() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Try to validate an assumeutxo snapshot by using a validated historical chainstate targeted at the sna...
Definition: validation.h:1109
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:1000
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1155
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1028
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
bool empty() const
Definition: streams.h:165
size_type size() const
Definition: streams.h:164
void ignore(size_t num_ignore)
Definition: streams.h:219
int in_avail() const
Definition: streams.h:199
Fast randomness source.
Definition: random.h:386
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:404
bool IsWtxid() const
const uint256 & ToUint256() const LIFETIMEBOUND
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1019
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing, bool segwit_active)
bool IsTxAvailable(size_t index) const
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< std::pair< Wtxid, CTransactionRef > > &extra_txn)
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual util::Expected< void, std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
virtual std::vector< node::TxOrphanage::OrphanInfo > GetOrphanTransactions()=0
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:131
bool IsValid() const
Definition: validation.h:105
std::string GetDebugMessage() const
Definition: validation.h:110
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool LoadingBlocks() const
Definition: blockstorage.h:409
ReadRawBlockResult ReadRawBlock(const FlatFilePos &pos, std::optional< std::pair< size_t, size_t > > block_part=std::nullopt) const
bool ReadBlock(CBlock &block, const FlatFilePos &pos, const std::optional< uint256 > &expected_hash) const
Functions for disk access for blocks.
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:403
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
const uint256 & ToUint256() const LIFETIMEBOUND
256-bit opaque blob.
Definition: uint256.h:195
The util::Expected class provides a standard way for low-level functions to return either error value...
Definition: expected.h:34
The util::Unexpected class represents an unexpected value stored in util::Expected.
Definition: expected.h:21
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
HeadersSyncState::State State
is a home for simple enum and struct type definitions that can be used internally by functions in the...
bool fLogIPs
Definition: logging.cpp:47
#define LogWarning(...)
Definition: logging.h:392
#define LogInfo(...)
Definition: logging.h:391
#define LogError(...)
Definition: logging.h:393
#define LogDebug(category,...)
Definition: logging.h:411
unsigned int nonce
Definition: miner_tests.cpp:81
@ TXPACKAGES
Definition: logging.h:117
@ VALIDATION
Definition: logging.h:108
@ MEMPOOLREJ
Definition: logging.h:103
@ CMPCTBLOCK
Definition: logging.h:99
@ MEMPOOL
Definition: logging.h:89
@ NET
Definition: logging.h:87
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:30
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Definition: messages.h:21
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:384
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:245
bool fListen
Definition: net.cpp:117
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:120
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:240
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4052
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:67
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:59
int64_t NodeId
Definition: net.h:99
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:739
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:67
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:181
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:180
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:403
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" message type for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" message type and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:493
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:330
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_last_inv_seq
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:84
int64_t nPowTargetSpacing
Definition: params.h:120
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:122
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:130
const ResultType m_result_type
Result type.
Definition: validation.h:139
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:142
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:145
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:236
PackageValidationState m_state
Definition: validation.h:237
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:244
std::chrono::seconds median_outbound_time_offset
Information about chainstate that notifications are sent from.
Definition: types.h:18
bool historical
Whether this is a historical chainstate downloading old blocks to validate an assumeutxo snapshot,...
Definition: types.h:26
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:57
std::string ToString() const
Definition: txdownloadman.h:79
#define AssertLockNotHeld(cs)
Definition: sync.h:142
#define LOCK2(cs1, cs2)
Definition: sync.h:260
#define LOCK(cs)
Definition: sync.h:259
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:290
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:104
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define GUARDED_BY(x)
Definition: threadsafety.h:39
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:50
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:42
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:40
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:56
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:77
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:84
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:75