Bitcoin Core 30.99.0
P2P Digital Currency
net_processing.cpp
Go to the documentation of this file.
1// Copyright (c) 2009-2010 Satoshi Nakamoto
2// Copyright (c) 2009-present The Bitcoin Core developers
3// Distributed under the MIT software license, see the accompanying
4// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6#include <net_processing.h>
7
8#include <addrman.h>
9#include <arith_uint256.h>
10#include <banman.h>
11#include <blockencodings.h>
12#include <blockfilter.h>
13#include <chain.h>
14#include <chainparams.h>
15#include <common/bloom.h>
16#include <consensus/amount.h>
17#include <consensus/params.h>
19#include <core_memusage.h>
20#include <crypto/siphash.h>
21#include <deploymentstatus.h>
22#include <flatfile.h>
23#include <headerssync.h>
25#include <kernel/chain.h>
26#include <logging.h>
27#include <merkleblock.h>
28#include <net.h>
29#include <net_permissions.h>
30#include <netaddress.h>
31#include <netbase.h>
32#include <netmessagemaker.h>
33#include <node/blockstorage.h>
36#include <node/timeoffsets.h>
37#include <node/txdownloadman.h>
38#include <node/txorphanage.h>
40#include <node/warnings.h>
41#include <policy/feerate.h>
43#include <policy/packages.h>
44#include <policy/policy.h>
45#include <primitives/block.h>
47#include <protocol.h>
48#include <random.h>
49#include <scheduler.h>
50#include <script/script.h>
51#include <serialize.h>
52#include <span.h>
53#include <streams.h>
54#include <sync.h>
55#include <tinyformat.h>
56#include <txmempool.h>
57#include <uint256.h>
58#include <util/check.h>
59#include <util/strencodings.h>
60#include <util/time.h>
61#include <util/trace.h>
62#include <validation.h>
63
64#include <algorithm>
65#include <array>
66#include <atomic>
67#include <compare>
68#include <cstddef>
69#include <deque>
70#include <exception>
71#include <functional>
72#include <future>
73#include <initializer_list>
74#include <iterator>
75#include <limits>
76#include <list>
77#include <map>
78#include <memory>
79#include <optional>
80#include <queue>
81#include <ranges>
82#include <ratio>
83#include <set>
84#include <span>
85#include <typeinfo>
86#include <utility>
87
88using namespace util::hex_literals;
89
90TRACEPOINT_SEMAPHORE(net, inbound_message);
91TRACEPOINT_SEMAPHORE(net, misbehaving_connection);
92
95static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min;
96static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms;
98static constexpr auto HEADERS_RESPONSE_TIME{2min};
104static constexpr auto CHAIN_SYNC_TIMEOUT{20min};
106static constexpr auto STALE_CHECK_INTERVAL{10min};
108static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s};
110static constexpr auto MINIMUM_CONNECT_TIME{30s};
112static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
115static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
118static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
120static constexpr auto PING_INTERVAL{2min};
122static const unsigned int MAX_LOCATOR_SZ = 101;
124static const unsigned int MAX_INV_SZ = 50000;
126static const unsigned int MAX_GETDATA_SZ = 1000;
128static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
131static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT{2s};
133static constexpr auto BLOCK_STALLING_TIMEOUT_MAX{64s};
136static const int MAX_CMPCTBLOCK_DEPTH = 5;
138static const int MAX_BLOCKTXN_DEPTH = 10;
139static_assert(MAX_BLOCKTXN_DEPTH <= MIN_BLOCKS_TO_KEEP, "MAX_BLOCKTXN_DEPTH too high");
144static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
146static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1;
148static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5;
150static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
152static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
154static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS = 144;
156static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h};
158static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s};
160static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h};
170static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND{14};
174static constexpr unsigned int INVENTORY_BROADCAST_MAX = 1000;
175static_assert(INVENTORY_BROADCAST_MAX >= INVENTORY_BROADCAST_TARGET, "INVENTORY_BROADCAST_MAX too low");
176static_assert(INVENTORY_BROADCAST_MAX <= node::MAX_PEER_TX_ANNOUNCEMENTS, "INVENTORY_BROADCAST_MAX too high");
178static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min};
180static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min};
182static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
184static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
186static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23;
188static constexpr size_t MAX_ADDR_TO_SEND{1000};
191static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1};
197static constexpr uint64_t CMPCTBLOCKS_VERSION{2};
198
199// Internal stuff
200namespace {
202struct QueuedBlock {
204 const CBlockIndex* pindex;
206 std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
207};
208
221struct Peer {
223 const NodeId m_id{0};
224
238 const ServiceFlags m_our_services;
240 std::atomic<ServiceFlags> m_their_services{NODE_NONE};
241
243 const bool m_is_inbound;
244
246 Mutex m_misbehavior_mutex;
248 bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
249
251 Mutex m_block_inv_mutex;
255 std::vector<uint256> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex);
259 std::vector<uint256> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex);
264 uint256 m_continuation_block GUARDED_BY(m_block_inv_mutex) {};
265
267 bool m_outbound_version_message_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
268
270 std::atomic<int> m_starting_height{-1};
271
273 std::atomic<uint64_t> m_ping_nonce_sent{0};
275 std::atomic<std::chrono::microseconds> m_ping_start{0us};
277 std::atomic<bool> m_ping_queued{false};
278
280 std::atomic<bool> m_wtxid_relay{false};
287 std::chrono::microseconds m_next_send_feefilter GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0};
288
289 struct TxRelay {
290 mutable RecursiveMutex m_bloom_filter_mutex;
292 bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false};
294 std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr};
295
296 mutable RecursiveMutex m_tx_inventory_mutex;
300 CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001};
305 std::set<Wtxid> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex);
309 bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false};
312 std::chrono::microseconds m_next_inv_send_time GUARDED_BY(m_tx_inventory_mutex){0};
315 uint64_t m_last_inv_sequence GUARDED_BY(m_tx_inventory_mutex){1};
316
318 std::atomic<CAmount> m_fee_filter_received{0};
319 };
320
321 /* Initializes a TxRelay struct for this peer. Can be called at most once for a peer. */
322 TxRelay* SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
323 {
324 LOCK(m_tx_relay_mutex);
325 Assume(!m_tx_relay);
326 m_tx_relay = std::make_unique<Peer::TxRelay>();
327 return m_tx_relay.get();
328 };
329
330 TxRelay* GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex)
331 {
332 return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get());
333 };
334
336 std::vector<CAddress> m_addrs_to_send GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
346 std::unique_ptr<CRollingBloomFilter> m_addr_known GUARDED_BY(NetEventsInterface::g_msgproc_mutex);
361 std::atomic_bool m_addr_relay_enabled{false};
363 bool m_getaddr_sent GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
365 mutable Mutex m_addr_send_times_mutex;
367 std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
369 std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
372 std::atomic_bool m_wants_addrv2{false};
374 bool m_getaddr_recvd GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
377 double m_addr_token_bucket GUARDED_BY(NetEventsInterface::g_msgproc_mutex){1.0};
379 std::chrono::microseconds m_addr_token_timestamp GUARDED_BY(NetEventsInterface::g_msgproc_mutex){GetTime<std::chrono::microseconds>()};
381 std::atomic<uint64_t> m_addr_rate_limited{0};
383 std::atomic<uint64_t> m_addr_processed{0};
384
386 bool m_inv_triggered_getheaders_before_sync GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
387
389 Mutex m_getdata_requests_mutex;
391 std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex);
392
395
397 Mutex m_headers_sync_mutex;
400 std::unique_ptr<HeadersSyncState> m_headers_sync PT_GUARDED_BY(m_headers_sync_mutex) GUARDED_BY(m_headers_sync_mutex) {};
401
403 std::atomic<bool> m_sent_sendheaders{false};
404
406 std::chrono::microseconds m_headers_sync_timeout GUARDED_BY(NetEventsInterface::g_msgproc_mutex){0us};
407
409 bool m_prefers_headers GUARDED_BY(NetEventsInterface::g_msgproc_mutex){false};
410
413 std::atomic<std::chrono::seconds> m_time_offset{0s};
414
415 explicit Peer(NodeId id, ServiceFlags our_services, bool is_inbound)
416 : m_id{id}
417 , m_our_services{our_services}
418 , m_is_inbound{is_inbound}
419 {}
420
421private:
422 mutable Mutex m_tx_relay_mutex;
423
425 std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex);
426};
427
428using PeerRef = std::shared_ptr<Peer>;
429
436struct CNodeState {
438 const CBlockIndex* pindexBestKnownBlock{nullptr};
440 uint256 hashLastUnknownBlock{};
442 const CBlockIndex* pindexLastCommonBlock{nullptr};
444 const CBlockIndex* pindexBestHeaderSent{nullptr};
446 bool fSyncStarted{false};
448 std::chrono::microseconds m_stalling_since{0us};
449 std::list<QueuedBlock> vBlocksInFlight;
451 std::chrono::microseconds m_downloading_since{0us};
453 bool fPreferredDownload{false};
455 bool m_requested_hb_cmpctblocks{false};
457 bool m_provides_cmpctblocks{false};
458
483 struct ChainSyncTimeoutState {
485 std::chrono::seconds m_timeout{0s};
487 const CBlockIndex* m_work_header{nullptr};
489 bool m_sent_getheaders{false};
491 bool m_protect{false};
492 };
493
494 ChainSyncTimeoutState m_chain_sync;
495
497 int64_t m_last_block_announcement{0};
498};
499
500class PeerManagerImpl final : public PeerManager
501{
502public:
503 PeerManagerImpl(CConnman& connman, AddrMan& addrman,
504 BanMan* banman, ChainstateManager& chainman,
505 CTxMemPool& pool, node::Warnings& warnings, Options opts);
506
508 void ActiveTipChange(const CBlockIndex& new_tip, bool) override
509 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
510 void BlockConnected(ChainstateRole role, const std::shared_ptr<const CBlock>& pblock, const CBlockIndex* pindexConnected) override
511 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
512 void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex) override
513 EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
514 void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override
515 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
516 void BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state) override
517 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
518 void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock) override
519 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex);
520
522 void InitializeNode(const CNode& node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_tx_download_mutex);
523 void FinalizeNode(const CNode& node) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, !m_tx_download_mutex);
524 bool HasAllDesirableServiceFlags(ServiceFlags services) const override;
525 bool ProcessMessages(CNode* pfrom, std::atomic<bool>& interrupt) override
526 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
527 bool SendMessages(CNode* pto) override
528 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, g_msgproc_mutex, !m_tx_download_mutex);
529
531 void StartScheduledTasks(CScheduler& scheduler) override;
532 void CheckForStaleTipAndEvictPeers() override;
533 std::optional<std::string> FetchBlock(NodeId peer_id, const CBlockIndex& block_index) override
534 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
535 bool GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
536 std::vector<node::TxOrphanage::OrphanInfo> GetOrphanTransactions() override EXCLUSIVE_LOCKS_REQUIRED(!m_tx_download_mutex);
537 PeerManagerInfo GetInfo() const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
538 void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
539 void RelayTransaction(const Txid& txid, const Wtxid& wtxid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
540 void SetBestBlock(int height, std::chrono::seconds time) override
541 {
542 m_best_height = height;
543 m_best_block_time = time;
544 };
545 void UnitTestMisbehaving(NodeId peer_id) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(*Assert(GetPeerRef(peer_id)), ""); };
546 void ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
547 const std::chrono::microseconds time_received, const std::atomic<bool>& interruptMsgProc) override
548 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_most_recent_block_mutex, !m_headers_presync_mutex, g_msgproc_mutex, !m_tx_download_mutex);
549 void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override;
550 ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const override;
551
552private:
554 void ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_msgproc_mutex);
555
557 void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
558
560 void ReattemptInitialBroadcast(CScheduler& scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
561
564 PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
565
568 PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
569
572 void Misbehaving(Peer& peer, const std::string& message);
573
582 void MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
583 bool via_compact_block, const std::string& message = "")
584 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex);
585
592 bool MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer);
593
605 std::optional<node::PackageToValidate> ProcessInvalidTx(NodeId nodeid, const CTransactionRef& tx, const TxValidationState& result,
606 bool first_time_failure)
607 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
608
611 void ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
612 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
613
617 void ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
618 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, m_tx_download_mutex);
619
631 bool ProcessOrphanTx(Peer& peer)
632 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex, !m_tx_download_mutex);
633
641 void ProcessHeadersMessage(CNode& pfrom, Peer& peer,
642 std::vector<CBlockHeader>&& headers,
643 bool via_compact_block)
644 EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
647 bool CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer);
649 arith_uint256 GetAntiDoSWorkThreshold();
653 void HandleUnconnectingHeaders(CNode& pfrom, Peer& peer, const std::vector<CBlockHeader>& headers) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
655 bool CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const;
674 bool IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom,
675 std::vector<CBlockHeader>& headers)
676 EXCLUSIVE_LOCKS_REQUIRED(peer.m_headers_sync_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
688 bool TryLowWorkHeadersSync(Peer& peer, CNode& pfrom,
689 const CBlockIndex* chain_start_header,
690 std::vector<CBlockHeader>& headers)
691 EXCLUSIVE_LOCKS_REQUIRED(!peer.m_headers_sync_mutex, !m_peer_mutex, !m_headers_presync_mutex, g_msgproc_mutex);
692
695 bool IsAncestorOfBestHeaderOrTip(const CBlockIndex* header) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
696
701 bool MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
703 void HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header);
705 void UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer, const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
706 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
707
708 void SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req);
709
711 void PushMessage(CNode& node, CSerializedNetMsg&& msg) const { m_connman.PushMessage(&node, std::move(msg)); }
712 template <typename... Args>
713 void MakeAndPushMessage(CNode& node, std::string msg_type, Args&&... args) const
714 {
715 m_connman.PushMessage(&node, NetMsg::Make(std::move(msg_type), std::forward<Args>(args)...));
716 }
717
719 void PushNodeVersion(CNode& pnode, const Peer& peer);
720
725 void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
726
728 void MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
729
731 void MaybeSendSendHeaders(CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
732
740 void RelayAddress(NodeId originator, const CAddress& addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, g_msgproc_mutex);
741
743 void MaybeSendFeefilter(CNode& node, Peer& peer, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
744
746
748
749 const CChainParams& m_chainparams;
750 CConnman& m_connman;
751 AddrMan& m_addrman;
753 BanMan* const m_banman;
754 ChainstateManager& m_chainman;
755 CTxMemPool& m_mempool;
756
765 Mutex m_tx_download_mutex ACQUIRED_BEFORE(m_mempool.cs);
766 node::TxDownloadManager m_txdownloadman GUARDED_BY(m_tx_download_mutex);
767
768 std::unique_ptr<TxReconciliationTracker> m_txreconciliation;
769
771 std::atomic<int> m_best_height{-1};
773 std::atomic<std::chrono::seconds> m_best_block_time{0s};
774
776 std::chrono::seconds m_stale_tip_check_time GUARDED_BY(cs_main){0s};
777
778 node::Warnings& m_warnings;
779 TimeOffsets m_outbound_time_offsets{m_warnings};
780
781 const Options m_opts;
782
783 bool RejectIncomingTxs(const CNode& peer) const;
784
787 bool m_initial_sync_finished GUARDED_BY(cs_main){false};
788
791 mutable Mutex m_peer_mutex;
798 std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex);
799
801 std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main);
802
804 const CNodeState* State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
806 CNodeState* State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
807
808 uint32_t GetFetchFlags(const Peer& peer) const;
809
810 std::map<uint64_t, std::chrono::microseconds> m_next_inv_to_inbounds_per_network_key GUARDED_BY(g_msgproc_mutex);
811
813 int nSyncStarted GUARDED_BY(cs_main) = 0;
814
816 uint256 m_last_block_inv_triggering_headers_sync GUARDED_BY(g_msgproc_mutex){};
817
824 std::map<uint256, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
825
827 std::atomic<int> m_wtxid_relay_peers{0};
828
830 int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
831
833 int m_num_preferred_download_peers GUARDED_BY(cs_main){0};
834
836 std::atomic<std::chrono::seconds> m_block_stalling_timeout{BLOCK_STALLING_TIMEOUT_DEFAULT};
837
845 std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now,
846 std::chrono::seconds average_interval,
847 uint64_t network_key) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
848
849
850 // All of the following cache a recent block, and are protected by m_most_recent_block_mutex
851 Mutex m_most_recent_block_mutex;
852 std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex);
853 std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex);
854 uint256 m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex);
855 std::unique_ptr<const std::map<GenTxid, CTransactionRef>> m_most_recent_block_txs GUARDED_BY(m_most_recent_block_mutex);
856
857 // Data about the low-work headers synchronization, aggregated from all peers' HeadersSyncStates.
859 Mutex m_headers_presync_mutex;
867 using HeadersPresyncStats = std::pair<arith_uint256, std::optional<std::pair<int64_t, uint32_t>>>;
869 std::map<NodeId, HeadersPresyncStats> m_headers_presync_stats GUARDED_BY(m_headers_presync_mutex) {};
871 NodeId m_headers_presync_bestpeer GUARDED_BY(m_headers_presync_mutex) {-1};
873 std::atomic_bool m_headers_presync_should_signal{false};
874
876 int m_highest_fast_announce GUARDED_BY(::cs_main){0};
877
879 bool IsBlockRequested(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
880
882 bool IsBlockRequestedFromOutbound(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
883
891 void RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
892
893 /* Mark a block as in flight
894 * Returns false, still setting pit, if the block was already in flight from the same peer
895 * pit will only be valid as long as the same cs_main lock is being held
896 */
897 bool BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
898
899 bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
900
904 void FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
905
907 void TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex* from_tip, const CBlockIndex* target_block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
908
936 void FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain=nullptr, NodeId* nodeStaller=nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
937
938 /* Multimap used to preserve insertion order */
939 typedef std::multimap<uint256, std::pair<NodeId, std::list<QueuedBlock>::iterator>> BlockDownloadMap;
940 BlockDownloadMap mapBlocksInFlight GUARDED_BY(cs_main);
941
943 std::atomic<std::chrono::seconds> m_last_tip_update{0s};
944
946 CTransactionRef FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
947 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, !tx_relay.m_tx_inventory_mutex);
948
949 void ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
950 EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex, NetEventsInterface::g_msgproc_mutex)
952
954 void ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked);
955
957 void ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
958 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
959
966 void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_peer_mutex);
967
969 std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
970
972 int m_peers_downloading_from GUARDED_BY(cs_main) = 0;
973
974 void AddToCompactExtraTransactions(const CTransactionRef& tx) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
975
979 std::vector<std::pair<Wtxid, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_msgproc_mutex);
981 size_t vExtraTxnForCompactIt GUARDED_BY(g_msgproc_mutex) = 0;
982
984 void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
986 void UpdateBlockAvailability(NodeId nodeid, const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
987 bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
988
993 int64_t ApproximateBestBlockDepth() const;
994
1001 bool BlockRequestAllowed(const CBlockIndex* pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1002 bool AlreadyHaveBlock(const uint256& block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
1003 void ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
1004 EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex, !m_most_recent_block_mutex);
1005
1021 bool PrepareBlockFilterRequest(CNode& node, Peer& peer,
1022 BlockFilterType filter_type, uint32_t start_height,
1023 const uint256& stop_hash, uint32_t max_height_diff,
1024 const CBlockIndex*& stop_index,
1025 BlockFilterIndex*& filter_index);
1026
1036 void ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv);
1037
1047 void ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv);
1048
1058 void ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv);
1059
1066 bool SetupAddressRelay(const CNode& node, Peer& peer) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1067
1068 void AddAddressKnown(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1069 void PushAddress(Peer& peer, const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex);
1070
1071 void LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block);
1072};
1073
1074const CNodeState* PeerManagerImpl::State(NodeId pnode) const
1075{
1076 std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode);
1077 if (it == m_node_states.end())
1078 return nullptr;
1079 return &it->second;
1080}
1081
1082CNodeState* PeerManagerImpl::State(NodeId pnode)
1083{
1084 return const_cast<CNodeState*>(std::as_const(*this).State(pnode));
1085}
1086
1092static bool IsAddrCompatible(const Peer& peer, const CAddress& addr)
1093{
1094 return peer.m_wants_addrv2 || addr.IsAddrV1Compatible();
1095}
1096
1097void PeerManagerImpl::AddAddressKnown(Peer& peer, const CAddress& addr)
1098{
1099 assert(peer.m_addr_known);
1100 peer.m_addr_known->insert(addr.GetKey());
1101}
1102
1103void PeerManagerImpl::PushAddress(Peer& peer, const CAddress& addr)
1104{
1105 // Known checking here is only to save space from duplicates.
1106 // Before sending, we'll filter it again for known addresses that were
1107 // added after addresses were pushed.
1108 assert(peer.m_addr_known);
1109 if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) {
1110 if (peer.m_addrs_to_send.size() >= MAX_ADDR_TO_SEND) {
1111 peer.m_addrs_to_send[m_rng.randrange(peer.m_addrs_to_send.size())] = addr;
1112 } else {
1113 peer.m_addrs_to_send.push_back(addr);
1114 }
1115 }
1116}
1117
1118static void AddKnownTx(Peer& peer, const uint256& hash)
1119{
1120 auto tx_relay = peer.GetTxRelay();
1121 if (!tx_relay) return;
1122
1123 LOCK(tx_relay->m_tx_inventory_mutex);
1124 tx_relay->m_tx_inventory_known_filter.insert(hash);
1125}
1126
1128static bool CanServeBlocks(const Peer& peer)
1129{
1130 return peer.m_their_services & (NODE_NETWORK|NODE_NETWORK_LIMITED);
1131}
1132
1135static bool IsLimitedPeer(const Peer& peer)
1136{
1137 return (!(peer.m_their_services & NODE_NETWORK) &&
1138 (peer.m_their_services & NODE_NETWORK_LIMITED));
1139}
1140
1142static bool CanServeWitnesses(const Peer& peer)
1143{
1144 return peer.m_their_services & NODE_WITNESS;
1145}
1146
1147std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now,
1148 std::chrono::seconds average_interval,
1149 uint64_t network_key)
1150{
1151 auto [it, inserted] = m_next_inv_to_inbounds_per_network_key.try_emplace(network_key, 0us);
1152 auto& timer{it->second};
1153 if (timer < now) {
1154 timer = now + m_rng.rand_exp_duration(average_interval);
1155 }
1156 return timer;
1157}
1158
1159bool PeerManagerImpl::IsBlockRequested(const uint256& hash)
1160{
1161 return mapBlocksInFlight.count(hash);
1162}
1163
1164bool PeerManagerImpl::IsBlockRequestedFromOutbound(const uint256& hash)
1165{
1166 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1167 auto [nodeid, block_it] = range.first->second;
1168 PeerRef peer{GetPeerRef(nodeid)};
1169 if (peer && !peer->m_is_inbound) return true;
1170 }
1171
1172 return false;
1173}
1174
1175void PeerManagerImpl::RemoveBlockRequest(const uint256& hash, std::optional<NodeId> from_peer)
1176{
1177 auto range = mapBlocksInFlight.equal_range(hash);
1178 if (range.first == range.second) {
1179 // Block was not requested from any peer
1180 return;
1181 }
1182
1183 // We should not have requested too many of this block
1184 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1185
1186 while (range.first != range.second) {
1187 const auto& [node_id, list_it]{range.first->second};
1188
1189 if (from_peer && *from_peer != node_id) {
1190 range.first++;
1191 continue;
1192 }
1193
1194 CNodeState& state = *Assert(State(node_id));
1195
1196 if (state.vBlocksInFlight.begin() == list_it) {
1197 // First block on the queue was received, update the start download time for the next one
1198 state.m_downloading_since = std::max(state.m_downloading_since, GetTime<std::chrono::microseconds>());
1199 }
1200 state.vBlocksInFlight.erase(list_it);
1201
1202 if (state.vBlocksInFlight.empty()) {
1203 // Last validated block on the queue for this peer was received.
1204 m_peers_downloading_from--;
1205 }
1206 state.m_stalling_since = 0us;
1207
1208 range.first = mapBlocksInFlight.erase(range.first);
1209 }
1210}
1211
1212bool PeerManagerImpl::BlockRequested(NodeId nodeid, const CBlockIndex& block, std::list<QueuedBlock>::iterator** pit)
1213{
1214 const uint256& hash{block.GetBlockHash()};
1215
1216 CNodeState *state = State(nodeid);
1217 assert(state != nullptr);
1218
1219 Assume(mapBlocksInFlight.count(hash) <= MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK);
1220
1221 // Short-circuit most stuff in case it is from the same node
1222 for (auto range = mapBlocksInFlight.equal_range(hash); range.first != range.second; range.first++) {
1223 if (range.first->second.first == nodeid) {
1224 if (pit) {
1225 *pit = &range.first->second.second;
1226 }
1227 return false;
1228 }
1229 }
1230
1231 // Make sure it's not being fetched already from same peer.
1232 RemoveBlockRequest(hash, nodeid);
1233
1234 std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(state->vBlocksInFlight.end(),
1235 {&block, std::unique_ptr<PartiallyDownloadedBlock>(pit ? new PartiallyDownloadedBlock(&m_mempool) : nullptr)});
1236 if (state->vBlocksInFlight.size() == 1) {
1237 // We're starting a block download (batch) from this peer.
1238 state->m_downloading_since = GetTime<std::chrono::microseconds>();
1239 m_peers_downloading_from++;
1240 }
1241 auto itInFlight = mapBlocksInFlight.insert(std::make_pair(hash, std::make_pair(nodeid, it)));
1242 if (pit) {
1243 *pit = &itInFlight->second.second;
1244 }
1245 return true;
1246}
1247
1248void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid)
1249{
1251
1252 // When in -blocksonly mode, never request high-bandwidth mode from peers. Our
1253 // mempool will not contain the transactions necessary to reconstruct the
1254 // compact block.
1255 if (m_opts.ignore_incoming_txs) return;
1256
1257 CNodeState* nodestate = State(nodeid);
1258 PeerRef peer{GetPeerRef(nodeid)};
1259 if (!nodestate || !nodestate->m_provides_cmpctblocks) {
1260 // Don't request compact blocks if the peer has not signalled support
1261 return;
1262 }
1263
1264 int num_outbound_hb_peers = 0;
1265 for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
1266 if (*it == nodeid) {
1267 lNodesAnnouncingHeaderAndIDs.erase(it);
1268 lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
1269 return;
1270 }
1271 PeerRef peer_ref{GetPeerRef(*it)};
1272 if (peer_ref && !peer_ref->m_is_inbound) ++num_outbound_hb_peers;
1273 }
1274 if (peer && peer->m_is_inbound) {
1275 // If we're adding an inbound HB peer, make sure we're not removing
1276 // our last outbound HB peer in the process.
1277 if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) {
1278 PeerRef remove_peer{GetPeerRef(lNodesAnnouncingHeaderAndIDs.front())};
1279 if (remove_peer && !remove_peer->m_is_inbound) {
1280 // Put the HB outbound peer in the second slot, so that it
1281 // doesn't get removed.
1282 std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin()));
1283 }
1284 }
1285 }
1286 m_connman.ForNode(nodeid, [this](CNode* pfrom) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
1288 if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
1289 // As per BIP152, we only get 3 of our peers to announce
1290 // blocks using compact encodings.
1291 m_connman.ForNode(lNodesAnnouncingHeaderAndIDs.front(), [this](CNode* pnodeStop){
1292 MakeAndPushMessage(*pnodeStop, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
1293 // save BIP152 bandwidth state: we select peer to be low-bandwidth
1294 pnodeStop->m_bip152_highbandwidth_to = false;
1295 return true;
1296 });
1297 lNodesAnnouncingHeaderAndIDs.pop_front();
1298 }
1299 MakeAndPushMessage(*pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION);
1300 // save BIP152 bandwidth state: we select peer to be high-bandwidth
1301 pfrom->m_bip152_highbandwidth_to = true;
1302 lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
1303 return true;
1304 });
1305}
1306
1307bool PeerManagerImpl::TipMayBeStale()
1308{
1310 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
1311 if (m_last_tip_update.load() == 0s) {
1312 m_last_tip_update = GetTime<std::chrono::seconds>();
1313 }
1314 return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty();
1315}
1316
1317int64_t PeerManagerImpl::ApproximateBestBlockDepth() const
1318{
1319 return (GetTime<std::chrono::seconds>() - m_best_block_time.load()).count() / m_chainparams.GetConsensus().nPowTargetSpacing;
1320}
1321
1322bool PeerManagerImpl::CanDirectFetch()
1323{
1324 return m_chainman.ActiveChain().Tip()->Time() > NodeClock::now() - m_chainparams.GetConsensus().PowTargetSpacing() * 20;
1325}
1326
1327static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
1328{
1329 if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight))
1330 return true;
1331 if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight))
1332 return true;
1333 return false;
1334}
1335
1336void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) {
1337 CNodeState *state = State(nodeid);
1338 assert(state != nullptr);
1339
1340 if (!state->hashLastUnknownBlock.IsNull()) {
1341 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock);
1342 if (pindex && pindex->nChainWork > 0) {
1343 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1344 state->pindexBestKnownBlock = pindex;
1345 }
1346 state->hashLastUnknownBlock.SetNull();
1347 }
1348 }
1349}
1350
1351void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const uint256 &hash) {
1352 CNodeState *state = State(nodeid);
1353 assert(state != nullptr);
1354
1355 ProcessBlockAvailability(nodeid);
1356
1357 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
1358 if (pindex && pindex->nChainWork > 0) {
1359 // An actually better block was announced.
1360 if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
1361 state->pindexBestKnownBlock = pindex;
1362 }
1363 } else {
1364 // An unknown block was announced; just assume that the latest one is the best one.
1365 state->hashLastUnknownBlock = hash;
1366 }
1367}
1368
1369// Logic for calculating which blocks to download from a given peer, given our current tip.
1370void PeerManagerImpl::FindNextBlocksToDownload(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, NodeId& nodeStaller)
1371{
1372 if (count == 0)
1373 return;
1374
1375 vBlocks.reserve(vBlocks.size() + count);
1376 CNodeState *state = State(peer.m_id);
1377 assert(state != nullptr);
1378
1379 // Make sure pindexBestKnownBlock is up to date, we'll need it.
1380 ProcessBlockAvailability(peer.m_id);
1381
1382 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
1383 // This peer has nothing interesting.
1384 return;
1385 }
1386
1387 // When we sync with AssumeUtxo and discover the snapshot is not in the peer's best chain, abort:
1388 // We can't reorg to this chain due to missing undo data until the background sync has finished,
1389 // so downloading blocks from it would be futile.
1390 const CBlockIndex* snap_base{m_chainman.GetSnapshotBaseBlock()};
1391 if (snap_base && state->pindexBestKnownBlock->GetAncestor(snap_base->nHeight) != snap_base) {
1392 LogDebug(BCLog::NET, "Not downloading blocks from peer=%d, which doesn't have the snapshot block in its best chain.\n", peer.m_id);
1393 return;
1394 }
1395
1396 // Determine the forking point between the peer's chain and our chain:
1397 // pindexLastCommonBlock is required to be an ancestor of pindexBestKnownBlock, and will be used as a starting point.
1398 // It is being set to the fork point between the peer's best known block and the current tip, unless it is already set to
1399 // an ancestor with more work than the fork point.
1400 auto fork_point = LastCommonAncestor(state->pindexBestKnownBlock, m_chainman.ActiveTip());
1401 if (state->pindexLastCommonBlock == nullptr ||
1402 fork_point->nChainWork > state->pindexLastCommonBlock->nChainWork ||
1403 state->pindexBestKnownBlock->GetAncestor(state->pindexLastCommonBlock->nHeight) != state->pindexLastCommonBlock) {
1404 state->pindexLastCommonBlock = fork_point;
1405 }
1406 if (state->pindexLastCommonBlock == state->pindexBestKnownBlock)
1407 return;
1408
1409 const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
1410 // Never fetch further than the best block we know the peer has, or more than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last
1411 // linked block we have in common with this peer. The +1 is so we can detect stalling, namely if we would be able to
1412 // download that next block if the window were 1 larger.
1413 int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
1414
1415 FindNextBlocks(vBlocks, peer, state, pindexWalk, count, nWindowEnd, &m_chainman.ActiveChain(), &nodeStaller);
1416}
1417
1418void PeerManagerImpl::TryDownloadingHistoricalBlocks(const Peer& peer, unsigned int count, std::vector<const CBlockIndex*>& vBlocks, const CBlockIndex *from_tip, const CBlockIndex* target_block)
1419{
1420 Assert(from_tip);
1421 Assert(target_block);
1422
1423 if (vBlocks.size() >= count) {
1424 return;
1425 }
1426
1427 vBlocks.reserve(count);
1428 CNodeState *state = Assert(State(peer.m_id));
1429
1430 if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->GetAncestor(target_block->nHeight) != target_block) {
1431 // This peer can't provide us the complete series of blocks leading up to the
1432 // assumeutxo snapshot base.
1433 //
1434 // Presumably this peer's chain has less work than our ActiveChain()'s tip, or else we
1435 // will eventually crash when we try to reorg to it. Let other logic
1436 // deal with whether we disconnect this peer.
1437 //
1438 // TODO at some point in the future, we might choose to request what blocks
1439 // this peer does have from the historical chain, despite it not having a
1440 // complete history beneath the snapshot base.
1441 return;
1442 }
1443
1444 FindNextBlocks(vBlocks, peer, state, from_tip, count, std::min<int>(from_tip->nHeight + BLOCK_DOWNLOAD_WINDOW, target_block->nHeight));
1445}
1446
1447void PeerManagerImpl::FindNextBlocks(std::vector<const CBlockIndex*>& vBlocks, const Peer& peer, CNodeState *state, const CBlockIndex *pindexWalk, unsigned int count, int nWindowEnd, const CChain* activeChain, NodeId* nodeStaller)
1448{
1449 std::vector<const CBlockIndex*> vToFetch;
1450 int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
1451 bool is_limited_peer = IsLimitedPeer(peer);
1452 NodeId waitingfor = -1;
1453 while (pindexWalk->nHeight < nMaxHeight) {
1454 // Read up to 128 (or more, if more blocks than that are needed) successors of pindexWalk (towards
1455 // pindexBestKnownBlock) into vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as expensive
1456 // as iterating over ~100 CBlockIndex* entries anyway.
1457 int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128));
1458 vToFetch.resize(nToFetch);
1459 pindexWalk = state->pindexBestKnownBlock->GetAncestor(pindexWalk->nHeight + nToFetch);
1460 vToFetch[nToFetch - 1] = pindexWalk;
1461 for (unsigned int i = nToFetch - 1; i > 0; i--) {
1462 vToFetch[i - 1] = vToFetch[i]->pprev;
1463 }
1464
1465 // Iterate over those blocks in vToFetch (in forward direction), adding the ones that
1466 // are not yet downloaded and not in flight to vBlocks. In the meantime, update
1467 // pindexLastCommonBlock as long as all ancestors are already downloaded, or if it's
1468 // already part of our chain (and therefore don't need it even if pruned).
1469 for (const CBlockIndex* pindex : vToFetch) {
1470 if (!pindex->IsValid(BLOCK_VALID_TREE)) {
1471 // We consider the chain that this peer is on invalid.
1472 return;
1473 }
1474
1475 if (!CanServeWitnesses(peer) && DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) {
1476 // We wouldn't download this block or its descendants from this peer.
1477 return;
1478 }
1479
1480 if (pindex->nStatus & BLOCK_HAVE_DATA || (activeChain && activeChain->Contains(pindex))) {
1481 if (activeChain && pindex->HaveNumChainTxs()) {
1482 state->pindexLastCommonBlock = pindex;
1483 }
1484 continue;
1485 }
1486
1487 // Is block in-flight?
1488 if (IsBlockRequested(pindex->GetBlockHash())) {
1489 if (waitingfor == -1) {
1490 // This is the first already-in-flight block.
1491 waitingfor = mapBlocksInFlight.lower_bound(pindex->GetBlockHash())->second.first;
1492 }
1493 continue;
1494 }
1495
1496 // The block is not already downloaded, and not yet in flight.
1497 if (pindex->nHeight > nWindowEnd) {
1498 // We reached the end of the window.
1499 if (vBlocks.size() == 0 && waitingfor != peer.m_id) {
1500 // We aren't able to fetch anything, but we would be if the download window was one larger.
1501 if (nodeStaller) *nodeStaller = waitingfor;
1502 }
1503 return;
1504 }
1505
1506 // Don't request blocks that go further than what limited peers can provide
1507 if (is_limited_peer && (state->pindexBestKnownBlock->nHeight - pindex->nHeight >= static_cast<int>(NODE_NETWORK_LIMITED_MIN_BLOCKS) - 2 /* two blocks buffer for possible races */)) {
1508 continue;
1509 }
1510
1511 vBlocks.push_back(pindex);
1512 if (vBlocks.size() == count) {
1513 return;
1514 }
1515 }
1516 }
1517}
1518
1519} // namespace
1520
1521void PeerManagerImpl::PushNodeVersion(CNode& pnode, const Peer& peer)
1522{
1523 uint64_t my_services{peer.m_our_services};
1524 const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())};
1525 uint64_t nonce = pnode.GetLocalNonce();
1526 const int nNodeStartingHeight{m_best_height};
1527 NodeId nodeid = pnode.GetId();
1528 CAddress addr = pnode.addr;
1529
1530 CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService();
1531 uint64_t your_services{addr.nServices};
1532
1533 const bool tx_relay{!RejectIncomingTxs(pnode)};
1534 MakeAndPushMessage(pnode, NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime,
1535 your_services, CNetAddr::V1(addr_you), // Together the pre-version-31402 serialization of CAddress "addrYou" (without nTime)
1536 my_services, CNetAddr::V1(CService{}), // Together the pre-version-31402 serialization of CAddress "addrMe" (without nTime)
1537 nonce, strSubVersion, nNodeStartingHeight, tx_relay);
1538
1539 if (fLogIPs) {
1540 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToStringAddrPort(), tx_relay, nodeid);
1541 } else {
1542 LogDebug(BCLog::NET, "send version message: version %d, blocks=%d, txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid);
1543 }
1544}
1545
1546void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)
1547{
1548 LOCK(cs_main);
1549 CNodeState *state = State(node);
1550 if (state) state->m_last_block_announcement = time_in_seconds;
1551}
1552
1553void PeerManagerImpl::InitializeNode(const CNode& node, ServiceFlags our_services)
1554{
1555 NodeId nodeid = node.GetId();
1556 {
1557 LOCK(cs_main); // For m_node_states
1558 m_node_states.try_emplace(m_node_states.end(), nodeid);
1559 }
1560 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty(nodeid));
1561
1563 our_services = static_cast<ServiceFlags>(our_services | NODE_BLOOM);
1564 }
1565
1566 PeerRef peer = std::make_shared<Peer>(nodeid, our_services, node.IsInboundConn());
1567 {
1568 LOCK(m_peer_mutex);
1569 m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer);
1570 }
1571}
1572
1573void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler& scheduler)
1574{
1575 std::set<Txid> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
1576
1577 for (const auto& txid : unbroadcast_txids) {
1578 CTransactionRef tx = m_mempool.get(txid);
1579
1580 if (tx != nullptr) {
1581 RelayTransaction(txid, tx->GetWitnessHash());
1582 } else {
1583 m_mempool.RemoveUnbroadcastTx(txid, true);
1584 }
1585 }
1586
1587 // Schedule next run for 10-15 minutes in the future.
1588 // We add randomness on every cycle to avoid the possibility of P2P fingerprinting.
1589 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1590 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1591}
1592
1593void PeerManagerImpl::FinalizeNode(const CNode& node)
1594{
1595 NodeId nodeid = node.GetId();
1596 {
1597 LOCK(cs_main);
1598 {
1599 // We remove the PeerRef from g_peer_map here, but we don't always
1600 // destruct the Peer. Sometimes another thread is still holding a
1601 // PeerRef, so the refcount is >= 1. Be careful not to do any
1602 // processing here that assumes Peer won't be changed before it's
1603 // destructed.
1604 PeerRef peer = RemovePeer(nodeid);
1605 assert(peer != nullptr);
1606 m_wtxid_relay_peers -= peer->m_wtxid_relay;
1607 assert(m_wtxid_relay_peers >= 0);
1608 }
1609 CNodeState *state = State(nodeid);
1610 assert(state != nullptr);
1611
1612 if (state->fSyncStarted)
1613 nSyncStarted--;
1614
1615 for (const QueuedBlock& entry : state->vBlocksInFlight) {
1616 auto range = mapBlocksInFlight.equal_range(entry.pindex->GetBlockHash());
1617 while (range.first != range.second) {
1618 auto [node_id, list_it] = range.first->second;
1619 if (node_id != nodeid) {
1620 range.first++;
1621 } else {
1622 range.first = mapBlocksInFlight.erase(range.first);
1623 }
1624 }
1625 }
1626 {
1627 LOCK(m_tx_download_mutex);
1628 m_txdownloadman.DisconnectedPeer(nodeid);
1629 }
1630 if (m_txreconciliation) m_txreconciliation->ForgetPeer(nodeid);
1631 m_num_preferred_download_peers -= state->fPreferredDownload;
1632 m_peers_downloading_from -= (!state->vBlocksInFlight.empty());
1633 assert(m_peers_downloading_from >= 0);
1634 m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect;
1635 assert(m_outbound_peers_with_protect_from_disconnect >= 0);
1636
1637 m_node_states.erase(nodeid);
1638
1639 if (m_node_states.empty()) {
1640 // Do a consistency check after the last peer is removed.
1641 assert(mapBlocksInFlight.empty());
1642 assert(m_num_preferred_download_peers == 0);
1643 assert(m_peers_downloading_from == 0);
1644 assert(m_outbound_peers_with_protect_from_disconnect == 0);
1645 assert(m_wtxid_relay_peers == 0);
1646 WITH_LOCK(m_tx_download_mutex, m_txdownloadman.CheckIsEmpty());
1647 }
1648 } // cs_main
1649 if (node.fSuccessfullyConnected &&
1650 !node.IsBlockOnlyConn() && !node.IsInboundConn()) {
1651 // Only change visible addrman state for full outbound peers. We don't
1652 // call Connected() for feeler connections since they don't have
1653 // fSuccessfullyConnected set.
1654 m_addrman.Connected(node.addr);
1655 }
1656 {
1657 LOCK(m_headers_presync_mutex);
1658 m_headers_presync_stats.erase(nodeid);
1659 }
1660 LogDebug(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
1661}
1662
1663bool PeerManagerImpl::HasAllDesirableServiceFlags(ServiceFlags services) const
1664{
1665 // Shortcut for (services & GetDesirableServiceFlags(services)) == GetDesirableServiceFlags(services)
1666 return !(GetDesirableServiceFlags(services) & (~services));
1667}
1668
1669ServiceFlags PeerManagerImpl::GetDesirableServiceFlags(ServiceFlags services) const
1670{
1671 if (services & NODE_NETWORK_LIMITED) {
1672 // Limited peers are desirable when we are close to the tip.
1673 if (ApproximateBestBlockDepth() < NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS) {
1675 }
1676 }
1678}
1679
1680PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const
1681{
1682 LOCK(m_peer_mutex);
1683 auto it = m_peer_map.find(id);
1684 return it != m_peer_map.end() ? it->second : nullptr;
1685}
1686
1687PeerRef PeerManagerImpl::RemovePeer(NodeId id)
1688{
1689 PeerRef ret;
1690 LOCK(m_peer_mutex);
1691 auto it = m_peer_map.find(id);
1692 if (it != m_peer_map.end()) {
1693 ret = std::move(it->second);
1694 m_peer_map.erase(it);
1695 }
1696 return ret;
1697}
1698
1699bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats& stats) const
1700{
1701 {
1702 LOCK(cs_main);
1703 const CNodeState* state = State(nodeid);
1704 if (state == nullptr)
1705 return false;
1706 stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1;
1707 stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1;
1708 for (const QueuedBlock& queue : state->vBlocksInFlight) {
1709 if (queue.pindex)
1710 stats.vHeightInFlight.push_back(queue.pindex->nHeight);
1711 }
1712 }
1713
1714 PeerRef peer = GetPeerRef(nodeid);
1715 if (peer == nullptr) return false;
1716 stats.their_services = peer->m_their_services;
1717 stats.m_starting_height = peer->m_starting_height;
1718 // It is common for nodes with good ping times to suddenly become lagged,
1719 // due to a new block arriving or other large transfer.
1720 // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
1721 // since pingtime does not update until the ping is complete, which might take a while.
1722 // So, if a ping is taking an unusually long time in flight,
1723 // the caller can immediately detect that this is happening.
1724 auto ping_wait{0us};
1725 if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) {
1726 ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load();
1727 }
1728
1729 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
1730 stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs);
1731 stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load();
1732 LOCK(tx_relay->m_tx_inventory_mutex);
1733 stats.m_last_inv_seq = tx_relay->m_last_inv_sequence;
1734 stats.m_inv_to_send = tx_relay->m_tx_inventory_to_send.size();
1735 } else {
1736 stats.m_relay_txs = false;
1737 stats.m_fee_filter_received = 0;
1738 stats.m_inv_to_send = 0;
1739 }
1740
1741 stats.m_ping_wait = ping_wait;
1742 stats.m_addr_processed = peer->m_addr_processed.load();
1743 stats.m_addr_rate_limited = peer->m_addr_rate_limited.load();
1744 stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load();
1745 {
1746 LOCK(peer->m_headers_sync_mutex);
1747 if (peer->m_headers_sync) {
1748 stats.presync_height = peer->m_headers_sync->GetPresyncHeight();
1749 }
1750 }
1751 stats.time_offset = peer->m_time_offset;
1752
1753 return true;
1754}
1755
1756std::vector<node::TxOrphanage::OrphanInfo> PeerManagerImpl::GetOrphanTransactions()
1757{
1758 LOCK(m_tx_download_mutex);
1759 return m_txdownloadman.GetOrphanTransactions();
1760}
1761
1762PeerManagerInfo PeerManagerImpl::GetInfo() const
1763{
1764 return PeerManagerInfo{
1765 .median_outbound_time_offset = m_outbound_time_offsets.Median(),
1766 .ignores_incoming_txs = m_opts.ignore_incoming_txs,
1767 };
1768}
1769
1770void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef& tx)
1771{
1772 if (m_opts.max_extra_txs <= 0)
1773 return;
1774 if (!vExtraTxnForCompact.size())
1775 vExtraTxnForCompact.resize(m_opts.max_extra_txs);
1776 vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetWitnessHash(), tx);
1777 vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % m_opts.max_extra_txs;
1778}
1779
1780void PeerManagerImpl::Misbehaving(Peer& peer, const std::string& message)
1781{
1782 LOCK(peer.m_misbehavior_mutex);
1783
1784 const std::string message_prefixed = message.empty() ? "" : (": " + message);
1785 peer.m_should_discourage = true;
1786 LogDebug(BCLog::NET, "Misbehaving: peer=%d%s\n", peer.m_id, message_prefixed);
1787 TRACEPOINT(net, misbehaving_connection,
1788 peer.m_id,
1789 message.c_str()
1790 );
1791}
1792
1793void PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState& state,
1794 bool via_compact_block, const std::string& message)
1795{
1796 PeerRef peer{GetPeerRef(nodeid)};
1797 switch (state.GetResult()) {
1799 break;
1801 // We didn't try to process the block because the header chain may have
1802 // too little work.
1803 break;
1804 // The node is providing invalid data:
1807 if (!via_compact_block) {
1808 if (peer) Misbehaving(*peer, message);
1809 return;
1810 }
1811 break;
1813 {
1814 // Discourage outbound (but not inbound) peers if on an invalid chain.
1815 // Exempt HB compact block peers. Manual connections are always protected from discouragement.
1816 if (peer && !via_compact_block && !peer->m_is_inbound) {
1817 if (peer) Misbehaving(*peer, message);
1818 return;
1819 }
1820 break;
1821 }
1824 if (peer) Misbehaving(*peer, message);
1825 return;
1826 // Conflicting (but not necessarily invalid) data or different policy:
1828 if (peer) Misbehaving(*peer, message);
1829 return;
1831 break;
1832 }
1833 if (message != "") {
1834 LogDebug(BCLog::NET, "peer=%d: %s\n", nodeid, message);
1835 }
1836}
1837
1838bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex* pindex)
1839{
1841 if (m_chainman.ActiveChain().Contains(pindex)) return true;
1842 return pindex->IsValid(BLOCK_VALID_SCRIPTS) && (m_chainman.m_best_header != nullptr) &&
1843 (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) &&
1844 (GetBlockProofEquivalentTime(*m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT);
1845}
1846
1847std::optional<std::string> PeerManagerImpl::FetchBlock(NodeId peer_id, const CBlockIndex& block_index)
1848{
1849 if (m_chainman.m_blockman.LoadingBlocks()) return "Loading blocks ...";
1850
1851 // Ensure this peer exists and hasn't been disconnected
1852 PeerRef peer = GetPeerRef(peer_id);
1853 if (peer == nullptr) return "Peer does not exist";
1854
1855 // Ignore pre-segwit peers
1856 if (!CanServeWitnesses(*peer)) return "Pre-SegWit peer";
1857
1858 LOCK(cs_main);
1859
1860 // Forget about all prior requests
1861 RemoveBlockRequest(block_index.GetBlockHash(), std::nullopt);
1862
1863 // Mark block as in-flight
1864 if (!BlockRequested(peer_id, block_index)) return "Already requested from this peer";
1865
1866 // Construct message to request the block
1867 const uint256& hash{block_index.GetBlockHash()};
1868 std::vector<CInv> invs{CInv(MSG_BLOCK | MSG_WITNESS_FLAG, hash)};
1869
1870 // Send block request message to the peer
1871 bool success = m_connman.ForNode(peer_id, [this, &invs](CNode* node) {
1872 this->MakeAndPushMessage(*node, NetMsgType::GETDATA, invs);
1873 return true;
1874 });
1875
1876 if (!success) return "Peer not fully connected";
1877
1878 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
1879 hash.ToString(), peer_id);
1880 return std::nullopt;
1881}
1882
1883std::unique_ptr<PeerManager> PeerManager::make(CConnman& connman, AddrMan& addrman,
1884 BanMan* banman, ChainstateManager& chainman,
1885 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1886{
1887 return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, warnings, opts);
1888}
1889
1890PeerManagerImpl::PeerManagerImpl(CConnman& connman, AddrMan& addrman,
1891 BanMan* banman, ChainstateManager& chainman,
1892 CTxMemPool& pool, node::Warnings& warnings, Options opts)
1893 : m_rng{opts.deterministic_rng},
1894 m_fee_filter_rounder{CFeeRate{DEFAULT_MIN_RELAY_TX_FEE}, m_rng},
1895 m_chainparams(chainman.GetParams()),
1896 m_connman(connman),
1897 m_addrman(addrman),
1898 m_banman(banman),
1899 m_chainman(chainman),
1900 m_mempool(pool),
1901 m_txdownloadman(node::TxDownloadOptions{pool, m_rng, opts.deterministic_rng}),
1902 m_warnings{warnings},
1903 m_opts{opts}
1904{
1905 // While Erlay support is incomplete, it must be enabled explicitly via -txreconciliation.
1906 // This argument can go away after Erlay support is complete.
1907 if (opts.reconcile_txs) {
1908 m_txreconciliation = std::make_unique<TxReconciliationTracker>(TXRECONCILIATION_VERSION);
1909 }
1910}
1911
1912void PeerManagerImpl::StartScheduledTasks(CScheduler& scheduler)
1913{
1914 // Stale tip checking and peer eviction are on two different timers, but we
1915 // don't want them to get out of sync due to drift in the scheduler, so we
1916 // combine them in one function and schedule at the quicker (peer-eviction)
1917 // timer.
1918 static_assert(EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer");
1919 scheduler.scheduleEvery([this] { this->CheckForStaleTipAndEvictPeers(); }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
1920
1921 // schedule next run for 10-15 minutes in the future
1922 const auto delta = 10min + FastRandomContext().randrange<std::chrono::milliseconds>(5min);
1923 scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta);
1924}
1925
1926void PeerManagerImpl::ActiveTipChange(const CBlockIndex& new_tip, bool is_ibd)
1927{
1928 // Ensure mempool mutex was released, otherwise deadlock may occur if another thread holding
1929 // m_tx_download_mutex waits on the mempool mutex.
1930 AssertLockNotHeld(m_mempool.cs);
1931 AssertLockNotHeld(m_tx_download_mutex);
1932
1933 if (!is_ibd) {
1934 LOCK(m_tx_download_mutex);
1935 // If the chain tip has changed, previously rejected transactions might now be valid, e.g. due
1936 // to a timelock. Reset the rejection filters to give those transactions another chance if we
1937 // see them again.
1938 m_txdownloadman.ActiveTipChange();
1939 }
1940}
1941
1948void PeerManagerImpl::BlockConnected(
1949 ChainstateRole role,
1950 const std::shared_ptr<const CBlock>& pblock,
1951 const CBlockIndex* pindex)
1952{
1953 // Update this for all chainstate roles so that we don't mistakenly see peers
1954 // helping us do background IBD as having a stale tip.
1955 m_last_tip_update = GetTime<std::chrono::seconds>();
1956
1957 // In case the dynamic timeout was doubled once or more, reduce it slowly back to its default value
1958 auto stalling_timeout = m_block_stalling_timeout.load();
1959 Assume(stalling_timeout >= BLOCK_STALLING_TIMEOUT_DEFAULT);
1960 if (stalling_timeout != BLOCK_STALLING_TIMEOUT_DEFAULT) {
1961 const auto new_timeout = std::max(std::chrono::duration_cast<std::chrono::seconds>(stalling_timeout * 0.85), BLOCK_STALLING_TIMEOUT_DEFAULT);
1962 if (m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
1963 LogDebug(BCLog::NET, "Decreased stalling timeout to %d seconds\n", count_seconds(new_timeout));
1964 }
1965 }
1966
1967 // The following task can be skipped since we don't maintain a mempool for
1968 // the ibd/background chainstate.
1969 if (role == ChainstateRole::BACKGROUND) {
1970 return;
1971 }
1972 LOCK(m_tx_download_mutex);
1973 m_txdownloadman.BlockConnected(pblock);
1974}
1975
1976void PeerManagerImpl::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex* pindex)
1977{
1978 LOCK(m_tx_download_mutex);
1979 m_txdownloadman.BlockDisconnected();
1980}
1981
1986void PeerManagerImpl::NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock>& pblock)
1987{
1988 auto pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock, FastRandomContext().rand64());
1989
1990 LOCK(cs_main);
1991
1992 if (pindex->nHeight <= m_highest_fast_announce)
1993 return;
1994 m_highest_fast_announce = pindex->nHeight;
1995
1996 if (!DeploymentActiveAt(*pindex, m_chainman, Consensus::DEPLOYMENT_SEGWIT)) return;
1997
1998 uint256 hashBlock(pblock->GetHash());
1999 const std::shared_future<CSerializedNetMsg> lazy_ser{
2000 std::async(std::launch::deferred, [&] { return NetMsg::Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })};
2001
2002 {
2003 auto most_recent_block_txs = std::make_unique<std::map<GenTxid, CTransactionRef>>();
2004 for (const auto& tx : pblock->vtx) {
2005 most_recent_block_txs->emplace(tx->GetHash(), tx);
2006 most_recent_block_txs->emplace(tx->GetWitnessHash(), tx);
2007 }
2008
2009 LOCK(m_most_recent_block_mutex);
2010 m_most_recent_block_hash = hashBlock;
2011 m_most_recent_block = pblock;
2012 m_most_recent_compact_block = pcmpctblock;
2013 m_most_recent_block_txs = std::move(most_recent_block_txs);
2014 }
2015
2016 m_connman.ForEachNode([this, pindex, &lazy_ser, &hashBlock](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
2018
2020 return;
2021 ProcessBlockAvailability(pnode->GetId());
2022 CNodeState &state = *State(pnode->GetId());
2023 // If the peer has, or we announced to them the previous block already,
2024 // but we don't think they have this one, go ahead and announce it
2025 if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) {
2026
2027 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock",
2028 hashBlock.ToString(), pnode->GetId());
2029
2030 const CSerializedNetMsg& ser_cmpctblock{lazy_ser.get()};
2031 PushMessage(*pnode, ser_cmpctblock.Copy());
2032 state.pindexBestHeaderSent = pindex;
2033 }
2034 });
2035}
2036
2041void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
2042{
2043 SetBestBlock(pindexNew->nHeight, std::chrono::seconds{pindexNew->GetBlockTime()});
2044
2045 // Don't relay inventory during initial block download.
2046 if (fInitialDownload) return;
2047
2048 // Find the hashes of all blocks that weren't previously in the best chain.
2049 std::vector<uint256> vHashes;
2050 const CBlockIndex *pindexToAnnounce = pindexNew;
2051 while (pindexToAnnounce != pindexFork) {
2052 vHashes.push_back(pindexToAnnounce->GetBlockHash());
2053 pindexToAnnounce = pindexToAnnounce->pprev;
2054 if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
2055 // Limit announcements in case of a huge reorganization.
2056 // Rely on the peer's synchronization mechanism in that case.
2057 break;
2058 }
2059 }
2060
2061 {
2062 LOCK(m_peer_mutex);
2063 for (auto& it : m_peer_map) {
2064 Peer& peer = *it.second;
2065 LOCK(peer.m_block_inv_mutex);
2066 for (const uint256& hash : vHashes | std::views::reverse) {
2067 peer.m_blocks_for_headers_relay.push_back(hash);
2068 }
2069 }
2070 }
2071
2072 m_connman.WakeMessageHandler();
2073}
2074
2079void PeerManagerImpl::BlockChecked(const std::shared_ptr<const CBlock>& block, const BlockValidationState& state)
2080{
2081 LOCK(cs_main);
2082
2083 const uint256 hash(block->GetHash());
2084 std::map<uint256, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash);
2085
2086 // If the block failed validation, we know where it came from and we're still connected
2087 // to that peer, maybe punish.
2088 if (state.IsInvalid() &&
2089 it != mapBlockSource.end() &&
2090 State(it->second.first)) {
2091 MaybePunishNodeForBlock(/*nodeid=*/ it->second.first, state, /*via_compact_block=*/ !it->second.second);
2092 }
2093 // Check that:
2094 // 1. The block is valid
2095 // 2. We're not in initial block download
2096 // 3. This is currently the best block we're aware of. We haven't updated
2097 // the tip yet so we have no way to check this directly here. Instead we
2098 // just check that there are currently no other blocks in flight.
2099 else if (state.IsValid() &&
2100 !m_chainman.IsInitialBlockDownload() &&
2101 mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
2102 if (it != mapBlockSource.end()) {
2103 MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first);
2104 }
2105 }
2106 if (it != mapBlockSource.end())
2107 mapBlockSource.erase(it);
2108}
2109
2111//
2112// Messages
2113//
2114
2115bool PeerManagerImpl::AlreadyHaveBlock(const uint256& block_hash)
2116{
2117 return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr;
2118}
2119
2120void PeerManagerImpl::SendPings()
2121{
2122 LOCK(m_peer_mutex);
2123 for(auto& it : m_peer_map) it.second->m_ping_queued = true;
2124}
2125
2126void PeerManagerImpl::RelayTransaction(const Txid& txid, const Wtxid& wtxid)
2127{
2128 LOCK(m_peer_mutex);
2129 for(auto& it : m_peer_map) {
2130 Peer& peer = *it.second;
2131 auto tx_relay = peer.GetTxRelay();
2132 if (!tx_relay) continue;
2133
2134 LOCK(tx_relay->m_tx_inventory_mutex);
2135 // Only queue transactions for announcement once the version handshake
2136 // is completed. The time of arrival for these transactions is
2137 // otherwise at risk of leaking to a spy, if the spy is able to
2138 // distinguish transactions received during the handshake from the rest
2139 // in the announcement.
2140 if (tx_relay->m_next_inv_send_time == 0s) continue;
2141
2142 const uint256& hash{peer.m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256()};
2143 if (!tx_relay->m_tx_inventory_known_filter.contains(hash)) {
2144 tx_relay->m_tx_inventory_to_send.insert(wtxid);
2145 }
2146 }
2147}
2148
2149void PeerManagerImpl::RelayAddress(NodeId originator,
2150 const CAddress& addr,
2151 bool fReachable)
2152{
2153 // We choose the same nodes within a given 24h window (if the list of connected
2154 // nodes does not change) and we don't relay to nodes that already know an
2155 // address. So within 24h we will likely relay a given address once. This is to
2156 // prevent a peer from unjustly giving their address better propagation by sending
2157 // it to us repeatedly.
2158
2159 if (!fReachable && !addr.IsRelayable()) return;
2160
2161 // Relay to a limited number of other nodes
2162 // Use deterministic randomness to send to the same nodes for 24 hours
2163 // at a time so the m_addr_knowns of the chosen nodes prevent repeats
2164 const uint64_t hash_addr{CServiceHash(0, 0)(addr)};
2165 const auto current_time{GetTime<std::chrono::seconds>()};
2166 // Adding address hash makes exact rotation time different per address, while preserving periodicity.
2167 const uint64_t time_addr{(static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)};
2169 .Write(hash_addr)
2170 .Write(time_addr)};
2171
2172 // Relay reachable addresses to 2 peers. Unreachable addresses are relayed randomly to 1 or 2 peers.
2173 unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1;
2174
2175 std::array<std::pair<uint64_t, Peer*>, 2> best{{{0, nullptr}, {0, nullptr}}};
2176 assert(nRelayNodes <= best.size());
2177
2178 LOCK(m_peer_mutex);
2179
2180 for (auto& [id, peer] : m_peer_map) {
2181 if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) {
2182 uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize();
2183 for (unsigned int i = 0; i < nRelayNodes; i++) {
2184 if (hashKey > best[i].first) {
2185 std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1);
2186 best[i] = std::make_pair(hashKey, peer.get());
2187 break;
2188 }
2189 }
2190 }
2191 };
2192
2193 for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
2194 PushAddress(*best[i].second, addr);
2195 }
2196}
2197
2198void PeerManagerImpl::ProcessGetBlockData(CNode& pfrom, Peer& peer, const CInv& inv)
2199{
2200 std::shared_ptr<const CBlock> a_recent_block;
2201 std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
2202 {
2203 LOCK(m_most_recent_block_mutex);
2204 a_recent_block = m_most_recent_block;
2205 a_recent_compact_block = m_most_recent_compact_block;
2206 }
2207
2208 bool need_activate_chain = false;
2209 {
2210 LOCK(cs_main);
2211 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2212 if (pindex) {
2213 if (pindex->HaveNumChainTxs() && !pindex->IsValid(BLOCK_VALID_SCRIPTS) &&
2214 pindex->IsValid(BLOCK_VALID_TREE)) {
2215 // If we have the block and all of its parents, but have not yet validated it,
2216 // we might be in the middle of connecting it (ie in the unlock of cs_main
2217 // before ActivateBestChain but after AcceptBlock).
2218 // In this case, we need to run ActivateBestChain prior to checking the relay
2219 // conditions below.
2220 need_activate_chain = true;
2221 }
2222 }
2223 } // release cs_main before calling ActivateBestChain
2224 if (need_activate_chain) {
2226 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
2227 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
2228 }
2229 }
2230
2231 const CBlockIndex* pindex{nullptr};
2232 const CBlockIndex* tip{nullptr};
2233 bool can_direct_fetch{false};
2234 FlatFilePos block_pos{};
2235 {
2236 LOCK(cs_main);
2237 pindex = m_chainman.m_blockman.LookupBlockIndex(inv.hash);
2238 if (!pindex) {
2239 return;
2240 }
2241 if (!BlockRequestAllowed(pindex)) {
2242 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block that isn't in the main chain\n", __func__, pfrom.GetId());
2243 return;
2244 }
2245 // disconnect node in case we have reached the outbound limit for serving historical blocks
2246 if (m_connman.OutboundTargetReached(true) &&
2247 (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) &&
2248 !pfrom.HasPermission(NetPermissionFlags::Download) // nodes with the download permission may exceed target
2249 ) {
2250 LogDebug(BCLog::NET, "historical block serving limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
2251 pfrom.fDisconnect = true;
2252 return;
2253 }
2254 tip = m_chainman.ActiveChain().Tip();
2255 // Avoid leaking prune-height by never sending blocks below the NODE_NETWORK_LIMITED threshold
2257 (((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (tip->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2 /* add two blocks buffer extension for possible races */) )
2258 )) {
2259 LogDebug(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED threshold, %s\n", pfrom.DisconnectMsg(fLogIPs));
2260 //disconnect node and prevent it from stalling (would otherwise wait for the missing block)
2261 pfrom.fDisconnect = true;
2262 return;
2263 }
2264 // Pruned nodes may have deleted the block, so check whether
2265 // it's available before trying to send.
2266 if (!(pindex->nStatus & BLOCK_HAVE_DATA)) {
2267 return;
2268 }
2269 can_direct_fetch = CanDirectFetch();
2270 block_pos = pindex->GetBlockPos();
2271 }
2272
2273 std::shared_ptr<const CBlock> pblock;
2274 if (a_recent_block && a_recent_block->GetHash() == inv.hash) {
2275 pblock = a_recent_block;
2276 } else if (inv.IsMsgWitnessBlk()) {
2277 // Fast-path: in this case it is possible to serve the block directly from disk,
2278 // as the network format matches the format on disk
2279 std::vector<std::byte> block_data;
2280 if (!m_chainman.m_blockman.ReadRawBlock(block_data, block_pos)) {
2281 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2282 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2283 } else {
2284 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2285 }
2286 pfrom.fDisconnect = true;
2287 return;
2288 }
2289 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, std::span{block_data});
2290 // Don't set pblock as we've sent the block
2291 } else {
2292 // Send block from disk
2293 std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
2294 if (!m_chainman.m_blockman.ReadBlock(*pblockRead, block_pos, inv.hash)) {
2295 if (WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.IsBlockPruned(*pindex))) {
2296 LogDebug(BCLog::NET, "Block was pruned before it could be read, %s\n", pfrom.DisconnectMsg(fLogIPs));
2297 } else {
2298 LogError("Cannot load block from disk, %s\n", pfrom.DisconnectMsg(fLogIPs));
2299 }
2300 pfrom.fDisconnect = true;
2301 return;
2302 }
2303 pblock = pblockRead;
2304 }
2305 if (pblock) {
2306 if (inv.IsMsgBlk()) {
2307 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_NO_WITNESS(*pblock));
2308 } else if (inv.IsMsgWitnessBlk()) {
2309 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2310 } else if (inv.IsMsgFilteredBlk()) {
2311 bool sendMerkleBlock = false;
2312 CMerkleBlock merkleBlock;
2313 if (auto tx_relay = peer.GetTxRelay(); tx_relay != nullptr) {
2314 LOCK(tx_relay->m_bloom_filter_mutex);
2315 if (tx_relay->m_bloom_filter) {
2316 sendMerkleBlock = true;
2317 merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter);
2318 }
2319 }
2320 if (sendMerkleBlock) {
2321 MakeAndPushMessage(pfrom, NetMsgType::MERKLEBLOCK, merkleBlock);
2322 // CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
2323 // This avoids hurting performance by pointlessly requiring a round-trip
2324 // Note that there is currently no way for a node to request any single transactions we didn't send here -
2325 // they must either disconnect and retry or request the full block.
2326 // Thus, the protocol spec specified allows for us to provide duplicate txn here,
2327 // however we MUST always provide at least what the remote peer needs
2328 for (const auto& [tx_idx, _] : merkleBlock.vMatchedTxn)
2329 MakeAndPushMessage(pfrom, NetMsgType::TX, TX_NO_WITNESS(*pblock->vtx[tx_idx]));
2330 }
2331 // else
2332 // no response
2333 } else if (inv.IsMsgCmpctBlk()) {
2334 // If a peer is asking for old blocks, we're almost guaranteed
2335 // they won't have a useful mempool to match against a compact block,
2336 // and we don't feel like constructing the object for them, so
2337 // instead we respond with the full, non-compact block.
2338 if (can_direct_fetch && pindex->nHeight >= tip->nHeight - MAX_CMPCTBLOCK_DEPTH) {
2339 if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == inv.hash) {
2340 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, *a_recent_compact_block);
2341 } else {
2342 CBlockHeaderAndShortTxIDs cmpctblock{*pblock, m_rng.rand64()};
2343 MakeAndPushMessage(pfrom, NetMsgType::CMPCTBLOCK, cmpctblock);
2344 }
2345 } else {
2346 MakeAndPushMessage(pfrom, NetMsgType::BLOCK, TX_WITH_WITNESS(*pblock));
2347 }
2348 }
2349 }
2350
2351 {
2352 LOCK(peer.m_block_inv_mutex);
2353 // Trigger the peer node to send a getblocks request for the next batch of inventory
2354 if (inv.hash == peer.m_continuation_block) {
2355 // Send immediately. This must send even if redundant,
2356 // and we want it right after the last block so they don't
2357 // wait for other stuff first.
2358 std::vector<CInv> vInv;
2359 vInv.emplace_back(MSG_BLOCK, tip->GetBlockHash());
2360 MakeAndPushMessage(pfrom, NetMsgType::INV, vInv);
2361 peer.m_continuation_block.SetNull();
2362 }
2363 }
2364}
2365
2366CTransactionRef PeerManagerImpl::FindTxForGetData(const Peer::TxRelay& tx_relay, const GenTxid& gtxid)
2367{
2368 // If a tx was in the mempool prior to the last INV for this peer, permit the request.
2369 auto txinfo{std::visit(
2370 [&](const auto& id) {
2371 return m_mempool.info_for_relay(id, WITH_LOCK(tx_relay.m_tx_inventory_mutex, return tx_relay.m_last_inv_sequence));
2372 },
2373 gtxid)};
2374 if (txinfo.tx) {
2375 return std::move(txinfo.tx);
2376 }
2377
2378 // Or it might be from the most recent block
2379 {
2380 LOCK(m_most_recent_block_mutex);
2381 if (m_most_recent_block_txs != nullptr) {
2382 auto it = m_most_recent_block_txs->find(gtxid);
2383 if (it != m_most_recent_block_txs->end()) return it->second;
2384 }
2385 }
2386
2387 return {};
2388}
2389
2390void PeerManagerImpl::ProcessGetData(CNode& pfrom, Peer& peer, const std::atomic<bool>& interruptMsgProc)
2391{
2393
2394 auto tx_relay = peer.GetTxRelay();
2395
2396 std::deque<CInv>::iterator it = peer.m_getdata_requests.begin();
2397 std::vector<CInv> vNotFound;
2398
2399 // Process as many TX items from the front of the getdata queue as
2400 // possible, since they're common and it's efficient to batch process
2401 // them.
2402 while (it != peer.m_getdata_requests.end() && it->IsGenTxMsg()) {
2403 if (interruptMsgProc) return;
2404 // The send buffer provides backpressure. If there's no space in
2405 // the buffer, pause processing until the next call.
2406 if (pfrom.fPauseSend) break;
2407
2408 const CInv &inv = *it++;
2409
2410 if (tx_relay == nullptr) {
2411 // Ignore GETDATA requests for transactions from block-relay-only
2412 // peers and peers that asked us not to announce transactions.
2413 continue;
2414 }
2415
2416 if (auto tx{FindTxForGetData(*tx_relay, ToGenTxid(inv))}) {
2417 // WTX and WITNESS_TX imply we serialize with witness
2418 const auto maybe_with_witness = (inv.IsMsgTx() ? TX_NO_WITNESS : TX_WITH_WITNESS);
2419 MakeAndPushMessage(pfrom, NetMsgType::TX, maybe_with_witness(*tx));
2420 m_mempool.RemoveUnbroadcastTx(tx->GetHash());
2421 } else {
2422 vNotFound.push_back(inv);
2423 }
2424 }
2425
2426 // Only process one BLOCK item per call, since they're uncommon and can be
2427 // expensive to process.
2428 if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) {
2429 const CInv &inv = *it++;
2430 if (inv.IsGenBlkMsg()) {
2431 ProcessGetBlockData(pfrom, peer, inv);
2432 }
2433 // else: If the first item on the queue is an unknown type, we erase it
2434 // and continue processing the queue on the next call.
2435 // NOTE: previously we wouldn't do so and the peer sending us a malformed GETDATA could
2436 // result in never making progress and this thread using 100% allocated CPU. See
2437 // https://bitcoincore.org/en/2024/07/03/disclose-getdata-cpu.
2438 }
2439
2440 peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it);
2441
2442 if (!vNotFound.empty()) {
2443 // Let the peer know that we didn't find what it asked for, so it doesn't
2444 // have to wait around forever.
2445 // SPV clients care about this message: it's needed when they are
2446 // recursively walking the dependencies of relevant unconfirmed
2447 // transactions. SPV clients want to do that because they want to know
2448 // about (and store and rebroadcast and risk analyze) the dependencies
2449 // of transactions relevant to them, without having to download the
2450 // entire memory pool.
2451 // Also, other nodes can use these messages to automatically request a
2452 // transaction from some other peer that announced it, and stop
2453 // waiting for us to respond.
2454 // In normal operation, we often send NOTFOUND messages for parents of
2455 // transactions that we relay; if a peer is missing a parent, they may
2456 // assume we have them and request the parents from us.
2457 MakeAndPushMessage(pfrom, NetMsgType::NOTFOUND, vNotFound);
2458 }
2459}
2460
2461uint32_t PeerManagerImpl::GetFetchFlags(const Peer& peer) const
2462{
2463 uint32_t nFetchFlags = 0;
2464 if (CanServeWitnesses(peer)) {
2465 nFetchFlags |= MSG_WITNESS_FLAG;
2466 }
2467 return nFetchFlags;
2468}
2469
2470void PeerManagerImpl::SendBlockTransactions(CNode& pfrom, Peer& peer, const CBlock& block, const BlockTransactionsRequest& req)
2471{
2472 BlockTransactions resp(req);
2473 unsigned int tx_requested_size = 0;
2474 for (size_t i = 0; i < req.indexes.size(); i++) {
2475 if (req.indexes[i] >= block.vtx.size()) {
2476 Misbehaving(peer, "getblocktxn with out-of-bounds tx indices");
2477 return;
2478 }
2479 resp.txn[i] = block.vtx[req.indexes[i]];
2480 tx_requested_size += resp.txn[i]->GetTotalSize();
2481 }
2482
2483 LogDebug(BCLog::CMPCTBLOCK, "Peer %d sent us a GETBLOCKTXN for block %s, sending a BLOCKTXN with %u txns. (%u bytes)\n", pfrom.GetId(), block.GetHash().ToString(), resp.txn.size(), tx_requested_size);
2484 MakeAndPushMessage(pfrom, NetMsgType::BLOCKTXN, resp);
2485}
2486
2487bool PeerManagerImpl::CheckHeadersPoW(const std::vector<CBlockHeader>& headers, const Consensus::Params& consensusParams, Peer& peer)
2488{
2489 // Do these headers have proof-of-work matching what's claimed?
2490 if (!HasValidProofOfWork(headers, consensusParams)) {
2491 Misbehaving(peer, "header with invalid proof of work");
2492 return false;
2493 }
2494
2495 // Are these headers connected to each other?
2496 if (!CheckHeadersAreContinuous(headers)) {
2497 Misbehaving(peer, "non-continuous headers sequence");
2498 return false;
2499 }
2500 return true;
2501}
2502
2503arith_uint256 PeerManagerImpl::GetAntiDoSWorkThreshold()
2504{
2505 arith_uint256 near_chaintip_work = 0;
2506 LOCK(cs_main);
2507 if (m_chainman.ActiveChain().Tip() != nullptr) {
2508 const CBlockIndex *tip = m_chainman.ActiveChain().Tip();
2509 // Use a 144 block buffer, so that we'll accept headers that fork from
2510 // near our tip.
2511 near_chaintip_work = tip->nChainWork - std::min<arith_uint256>(144*GetBlockProof(*tip), tip->nChainWork);
2512 }
2513 return std::max(near_chaintip_work, m_chainman.MinimumChainWork());
2514}
2515
2522void PeerManagerImpl::HandleUnconnectingHeaders(CNode& pfrom, Peer& peer,
2523 const std::vector<CBlockHeader>& headers)
2524{
2525 // Try to fill in the missing headers.
2526 const CBlockIndex* best_header{WITH_LOCK(cs_main, return m_chainman.m_best_header)};
2527 if (MaybeSendGetHeaders(pfrom, GetLocator(best_header), peer)) {
2528 LogDebug(BCLog::NET, "received header %s: missing prev block %s, sending getheaders (%d) to end (peer=%d)\n",
2529 headers[0].GetHash().ToString(),
2530 headers[0].hashPrevBlock.ToString(),
2531 best_header->nHeight,
2532 pfrom.GetId());
2533 }
2534
2535 // Set hashLastUnknownBlock for this peer, so that if we
2536 // eventually get the headers - even from a different peer -
2537 // we can use this peer to download.
2538 WITH_LOCK(cs_main, UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()));
2539}
2540
2541bool PeerManagerImpl::CheckHeadersAreContinuous(const std::vector<CBlockHeader>& headers) const
2542{
2543 uint256 hashLastBlock;
2544 for (const CBlockHeader& header : headers) {
2545 if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) {
2546 return false;
2547 }
2548 hashLastBlock = header.GetHash();
2549 }
2550 return true;
2551}
2552
2553bool PeerManagerImpl::IsContinuationOfLowWorkHeadersSync(Peer& peer, CNode& pfrom, std::vector<CBlockHeader>& headers)
2554{
2555 if (peer.m_headers_sync) {
2556 auto result = peer.m_headers_sync->ProcessNextHeaders(headers, headers.size() == m_opts.max_headers_result);
2557 // If it is a valid continuation, we should treat the existing getheaders request as responded to.
2558 if (result.success) peer.m_last_getheaders_timestamp = {};
2559 if (result.request_more) {
2560 auto locator = peer.m_headers_sync->NextHeadersRequestLocator();
2561 // If we were instructed to ask for a locator, it should not be empty.
2562 Assume(!locator.vHave.empty());
2563 // We can only be instructed to request more if processing was successful.
2564 Assume(result.success);
2565 if (!locator.vHave.empty()) {
2566 // It should be impossible for the getheaders request to fail,
2567 // because we just cleared the last getheaders timestamp.
2568 bool sent_getheaders = MaybeSendGetHeaders(pfrom, locator, peer);
2569 Assume(sent_getheaders);
2570 LogDebug(BCLog::NET, "more getheaders (from %s) to peer=%d\n",
2571 locator.vHave.front().ToString(), pfrom.GetId());
2572 }
2573 }
2574
2575 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::FINAL) {
2576 peer.m_headers_sync.reset(nullptr);
2577
2578 // Delete this peer's entry in m_headers_presync_stats.
2579 // If this is m_headers_presync_bestpeer, it will be replaced later
2580 // by the next peer that triggers the else{} branch below.
2581 LOCK(m_headers_presync_mutex);
2582 m_headers_presync_stats.erase(pfrom.GetId());
2583 } else {
2584 // Build statistics for this peer's sync.
2585 HeadersPresyncStats stats;
2586 stats.first = peer.m_headers_sync->GetPresyncWork();
2587 if (peer.m_headers_sync->GetState() == HeadersSyncState::State::PRESYNC) {
2588 stats.second = {peer.m_headers_sync->GetPresyncHeight(),
2589 peer.m_headers_sync->GetPresyncTime()};
2590 }
2591
2592 // Update statistics in stats.
2593 LOCK(m_headers_presync_mutex);
2594 m_headers_presync_stats[pfrom.GetId()] = stats;
2595 auto best_it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
2596 bool best_updated = false;
2597 if (best_it == m_headers_presync_stats.end()) {
2598 // If the cached best peer is outdated, iterate over all remaining ones (including
2599 // newly updated one) to find the best one.
2600 NodeId peer_best{-1};
2601 const HeadersPresyncStats* stat_best{nullptr};
2602 for (const auto& [peer, stat] : m_headers_presync_stats) {
2603 if (!stat_best || stat > *stat_best) {
2604 peer_best = peer;
2605 stat_best = &stat;
2606 }
2607 }
2608 m_headers_presync_bestpeer = peer_best;
2609 best_updated = (peer_best == pfrom.GetId());
2610 } else if (best_it->first == pfrom.GetId() || stats > best_it->second) {
2611 // pfrom was and remains the best peer, or pfrom just became best.
2612 m_headers_presync_bestpeer = pfrom.GetId();
2613 best_updated = true;
2614 }
2615 if (best_updated && stats.second.has_value()) {
2616 // If the best peer updated, and it is in its first phase, signal.
2617 m_headers_presync_should_signal = true;
2618 }
2619 }
2620
2621 if (result.success) {
2622 // We only overwrite the headers passed in if processing was
2623 // successful.
2624 headers.swap(result.pow_validated_headers);
2625 }
2626
2627 return result.success;
2628 }
2629 // Either we didn't have a sync in progress, or something went wrong
2630 // processing these headers, or we are returning headers to the caller to
2631 // process.
2632 return false;
2633}
2634
2635bool PeerManagerImpl::TryLowWorkHeadersSync(Peer& peer, CNode& pfrom, const CBlockIndex* chain_start_header, std::vector<CBlockHeader>& headers)
2636{
2637 // Calculate the claimed total work on this chain.
2638 arith_uint256 total_work = chain_start_header->nChainWork + CalculateClaimedHeadersWork(headers);
2639
2640 // Our dynamic anti-DoS threshold (minimum work required on a headers chain
2641 // before we'll store it)
2642 arith_uint256 minimum_chain_work = GetAntiDoSWorkThreshold();
2643
2644 // Avoid DoS via low-difficulty-headers by only processing if the headers
2645 // are part of a chain with sufficient work.
2646 if (total_work < minimum_chain_work) {
2647 // Only try to sync with this peer if their headers message was full;
2648 // otherwise they don't have more headers after this so no point in
2649 // trying to sync their too-little-work chain.
2650 if (headers.size() == m_opts.max_headers_result) {
2651 // Note: we could advance to the last header in this set that is
2652 // known to us, rather than starting at the first header (which we
2653 // may already have); however this is unlikely to matter much since
2654 // ProcessHeadersMessage() already handles the case where all
2655 // headers in a received message are already known and are
2656 // ancestors of m_best_header or chainActive.Tip(), by skipping
2657 // this logic in that case. So even if the first header in this set
2658 // of headers is known, some header in this set must be new, so
2659 // advancing to the first unknown header would be a small effect.
2660 LOCK(peer.m_headers_sync_mutex);
2661 peer.m_headers_sync.reset(new HeadersSyncState(peer.m_id, m_chainparams.GetConsensus(),
2662 m_chainparams.HeadersSync(), chain_start_header, minimum_chain_work));
2663
2664 // Now a HeadersSyncState object for tracking this synchronization
2665 // is created, process the headers using it as normal. Failures are
2666 // handled inside of IsContinuationOfLowWorkHeadersSync.
2667 (void)IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2668 } else {
2669 LogDebug(BCLog::NET, "Ignoring low-work chain (height=%u) from peer=%d\n", chain_start_header->nHeight + headers.size(), pfrom.GetId());
2670 }
2671
2672 // The peer has not yet given us a chain that meets our work threshold,
2673 // so we want to prevent further processing of the headers in any case.
2674 headers = {};
2675 return true;
2676 }
2677
2678 return false;
2679}
2680
2681bool PeerManagerImpl::IsAncestorOfBestHeaderOrTip(const CBlockIndex* header)
2682{
2683 if (header == nullptr) {
2684 return false;
2685 } else if (m_chainman.m_best_header != nullptr && header == m_chainman.m_best_header->GetAncestor(header->nHeight)) {
2686 return true;
2687 } else if (m_chainman.ActiveChain().Contains(header)) {
2688 return true;
2689 }
2690 return false;
2691}
2692
2693bool PeerManagerImpl::MaybeSendGetHeaders(CNode& pfrom, const CBlockLocator& locator, Peer& peer)
2694{
2695 const auto current_time = NodeClock::now();
2696
2697 // Only allow a new getheaders message to go out if we don't have a recent
2698 // one already in-flight
2699 if (current_time - peer.m_last_getheaders_timestamp > HEADERS_RESPONSE_TIME) {
2700 MakeAndPushMessage(pfrom, NetMsgType::GETHEADERS, locator, uint256());
2701 peer.m_last_getheaders_timestamp = current_time;
2702 return true;
2703 }
2704 return false;
2705}
2706
2707/*
2708 * Given a new headers tip ending in last_header, potentially request blocks towards that tip.
2709 * We require that the given tip have at least as much work as our tip, and for
2710 * our current tip to be "close to synced" (see CanDirectFetch()).
2711 */
2712void PeerManagerImpl::HeadersDirectFetchBlocks(CNode& pfrom, const Peer& peer, const CBlockIndex& last_header)
2713{
2714 LOCK(cs_main);
2715 CNodeState *nodestate = State(pfrom.GetId());
2716
2717 if (CanDirectFetch() && last_header.IsValid(BLOCK_VALID_TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= last_header.nChainWork) {
2718 std::vector<const CBlockIndex*> vToFetch;
2719 const CBlockIndex* pindexWalk{&last_header};
2720 // Calculate all the blocks we'd need to switch to last_header, up to a limit.
2721 while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2722 if (!(pindexWalk->nStatus & BLOCK_HAVE_DATA) &&
2723 !IsBlockRequested(pindexWalk->GetBlockHash()) &&
2724 (!DeploymentActiveAt(*pindexWalk, m_chainman, Consensus::DEPLOYMENT_SEGWIT) || CanServeWitnesses(peer))) {
2725 // We don't have this block, and it's not yet in flight.
2726 vToFetch.push_back(pindexWalk);
2727 }
2728 pindexWalk = pindexWalk->pprev;
2729 }
2730 // If pindexWalk still isn't on our main chain, we're looking at a
2731 // very large reorg at a time we think we're close to caught up to
2732 // the main chain -- this shouldn't really happen. Bail out on the
2733 // direct fetch and rely on parallel download instead.
2734 if (!m_chainman.ActiveChain().Contains(pindexWalk)) {
2735 LogDebug(BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
2736 last_header.GetBlockHash().ToString(),
2737 last_header.nHeight);
2738 } else {
2739 std::vector<CInv> vGetData;
2740 // Download as much as possible, from earliest to latest.
2741 for (const CBlockIndex* pindex : vToFetch | std::views::reverse) {
2742 if (nodestate->vBlocksInFlight.size() >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
2743 // Can't download any more from this peer
2744 break;
2745 }
2746 uint32_t nFetchFlags = GetFetchFlags(peer);
2747 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
2748 BlockRequested(pfrom.GetId(), *pindex);
2749 LogDebug(BCLog::NET, "Requesting block %s from peer=%d\n",
2750 pindex->GetBlockHash().ToString(), pfrom.GetId());
2751 }
2752 if (vGetData.size() > 1) {
2753 LogDebug(BCLog::NET, "Downloading blocks toward %s (%d) via headers direct fetch\n",
2754 last_header.GetBlockHash().ToString(),
2755 last_header.nHeight);
2756 }
2757 if (vGetData.size() > 0) {
2758 if (!m_opts.ignore_incoming_txs &&
2759 nodestate->m_provides_cmpctblocks &&
2760 vGetData.size() == 1 &&
2761 mapBlocksInFlight.size() == 1 &&
2762 last_header.pprev->IsValid(BLOCK_VALID_CHAIN)) {
2763 // In any case, we want to download using a compact block, not a regular one
2764 vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
2765 }
2766 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vGetData);
2767 }
2768 }
2769 }
2770}
2771
2777void PeerManagerImpl::UpdatePeerStateForReceivedHeaders(CNode& pfrom, Peer& peer,
2778 const CBlockIndex& last_header, bool received_new_header, bool may_have_more_headers)
2779{
2780 LOCK(cs_main);
2781 CNodeState *nodestate = State(pfrom.GetId());
2782
2783 UpdateBlockAvailability(pfrom.GetId(), last_header.GetBlockHash());
2784
2785 // From here, pindexBestKnownBlock should be guaranteed to be non-null,
2786 // because it is set in UpdateBlockAvailability. Some nullptr checks
2787 // are still present, however, as belt-and-suspenders.
2788
2789 if (received_new_header && last_header.nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
2790 nodestate->m_last_block_announcement = GetTime();
2791 }
2792
2793 // If we're in IBD, we want outbound peers that will serve us a useful
2794 // chain. Disconnect peers that are on chains with insufficient work.
2795 if (m_chainman.IsInitialBlockDownload() && !may_have_more_headers) {
2796 // If the peer has no more headers to give us, then we know we have
2797 // their tip.
2798 if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < m_chainman.MinimumChainWork()) {
2799 // This peer has too little work on their headers chain to help
2800 // us sync -- disconnect if it is an outbound disconnection
2801 // candidate.
2802 // Note: We compare their tip to the minimum chain work (rather than
2803 // m_chainman.ActiveChain().Tip()) because we won't start block download
2804 // until we have a headers chain that has at least
2805 // the minimum chain work, even if a peer has a chain past our tip,
2806 // as an anti-DoS measure.
2807 if (pfrom.IsOutboundOrBlockRelayConn()) {
2808 LogInfo("outbound peer headers chain has insufficient work, %s\n", pfrom.DisconnectMsg(fLogIPs));
2809 pfrom.fDisconnect = true;
2810 }
2811 }
2812 }
2813
2814 // If this is an outbound full-relay peer, check to see if we should protect
2815 // it from the bad/lagging chain logic.
2816 // Note that outbound block-relay peers are excluded from this protection, and
2817 // thus always subject to eviction under the bad/lagging chain logic.
2818 // See ChainSyncTimeoutState.
2819 if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) {
2820 if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) {
2821 LogDebug(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId());
2822 nodestate->m_chain_sync.m_protect = true;
2823 ++m_outbound_peers_with_protect_from_disconnect;
2824 }
2825 }
2826}
2827
2828void PeerManagerImpl::ProcessHeadersMessage(CNode& pfrom, Peer& peer,
2829 std::vector<CBlockHeader>&& headers,
2830 bool via_compact_block)
2831{
2832 size_t nCount = headers.size();
2833
2834 if (nCount == 0) {
2835 // Nothing interesting. Stop asking this peers for more headers.
2836 // If we were in the middle of headers sync, receiving an empty headers
2837 // message suggests that the peer suddenly has nothing to give us
2838 // (perhaps it reorged to our chain). Clear download state for this peer.
2839 LOCK(peer.m_headers_sync_mutex);
2840 if (peer.m_headers_sync) {
2841 peer.m_headers_sync.reset(nullptr);
2842 LOCK(m_headers_presync_mutex);
2843 m_headers_presync_stats.erase(pfrom.GetId());
2844 }
2845 // A headers message with no headers cannot be an announcement, so assume
2846 // it is a response to our last getheaders request, if there is one.
2847 peer.m_last_getheaders_timestamp = {};
2848 return;
2849 }
2850
2851 // Before we do any processing, make sure these pass basic sanity checks.
2852 // We'll rely on headers having valid proof-of-work further down, as an
2853 // anti-DoS criteria (note: this check is required before passing any
2854 // headers into HeadersSyncState).
2855 if (!CheckHeadersPoW(headers, m_chainparams.GetConsensus(), peer)) {
2856 // Misbehaving() calls are handled within CheckHeadersPoW(), so we can
2857 // just return. (Note that even if a header is announced via compact
2858 // block, the header itself should be valid, so this type of error can
2859 // always be punished.)
2860 return;
2861 }
2862
2863 const CBlockIndex *pindexLast = nullptr;
2864
2865 // We'll set already_validated_work to true if these headers are
2866 // successfully processed as part of a low-work headers sync in progress
2867 // (either in PRESYNC or REDOWNLOAD phase).
2868 // If true, this will mean that any headers returned to us (ie during
2869 // REDOWNLOAD) can be validated without further anti-DoS checks.
2870 bool already_validated_work = false;
2871
2872 // If we're in the middle of headers sync, let it do its magic.
2873 bool have_headers_sync = false;
2874 {
2875 LOCK(peer.m_headers_sync_mutex);
2876
2877 already_validated_work = IsContinuationOfLowWorkHeadersSync(peer, pfrom, headers);
2878
2879 // The headers we passed in may have been:
2880 // - untouched, perhaps if no headers-sync was in progress, or some
2881 // failure occurred
2882 // - erased, such as if the headers were successfully processed and no
2883 // additional headers processing needs to take place (such as if we
2884 // are still in PRESYNC)
2885 // - replaced with headers that are now ready for validation, such as
2886 // during the REDOWNLOAD phase of a low-work headers sync.
2887 // So just check whether we still have headers that we need to process,
2888 // or not.
2889 if (headers.empty()) {
2890 return;
2891 }
2892
2893 have_headers_sync = !!peer.m_headers_sync;
2894 }
2895
2896 // Do these headers connect to something in our block index?
2897 const CBlockIndex *chain_start_header{WITH_LOCK(::cs_main, return m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock))};
2898 bool headers_connect_blockindex{chain_start_header != nullptr};
2899
2900 if (!headers_connect_blockindex) {
2901 // This could be a BIP 130 block announcement, use
2902 // special logic for handling headers that don't connect, as this
2903 // could be benign.
2904 HandleUnconnectingHeaders(pfrom, peer, headers);
2905 return;
2906 }
2907
2908 // If headers connect, assume that this is in response to any outstanding getheaders
2909 // request we may have sent, and clear out the time of our last request. Non-connecting
2910 // headers cannot be a response to a getheaders request.
2911 peer.m_last_getheaders_timestamp = {};
2912
2913 // If the headers we received are already in memory and an ancestor of
2914 // m_best_header or our tip, skip anti-DoS checks. These headers will not
2915 // use any more memory (and we are not leaking information that could be
2916 // used to fingerprint us).
2917 const CBlockIndex *last_received_header{nullptr};
2918 {
2919 LOCK(cs_main);
2920 last_received_header = m_chainman.m_blockman.LookupBlockIndex(headers.back().GetHash());
2921 if (IsAncestorOfBestHeaderOrTip(last_received_header)) {
2922 already_validated_work = true;
2923 }
2924 }
2925
2926 // If our peer has NetPermissionFlags::NoBan privileges, then bypass our
2927 // anti-DoS logic (this saves bandwidth when we connect to a trusted peer
2928 // on startup).
2930 already_validated_work = true;
2931 }
2932
2933 // At this point, the headers connect to something in our block index.
2934 // Do anti-DoS checks to determine if we should process or store for later
2935 // processing.
2936 if (!already_validated_work && TryLowWorkHeadersSync(peer, pfrom,
2937 chain_start_header, headers)) {
2938 // If we successfully started a low-work headers sync, then there
2939 // should be no headers to process any further.
2940 Assume(headers.empty());
2941 return;
2942 }
2943
2944 // At this point, we have a set of headers with sufficient work on them
2945 // which can be processed.
2946
2947 // If we don't have the last header, then this peer will have given us
2948 // something new (if these headers are valid).
2949 bool received_new_header{last_received_header == nullptr};
2950
2951 // Now process all the headers.
2953 const bool processed{m_chainman.ProcessNewBlockHeaders(headers,
2954 /*min_pow_checked=*/true,
2955 state, &pindexLast)};
2956 if (!processed) {
2957 if (state.IsInvalid()) {
2958 MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received");
2959 return;
2960 }
2961 }
2962 assert(pindexLast);
2963
2964 if (processed && received_new_header) {
2965 LogBlockHeader(*pindexLast, pfrom, /*via_compact_block=*/false);
2966 }
2967
2968 // Consider fetching more headers if we are not using our headers-sync mechanism.
2969 if (nCount == m_opts.max_headers_result && !have_headers_sync) {
2970 // Headers message had its maximum size; the peer may have more headers.
2971 if (MaybeSendGetHeaders(pfrom, GetLocator(pindexLast), peer)) {
2972 LogDebug(BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n",
2973 pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height);
2974 }
2975 }
2976
2977 UpdatePeerStateForReceivedHeaders(pfrom, peer, *pindexLast, received_new_header, nCount == m_opts.max_headers_result);
2978
2979 // Consider immediately downloading blocks.
2980 HeadersDirectFetchBlocks(pfrom, peer, *pindexLast);
2981
2982 return;
2983}
2984
2985std::optional<node::PackageToValidate> PeerManagerImpl::ProcessInvalidTx(NodeId nodeid, const CTransactionRef& ptx, const TxValidationState& state,
2986 bool first_time_failure)
2987{
2988 AssertLockNotHeld(m_peer_mutex);
2989 AssertLockHeld(g_msgproc_mutex);
2990 AssertLockHeld(m_tx_download_mutex);
2991
2992 PeerRef peer{GetPeerRef(nodeid)};
2993
2994 LogDebug(BCLog::MEMPOOLREJ, "%s (wtxid=%s) from peer=%d was not accepted: %s\n",
2995 ptx->GetHash().ToString(),
2996 ptx->GetWitnessHash().ToString(),
2997 nodeid,
2998 state.ToString());
2999
3000 const auto& [add_extra_compact_tx, unique_parents, package_to_validate] = m_txdownloadman.MempoolRejectedTx(ptx, state, nodeid, first_time_failure);
3001
3002 if (add_extra_compact_tx && RecursiveDynamicUsage(*ptx) < 100000) {
3003 AddToCompactExtraTransactions(ptx);
3004 }
3005 for (const Txid& parent_txid : unique_parents) {
3006 if (peer) AddKnownTx(*peer, parent_txid.ToUint256());
3007 }
3008
3009 return package_to_validate;
3010}
3011
3012void PeerManagerImpl::ProcessValidTx(NodeId nodeid, const CTransactionRef& tx, const std::list<CTransactionRef>& replaced_transactions)
3013{
3014 AssertLockNotHeld(m_peer_mutex);
3015 AssertLockHeld(g_msgproc_mutex);
3016 AssertLockHeld(m_tx_download_mutex);
3017
3018 m_txdownloadman.MempoolAcceptedTx(tx);
3019
3020 LogDebug(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s (wtxid=%s) (poolsz %u txn, %u kB)\n",
3021 nodeid,
3022 tx->GetHash().ToString(),
3023 tx->GetWitnessHash().ToString(),
3024 m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000);
3025
3026 RelayTransaction(tx->GetHash(), tx->GetWitnessHash());
3027
3028 for (const CTransactionRef& removedTx : replaced_transactions) {
3029 AddToCompactExtraTransactions(removedTx);
3030 }
3031}
3032
3033void PeerManagerImpl::ProcessPackageResult(const node::PackageToValidate& package_to_validate, const PackageMempoolAcceptResult& package_result)
3034{
3035 AssertLockNotHeld(m_peer_mutex);
3036 AssertLockHeld(g_msgproc_mutex);
3037 AssertLockHeld(m_tx_download_mutex);
3038
3039 const auto& package = package_to_validate.m_txns;
3040 const auto& senders = package_to_validate.m_senders;
3041
3042 if (package_result.m_state.IsInvalid()) {
3043 m_txdownloadman.MempoolRejectedPackage(package);
3044 }
3045 // We currently only expect to process 1-parent-1-child packages. Remove if this changes.
3046 if (!Assume(package.size() == 2)) return;
3047
3048 // Iterate backwards to erase in-package descendants from the orphanage before they become
3049 // relevant in AddChildrenToWorkSet.
3050 auto package_iter = package.rbegin();
3051 auto senders_iter = senders.rbegin();
3052 while (package_iter != package.rend()) {
3053 const auto& tx = *package_iter;
3054 const NodeId nodeid = *senders_iter;
3055 const auto it_result{package_result.m_tx_results.find(tx->GetWitnessHash())};
3056
3057 // It is not guaranteed that a result exists for every transaction.
3058 if (it_result != package_result.m_tx_results.end()) {
3059 const auto& tx_result = it_result->second;
3060 switch (tx_result.m_result_type) {
3062 {
3063 ProcessValidTx(nodeid, tx, tx_result.m_replaced_transactions);
3064 break;
3065 }
3068 {
3069 // Don't add to vExtraTxnForCompact, as these transactions should have already been
3070 // added there when added to the orphanage or rejected for TX_RECONSIDERABLE.
3071 // This should be updated if package submission is ever used for transactions
3072 // that haven't already been validated before.
3073 ProcessInvalidTx(nodeid, tx, tx_result.m_state, /*first_time_failure=*/false);
3074 break;
3075 }
3077 {
3078 // AlreadyHaveTx() should be catching transactions that are already in mempool.
3079 Assume(false);
3080 break;
3081 }
3082 }
3083 }
3084 package_iter++;
3085 senders_iter++;
3086 }
3087}
3088
3089// NOTE: the orphan processing used to be uninterruptible and quadratic, which could allow a peer to stall the node for
3090// hours with specially crafted transactions. See https://bitcoincore.org/en/2024/07/03/disclose-orphan-dos.
3091bool PeerManagerImpl::ProcessOrphanTx(Peer& peer)
3092{
3093 AssertLockHeld(g_msgproc_mutex);
3094 LOCK2(::cs_main, m_tx_download_mutex);
3095
3096 CTransactionRef porphanTx = nullptr;
3097
3098 while (CTransactionRef porphanTx = m_txdownloadman.GetTxToReconsider(peer.m_id)) {
3099 const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx);
3100 const TxValidationState& state = result.m_state;
3101 const Txid& orphanHash = porphanTx->GetHash();
3102 const Wtxid& orphan_wtxid = porphanTx->GetWitnessHash();
3103
3105 LogDebug(BCLog::TXPACKAGES, " accepted orphan tx %s (wtxid=%s)\n", orphanHash.ToString(), orphan_wtxid.ToString());
3106 ProcessValidTx(peer.m_id, porphanTx, result.m_replaced_transactions);
3107 return true;
3108 } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) {
3109 LogDebug(BCLog::TXPACKAGES, " invalid orphan tx %s (wtxid=%s) from peer=%d. %s\n",
3110 orphanHash.ToString(),
3111 orphan_wtxid.ToString(),
3112 peer.m_id,
3113 state.ToString());
3114
3115 if (Assume(state.IsInvalid() &&
3119 ProcessInvalidTx(peer.m_id, porphanTx, state, /*first_time_failure=*/false);
3120 }
3121 return true;
3122 }
3123 }
3124
3125 return false;
3126}
3127
3128bool PeerManagerImpl::PrepareBlockFilterRequest(CNode& node, Peer& peer,
3129 BlockFilterType filter_type, uint32_t start_height,
3130 const uint256& stop_hash, uint32_t max_height_diff,
3131 const CBlockIndex*& stop_index,
3132 BlockFilterIndex*& filter_index)
3133{
3134 const bool supported_filter_type =
3135 (filter_type == BlockFilterType::BASIC &&
3136 (peer.m_our_services & NODE_COMPACT_FILTERS));
3137 if (!supported_filter_type) {
3138 LogDebug(BCLog::NET, "peer requested unsupported block filter type: %d, %s\n",
3139 static_cast<uint8_t>(filter_type), node.DisconnectMsg(fLogIPs));
3140 node.fDisconnect = true;
3141 return false;
3142 }
3143
3144 {
3145 LOCK(cs_main);
3146 stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash);
3147
3148 // Check that the stop block exists and the peer would be allowed to fetch it.
3149 if (!stop_index || !BlockRequestAllowed(stop_index)) {
3150 LogDebug(BCLog::NET, "peer requested invalid block hash: %s, %s\n",
3151 stop_hash.ToString(), node.DisconnectMsg(fLogIPs));
3152 node.fDisconnect = true;
3153 return false;
3154 }
3155 }
3156
3157 uint32_t stop_height = stop_index->nHeight;
3158 if (start_height > stop_height) {
3159 LogDebug(BCLog::NET, "peer sent invalid getcfilters/getcfheaders with "
3160 "start height %d and stop height %d, %s\n",
3161 start_height, stop_height, node.DisconnectMsg(fLogIPs));
3162 node.fDisconnect = true;
3163 return false;
3164 }
3165 if (stop_height - start_height >= max_height_diff) {
3166 LogDebug(BCLog::NET, "peer requested too many cfilters/cfheaders: %d / %d, %s\n",
3167 stop_height - start_height + 1, max_height_diff, node.DisconnectMsg(fLogIPs));
3168 node.fDisconnect = true;
3169 return false;
3170 }
3171
3172 filter_index = GetBlockFilterIndex(filter_type);
3173 if (!filter_index) {
3174 LogDebug(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type));
3175 return false;
3176 }
3177
3178 return true;
3179}
3180
3181void PeerManagerImpl::ProcessGetCFilters(CNode& node, Peer& peer, DataStream& vRecv)
3182{
3183 uint8_t filter_type_ser;
3184 uint32_t start_height;
3185 uint256 stop_hash;
3186
3187 vRecv >> filter_type_ser >> start_height >> stop_hash;
3188
3189 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3190
3191 const CBlockIndex* stop_index;
3192 BlockFilterIndex* filter_index;
3193 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3194 MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
3195 return;
3196 }
3197
3198 std::vector<BlockFilter> filters;
3199 if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
3200 LogDebug(BCLog::NET, "Failed to find block filter in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3201 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3202 return;
3203 }
3204
3205 for (const auto& filter : filters) {
3206 MakeAndPushMessage(node, NetMsgType::CFILTER, filter);
3207 }
3208}
3209
3210void PeerManagerImpl::ProcessGetCFHeaders(CNode& node, Peer& peer, DataStream& vRecv)
3211{
3212 uint8_t filter_type_ser;
3213 uint32_t start_height;
3214 uint256 stop_hash;
3215
3216 vRecv >> filter_type_ser >> start_height >> stop_hash;
3217
3218 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3219
3220 const CBlockIndex* stop_index;
3221 BlockFilterIndex* filter_index;
3222 if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash,
3223 MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
3224 return;
3225 }
3226
3227 uint256 prev_header;
3228 if (start_height > 0) {
3229 const CBlockIndex* const prev_block =
3230 stop_index->GetAncestor(static_cast<int>(start_height - 1));
3231 if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
3232 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3233 BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString());
3234 return;
3235 }
3236 }
3237
3238 std::vector<uint256> filter_hashes;
3239 if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) {
3240 LogDebug(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, start_height=%d, stop_hash=%s\n",
3241 BlockFilterTypeName(filter_type), start_height, stop_hash.ToString());
3242 return;
3243 }
3244
3245 MakeAndPushMessage(node, NetMsgType::CFHEADERS,
3246 filter_type_ser,
3247 stop_index->GetBlockHash(),
3248 prev_header,
3249 filter_hashes);
3250}
3251
3252void PeerManagerImpl::ProcessGetCFCheckPt(CNode& node, Peer& peer, DataStream& vRecv)
3253{
3254 uint8_t filter_type_ser;
3255 uint256 stop_hash;
3256
3257 vRecv >> filter_type_ser >> stop_hash;
3258
3259 const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser);
3260
3261 const CBlockIndex* stop_index;
3262 BlockFilterIndex* filter_index;
3263 if (!PrepareBlockFilterRequest(node, peer, filter_type, /*start_height=*/0, stop_hash,
3264 /*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
3265 stop_index, filter_index)) {
3266 return;
3267 }
3268
3269 std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
3270
3271 // Populate headers.
3272 const CBlockIndex* block_index = stop_index;
3273 for (int i = headers.size() - 1; i >= 0; i--) {
3274 int height = (i + 1) * CFCHECKPT_INTERVAL;
3275 block_index = block_index->GetAncestor(height);
3276
3277 if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
3278 LogDebug(BCLog::NET, "Failed to find block filter header in index: filter_type=%s, block_hash=%s\n",
3279 BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString());
3280 return;
3281 }
3282 }
3283
3284 MakeAndPushMessage(node, NetMsgType::CFCHECKPT,
3285 filter_type_ser,
3286 stop_index->GetBlockHash(),
3287 headers);
3288}
3289
3290void PeerManagerImpl::ProcessBlock(CNode& node, const std::shared_ptr<const CBlock>& block, bool force_processing, bool min_pow_checked)
3291{
3292 bool new_block{false};
3293 m_chainman.ProcessNewBlock(block, force_processing, min_pow_checked, &new_block);
3294 if (new_block) {
3295 node.m_last_block_time = GetTime<std::chrono::seconds>();
3296 // In case this block came from a different peer than we requested
3297 // from, we can erase the block request now anyway (as we just stored
3298 // this block to disk).
3299 LOCK(cs_main);
3300 RemoveBlockRequest(block->GetHash(), std::nullopt);
3301 } else {
3302 LOCK(cs_main);
3303 mapBlockSource.erase(block->GetHash());
3304 }
3305}
3306
3307void PeerManagerImpl::ProcessCompactBlockTxns(CNode& pfrom, Peer& peer, const BlockTransactions& block_transactions)
3308{
3309 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
3310 bool fBlockRead{false};
3311 {
3312 LOCK(cs_main);
3313
3314 auto range_flight = mapBlocksInFlight.equal_range(block_transactions.blockhash);
3315 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
3316 bool requested_block_from_this_peer{false};
3317
3318 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
3319 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
3320
3321 while (range_flight.first != range_flight.second) {
3322 auto [node_id, block_it] = range_flight.first->second;
3323 if (node_id == pfrom.GetId() && block_it->partialBlock) {
3324 requested_block_from_this_peer = true;
3325 break;
3326 }
3327 range_flight.first++;
3328 }
3329
3330 if (!requested_block_from_this_peer) {
3331 LogDebug(BCLog::NET, "Peer %d sent us block transactions for block we weren't expecting\n", pfrom.GetId());
3332 return;
3333 }
3334
3335 PartiallyDownloadedBlock& partialBlock = *range_flight.first->second.second->partialBlock;
3336
3337 if (partialBlock.header.IsNull()) {
3338 // It is possible for the header to be empty if a previous call to FillBlock wiped the header, but left
3339 // the PartiallyDownloadedBlock pointer around (i.e. did not call RemoveBlockRequest). In this case, we
3340 // should not call LookupBlockIndex below.
3341 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3342 Misbehaving(peer, "previous compact block reconstruction attempt failed");
3343 LogDebug(BCLog::NET, "Peer %d sent compact block transactions multiple times", pfrom.GetId());
3344 return;
3345 }
3346
3347 // We should not have gotten this far in compact block processing unless it's attached to a known header
3348 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(partialBlock.header.hashPrevBlock))};
3349 ReadStatus status = partialBlock.FillBlock(*pblock, block_transactions.txn,
3350 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
3351 if (status == READ_STATUS_INVALID) {
3352 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
3353 Misbehaving(peer, "invalid compact block/non-matching block transactions");
3354 return;
3355 } else if (status == READ_STATUS_FAILED) {
3356 if (first_in_flight) {
3357 // Might have collided, fall back to getdata now :(
3358 // We keep the failed partialBlock to disallow processing another compact block announcement from the same
3359 // peer for the same block. We let the full block download below continue under the same m_downloading_since
3360 // timer.
3361 std::vector<CInv> invs;
3362 invs.emplace_back(MSG_BLOCK | GetFetchFlags(peer), block_transactions.blockhash);
3363 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, invs);
3364 } else {
3365 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId());
3366 LogDebug(BCLog::NET, "Peer %d sent us a compact block but it failed to reconstruct, waiting on first download to complete\n", pfrom.GetId());
3367 return;
3368 }
3369 } else {
3370 // Block is okay for further processing
3371 RemoveBlockRequest(block_transactions.blockhash, pfrom.GetId()); // it is now an empty pointer
3372 fBlockRead = true;
3373 // mapBlockSource is used for potentially punishing peers and
3374 // updating which peers send us compact blocks, so the race
3375 // between here and cs_main in ProcessNewBlock is fine.
3376 // BIP 152 permits peers to relay compact blocks after validating
3377 // the header only; we should not punish peers if the block turns
3378 // out to be invalid.
3379 mapBlockSource.emplace(block_transactions.blockhash, std::make_pair(pfrom.GetId(), false));
3380 }
3381 } // Don't hold cs_main when we call into ProcessNewBlock
3382 if (fBlockRead) {
3383 // Since we requested this block (it was in mapBlocksInFlight), force it to be processed,
3384 // even if it would not be a candidate for new tip (missing previous block, chain not long enough, etc)
3385 // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
3386 // disk-space attacks), but this should be safe due to the
3387 // protections in the compact block handler -- see related comment
3388 // in compact block optimistic reconstruction handling.
3389 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
3390 }
3391 return;
3392}
3393
3394void PeerManagerImpl::LogBlockHeader(const CBlockIndex& index, const CNode& peer, bool via_compact_block) {
3395 // To prevent log spam, this function should only be called after it was determined that a
3396 // header is both new and valid.
3397 //
3398 // These messages are valuable for detecting potential selfish mining behavior;
3399 // if multiple displacing headers are seen near simultaneously across many
3400 // nodes in the network, this might be an indication of selfish mining.
3401 // In addition it can be used to identify peers which send us a header, but
3402 // don't followup with a complete and valid (compact) block.
3403 // Having this log by default when not in IBD ensures broad availability of
3404 // this data in case investigation is merited.
3405 const auto msg = strprintf(
3406 "Saw new %sheader hash=%s height=%d peer=%d%s",
3407 via_compact_block ? "cmpctblock " : "",
3408 index.GetBlockHash().ToString(),
3409 index.nHeight,
3410 peer.GetId(),
3411 peer.LogIP(fLogIPs)
3412 );
3413 if (m_chainman.IsInitialBlockDownload()) {
3415 } else {
3416 LogInfo("%s", msg);
3417 }
3418}
3419
3420void PeerManagerImpl::ProcessMessage(CNode& pfrom, const std::string& msg_type, DataStream& vRecv,
3421 const std::chrono::microseconds time_received,
3422 const std::atomic<bool>& interruptMsgProc)
3423{
3424 AssertLockHeld(g_msgproc_mutex);
3425
3426 LogDebug(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
3427
3428 PeerRef peer = GetPeerRef(pfrom.GetId());
3429 if (peer == nullptr) return;
3430
3431 if (msg_type == NetMsgType::VERSION) {
3432 if (pfrom.nVersion != 0) {
3433 LogDebug(BCLog::NET, "redundant version message from peer=%d\n", pfrom.GetId());
3434 return;
3435 }
3436
3437 int64_t nTime;
3438 CService addrMe;
3439 uint64_t nNonce = 1;
3440 ServiceFlags nServices;
3441 int nVersion;
3442 std::string cleanSubVer;
3443 int starting_height = -1;
3444 bool fRelay = true;
3445
3446 vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime;
3447 if (nTime < 0) {
3448 nTime = 0;
3449 }
3450 vRecv.ignore(8); // Ignore the addrMe service bits sent by the peer
3451 vRecv >> CNetAddr::V1(addrMe);
3452 if (!pfrom.IsInboundConn())
3453 {
3454 // Overwrites potentially existing services. In contrast to this,
3455 // unvalidated services received via gossip relay in ADDR/ADDRV2
3456 // messages are only ever added but cannot replace existing ones.
3457 m_addrman.SetServices(pfrom.addr, nServices);
3458 }
3459 if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices))
3460 {
3461 LogDebug(BCLog::NET, "peer does not offer the expected services (%08x offered, %08x expected), %s\n",
3462 nServices,
3463 GetDesirableServiceFlags(nServices),
3464 pfrom.DisconnectMsg(fLogIPs));
3465 pfrom.fDisconnect = true;
3466 return;
3467 }
3468
3469 if (nVersion < MIN_PEER_PROTO_VERSION) {
3470 // disconnect from peers older than this proto version
3471 LogDebug(BCLog::NET, "peer using obsolete version %i, %s\n", nVersion, pfrom.DisconnectMsg(fLogIPs));
3472 pfrom.fDisconnect = true;
3473 return;
3474 }
3475
3476 if (!vRecv.empty()) {
3477 // The version message includes information about the sending node which we don't use:
3478 // - 8 bytes (service bits)
3479 // - 16 bytes (ipv6 address)
3480 // - 2 bytes (port)
3481 vRecv.ignore(26);
3482 vRecv >> nNonce;
3483 }
3484 if (!vRecv.empty()) {
3485 std::string strSubVer;
3486 vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
3487 cleanSubVer = SanitizeString(strSubVer);
3488 }
3489 if (!vRecv.empty()) {
3490 vRecv >> starting_height;
3491 }
3492 if (!vRecv.empty())
3493 vRecv >> fRelay;
3494 // Disconnect if we connected to ourself
3495 if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce))
3496 {
3497 LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToStringAddrPort());
3498 pfrom.fDisconnect = true;
3499 return;
3500 }
3501
3502 if (pfrom.IsInboundConn() && addrMe.IsRoutable())
3503 {
3504 SeenLocal(addrMe);
3505 }
3506
3507 // Inbound peers send us their version message when they connect.
3508 // We send our version message in response.
3509 if (pfrom.IsInboundConn()) {
3510 PushNodeVersion(pfrom, *peer);
3511 }
3512
3513 // Change version
3514 const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION);
3515 pfrom.SetCommonVersion(greatest_common_version);
3516 pfrom.nVersion = nVersion;
3517
3518 if (greatest_common_version >= WTXID_RELAY_VERSION) {
3519 MakeAndPushMessage(pfrom, NetMsgType::WTXIDRELAY);
3520 }
3521
3522 // Signal ADDRv2 support (BIP155).
3523 if (greatest_common_version >= 70016) {
3524 // BIP155 defines addrv2 and sendaddrv2 for all protocol versions, but some
3525 // implementations reject messages they don't know. As a courtesy, don't send
3526 // it to nodes with a version before 70016, as no software is known to support
3527 // BIP155 that doesn't announce at least that protocol version number.
3528 MakeAndPushMessage(pfrom, NetMsgType::SENDADDRV2);
3529 }
3530
3531 pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices);
3532 peer->m_their_services = nServices;
3533 pfrom.SetAddrLocal(addrMe);
3534 {
3535 LOCK(pfrom.m_subver_mutex);
3536 pfrom.cleanSubVer = cleanSubVer;
3537 }
3538 peer->m_starting_height = starting_height;
3539
3540 // Only initialize the Peer::TxRelay m_relay_txs data structure if:
3541 // - this isn't an outbound block-relay-only connection, and
3542 // - this isn't an outbound feeler connection, and
3543 // - fRelay=true (the peer wishes to receive transaction announcements)
3544 // or we're offering NODE_BLOOM to this peer. NODE_BLOOM means that
3545 // the peer may turn on transaction relay later.
3546 if (!pfrom.IsBlockOnlyConn() &&
3547 !pfrom.IsFeelerConn() &&
3548 (fRelay || (peer->m_our_services & NODE_BLOOM))) {
3549 auto* const tx_relay = peer->SetTxRelay();
3550 {
3551 LOCK(tx_relay->m_bloom_filter_mutex);
3552 tx_relay->m_relay_txs = fRelay; // set to true after we get the first filter* message
3553 }
3554 if (fRelay) pfrom.m_relays_txs = true;
3555 }
3556
3557 if (greatest_common_version >= WTXID_RELAY_VERSION && m_txreconciliation) {
3558 // Per BIP-330, we announce txreconciliation support if:
3559 // - protocol version per the peer's VERSION message supports WTXID_RELAY;
3560 // - transaction relay is supported per the peer's VERSION message
3561 // - this is not a block-relay-only connection and not a feeler
3562 // - this is not an addr fetch connection;
3563 // - we are not in -blocksonly mode.
3564 const auto* tx_relay = peer->GetTxRelay();
3565 if (tx_relay && WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs) &&
3566 !pfrom.IsAddrFetchConn() && !m_opts.ignore_incoming_txs) {
3567 const uint64_t recon_salt = m_txreconciliation->PreRegisterPeer(pfrom.GetId());
3568 MakeAndPushMessage(pfrom, NetMsgType::SENDTXRCNCL,
3569 TXRECONCILIATION_VERSION, recon_salt);
3570 }
3571 }
3572
3573 MakeAndPushMessage(pfrom, NetMsgType::VERACK);
3574
3575 // Potentially mark this peer as a preferred download peer.
3576 {
3577 LOCK(cs_main);
3578 CNodeState* state = State(pfrom.GetId());
3579 state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer);
3580 m_num_preferred_download_peers += state->fPreferredDownload;
3581 }
3582
3583 // Attempt to initialize address relay for outbound peers and use result
3584 // to decide whether to send GETADDR, so that we don't send it to
3585 // inbound or outbound block-relay-only peers.
3586 bool send_getaddr{false};
3587 if (!pfrom.IsInboundConn()) {
3588 send_getaddr = SetupAddressRelay(pfrom, *peer);
3589 }
3590 if (send_getaddr) {
3591 // Do a one-time address fetch to help populate/update our addrman.
3592 // If we're starting up for the first time, our addrman may be pretty
3593 // empty, so this mechanism is important to help us connect to the network.
3594 // We skip this for block-relay-only peers. We want to avoid
3595 // potentially leaking addr information and we do not want to
3596 // indicate to the peer that we will participate in addr relay.
3597 MakeAndPushMessage(pfrom, NetMsgType::GETADDR);
3598 peer->m_getaddr_sent = true;
3599 // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND addresses in response
3600 // (bypassing the MAX_ADDR_PROCESSING_TOKEN_BUCKET limit).
3601 peer->m_addr_token_bucket += MAX_ADDR_TO_SEND;
3602 }
3603
3604 if (!pfrom.IsInboundConn()) {
3605 // For non-inbound connections, we update the addrman to record
3606 // connection success so that addrman will have an up-to-date
3607 // notion of which peers are online and available.
3608 //
3609 // While we strive to not leak information about block-relay-only
3610 // connections via the addrman, not moving an address to the tried
3611 // table is also potentially detrimental because new-table entries
3612 // are subject to eviction in the event of addrman collisions. We
3613 // mitigate the information-leak by never calling
3614 // AddrMan::Connected() on block-relay-only peers; see
3615 // FinalizeNode().
3616 //
3617 // This moves an address from New to Tried table in Addrman,
3618 // resolves tried-table collisions, etc.
3619 m_addrman.Good(pfrom.addr);
3620 }
3621
3622 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3623 LogDebug(BCLog::NET, "receive version message: %s: version %d, blocks=%d, us=%s, txrelay=%d, peer=%d%s%s\n",
3624 cleanSubVer, pfrom.nVersion,
3625 peer->m_starting_height, addrMe.ToStringAddrPort(), fRelay, pfrom.GetId(),
3626 pfrom.LogIP(fLogIPs), (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3627
3628 peer->m_time_offset = NodeSeconds{std::chrono::seconds{nTime}} - Now<NodeSeconds>();
3629 if (!pfrom.IsInboundConn()) {
3630 // Don't use timedata samples from inbound peers to make it
3631 // harder for others to create false warnings about our clock being out of sync.
3632 m_outbound_time_offsets.Add(peer->m_time_offset);
3633 m_outbound_time_offsets.WarnIfOutOfSync();
3634 }
3635
3636 // If the peer is old enough to have the old alert system, send it the final alert.
3637 if (greatest_common_version <= 70012) {
3638 constexpr auto finalAlert{"60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a20416c657274206b657920636f6d70726f6d697365642c2075706772616465207265717569726564004630440220653febd6410f470f6bae11cad19c48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f01ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"_hex};
3639 MakeAndPushMessage(pfrom, "alert", finalAlert);
3640 }
3641
3642 // Feeler connections exist only to verify if address is online.
3643 if (pfrom.IsFeelerConn()) {
3644 LogDebug(BCLog::NET, "feeler connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3645 pfrom.fDisconnect = true;
3646 }
3647 return;
3648 }
3649
3650 if (pfrom.nVersion == 0) {
3651 // Must have a version message before anything else
3652 LogDebug(BCLog::NET, "non-version message before version handshake. Message \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3653 return;
3654 }
3655
3656 if (msg_type == NetMsgType::VERACK) {
3657 if (pfrom.fSuccessfullyConnected) {
3658 LogDebug(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId());
3659 return;
3660 }
3661
3662 // Log successful connections unconditionally for outbound, but not for inbound as those
3663 // can be triggered by an attacker at high rate.
3665 const auto mapped_as{m_connman.GetMappedAS(pfrom.addr)};
3666 LogPrintf("New %s %s peer connected: version: %d, blocks=%d, peer=%d%s%s\n",
3667 pfrom.ConnectionTypeAsString(),
3668 TransportTypeAsString(pfrom.m_transport->GetInfo().transport_type),
3669 pfrom.nVersion.load(), peer->m_starting_height,
3670 pfrom.GetId(), pfrom.LogIP(fLogIPs),
3671 (mapped_as ? strprintf(", mapped_as=%d", mapped_as) : ""));
3672 }
3673
3675 // Tell our peer we are willing to provide version 2 cmpctblocks.
3676 // However, we do not request new block announcements using
3677 // cmpctblock messages.
3678 // We send this to non-NODE NETWORK peers as well, because
3679 // they may wish to request compact blocks from us
3680 MakeAndPushMessage(pfrom, NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION);
3681 }
3682
3683 if (m_txreconciliation) {
3684 if (!peer->m_wtxid_relay || !m_txreconciliation->IsPeerRegistered(pfrom.GetId())) {
3685 // We could have optimistically pre-registered/registered the peer. In that case,
3686 // we should forget about the reconciliation state here if this wasn't followed
3687 // by WTXIDRELAY (since WTXIDRELAY can't be announced later).
3688 m_txreconciliation->ForgetPeer(pfrom.GetId());
3689 }
3690 }
3691
3692 if (auto tx_relay = peer->GetTxRelay()) {
3693 // `TxRelay::m_tx_inventory_to_send` must be empty before the
3694 // version handshake is completed as
3695 // `TxRelay::m_next_inv_send_time` is first initialised in
3696 // `SendMessages` after the verack is received. Any transactions
3697 // received during the version handshake would otherwise
3698 // immediately be advertised without random delay, potentially
3699 // leaking the time of arrival to a spy.
3701 tx_relay->m_tx_inventory_mutex,
3702 return tx_relay->m_tx_inventory_to_send.empty() &&
3703 tx_relay->m_next_inv_send_time == 0s));
3704 }
3705
3706 {
3707 LOCK2(::cs_main, m_tx_download_mutex);
3708 const CNodeState* state = State(pfrom.GetId());
3709 m_txdownloadman.ConnectedPeer(pfrom.GetId(), node::TxDownloadConnectionInfo {
3710 .m_preferred = state->fPreferredDownload,
3711 .m_relay_permissions = pfrom.HasPermission(NetPermissionFlags::Relay),
3712 .m_wtxid_relay = peer->m_wtxid_relay,
3713 });
3714 }
3715
3716 pfrom.fSuccessfullyConnected = true;
3717 return;
3718 }
3719
3720 if (msg_type == NetMsgType::SENDHEADERS) {
3721 peer->m_prefers_headers = true;
3722 return;
3723 }
3724
3725 if (msg_type == NetMsgType::SENDCMPCT) {
3726 bool sendcmpct_hb{false};
3727 uint64_t sendcmpct_version{0};
3728 vRecv >> sendcmpct_hb >> sendcmpct_version;
3729
3730 // Only support compact block relay with witnesses
3731 if (sendcmpct_version != CMPCTBLOCKS_VERSION) return;
3732
3733 LOCK(cs_main);
3734 CNodeState* nodestate = State(pfrom.GetId());
3735 nodestate->m_provides_cmpctblocks = true;
3736 nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb;
3737 // save whether peer selects us as BIP152 high-bandwidth peer
3738 // (receiving sendcmpct(1) signals high-bandwidth, sendcmpct(0) low-bandwidth)
3739 pfrom.m_bip152_highbandwidth_from = sendcmpct_hb;
3740 return;
3741 }
3742
3743 // BIP339 defines feature negotiation of wtxidrelay, which must happen between
3744 // VERSION and VERACK to avoid relay problems from switching after a connection is up.
3745 if (msg_type == NetMsgType::WTXIDRELAY) {
3746 if (pfrom.fSuccessfullyConnected) {
3747 // Disconnect peers that send a wtxidrelay message after VERACK.
3748 LogDebug(BCLog::NET, "wtxidrelay received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3749 pfrom.fDisconnect = true;
3750 return;
3751 }
3752 if (pfrom.GetCommonVersion() >= WTXID_RELAY_VERSION) {
3753 if (!peer->m_wtxid_relay) {
3754 peer->m_wtxid_relay = true;
3755 m_wtxid_relay_peers++;
3756 } else {
3757 LogDebug(BCLog::NET, "ignoring duplicate wtxidrelay from peer=%d\n", pfrom.GetId());
3758 }
3759 } else {
3760 LogDebug(BCLog::NET, "ignoring wtxidrelay due to old common version=%d from peer=%d\n", pfrom.GetCommonVersion(), pfrom.GetId());
3761 }
3762 return;
3763 }
3764
3765 // BIP155 defines feature negotiation of addrv2 and sendaddrv2, which must happen
3766 // between VERSION and VERACK.
3767 if (msg_type == NetMsgType::SENDADDRV2) {
3768 if (pfrom.fSuccessfullyConnected) {
3769 // Disconnect peers that send a SENDADDRV2 message after VERACK.
3770 LogDebug(BCLog::NET, "sendaddrv2 received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3771 pfrom.fDisconnect = true;
3772 return;
3773 }
3774 peer->m_wants_addrv2 = true;
3775 return;
3776 }
3777
3778 // Received from a peer demonstrating readiness to announce transactions via reconciliations.
3779 // This feature negotiation must happen between VERSION and VERACK to avoid relay problems
3780 // from switching announcement protocols after the connection is up.
3781 if (msg_type == NetMsgType::SENDTXRCNCL) {
3782 if (!m_txreconciliation) {
3783 LogDebug(BCLog::NET, "sendtxrcncl from peer=%d ignored, as our node does not have txreconciliation enabled\n", pfrom.GetId());
3784 return;
3785 }
3786
3787 if (pfrom.fSuccessfullyConnected) {
3788 LogDebug(BCLog::NET, "sendtxrcncl received after verack, %s\n", pfrom.DisconnectMsg(fLogIPs));
3789 pfrom.fDisconnect = true;
3790 return;
3791 }
3792
3793 // Peer must not offer us reconciliations if we specified no tx relay support in VERSION.
3794 if (RejectIncomingTxs(pfrom)) {
3795 LogDebug(BCLog::NET, "sendtxrcncl received to which we indicated no tx relay, %s\n", pfrom.DisconnectMsg(fLogIPs));
3796 pfrom.fDisconnect = true;
3797 return;
3798 }
3799
3800 // Peer must not offer us reconciliations if they specified no tx relay support in VERSION.
3801 // This flag might also be false in other cases, but the RejectIncomingTxs check above
3802 // eliminates them, so that this flag fully represents what we are looking for.
3803 const auto* tx_relay = peer->GetTxRelay();
3804 if (!tx_relay || !WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs)) {
3805 LogDebug(BCLog::NET, "sendtxrcncl received which indicated no tx relay to us, %s\n", pfrom.DisconnectMsg(fLogIPs));
3806 pfrom.fDisconnect = true;
3807 return;
3808 }
3809
3810 uint32_t peer_txreconcl_version;
3811 uint64_t remote_salt;
3812 vRecv >> peer_txreconcl_version >> remote_salt;
3813
3814 const ReconciliationRegisterResult result = m_txreconciliation->RegisterPeer(pfrom.GetId(), pfrom.IsInboundConn(),
3815 peer_txreconcl_version, remote_salt);
3816 switch (result) {
3818 LogDebug(BCLog::NET, "Ignore unexpected txreconciliation signal from peer=%d\n", pfrom.GetId());
3819 break;
3821 break;
3823 LogDebug(BCLog::NET, "txreconciliation protocol violation (sendtxrcncl received from already registered peer), %s\n", pfrom.DisconnectMsg(fLogIPs));
3824 pfrom.fDisconnect = true;
3825 return;
3827 LogDebug(BCLog::NET, "txreconciliation protocol violation, %s\n", pfrom.DisconnectMsg(fLogIPs));
3828 pfrom.fDisconnect = true;
3829 return;
3830 }
3831 return;
3832 }
3833
3834 if (!pfrom.fSuccessfullyConnected) {
3835 LogDebug(BCLog::NET, "Unsupported message \"%s\" prior to verack from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
3836 return;
3837 }
3838
3839 if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
3840 const auto ser_params{
3841 msg_type == NetMsgType::ADDRV2 ?
3842 // Set V2 param so that the CNetAddr and CAddress
3843 // unserialize methods know that an address in v2 format is coming.
3846 };
3847
3848 std::vector<CAddress> vAddr;
3849
3850 vRecv >> ser_params(vAddr);
3851
3852 if (!SetupAddressRelay(pfrom, *peer)) {
3853 LogDebug(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId());
3854 return;
3855 }
3856
3857 if (vAddr.size() > MAX_ADDR_TO_SEND)
3858 {
3859 Misbehaving(*peer, strprintf("%s message size = %u", msg_type, vAddr.size()));
3860 return;
3861 }
3862
3863 // Store the new addresses
3864 std::vector<CAddress> vAddrOk;
3865 const auto current_a_time{Now<NodeSeconds>()};
3866
3867 // Update/increment addr rate limiting bucket.
3868 const auto current_time{GetTime<std::chrono::microseconds>()};
3869 if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) {
3870 // Don't increment bucket if it's already full
3871 const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us);
3872 const double increment = Ticks<SecondsDouble>(time_diff) * MAX_ADDR_RATE_PER_SECOND;
3873 peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET);
3874 }
3875 peer->m_addr_token_timestamp = current_time;
3876
3877 const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr);
3878 uint64_t num_proc = 0;
3879 uint64_t num_rate_limit = 0;
3880 std::shuffle(vAddr.begin(), vAddr.end(), m_rng);
3881 for (CAddress& addr : vAddr)
3882 {
3883 if (interruptMsgProc)
3884 return;
3885
3886 // Apply rate limiting.
3887 if (peer->m_addr_token_bucket < 1.0) {
3888 if (rate_limited) {
3889 ++num_rate_limit;
3890 continue;
3891 }
3892 } else {
3893 peer->m_addr_token_bucket -= 1.0;
3894 }
3895 // We only bother storing full nodes, though this may include
3896 // things which we would not make an outbound connection to, in
3897 // part because we may make feeler connections to them.
3898 if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices))
3899 continue;
3900
3901 if (addr.nTime <= NodeSeconds{100000000s} || addr.nTime > current_a_time + 10min) {
3902 addr.nTime = current_a_time - 5 * 24h;
3903 }
3904 AddAddressKnown(*peer, addr);
3905 if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
3906 // Do not process banned/discouraged addresses beyond remembering we received them
3907 continue;
3908 }
3909 ++num_proc;
3910 const bool reachable{g_reachable_nets.Contains(addr)};
3911 if (addr.nTime > current_a_time - 10min && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) {
3912 // Relay to a limited number of other nodes
3913 RelayAddress(pfrom.GetId(), addr, reachable);
3914 }
3915 // Do not store addresses outside our network
3916 if (reachable) {
3917 vAddrOk.push_back(addr);
3918 }
3919 }
3920 peer->m_addr_processed += num_proc;
3921 peer->m_addr_rate_limited += num_rate_limit;
3922 LogDebug(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) from peer=%d\n",
3923 vAddr.size(), num_proc, num_rate_limit, pfrom.GetId());
3924
3925 m_addrman.Add(vAddrOk, pfrom.addr, 2h);
3926 if (vAddr.size() < 1000) peer->m_getaddr_sent = false;
3927
3928 // AddrFetch: Require multiple addresses to avoid disconnecting on self-announcements
3929 if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) {
3930 LogDebug(BCLog::NET, "addrfetch connection completed, %s\n", pfrom.DisconnectMsg(fLogIPs));
3931 pfrom.fDisconnect = true;
3932 }
3933 return;
3934 }
3935
3936 if (msg_type == NetMsgType::INV) {
3937 std::vector<CInv> vInv;
3938 vRecv >> vInv;
3939 if (vInv.size() > MAX_INV_SZ)
3940 {
3941 Misbehaving(*peer, strprintf("inv message size = %u", vInv.size()));
3942 return;
3943 }
3944
3945 const bool reject_tx_invs{RejectIncomingTxs(pfrom)};
3946
3947 LOCK2(cs_main, m_tx_download_mutex);
3948
3949 const auto current_time{GetTime<std::chrono::microseconds>()};
3950 uint256* best_block{nullptr};
3951
3952 for (CInv& inv : vInv) {
3953 if (interruptMsgProc) return;
3954
3955 // Ignore INVs that don't match wtxidrelay setting.
3956 // Note that orphan parent fetching always uses MSG_TX GETDATAs regardless of the wtxidrelay setting.
3957 // This is fine as no INV messages are involved in that process.
3958 if (peer->m_wtxid_relay) {
3959 if (inv.IsMsgTx()) continue;
3960 } else {
3961 if (inv.IsMsgWtx()) continue;
3962 }
3963
3964 if (inv.IsMsgBlk()) {
3965 const bool fAlreadyHave = AlreadyHaveBlock(inv.hash);
3966 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3967
3968 UpdateBlockAvailability(pfrom.GetId(), inv.hash);
3969 if (!fAlreadyHave && !m_chainman.m_blockman.LoadingBlocks() && !IsBlockRequested(inv.hash)) {
3970 // Headers-first is the primary method of announcement on
3971 // the network. If a node fell back to sending blocks by
3972 // inv, it may be for a re-org, or because we haven't
3973 // completed initial headers sync. The final block hash
3974 // provided should be the highest, so send a getheaders and
3975 // then fetch the blocks we need to catch up.
3976 best_block = &inv.hash;
3977 }
3978 } else if (inv.IsGenTxMsg()) {
3979 if (reject_tx_invs) {
3980 LogDebug(BCLog::NET, "transaction (%s) inv sent in violation of protocol, %s\n", inv.hash.ToString(), pfrom.DisconnectMsg(fLogIPs));
3981 pfrom.fDisconnect = true;
3982 return;
3983 }
3984 const GenTxid gtxid = ToGenTxid(inv);
3985 AddKnownTx(*peer, inv.hash);
3986
3987 if (!m_chainman.IsInitialBlockDownload()) {
3988 const bool fAlreadyHave{m_txdownloadman.AddTxAnnouncement(pfrom.GetId(), gtxid, current_time)};
3989 LogDebug(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId());
3990 }
3991 } else {
3992 LogDebug(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId());
3993 }
3994 }
3995
3996 if (best_block != nullptr) {
3997 // If we haven't started initial headers-sync with this peer, then
3998 // consider sending a getheaders now. On initial startup, there's a
3999 // reliability vs bandwidth tradeoff, where we are only trying to do
4000 // initial headers sync with one peer at a time, with a long
4001 // timeout (at which point, if the sync hasn't completed, we will
4002 // disconnect the peer and then choose another). In the meantime,
4003 // as new blocks are found, we are willing to add one new peer per
4004 // block to sync with as well, to sync quicker in the case where
4005 // our initial peer is unresponsive (but less bandwidth than we'd
4006 // use if we turned on sync with all peers).
4007 CNodeState& state{*Assert(State(pfrom.GetId()))};
4008 if (state.fSyncStarted || (!peer->m_inv_triggered_getheaders_before_sync && *best_block != m_last_block_inv_triggering_headers_sync)) {
4009 if (MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer)) {
4010 LogDebug(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
4011 m_chainman.m_best_header->nHeight, best_block->ToString(),
4012 pfrom.GetId());
4013 }
4014 if (!state.fSyncStarted) {
4015 peer->m_inv_triggered_getheaders_before_sync = true;
4016 // Update the last block hash that triggered a new headers
4017 // sync, so that we don't turn on headers sync with more
4018 // than 1 new peer every new block.
4019 m_last_block_inv_triggering_headers_sync = *best_block;
4020 }
4021 }
4022 }
4023
4024 return;
4025 }
4026
4027 if (msg_type == NetMsgType::GETDATA) {
4028 std::vector<CInv> vInv;
4029 vRecv >> vInv;
4030 if (vInv.size() > MAX_INV_SZ)
4031 {
4032 Misbehaving(*peer, strprintf("getdata message size = %u", vInv.size()));
4033 return;
4034 }
4035
4036 LogDebug(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId());
4037
4038 if (vInv.size() > 0) {
4039 LogDebug(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId());
4040 }
4041
4042 {
4043 LOCK(peer->m_getdata_requests_mutex);
4044 peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end());
4045 ProcessGetData(pfrom, *peer, interruptMsgProc);
4046 }
4047
4048 return;
4049 }
4050
4051 if (msg_type == NetMsgType::GETBLOCKS) {
4052 CBlockLocator locator;
4053 uint256 hashStop;
4054 vRecv >> locator >> hashStop;
4055
4056 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4057 LogDebug(BCLog::NET, "getblocks locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4058 pfrom.fDisconnect = true;
4059 return;
4060 }
4061
4062 // We might have announced the currently-being-connected tip using a
4063 // compact block, which resulted in the peer sending a getblocks
4064 // request, which we would otherwise respond to without the new block.
4065 // To avoid this situation we simply verify that we are on our best
4066 // known chain now. This is super overkill, but we handle it better
4067 // for getheaders requests, and there are no known nodes which support
4068 // compact blocks but still use getblocks to request blocks.
4069 {
4070 std::shared_ptr<const CBlock> a_recent_block;
4071 {
4072 LOCK(m_most_recent_block_mutex);
4073 a_recent_block = m_most_recent_block;
4074 }
4076 if (!m_chainman.ActiveChainstate().ActivateBestChain(state, a_recent_block)) {
4077 LogDebug(BCLog::NET, "failed to activate chain (%s)\n", state.ToString());
4078 }
4079 }
4080
4081 LOCK(cs_main);
4082
4083 // Find the last block the caller has in the main chain
4084 const CBlockIndex* pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4085
4086 // Send the rest of the chain
4087 if (pindex)
4088 pindex = m_chainman.ActiveChain().Next(pindex);
4089 int nLimit = 500;
4090 LogDebug(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId());
4091 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4092 {
4093 if (pindex->GetBlockHash() == hashStop)
4094 {
4095 LogDebug(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4096 break;
4097 }
4098 // If pruning, don't inv blocks unless we have on disk and are likely to still have
4099 // for some reasonable time window (1 hour) that block relay might require.
4100 const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
4101 if (m_chainman.m_blockman.IsPruneMode() && (!(pindex->nStatus & BLOCK_HAVE_DATA) || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) {
4102 LogDebug(BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4103 break;
4104 }
4105 WITH_LOCK(peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash()));
4106 if (--nLimit <= 0) {
4107 // When this block is requested, we'll send an inv that'll
4108 // trigger the peer to getblocks the next batch of inventory.
4109 LogDebug(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
4110 WITH_LOCK(peer->m_block_inv_mutex, {peer->m_continuation_block = pindex->GetBlockHash();});
4111 break;
4112 }
4113 }
4114 return;
4115 }
4116
4117 if (msg_type == NetMsgType::GETBLOCKTXN) {
4119 vRecv >> req;
4120 // Verify differential encoding invariant: indexes must be strictly increasing
4121 // DifferenceFormatter should guarantee this property during deserialization
4122 for (size_t i = 1; i < req.indexes.size(); ++i) {
4123 Assume(req.indexes[i] > req.indexes[i-1]);
4124 }
4125
4126 std::shared_ptr<const CBlock> recent_block;
4127 {
4128 LOCK(m_most_recent_block_mutex);
4129 if (m_most_recent_block_hash == req.blockhash)
4130 recent_block = m_most_recent_block;
4131 // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion
4132 }
4133 if (recent_block) {
4134 SendBlockTransactions(pfrom, *peer, *recent_block, req);
4135 return;
4136 }
4137
4138 FlatFilePos block_pos{};
4139 {
4140 LOCK(cs_main);
4141
4142 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash);
4143 if (!pindex || !(pindex->nStatus & BLOCK_HAVE_DATA)) {
4144 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId());
4145 return;
4146 }
4147
4148 if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) {
4149 block_pos = pindex->GetBlockPos();
4150 }
4151 }
4152
4153 if (!block_pos.IsNull()) {
4154 CBlock block;
4155 const bool ret{m_chainman.m_blockman.ReadBlock(block, block_pos, req.blockhash)};
4156 // If height is above MAX_BLOCKTXN_DEPTH then this block cannot get
4157 // pruned after we release cs_main above, so this read should never fail.
4158 assert(ret);
4159
4160 SendBlockTransactions(pfrom, *peer, block, req);
4161 return;
4162 }
4163
4164 // If an older block is requested (should never happen in practice,
4165 // but can happen in tests) send a block response instead of a
4166 // blocktxn response. Sending a full block response instead of a
4167 // small blocktxn response is preferable in the case where a peer
4168 // might maliciously send lots of getblocktxn requests to trigger
4169 // expensive disk reads, because it will require the peer to
4170 // actually receive all the data read from disk over the network.
4171 LogDebug(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
4173 WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv));
4174 // The message processing loop will go around again (without pausing) and we'll respond then
4175 return;
4176 }
4177
4178 if (msg_type == NetMsgType::GETHEADERS) {
4179 CBlockLocator locator;
4180 uint256 hashStop;
4181 vRecv >> locator >> hashStop;
4182
4183 if (locator.vHave.size() > MAX_LOCATOR_SZ) {
4184 LogDebug(BCLog::NET, "getheaders locator size %lld > %d, %s\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.DisconnectMsg(fLogIPs));
4185 pfrom.fDisconnect = true;
4186 return;
4187 }
4188
4189 if (m_chainman.m_blockman.LoadingBlocks()) {
4190 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId());
4191 return;
4192 }
4193
4194 LOCK(cs_main);
4195
4196 // Don't serve headers from our active chain until our chainwork is at least
4197 // the minimum chain work. This prevents us from starting a low-work headers
4198 // sync that will inevitably be aborted by our peer.
4199 if (m_chainman.ActiveTip() == nullptr ||
4200 (m_chainman.ActiveTip()->nChainWork < m_chainman.MinimumChainWork() && !pfrom.HasPermission(NetPermissionFlags::Download))) {
4201 LogDebug(BCLog::NET, "Ignoring getheaders from peer=%d because active chain has too little work; sending empty response\n", pfrom.GetId());
4202 // Just respond with an empty headers message, to tell the peer to
4203 // go away but not treat us as unresponsive.
4204 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, std::vector<CBlockHeader>());
4205 return;
4206 }
4207
4208 CNodeState *nodestate = State(pfrom.GetId());
4209 const CBlockIndex* pindex = nullptr;
4210 if (locator.IsNull())
4211 {
4212 // If locator is null, return the hashStop block
4213 pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop);
4214 if (!pindex) {
4215 return;
4216 }
4217
4218 if (!BlockRequestAllowed(pindex)) {
4219 LogDebug(BCLog::NET, "%s: ignoring request from peer=%i for old block header that isn't in the main chain\n", __func__, pfrom.GetId());
4220 return;
4221 }
4222 }
4223 else
4224 {
4225 // Find the last block the caller has in the main chain
4226 pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator);
4227 if (pindex)
4228 pindex = m_chainman.ActiveChain().Next(pindex);
4229 }
4230
4231 // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
4232 std::vector<CBlock> vHeaders;
4233 int nLimit = m_opts.max_headers_result;
4234 LogDebug(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId());
4235 for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex))
4236 {
4237 vHeaders.emplace_back(pindex->GetBlockHeader());
4238 if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
4239 break;
4240 }
4241 // pindex can be nullptr either if we sent m_chainman.ActiveChain().Tip() OR
4242 // if our peer has m_chainman.ActiveChain().Tip() (and thus we are sending an empty
4243 // headers message). In both cases it's safe to update
4244 // pindexBestHeaderSent to be our tip.
4245 //
4246 // It is important that we simply reset the BestHeaderSent value here,
4247 // and not max(BestHeaderSent, newHeaderSent). We might have announced
4248 // the currently-being-connected tip using a compact block, which
4249 // resulted in the peer sending a headers request, which we respond to
4250 // without the new block. By resetting the BestHeaderSent, we ensure we
4251 // will re-announce the new block via headers (or compact blocks again)
4252 // in the SendMessages logic.
4253 nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip();
4254 MakeAndPushMessage(pfrom, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
4255 return;
4256 }
4257
4258 if (msg_type == NetMsgType::TX) {
4259 if (RejectIncomingTxs(pfrom)) {
4260 LogDebug(BCLog::NET, "transaction sent in violation of protocol, %s", pfrom.DisconnectMsg(fLogIPs));
4261 pfrom.fDisconnect = true;
4262 return;
4263 }
4264
4265 // Stop processing the transaction early if we are still in IBD since we don't
4266 // have enough information to validate it yet. Sending unsolicited transactions
4267 // is not considered a protocol violation, so don't punish the peer.
4268 if (m_chainman.IsInitialBlockDownload()) return;
4269
4270 CTransactionRef ptx;
4271 vRecv >> TX_WITH_WITNESS(ptx);
4272
4273 const Txid& txid = ptx->GetHash();
4274 const Wtxid& wtxid = ptx->GetWitnessHash();
4275
4276 const uint256& hash = peer->m_wtxid_relay ? wtxid.ToUint256() : txid.ToUint256();
4277 AddKnownTx(*peer, hash);
4278
4279 LOCK2(cs_main, m_tx_download_mutex);
4280
4281 const auto& [should_validate, package_to_validate] = m_txdownloadman.ReceivedTx(pfrom.GetId(), ptx);
4282 if (!should_validate) {
4284 // Always relay transactions received from peers with forcerelay
4285 // permission, even if they were already in the mempool, allowing
4286 // the node to function as a gateway for nodes hidden behind it.
4287 if (!m_mempool.exists(txid)) {
4288 LogPrintf("Not relaying non-mempool transaction %s (wtxid=%s) from forcerelay peer=%d\n",
4289 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4290 } else {
4291 LogPrintf("Force relaying tx %s (wtxid=%s) from peer=%d\n",
4292 txid.ToString(), wtxid.ToString(), pfrom.GetId());
4293 RelayTransaction(txid, wtxid);
4294 }
4295 }
4296
4297 if (package_to_validate) {
4298 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4299 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4300 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4301 ProcessPackageResult(package_to_validate.value(), package_result);
4302 }
4303 return;
4304 }
4305
4306 // ReceivedTx should not be telling us to validate the tx and a package.
4307 Assume(!package_to_validate.has_value());
4308
4309 const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx);
4310 const TxValidationState& state = result.m_state;
4311
4313 ProcessValidTx(pfrom.GetId(), ptx, result.m_replaced_transactions);
4314 pfrom.m_last_tx_time = GetTime<std::chrono::seconds>();
4315 }
4316 if (state.IsInvalid()) {
4317 if (auto package_to_validate{ProcessInvalidTx(pfrom.GetId(), ptx, state, /*first_time_failure=*/true)}) {
4318 const auto package_result{ProcessNewPackage(m_chainman.ActiveChainstate(), m_mempool, package_to_validate->m_txns, /*test_accept=*/false, /*client_maxfeerate=*/std::nullopt)};
4319 LogDebug(BCLog::TXPACKAGES, "package evaluation for %s: %s\n", package_to_validate->ToString(),
4320 package_result.m_state.IsValid() ? "package accepted" : "package rejected");
4321 ProcessPackageResult(package_to_validate.value(), package_result);
4322 }
4323 }
4324
4325 return;
4326 }
4327
4328 if (msg_type == NetMsgType::CMPCTBLOCK)
4329 {
4330 // Ignore cmpctblock received while importing
4331 if (m_chainman.m_blockman.LoadingBlocks()) {
4332 LogDebug(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId());
4333 return;
4334 }
4335
4336 CBlockHeaderAndShortTxIDs cmpctblock;
4337 vRecv >> cmpctblock;
4338
4339 bool received_new_header = false;
4340 const auto blockhash = cmpctblock.header.GetHash();
4341
4342 {
4343 LOCK(cs_main);
4344
4345 const CBlockIndex* prev_block = m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock);
4346 if (!prev_block) {
4347 // Doesn't connect (or is genesis), instead of DoSing in AcceptBlockHeader, request deeper headers
4348 if (!m_chainman.IsInitialBlockDownload()) {
4349 MaybeSendGetHeaders(pfrom, GetLocator(m_chainman.m_best_header), *peer);
4350 }
4351 return;
4352 } else if (prev_block->nChainWork + CalculateClaimedHeadersWork({{cmpctblock.header}}) < GetAntiDoSWorkThreshold()) {
4353 // If we get a low-work header in a compact block, we can ignore it.
4354 LogDebug(BCLog::NET, "Ignoring low-work compact block from peer %d\n", pfrom.GetId());
4355 return;
4356 }
4357
4358 if (!m_chainman.m_blockman.LookupBlockIndex(blockhash)) {
4359 received_new_header = true;
4360 }
4361 }
4362
4363 const CBlockIndex *pindex = nullptr;
4365 if (!m_chainman.ProcessNewBlockHeaders({{cmpctblock.header}}, /*min_pow_checked=*/true, state, &pindex)) {
4366 if (state.IsInvalid()) {
4367 MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block=*/true, "invalid header via cmpctblock");
4368 return;
4369 }
4370 }
4371
4372 // If AcceptBlockHeader returned true, it set pindex
4373 Assert(pindex);
4374 if (received_new_header) {
4375 LogBlockHeader(*pindex, pfrom, /*via_compact_block=*/true);
4376 }
4377
4378 bool fProcessBLOCKTXN = false;
4379
4380 // If we end up treating this as a plain headers message, call that as well
4381 // without cs_main.
4382 bool fRevertToHeaderProcessing = false;
4383
4384 // Keep a CBlock for "optimistic" compactblock reconstructions (see
4385 // below)
4386 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4387 bool fBlockReconstructed = false;
4388
4389 {
4390 LOCK(cs_main);
4391 UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
4392
4393 CNodeState *nodestate = State(pfrom.GetId());
4394
4395 // If this was a new header with more work than our tip, update the
4396 // peer's last block announcement time
4397 if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) {
4398 nodestate->m_last_block_announcement = GetTime();
4399 }
4400
4401 if (pindex->nStatus & BLOCK_HAVE_DATA) // Nothing to do here
4402 return;
4403
4404 auto range_flight = mapBlocksInFlight.equal_range(pindex->GetBlockHash());
4405 size_t already_in_flight = std::distance(range_flight.first, range_flight.second);
4406 bool requested_block_from_this_peer{false};
4407
4408 // Multimap ensures ordering of outstanding requests. It's either empty or first in line.
4409 bool first_in_flight = already_in_flight == 0 || (range_flight.first->second.first == pfrom.GetId());
4410
4411 while (range_flight.first != range_flight.second) {
4412 if (range_flight.first->second.first == pfrom.GetId()) {
4413 requested_block_from_this_peer = true;
4414 break;
4415 }
4416 range_flight.first++;
4417 }
4418
4419 if (pindex->nChainWork <= m_chainman.ActiveChain().Tip()->nChainWork || // We know something better
4420 pindex->nTx != 0) { // We had this block at some point, but pruned it
4421 if (requested_block_from_this_peer) {
4422 // We requested this block for some reason, but our mempool will probably be useless
4423 // so we just grab the block via normal getdata
4424 std::vector<CInv> vInv(1);
4425 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4426 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4427 }
4428 return;
4429 }
4430
4431 // If we're not close to tip yet, give up and let parallel block fetch work its magic
4432 if (!already_in_flight && !CanDirectFetch()) {
4433 return;
4434 }
4435
4436 // We want to be a bit conservative just to be extra careful about DoS
4437 // possibilities in compact block processing...
4438 if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) {
4439 if ((already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK && nodestate->vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
4440 requested_block_from_this_peer) {
4441 std::list<QueuedBlock>::iterator* queuedBlockIt = nullptr;
4442 if (!BlockRequested(pfrom.GetId(), *pindex, &queuedBlockIt)) {
4443 if (!(*queuedBlockIt)->partialBlock)
4444 (*queuedBlockIt)->partialBlock.reset(new PartiallyDownloadedBlock(&m_mempool));
4445 else {
4446 // The block was already in flight using compact blocks from the same peer
4447 LogDebug(BCLog::NET, "Peer sent us compact block we were already syncing!\n");
4448 return;
4449 }
4450 }
4451
4452 PartiallyDownloadedBlock& partialBlock = *(*queuedBlockIt)->partialBlock;
4453 ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
4454 if (status == READ_STATUS_INVALID) {
4455 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId()); // Reset in-flight state in case Misbehaving does not result in a disconnect
4456 Misbehaving(*peer, "invalid compact block");
4457 return;
4458 } else if (status == READ_STATUS_FAILED) {
4459 if (first_in_flight) {
4460 // Duplicate txindexes, the block is now in-flight, so just request it
4461 std::vector<CInv> vInv(1);
4462 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4463 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4464 } else {
4465 // Give up for this peer and wait for other peer(s)
4466 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4467 }
4468 return;
4469 }
4470
4472 for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
4473 if (!partialBlock.IsTxAvailable(i))
4474 req.indexes.push_back(i);
4475 }
4476 if (req.indexes.empty()) {
4477 fProcessBLOCKTXN = true;
4478 } else if (first_in_flight) {
4479 // We will try to round-trip any compact blocks we get on failure,
4480 // as long as it's first...
4481 req.blockhash = pindex->GetBlockHash();
4482 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4483 } else if (pfrom.m_bip152_highbandwidth_to &&
4484 (!pfrom.IsInboundConn() ||
4485 IsBlockRequestedFromOutbound(blockhash) ||
4486 already_in_flight < MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK - 1)) {
4487 // ... or it's a hb relay peer and:
4488 // - peer is outbound, or
4489 // - we already have an outbound attempt in flight(so we'll take what we can get), or
4490 // - it's not the final parallel download slot (which we may reserve for first outbound)
4491 req.blockhash = pindex->GetBlockHash();
4492 MakeAndPushMessage(pfrom, NetMsgType::GETBLOCKTXN, req);
4493 } else {
4494 // Give up for this peer and wait for other peer(s)
4495 RemoveBlockRequest(pindex->GetBlockHash(), pfrom.GetId());
4496 }
4497 } else {
4498 // This block is either already in flight from a different
4499 // peer, or this peer has too many blocks outstanding to
4500 // download from.
4501 // Optimistically try to reconstruct anyway since we might be
4502 // able to without any round trips.
4503 PartiallyDownloadedBlock tempBlock(&m_mempool);
4504 ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
4505 if (status != READ_STATUS_OK) {
4506 // TODO: don't ignore failures
4507 return;
4508 }
4509 std::vector<CTransactionRef> dummy;
4510 const CBlockIndex* prev_block{Assume(m_chainman.m_blockman.LookupBlockIndex(cmpctblock.header.hashPrevBlock))};
4511 status = tempBlock.FillBlock(*pblock, dummy,
4512 /*segwit_active=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT));
4513 if (status == READ_STATUS_OK) {
4514 fBlockReconstructed = true;
4515 }
4516 }
4517 } else {
4518 if (requested_block_from_this_peer) {
4519 // We requested this block, but its far into the future, so our
4520 // mempool will probably be useless - request the block normally
4521 std::vector<CInv> vInv(1);
4522 vInv[0] = CInv(MSG_BLOCK | GetFetchFlags(*peer), blockhash);
4523 MakeAndPushMessage(pfrom, NetMsgType::GETDATA, vInv);
4524 return;
4525 } else {
4526 // If this was an announce-cmpctblock, we want the same treatment as a header message
4527 fRevertToHeaderProcessing = true;
4528 }
4529 }
4530 } // cs_main
4531
4532 if (fProcessBLOCKTXN) {
4534 txn.blockhash = blockhash;
4535 return ProcessCompactBlockTxns(pfrom, *peer, txn);
4536 }
4537
4538 if (fRevertToHeaderProcessing) {
4539 // Headers received from HB compact block peers are permitted to be
4540 // relayed before full validation (see BIP 152), so we don't want to disconnect
4541 // the peer if the header turns out to be for an invalid block.
4542 // Note that if a peer tries to build on an invalid chain, that
4543 // will be detected and the peer will be disconnected/discouraged.
4544 return ProcessHeadersMessage(pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true);
4545 }
4546
4547 if (fBlockReconstructed) {
4548 // If we got here, we were able to optimistically reconstruct a
4549 // block that is in flight from some other peer.
4550 {
4551 LOCK(cs_main);
4552 mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false));
4553 }
4554 // Setting force_processing to true means that we bypass some of
4555 // our anti-DoS protections in AcceptBlock, which filters
4556 // unrequested blocks that might be trying to waste our resources
4557 // (eg disk space). Because we only try to reconstruct blocks when
4558 // we're close to caught up (via the CanDirectFetch() requirement
4559 // above, combined with the behavior of not requesting blocks until
4560 // we have a chain with at least the minimum chain work), and we ignore
4561 // compact blocks with less work than our tip, it is safe to treat
4562 // reconstructed compact blocks as having been requested.
4563 ProcessBlock(pfrom, pblock, /*force_processing=*/true, /*min_pow_checked=*/true);
4564 LOCK(cs_main); // hold cs_main for CBlockIndex::IsValid()
4565 if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS)) {
4566 // Clear download state for this block, which is in
4567 // process from some other peer. We do this after calling
4568 // ProcessNewBlock so that a malleated cmpctblock announcement
4569 // can't be used to interfere with block relay.
4570 RemoveBlockRequest(pblock->GetHash(), std::nullopt);
4571 }
4572 }
4573 return;
4574 }
4575
4576 if (msg_type == NetMsgType::BLOCKTXN)
4577 {
4578 // Ignore blocktxn received while importing
4579 if (m_chainman.m_blockman.LoadingBlocks()) {
4580 LogDebug(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId());
4581 return;
4582 }
4583
4584 BlockTransactions resp;
4585 vRecv >> resp;
4586
4587 return ProcessCompactBlockTxns(pfrom, *peer, resp);
4588 }
4589
4590 if (msg_type == NetMsgType::HEADERS)
4591 {
4592 // Ignore headers received while importing
4593 if (m_chainman.m_blockman.LoadingBlocks()) {
4594 LogDebug(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId());
4595 return;
4596 }
4597
4598 std::vector<CBlockHeader> headers;
4599
4600 // Bypass the normal CBlock deserialization, as we don't want to risk deserializing 2000 full blocks.
4601 unsigned int nCount = ReadCompactSize(vRecv);
4602 if (nCount > m_opts.max_headers_result) {
4603 Misbehaving(*peer, strprintf("headers message size = %u", nCount));
4604 return;
4605 }
4606 headers.resize(nCount);
4607 for (unsigned int n = 0; n < nCount; n++) {
4608 vRecv >> headers[n];
4609 ReadCompactSize(vRecv); // ignore tx count; assume it is 0.
4610 }
4611
4612 ProcessHeadersMessage(pfrom, *peer, std::move(headers), /*via_compact_block=*/false);
4613
4614 // Check if the headers presync progress needs to be reported to validation.
4615 // This needs to be done without holding the m_headers_presync_mutex lock.
4616 if (m_headers_presync_should_signal.exchange(false)) {
4617 HeadersPresyncStats stats;
4618 {
4619 LOCK(m_headers_presync_mutex);
4620 auto it = m_headers_presync_stats.find(m_headers_presync_bestpeer);
4621 if (it != m_headers_presync_stats.end()) stats = it->second;
4622 }
4623 if (stats.second) {
4624 m_chainman.ReportHeadersPresync(stats.first, stats.second->first, stats.second->second);
4625 }
4626 }
4627
4628 return;
4629 }
4630
4631 if (msg_type == NetMsgType::BLOCK)
4632 {
4633 // Ignore block received while importing
4634 if (m_chainman.m_blockman.LoadingBlocks()) {
4635 LogDebug(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId());
4636 return;
4637 }
4638
4639 std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
4640 vRecv >> TX_WITH_WITNESS(*pblock);
4641
4642 LogDebug(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId());
4643
4644 const CBlockIndex* prev_block{WITH_LOCK(m_chainman.GetMutex(), return m_chainman.m_blockman.LookupBlockIndex(pblock->hashPrevBlock))};
4645
4646 // Check for possible mutation if it connects to something we know so we can check for DEPLOYMENT_SEGWIT being active
4647 if (prev_block && IsBlockMutated(/*block=*/*pblock,
4648 /*check_witness_root=*/DeploymentActiveAfter(prev_block, m_chainman, Consensus::DEPLOYMENT_SEGWIT))) {
4649 LogDebug(BCLog::NET, "Received mutated block from peer=%d\n", peer->m_id);
4650 Misbehaving(*peer, "mutated block");
4651 WITH_LOCK(cs_main, RemoveBlockRequest(pblock->GetHash(), peer->m_id));
4652 return;
4653 }
4654
4655 bool forceProcessing = false;
4656 const uint256 hash(pblock->GetHash());
4657 bool min_pow_checked = false;
4658 {
4659 LOCK(cs_main);
4660 // Always process the block if we requested it, since we may
4661 // need it even when it's not a candidate for a new best tip.
4662 forceProcessing = IsBlockRequested(hash);
4663 RemoveBlockRequest(hash, pfrom.GetId());
4664 // mapBlockSource is only used for punishing peers and setting
4665 // which peers send us compact blocks, so the race between here and
4666 // cs_main in ProcessNewBlock is fine.
4667 mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
4668
4669 // Check claimed work on this block against our anti-dos thresholds.
4670 if (prev_block && prev_block->nChainWork + CalculateClaimedHeadersWork({{pblock->GetBlockHeader()}}) >= GetAntiDoSWorkThreshold()) {
4671 min_pow_checked = true;
4672 }
4673 }
4674 ProcessBlock(pfrom, pblock, forceProcessing, min_pow_checked);
4675 return;
4676 }
4677
4678 if (msg_type == NetMsgType::GETADDR) {
4679 // This asymmetric behavior for inbound and outbound connections was introduced
4680 // to prevent a fingerprinting attack: an attacker can send specific fake addresses
4681 // to users' AddrMan and later request them by sending getaddr messages.
4682 // Making nodes which are behind NAT and can only make outgoing connections ignore
4683 // the getaddr message mitigates the attack.
4684 if (!pfrom.IsInboundConn()) {
4685 LogDebug(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId());
4686 return;
4687 }
4688
4689 // Since this must be an inbound connection, SetupAddressRelay will
4690 // never fail.
4691 Assume(SetupAddressRelay(pfrom, *peer));
4692
4693 // Only send one GetAddr response per connection to reduce resource waste
4694 // and discourage addr stamping of INV announcements.
4695 if (peer->m_getaddr_recvd) {
4696 LogDebug(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId());
4697 return;
4698 }
4699 peer->m_getaddr_recvd = true;
4700
4701 peer->m_addrs_to_send.clear();
4702 std::vector<CAddress> vAddr;
4704 vAddr = m_connman.GetAddressesUnsafe(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND, /*network=*/std::nullopt);
4705 } else {
4706 vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND);
4707 }
4708 for (const CAddress &addr : vAddr) {
4709 PushAddress(*peer, addr);
4710 }
4711 return;
4712 }
4713
4714 if (msg_type == NetMsgType::MEMPOOL) {
4715 // Only process received mempool messages if we advertise NODE_BLOOM
4716 // or if the peer has mempool permissions.
4717 if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4718 {
4720 {
4721 LogDebug(BCLog::NET, "mempool request with bloom filters disabled, %s\n", pfrom.DisconnectMsg(fLogIPs));
4722 pfrom.fDisconnect = true;
4723 }
4724 return;
4725 }
4726
4727 if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool))
4728 {
4730 {
4731 LogDebug(BCLog::NET, "mempool request with bandwidth limit reached, %s\n", pfrom.DisconnectMsg(fLogIPs));
4732 pfrom.fDisconnect = true;
4733 }
4734 return;
4735 }
4736
4737 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4738 LOCK(tx_relay->m_tx_inventory_mutex);
4739 tx_relay->m_send_mempool = true;
4740 }
4741 return;
4742 }
4743
4744 if (msg_type == NetMsgType::PING) {
4745 if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
4746 uint64_t nonce = 0;
4747 vRecv >> nonce;
4748 // Echo the message back with the nonce. This allows for two useful features:
4749 //
4750 // 1) A remote node can quickly check if the connection is operational
4751 // 2) Remote nodes can measure the latency of the network thread. If this node
4752 // is overloaded it won't respond to pings quickly and the remote node can
4753 // avoid sending us more work, like chain download requests.
4754 //
4755 // The nonce stops the remote getting confused between different pings: without
4756 // it, if the remote node sends a ping once per second and this node takes 5
4757 // seconds to respond to each, the 5th ping the remote sends would appear to
4758 // return very quickly.
4759 MakeAndPushMessage(pfrom, NetMsgType::PONG, nonce);
4760 }
4761 return;
4762 }
4763
4764 if (msg_type == NetMsgType::PONG) {
4765 const auto ping_end = time_received;
4766 uint64_t nonce = 0;
4767 size_t nAvail = vRecv.in_avail();
4768 bool bPingFinished = false;
4769 std::string sProblem;
4770
4771 if (nAvail >= sizeof(nonce)) {
4772 vRecv >> nonce;
4773
4774 // Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
4775 if (peer->m_ping_nonce_sent != 0) {
4776 if (nonce == peer->m_ping_nonce_sent) {
4777 // Matching pong received, this ping is no longer outstanding
4778 bPingFinished = true;
4779 const auto ping_time = ping_end - peer->m_ping_start.load();
4780 if (ping_time.count() >= 0) {
4781 // Let connman know about this successful ping-pong
4782 pfrom.PongReceived(ping_time);
4783 } else {
4784 // This should never happen
4785 sProblem = "Timing mishap";
4786 }
4787 } else {
4788 // Nonce mismatches are normal when pings are overlapping
4789 sProblem = "Nonce mismatch";
4790 if (nonce == 0) {
4791 // This is most likely a bug in another implementation somewhere; cancel this ping
4792 bPingFinished = true;
4793 sProblem = "Nonce zero";
4794 }
4795 }
4796 } else {
4797 sProblem = "Unsolicited pong without ping";
4798 }
4799 } else {
4800 // This is most likely a bug in another implementation somewhere; cancel this ping
4801 bPingFinished = true;
4802 sProblem = "Short payload";
4803 }
4804
4805 if (!(sProblem.empty())) {
4806 LogDebug(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n",
4807 pfrom.GetId(),
4808 sProblem,
4809 peer->m_ping_nonce_sent,
4810 nonce,
4811 nAvail);
4812 }
4813 if (bPingFinished) {
4814 peer->m_ping_nonce_sent = 0;
4815 }
4816 return;
4817 }
4818
4819 if (msg_type == NetMsgType::FILTERLOAD) {
4820 if (!(peer->m_our_services & NODE_BLOOM)) {
4821 LogDebug(BCLog::NET, "filterload received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4822 pfrom.fDisconnect = true;
4823 return;
4824 }
4825 CBloomFilter filter;
4826 vRecv >> filter;
4827
4828 if (!filter.IsWithinSizeConstraints())
4829 {
4830 // There is no excuse for sending a too-large filter
4831 Misbehaving(*peer, "too-large bloom filter");
4832 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4833 {
4834 LOCK(tx_relay->m_bloom_filter_mutex);
4835 tx_relay->m_bloom_filter.reset(new CBloomFilter(filter));
4836 tx_relay->m_relay_txs = true;
4837 }
4838 pfrom.m_bloom_filter_loaded = true;
4839 pfrom.m_relays_txs = true;
4840 }
4841 return;
4842 }
4843
4844 if (msg_type == NetMsgType::FILTERADD) {
4845 if (!(peer->m_our_services & NODE_BLOOM)) {
4846 LogDebug(BCLog::NET, "filteradd received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4847 pfrom.fDisconnect = true;
4848 return;
4849 }
4850 std::vector<unsigned char> vData;
4851 vRecv >> vData;
4852
4853 // Nodes must NEVER send a data item > MAX_SCRIPT_ELEMENT_SIZE bytes (the max size for a script data object,
4854 // and thus, the maximum size any matched object can have) in a filteradd message
4855 bool bad = false;
4856 if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
4857 bad = true;
4858 } else if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4859 LOCK(tx_relay->m_bloom_filter_mutex);
4860 if (tx_relay->m_bloom_filter) {
4861 tx_relay->m_bloom_filter->insert(vData);
4862 } else {
4863 bad = true;
4864 }
4865 }
4866 if (bad) {
4867 Misbehaving(*peer, "bad filteradd message");
4868 }
4869 return;
4870 }
4871
4872 if (msg_type == NetMsgType::FILTERCLEAR) {
4873 if (!(peer->m_our_services & NODE_BLOOM)) {
4874 LogDebug(BCLog::NET, "filterclear received despite not offering bloom services, %s\n", pfrom.DisconnectMsg(fLogIPs));
4875 pfrom.fDisconnect = true;
4876 return;
4877 }
4878 auto tx_relay = peer->GetTxRelay();
4879 if (!tx_relay) return;
4880
4881 {
4882 LOCK(tx_relay->m_bloom_filter_mutex);
4883 tx_relay->m_bloom_filter = nullptr;
4884 tx_relay->m_relay_txs = true;
4885 }
4886 pfrom.m_bloom_filter_loaded = false;
4887 pfrom.m_relays_txs = true;
4888 return;
4889 }
4890
4891 if (msg_type == NetMsgType::FEEFILTER) {
4892 CAmount newFeeFilter = 0;
4893 vRecv >> newFeeFilter;
4894 if (MoneyRange(newFeeFilter)) {
4895 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
4896 tx_relay->m_fee_filter_received = newFeeFilter;
4897 }
4898 LogDebug(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
4899 }
4900 return;
4901 }
4902
4903 if (msg_type == NetMsgType::GETCFILTERS) {
4904 ProcessGetCFilters(pfrom, *peer, vRecv);
4905 return;
4906 }
4907
4908 if (msg_type == NetMsgType::GETCFHEADERS) {
4909 ProcessGetCFHeaders(pfrom, *peer, vRecv);
4910 return;
4911 }
4912
4913 if (msg_type == NetMsgType::GETCFCHECKPT) {
4914 ProcessGetCFCheckPt(pfrom, *peer, vRecv);
4915 return;
4916 }
4917
4918 if (msg_type == NetMsgType::NOTFOUND) {
4919 std::vector<CInv> vInv;
4920 vRecv >> vInv;
4921 std::vector<GenTxid> tx_invs;
4923 for (CInv &inv : vInv) {
4924 if (inv.IsGenTxMsg()) {
4925 tx_invs.emplace_back(ToGenTxid(inv));
4926 }
4927 }
4928 }
4929 LOCK(m_tx_download_mutex);
4930 m_txdownloadman.ReceivedNotFound(pfrom.GetId(), tx_invs);
4931 return;
4932 }
4933
4934 // Ignore unknown commands for extensibility
4935 LogDebug(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId());
4936 return;
4937}
4938
4939bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode& pnode, Peer& peer)
4940{
4941 {
4942 LOCK(peer.m_misbehavior_mutex);
4943
4944 // There's nothing to do if the m_should_discourage flag isn't set
4945 if (!peer.m_should_discourage) return false;
4946
4947 peer.m_should_discourage = false;
4948 } // peer.m_misbehavior_mutex
4949
4951 // We never disconnect or discourage peers for bad behavior if they have NetPermissionFlags::NoBan permission
4952 LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id);
4953 return false;
4954 }
4955
4956 if (pnode.IsManualConn()) {
4957 // We never disconnect or discourage manual peers for bad behavior
4958 LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id);
4959 return false;
4960 }
4961
4962 if (pnode.addr.IsLocal()) {
4963 // We disconnect local peers for bad behavior but don't discourage (since that would discourage
4964 // all peers on the same local address)
4965 LogDebug(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n",
4966 pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id);
4967 pnode.fDisconnect = true;
4968 return true;
4969 }
4970
4971 // Normal case: Disconnect the peer and discourage all nodes sharing the address
4972 LogDebug(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id);
4973 if (m_banman) m_banman->Discourage(pnode.addr);
4974 m_connman.DisconnectNode(pnode.addr);
4975 return true;
4976}
4977
4978bool PeerManagerImpl::ProcessMessages(CNode* pfrom, std::atomic<bool>& interruptMsgProc)
4979{
4980 AssertLockNotHeld(m_tx_download_mutex);
4981 AssertLockHeld(g_msgproc_mutex);
4982
4983 PeerRef peer = GetPeerRef(pfrom->GetId());
4984 if (peer == nullptr) return false;
4985
4986 // For outbound connections, ensure that the initial VERSION message
4987 // has been sent first before processing any incoming messages
4988 if (!pfrom->IsInboundConn() && !peer->m_outbound_version_message_sent) return false;
4989
4990 {
4991 LOCK(peer->m_getdata_requests_mutex);
4992 if (!peer->m_getdata_requests.empty()) {
4993 ProcessGetData(*pfrom, *peer, interruptMsgProc);
4994 }
4995 }
4996
4997 const bool processed_orphan = ProcessOrphanTx(*peer);
4998
4999 if (pfrom->fDisconnect)
5000 return false;
5001
5002 if (processed_orphan) return true;
5003
5004 // this maintains the order of responses
5005 // and prevents m_getdata_requests to grow unbounded
5006 {
5007 LOCK(peer->m_getdata_requests_mutex);
5008 if (!peer->m_getdata_requests.empty()) return true;
5009 }
5010
5011 // Don't bother if send buffer is too full to respond anyway
5012 if (pfrom->fPauseSend) return false;
5013
5014 auto poll_result{pfrom->PollMessage()};
5015 if (!poll_result) {
5016 // No message to process
5017 return false;
5018 }
5019
5020 CNetMessage& msg{poll_result->first};
5021 bool fMoreWork = poll_result->second;
5022
5023 TRACEPOINT(net, inbound_message,
5024 pfrom->GetId(),
5025 pfrom->m_addr_name.c_str(),
5026 pfrom->ConnectionTypeAsString().c_str(),
5027 msg.m_type.c_str(),
5028 msg.m_recv.size(),
5029 msg.m_recv.data()
5030 );
5031
5032 if (m_opts.capture_messages) {
5033 CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true);
5034 }
5035
5036 try {
5037 ProcessMessage(*pfrom, msg.m_type, msg.m_recv, msg.m_time, interruptMsgProc);
5038 if (interruptMsgProc) return false;
5039 {
5040 LOCK(peer->m_getdata_requests_mutex);
5041 if (!peer->m_getdata_requests.empty()) fMoreWork = true;
5042 }
5043 // Does this peer has an orphan ready to reconsider?
5044 // (Note: we may have provided a parent for an orphan provided
5045 // by another peer that was already processed; in that case,
5046 // the extra work may not be noticed, possibly resulting in an
5047 // unnecessary 100ms delay)
5048 LOCK(m_tx_download_mutex);
5049 if (m_txdownloadman.HaveMoreWork(peer->m_id)) fMoreWork = true;
5050 } catch (const std::exception& e) {
5051 LogDebug(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name());
5052 } catch (...) {
5053 LogDebug(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size);
5054 }
5055
5056 return fMoreWork;
5057}
5058
5059void PeerManagerImpl::ConsiderEviction(CNode& pto, Peer& peer, std::chrono::seconds time_in_seconds)
5060{
5062
5063 CNodeState &state = *State(pto.GetId());
5064
5065 if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) {
5066 // This is an outbound peer subject to disconnection if they don't
5067 // announce a block with as much work as the current tip within
5068 // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if
5069 // their chain has more work than ours, we should sync to it,
5070 // unless it's invalid, in which case we should find that out and
5071 // disconnect from them elsewhere).
5072 if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) {
5073 // The outbound peer has sent us a block with at least as much work as our current tip, so reset the timeout if it was set
5074 if (state.m_chain_sync.m_timeout != 0s) {
5075 state.m_chain_sync.m_timeout = 0s;
5076 state.m_chain_sync.m_work_header = nullptr;
5077 state.m_chain_sync.m_sent_getheaders = false;
5078 }
5079 } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) {
5080 // At this point we know that the outbound peer has either never sent us a block/header or they have, but its tip is behind ours
5081 // AND
5082 // we are noticing this for the first time (m_timeout is 0)
5083 // OR we noticed this at some point within the last CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds and set a timeout
5084 // for them, they caught up to our tip at the time of setting the timer but not to our current one (we've also advanced).
5085 // Either way, set a new timeout based on our current tip.
5086 state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
5087 state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip();
5088 state.m_chain_sync.m_sent_getheaders = false;
5089 } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) {
5090 // No evidence yet that our peer has synced to a chain with work equal to that
5091 // of our tip, when we first detected it was behind. Send a single getheaders
5092 // message to give the peer a chance to update us.
5093 if (state.m_chain_sync.m_sent_getheaders) {
5094 // They've run out of time to catch up!
5095 LogInfo("Outbound peer has old chain, best known block = %s, %s\n", state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", pto.DisconnectMsg(fLogIPs));
5096 pto.fDisconnect = true;
5097 } else {
5098 assert(state.m_chain_sync.m_work_header);
5099 // Here, we assume that the getheaders message goes out,
5100 // because it'll either go out or be skipped because of a
5101 // getheaders in-flight already, in which case the peer should
5102 // still respond to us with a sufficiently high work chain tip.
5103 MaybeSendGetHeaders(pto,
5104 GetLocator(state.m_chain_sync.m_work_header->pprev),
5105 peer);
5106 LogDebug(BCLog::NET, "sending getheaders to outbound peer=%d to verify chain work (current best known block:%s, benchmark blockhash: %s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash().ToString());
5107 state.m_chain_sync.m_sent_getheaders = true;
5108 // Bump the timeout to allow a response, which could clear the timeout
5109 // (if the response shows the peer has synced), reset the timeout (if
5110 // the peer syncs to the required work but not to our tip), or result
5111 // in disconnect (if we advance to the timeout and pindexBestKnownBlock
5112 // has not sufficiently progressed)
5113 state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME;
5114 }
5115 }
5116 }
5117}
5118
5119void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now)
5120{
5121 // If we have any extra block-relay-only peers, disconnect the youngest unless
5122 // it's given us a block -- in which case, compare with the second-youngest, and
5123 // out of those two, disconnect the peer who least recently gave us a block.
5124 // The youngest block-relay-only peer would be the extra peer we connected
5125 // to temporarily in order to sync our tip; see net.cpp.
5126 // Note that we use higher nodeid as a measure for most recent connection.
5127 if (m_connman.GetExtraBlockRelayCount() > 0) {
5128 std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0};
5129
5130 m_connman.ForEachNode([&](CNode* pnode) {
5131 if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) return;
5132 if (pnode->GetId() > youngest_peer.first) {
5133 next_youngest_peer = youngest_peer;
5134 youngest_peer.first = pnode->GetId();
5135 youngest_peer.second = pnode->m_last_block_time;
5136 }
5137 });
5138 NodeId to_disconnect = youngest_peer.first;
5139 if (youngest_peer.second > next_youngest_peer.second) {
5140 // Our newest block-relay-only peer gave us a block more recently;
5141 // disconnect our second youngest.
5142 to_disconnect = next_youngest_peer.first;
5143 }
5144 m_connman.ForNode(to_disconnect, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5146 // Make sure we're not getting a block right now, and that
5147 // we've been connected long enough for this eviction to happen
5148 // at all.
5149 // Note that we only request blocks from a peer if we learn of a
5150 // valid headers chain with at least as much work as our tip.
5151 CNodeState *node_state = State(pnode->GetId());
5152 if (node_state == nullptr ||
5153 (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->vBlocksInFlight.empty())) {
5154 pnode->fDisconnect = true;
5155 LogDebug(BCLog::NET, "disconnecting extra block-relay-only peer=%d (last block received at time %d)\n",
5156 pnode->GetId(), count_seconds(pnode->m_last_block_time));
5157 return true;
5158 } else {
5159 LogDebug(BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5160 pnode->GetId(), count_seconds(pnode->m_connected), node_state->vBlocksInFlight.size());
5161 }
5162 return false;
5163 });
5164 }
5165
5166 // Check whether we have too many outbound-full-relay peers
5167 if (m_connman.GetExtraFullOutboundCount() > 0) {
5168 // If we have more outbound-full-relay peers than we target, disconnect one.
5169 // Pick the outbound-full-relay peer that least recently announced
5170 // us a new block, with ties broken by choosing the more recent
5171 // connection (higher node id)
5172 // Protect peers from eviction if we don't have another connection
5173 // to their network, counting both outbound-full-relay and manual peers.
5174 NodeId worst_peer = -1;
5175 int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
5176
5177 m_connman.ForEachNode([&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main, m_connman.GetNodesMutex()) {
5178 AssertLockHeld(::cs_main);
5179
5180 // Only consider outbound-full-relay peers that are not already
5181 // marked for disconnection
5182 if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) return;
5183 CNodeState *state = State(pnode->GetId());
5184 if (state == nullptr) return; // shouldn't be possible, but just in case
5185 // Don't evict our protected peers
5186 if (state->m_chain_sync.m_protect) return;
5187 // If this is the only connection on a particular network that is
5188 // OUTBOUND_FULL_RELAY or MANUAL, protect it.
5189 if (!m_connman.MultipleManualOrFullOutboundConns(pnode->addr.GetNetwork())) return;
5190 if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) {
5191 worst_peer = pnode->GetId();
5192 oldest_block_announcement = state->m_last_block_announcement;
5193 }
5194 });
5195 if (worst_peer != -1) {
5196 bool disconnected = m_connman.ForNode(worst_peer, [&](CNode* pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
5198
5199 // Only disconnect a peer that has been connected to us for
5200 // some reasonable fraction of our check-frequency, to give
5201 // it time for new information to have arrived.
5202 // Also don't disconnect any peer we're trying to download a
5203 // block from.
5204 CNodeState &state = *State(pnode->GetId());
5205 if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.vBlocksInFlight.empty()) {
5206 LogDebug(BCLog::NET, "disconnecting extra outbound peer=%d (last block announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement);
5207 pnode->fDisconnect = true;
5208 return true;
5209 } else {
5210 LogDebug(BCLog::NET, "keeping outbound peer=%d chosen for eviction (connect time: %d, blocks_in_flight: %d)\n",
5211 pnode->GetId(), count_seconds(pnode->m_connected), state.vBlocksInFlight.size());
5212 return false;
5213 }
5214 });
5215 if (disconnected) {
5216 // If we disconnected an extra peer, that means we successfully
5217 // connected to at least one peer after the last time we
5218 // detected a stale tip. Don't try any more extra peers until
5219 // we next detect a stale tip, to limit the load we put on the
5220 // network from these extra connections.
5221 m_connman.SetTryNewOutboundPeer(false);
5222 }
5223 }
5224 }
5225}
5226
5227void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
5228{
5229 LOCK(cs_main);
5230
5231 auto now{GetTime<std::chrono::seconds>()};
5232
5233 EvictExtraOutboundPeers(now);
5234
5235 if (now > m_stale_tip_check_time) {
5236 // Check whether our tip is stale, and if so, allow using an extra
5237 // outbound peer
5238 if (!m_chainman.m_blockman.LoadingBlocks() && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) {
5239 LogPrintf("Potential stale tip detected, will try using extra outbound peer (last tip update: %d seconds ago)\n",
5240 count_seconds(now - m_last_tip_update.load()));
5241 m_connman.SetTryNewOutboundPeer(true);
5242 } else if (m_connman.GetTryNewOutboundPeer()) {
5243 m_connman.SetTryNewOutboundPeer(false);
5244 }
5245 m_stale_tip_check_time = now + STALE_CHECK_INTERVAL;
5246 }
5247
5248 if (!m_initial_sync_finished && CanDirectFetch()) {
5249 m_connman.StartExtraBlockRelayPeers();
5250 m_initial_sync_finished = true;
5251 }
5252}
5253
5254void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
5255{
5256 if (m_connman.ShouldRunInactivityChecks(node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) &&
5257 peer.m_ping_nonce_sent &&
5258 now > peer.m_ping_start.load() + TIMEOUT_INTERVAL)
5259 {
5260 // The ping timeout is using mocktime. To disable the check during
5261 // testing, increase -peertimeout.
5262 LogDebug(BCLog::NET, "ping timeout: %fs, %s", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), node_to.DisconnectMsg(fLogIPs));
5263 node_to.fDisconnect = true;
5264 return;
5265 }
5266
5267 bool pingSend = false;
5268
5269 if (peer.m_ping_queued) {
5270 // RPC ping request by user
5271 pingSend = true;
5272 }
5273
5274 if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) {
5275 // Ping automatically sent as a latency probe & keepalive.
5276 pingSend = true;
5277 }
5278
5279 if (pingSend) {
5280 uint64_t nonce;
5281 do {
5283 } while (nonce == 0);
5284 peer.m_ping_queued = false;
5285 peer.m_ping_start = now;
5286 if (node_to.GetCommonVersion() > BIP0031_VERSION) {
5287 peer.m_ping_nonce_sent = nonce;
5288 MakeAndPushMessage(node_to, NetMsgType::PING, nonce);
5289 } else {
5290 // Peer is too old to support ping command with nonce, pong will never arrive.
5291 peer.m_ping_nonce_sent = 0;
5292 MakeAndPushMessage(node_to, NetMsgType::PING);
5293 }
5294 }
5295}
5296
5297void PeerManagerImpl::MaybeSendAddr(CNode& node, Peer& peer, std::chrono::microseconds current_time)
5298{
5299 // Nothing to do for non-address-relay peers
5300 if (!peer.m_addr_relay_enabled) return;
5301
5302 LOCK(peer.m_addr_send_times_mutex);
5303 // Periodically advertise our local address to the peer.
5304 if (fListen && !m_chainman.IsInitialBlockDownload() &&
5305 peer.m_next_local_addr_send < current_time) {
5306 // If we've sent before, clear the bloom filter for the peer, so that our
5307 // self-announcement will actually go out.
5308 // This might be unnecessary if the bloom filter has already rolled
5309 // over since our last self-announcement, but there is only a small
5310 // bandwidth cost that we can incur by doing this (which happens
5311 // once a day on average).
5312 if (peer.m_next_local_addr_send != 0us) {
5313 peer.m_addr_known->reset();
5314 }
5315 if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) {
5316 CAddress local_addr{*local_service, peer.m_our_services, Now<NodeSeconds>()};
5317 PushAddress(peer, local_addr);
5318 }
5319 peer.m_next_local_addr_send = current_time + m_rng.rand_exp_duration(AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
5320 }
5321
5322 // We sent an `addr` message to this peer recently. Nothing more to do.
5323 if (current_time <= peer.m_next_addr_send) return;
5324
5325 peer.m_next_addr_send = current_time + m_rng.rand_exp_duration(AVG_ADDRESS_BROADCAST_INTERVAL);
5326
5327 if (!Assume(peer.m_addrs_to_send.size() <= MAX_ADDR_TO_SEND)) {
5328 // Should be impossible since we always check size before adding to
5329 // m_addrs_to_send. Recover by trimming the vector.
5330 peer.m_addrs_to_send.resize(MAX_ADDR_TO_SEND);
5331 }
5332
5333 // Remove addr records that the peer already knows about, and add new
5334 // addrs to the m_addr_known filter on the same pass.
5335 auto addr_already_known = [&peer](const CAddress& addr) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex) {
5336 bool ret = peer.m_addr_known->contains(addr.GetKey());
5337 if (!ret) peer.m_addr_known->insert(addr.GetKey());
5338 return ret;
5339 };
5340 peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known),
5341 peer.m_addrs_to_send.end());
5342
5343 // No addr messages to send
5344 if (peer.m_addrs_to_send.empty()) return;
5345
5346 if (peer.m_wants_addrv2) {
5347 MakeAndPushMessage(node, NetMsgType::ADDRV2, CAddress::V2_NETWORK(peer.m_addrs_to_send));
5348 } else {
5349 MakeAndPushMessage(node, NetMsgType::ADDR, CAddress::V1_NETWORK(peer.m_addrs_to_send));
5350 }
5351 peer.m_addrs_to_send.clear();
5352
5353 // we only send the big addr message once
5354 if (peer.m_addrs_to_send.capacity() > 40) {
5355 peer.m_addrs_to_send.shrink_to_fit();
5356 }
5357}
5358
5359void PeerManagerImpl::MaybeSendSendHeaders(CNode& node, Peer& peer)
5360{
5361 // Delay sending SENDHEADERS (BIP 130) until we're done with an
5362 // initial-headers-sync with this peer. Receiving headers announcements for
5363 // new blocks while trying to sync their headers chain is problematic,
5364 // because of the state tracking done.
5365 if (!peer.m_sent_sendheaders && node.GetCommonVersion() >= SENDHEADERS_VERSION) {
5366 LOCK(cs_main);
5367 CNodeState &state = *State(node.GetId());
5368 if (state.pindexBestKnownBlock != nullptr &&
5369 state.pindexBestKnownBlock->nChainWork > m_chainman.MinimumChainWork()) {
5370 // Tell our peer we prefer to receive headers rather than inv's
5371 // We send this to non-NODE NETWORK peers as well, because even
5372 // non-NODE NETWORK peers can announce blocks (such as pruning
5373 // nodes)
5374 MakeAndPushMessage(node, NetMsgType::SENDHEADERS);
5375 peer.m_sent_sendheaders = true;
5376 }
5377 }
5378}
5379
5380void PeerManagerImpl::MaybeSendFeefilter(CNode& pto, Peer& peer, std::chrono::microseconds current_time)
5381{
5382 if (m_opts.ignore_incoming_txs) return;
5383 if (pto.GetCommonVersion() < FEEFILTER_VERSION) return;
5384 // peers with the forcerelay permission should not filter txs to us
5386 // Don't send feefilter messages to outbound block-relay-only peers since they should never announce
5387 // transactions to us, regardless of feefilter state.
5388 if (pto.IsBlockOnlyConn()) return;
5389
5390 CAmount currentFilter = m_mempool.GetMinFee().GetFeePerK();
5391
5392 if (m_chainman.IsInitialBlockDownload()) {
5393 // Received tx-inv messages are discarded when the active
5394 // chainstate is in IBD, so tell the peer to not send them.
5395 currentFilter = MAX_MONEY;
5396 } else {
5397 static const CAmount MAX_FILTER{m_fee_filter_rounder.round(MAX_MONEY)};
5398 if (peer.m_fee_filter_sent == MAX_FILTER) {
5399 // Send the current filter if we sent MAX_FILTER previously
5400 // and made it out of IBD.
5401 peer.m_next_send_feefilter = 0us;
5402 }
5403 }
5404 if (current_time > peer.m_next_send_feefilter) {
5405 CAmount filterToSend = m_fee_filter_rounder.round(currentFilter);
5406 // We always have a fee filter of at least the min relay fee
5407 filterToSend = std::max(filterToSend, m_mempool.m_opts.min_relay_feerate.GetFeePerK());
5408 if (filterToSend != peer.m_fee_filter_sent) {
5409 MakeAndPushMessage(pto, NetMsgType::FEEFILTER, filterToSend);
5410 peer.m_fee_filter_sent = filterToSend;
5411 }
5412 peer.m_next_send_feefilter = current_time + m_rng.rand_exp_duration(AVG_FEEFILTER_BROADCAST_INTERVAL);
5413 }
5414 // If the fee filter has changed substantially and it's still more than MAX_FEEFILTER_CHANGE_DELAY
5415 // until scheduled broadcast, then move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
5416 else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter &&
5417 (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) {
5418 peer.m_next_send_feefilter = current_time + m_rng.randrange<std::chrono::microseconds>(MAX_FEEFILTER_CHANGE_DELAY);
5419 }
5420}
5421
5422namespace {
5423class CompareInvMempoolOrder
5424{
5425 const CTxMemPool* m_mempool;
5426public:
5427 explicit CompareInvMempoolOrder(CTxMemPool* mempool) : m_mempool{mempool} {}
5428
5429 bool operator()(std::set<Wtxid>::iterator a, std::set<Wtxid>::iterator b)
5430 {
5431 /* As std::make_heap produces a max-heap, we want the entries with the
5432 * fewest ancestors/highest fee to sort later. */
5433 return m_mempool->CompareDepthAndScore(*b, *a);
5434 }
5435};
5436} // namespace
5437
5438bool PeerManagerImpl::RejectIncomingTxs(const CNode& peer) const
5439{
5440 // block-relay-only peers may never send txs to us
5441 if (peer.IsBlockOnlyConn()) return true;
5442 if (peer.IsFeelerConn()) return true;
5443 // In -blocksonly mode, peers need the 'relay' permission to send txs to us
5444 if (m_opts.ignore_incoming_txs && !peer.HasPermission(NetPermissionFlags::Relay)) return true;
5445 return false;
5446}
5447
5448bool PeerManagerImpl::SetupAddressRelay(const CNode& node, Peer& peer)
5449{
5450 // We don't participate in addr relay with outbound block-relay-only
5451 // connections to prevent providing adversaries with the additional
5452 // information of addr traffic to infer the link.
5453 if (node.IsBlockOnlyConn()) return false;
5454
5455 if (!peer.m_addr_relay_enabled.exchange(true)) {
5456 // During version message processing (non-block-relay-only outbound peers)
5457 // or on first addr-related message we have received (inbound peers), initialize
5458 // m_addr_known.
5459 peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
5460 }
5461
5462 return true;
5463}
5464
5465bool PeerManagerImpl::SendMessages(CNode* pto)
5466{
5467 AssertLockNotHeld(m_tx_download_mutex);
5468 AssertLockHeld(g_msgproc_mutex);
5469
5470 PeerRef peer = GetPeerRef(pto->GetId());
5471 if (!peer) return false;
5472 const Consensus::Params& consensusParams = m_chainparams.GetConsensus();
5473
5474 // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
5475 // disconnect misbehaving peers even before the version handshake is complete.
5476 if (MaybeDiscourageAndDisconnect(*pto, *peer)) return true;
5477
5478 // Initiate version handshake for outbound connections
5479 if (!pto->IsInboundConn() && !peer->m_outbound_version_message_sent) {
5480 PushNodeVersion(*pto, *peer);
5481 peer->m_outbound_version_message_sent = true;
5482 }
5483
5484 // Don't send anything until the version handshake is complete
5485 if (!pto->fSuccessfullyConnected || pto->fDisconnect)
5486 return true;
5487
5488 const auto current_time{GetTime<std::chrono::microseconds>()};
5489
5490 if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) {
5491 LogDebug(BCLog::NET, "addrfetch connection timeout, %s\n", pto->DisconnectMsg(fLogIPs));
5492 pto->fDisconnect = true;
5493 return true;
5494 }
5495
5496 MaybeSendPing(*pto, *peer, current_time);
5497
5498 // MaybeSendPing may have marked peer for disconnection
5499 if (pto->fDisconnect) return true;
5500
5501 MaybeSendAddr(*pto, *peer, current_time);
5502
5503 MaybeSendSendHeaders(*pto, *peer);
5504
5505 {
5506 LOCK(cs_main);
5507
5508 CNodeState &state = *State(pto->GetId());
5509
5510 // Start block sync
5511 if (m_chainman.m_best_header == nullptr) {
5512 m_chainman.m_best_header = m_chainman.ActiveChain().Tip();
5513 }
5514
5515 // Determine whether we might try initial headers sync or parallel
5516 // block download from this peer -- this mostly affects behavior while
5517 // in IBD (once out of IBD, we sync from all peers).
5518 bool sync_blocks_and_headers_from_peer = false;
5519 if (state.fPreferredDownload) {
5520 sync_blocks_and_headers_from_peer = true;
5521 } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) {
5522 // Typically this is an inbound peer. If we don't have any outbound
5523 // peers, or if we aren't downloading any blocks from such peers,
5524 // then allow block downloads from this peer, too.
5525 // We prefer downloading blocks from outbound peers to avoid
5526 // putting undue load on (say) some home user who is just making
5527 // outbound connections to the network, but if our only source of
5528 // the latest blocks is from an inbound peer, we have to be sure to
5529 // eventually download it (and not just wait indefinitely for an
5530 // outbound peer to have it).
5531 if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) {
5532 sync_blocks_and_headers_from_peer = true;
5533 }
5534 }
5535
5536 if (!state.fSyncStarted && CanServeBlocks(*peer) && !m_chainman.m_blockman.LoadingBlocks()) {
5537 // Only actively request headers from a single peer, unless we're close to today.
5538 if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->Time() > NodeClock::now() - 24h) {
5539 const CBlockIndex* pindexStart = m_chainman.m_best_header;
5540 /* If possible, start at the block preceding the currently
5541 best known header. This ensures that we always get a
5542 non-empty list of headers back as long as the peer
5543 is up-to-date. With a non-empty response, we can initialise
5544 the peer's known best block. This wouldn't be possible
5545 if we requested starting at m_chainman.m_best_header and
5546 got back an empty response. */
5547 if (pindexStart->pprev)
5548 pindexStart = pindexStart->pprev;
5549 if (MaybeSendGetHeaders(*pto, GetLocator(pindexStart), *peer)) {
5550 LogDebug(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height);
5551
5552 state.fSyncStarted = true;
5553 peer->m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE +
5554 (
5555 // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to microseconds before scaling
5556 // to maintain precision
5557 std::chrono::microseconds{HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} *
5558 Ticks<std::chrono::seconds>(NodeClock::now() - m_chainman.m_best_header->Time()) / consensusParams.nPowTargetSpacing
5559 );
5560 nSyncStarted++;
5561 }
5562 }
5563 }
5564
5565 //
5566 // Try sending block announcements via headers
5567 //
5568 {
5569 // If we have no more than MAX_BLOCKS_TO_ANNOUNCE in our
5570 // list of block hashes we're relaying, and our peer wants
5571 // headers announcements, then find the first header
5572 // not yet known to our peer but would connect, and send.
5573 // If no header would connect, or if we have too many
5574 // blocks, or if the peer doesn't want headers, just
5575 // add all to the inv queue.
5576 LOCK(peer->m_block_inv_mutex);
5577 std::vector<CBlock> vHeaders;
5578 bool fRevertToInv = ((!peer->m_prefers_headers &&
5579 (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) ||
5580 peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE);
5581 const CBlockIndex *pBestIndex = nullptr; // last header queued for delivery
5582 ProcessBlockAvailability(pto->GetId()); // ensure pindexBestKnownBlock is up-to-date
5583
5584 if (!fRevertToInv) {
5585 bool fFoundStartingHeader = false;
5586 // Try to find first header that our peer doesn't have, and
5587 // then send all headers past that one. If we come across any
5588 // headers that aren't on m_chainman.ActiveChain(), give up.
5589 for (const uint256& hash : peer->m_blocks_for_headers_relay) {
5590 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hash);
5591 assert(pindex);
5592 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5593 // Bail out if we reorged away from this block
5594 fRevertToInv = true;
5595 break;
5596 }
5597 if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
5598 // This means that the list of blocks to announce don't
5599 // connect to each other.
5600 // This shouldn't really be possible to hit during
5601 // regular operation (because reorgs should take us to
5602 // a chain that has some block not on the prior chain,
5603 // which should be caught by the prior check), but one
5604 // way this could happen is by using invalidateblock /
5605 // reconsiderblock repeatedly on the tip, causing it to
5606 // be added multiple times to m_blocks_for_headers_relay.
5607 // Robustly deal with this rare situation by reverting
5608 // to an inv.
5609 fRevertToInv = true;
5610 break;
5611 }
5612 pBestIndex = pindex;
5613 if (fFoundStartingHeader) {
5614 // add this to the headers message
5615 vHeaders.emplace_back(pindex->GetBlockHeader());
5616 } else if (PeerHasHeader(&state, pindex)) {
5617 continue; // keep looking for the first new block
5618 } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) {
5619 // Peer doesn't have this header but they do have the prior one.
5620 // Start sending headers.
5621 fFoundStartingHeader = true;
5622 vHeaders.emplace_back(pindex->GetBlockHeader());
5623 } else {
5624 // Peer doesn't have this header or the prior one -- nothing will
5625 // connect, so bail out.
5626 fRevertToInv = true;
5627 break;
5628 }
5629 }
5630 }
5631 if (!fRevertToInv && !vHeaders.empty()) {
5632 if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) {
5633 // We only send up to 1 block as header-and-ids, as otherwise
5634 // probably means we're doing an initial-ish-sync or they're slow
5635 LogDebug(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__,
5636 vHeaders.front().GetHash().ToString(), pto->GetId());
5637
5638 std::optional<CSerializedNetMsg> cached_cmpctblock_msg;
5639 {
5640 LOCK(m_most_recent_block_mutex);
5641 if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) {
5642 cached_cmpctblock_msg = NetMsg::Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block);
5643 }
5644 }
5645 if (cached_cmpctblock_msg.has_value()) {
5646 PushMessage(*pto, std::move(cached_cmpctblock_msg.value()));
5647 } else {
5648 CBlock block;
5649 const bool ret{m_chainman.m_blockman.ReadBlock(block, *pBestIndex)};
5650 assert(ret);
5651 CBlockHeaderAndShortTxIDs cmpctblock{block, m_rng.rand64()};
5652 MakeAndPushMessage(*pto, NetMsgType::CMPCTBLOCK, cmpctblock);
5653 }
5654 state.pindexBestHeaderSent = pBestIndex;
5655 } else if (peer->m_prefers_headers) {
5656 if (vHeaders.size() > 1) {
5657 LogDebug(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__,
5658 vHeaders.size(),
5659 vHeaders.front().GetHash().ToString(),
5660 vHeaders.back().GetHash().ToString(), pto->GetId());
5661 } else {
5662 LogDebug(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__,
5663 vHeaders.front().GetHash().ToString(), pto->GetId());
5664 }
5665 MakeAndPushMessage(*pto, NetMsgType::HEADERS, TX_WITH_WITNESS(vHeaders));
5666 state.pindexBestHeaderSent = pBestIndex;
5667 } else
5668 fRevertToInv = true;
5669 }
5670 if (fRevertToInv) {
5671 // If falling back to using an inv, just try to inv the tip.
5672 // The last entry in m_blocks_for_headers_relay was our tip at some point
5673 // in the past.
5674 if (!peer->m_blocks_for_headers_relay.empty()) {
5675 const uint256& hashToAnnounce = peer->m_blocks_for_headers_relay.back();
5676 const CBlockIndex* pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce);
5677 assert(pindex);
5678
5679 // Warn if we're announcing a block that is not on the main chain.
5680 // This should be very rare and could be optimized out.
5681 // Just log for now.
5682 if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) {
5683 LogDebug(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n",
5684 hashToAnnounce.ToString(), m_chainman.ActiveChain().Tip()->GetBlockHash().ToString());
5685 }
5686
5687 // If the peer's chain has this block, don't inv it back.
5688 if (!PeerHasHeader(&state, pindex)) {
5689 peer->m_blocks_for_inv_relay.push_back(hashToAnnounce);
5690 LogDebug(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__,
5691 pto->GetId(), hashToAnnounce.ToString());
5692 }
5693 }
5694 }
5695 peer->m_blocks_for_headers_relay.clear();
5696 }
5697
5698 //
5699 // Message: inventory
5700 //
5701 std::vector<CInv> vInv;
5702 {
5703 LOCK(peer->m_block_inv_mutex);
5704 vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_TARGET));
5705
5706 // Add blocks
5707 for (const uint256& hash : peer->m_blocks_for_inv_relay) {
5708 vInv.emplace_back(MSG_BLOCK, hash);
5709 if (vInv.size() == MAX_INV_SZ) {
5710 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5711 vInv.clear();
5712 }
5713 }
5714 peer->m_blocks_for_inv_relay.clear();
5715 }
5716
5717 if (auto tx_relay = peer->GetTxRelay(); tx_relay != nullptr) {
5718 LOCK(tx_relay->m_tx_inventory_mutex);
5719 // Check whether periodic sends should happen
5720 bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan);
5721 if (tx_relay->m_next_inv_send_time < current_time) {
5722 fSendTrickle = true;
5723 if (pto->IsInboundConn()) {
5724 tx_relay->m_next_inv_send_time = NextInvToInbounds(current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL, pto->m_network_key);
5725 } else {
5726 tx_relay->m_next_inv_send_time = current_time + m_rng.rand_exp_duration(OUTBOUND_INVENTORY_BROADCAST_INTERVAL);
5727 }
5728 }
5729
5730 // Time to send but the peer has requested we not relay transactions.
5731 if (fSendTrickle) {
5732 LOCK(tx_relay->m_bloom_filter_mutex);
5733 if (!tx_relay->m_relay_txs) tx_relay->m_tx_inventory_to_send.clear();
5734 }
5735
5736 // Respond to BIP35 mempool requests
5737 if (fSendTrickle && tx_relay->m_send_mempool) {
5738 auto vtxinfo = m_mempool.infoAll();
5739 tx_relay->m_send_mempool = false;
5740 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5741
5742 LOCK(tx_relay->m_bloom_filter_mutex);
5743
5744 for (const auto& txinfo : vtxinfo) {
5745 const Txid& txid{txinfo.tx->GetHash()};
5746 const Wtxid& wtxid{txinfo.tx->GetWitnessHash()};
5747 const auto inv = peer->m_wtxid_relay ?
5748 CInv{MSG_WTX, wtxid.ToUint256()} :
5749 CInv{MSG_TX, txid.ToUint256()};
5750 tx_relay->m_tx_inventory_to_send.erase(wtxid);
5751
5752 // Don't send transactions that peers will not put into their mempool
5753 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5754 continue;
5755 }
5756 if (tx_relay->m_bloom_filter) {
5757 if (!tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5758 }
5759 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5760 vInv.push_back(inv);
5761 if (vInv.size() == MAX_INV_SZ) {
5762 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5763 vInv.clear();
5764 }
5765 }
5766 }
5767
5768 // Determine transactions to relay
5769 if (fSendTrickle) {
5770 // Produce a vector with all candidates for sending
5771 std::vector<std::set<Wtxid>::iterator> vInvTx;
5772 vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size());
5773 for (std::set<Wtxid>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) {
5774 vInvTx.push_back(it);
5775 }
5776 const CFeeRate filterrate{tx_relay->m_fee_filter_received.load()};
5777 // Topologically and fee-rate sort the inventory we send for privacy and priority reasons.
5778 // A heap is used so that not all items need sorting if only a few are being sent.
5779 CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
5780 std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5781 // No reason to drain out at many times the network's capacity,
5782 // especially since we have many peers and some will draw much shorter delays.
5783 unsigned int nRelayedTransactions = 0;
5784 LOCK(tx_relay->m_bloom_filter_mutex);
5785 size_t broadcast_max{INVENTORY_BROADCAST_TARGET + (tx_relay->m_tx_inventory_to_send.size()/1000)*5};
5786 broadcast_max = std::min<size_t>(INVENTORY_BROADCAST_MAX, broadcast_max);
5787 while (!vInvTx.empty() && nRelayedTransactions < broadcast_max) {
5788 // Fetch the top element from the heap
5789 std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder);
5790 std::set<Wtxid>::iterator it = vInvTx.back();
5791 vInvTx.pop_back();
5792 auto wtxid = *it;
5793 // Remove it from the to-be-sent set
5794 tx_relay->m_tx_inventory_to_send.erase(it);
5795 // Not in the mempool anymore? don't bother sending it.
5796 auto txinfo = m_mempool.info(wtxid);
5797 if (!txinfo.tx) {
5798 continue;
5799 }
5800 // `TxRelay::m_tx_inventory_known_filter` contains either txids or wtxids
5801 // depending on whether our peer supports wtxid-relay. Therefore, first
5802 // construct the inv and then use its hash for the filter check.
5803 const auto inv = peer->m_wtxid_relay ?
5804 CInv{MSG_WTX, wtxid.ToUint256()} :
5805 CInv{MSG_TX, txinfo.tx->GetHash().ToUint256()};
5806 // Check if not in the filter already
5807 if (tx_relay->m_tx_inventory_known_filter.contains(inv.hash)) {
5808 continue;
5809 }
5810 // Peer told you to not send transactions at that feerate? Don't bother sending it.
5811 if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
5812 continue;
5813 }
5814 if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate(*txinfo.tx)) continue;
5815 // Send
5816 vInv.push_back(inv);
5817 nRelayedTransactions++;
5818 if (vInv.size() == MAX_INV_SZ) {
5819 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5820 vInv.clear();
5821 }
5822 tx_relay->m_tx_inventory_known_filter.insert(inv.hash);
5823 }
5824
5825 // Ensure we'll respond to GETDATA requests for anything we've just announced
5826 LOCK(m_mempool.cs);
5827 tx_relay->m_last_inv_sequence = m_mempool.GetSequence();
5828 }
5829 }
5830 if (!vInv.empty())
5831 MakeAndPushMessage(*pto, NetMsgType::INV, vInv);
5832
5833 // Detect whether we're stalling
5834 auto stalling_timeout = m_block_stalling_timeout.load();
5835 if (state.m_stalling_since.count() && state.m_stalling_since < current_time - stalling_timeout) {
5836 // Stalling only triggers when the block download window cannot move. During normal steady state,
5837 // the download window should be much larger than the to-be-downloaded set of blocks, so disconnection
5838 // should only happen during initial block download.
5839 LogInfo("Peer is stalling block download, %s\n", pto->DisconnectMsg(fLogIPs));
5840 pto->fDisconnect = true;
5841 // Increase timeout for the next peer so that we don't disconnect multiple peers if our own
5842 // bandwidth is insufficient.
5843 const auto new_timeout = std::min(2 * stalling_timeout, BLOCK_STALLING_TIMEOUT_MAX);
5844 if (stalling_timeout != new_timeout && m_block_stalling_timeout.compare_exchange_strong(stalling_timeout, new_timeout)) {
5845 LogDebug(BCLog::NET, "Increased stalling timeout temporarily to %d seconds\n", count_seconds(new_timeout));
5846 }
5847 return true;
5848 }
5849 // In case there is a block that has been in flight from this peer for block_interval * (1 + 0.5 * N)
5850 // (with N the number of peers from which we're downloading validated blocks), disconnect due to timeout.
5851 // We compensate for other peers to prevent killing off peers due to our own downstream link
5852 // being saturated. We only count validated in-flight blocks so peers can't advertise non-existing block hashes
5853 // to unreasonably increase our timeout.
5854 if (state.vBlocksInFlight.size() > 0) {
5855 QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
5856 int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1;
5857 if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) {
5858 LogInfo("Timeout downloading block %s, %s\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->DisconnectMsg(fLogIPs));
5859 pto->fDisconnect = true;
5860 return true;
5861 }
5862 }
5863 // Check for headers sync timeouts
5864 if (state.fSyncStarted && peer->m_headers_sync_timeout < std::chrono::microseconds::max()) {
5865 // Detect whether this is a stalling initial-headers-sync peer
5866 if (m_chainman.m_best_header->Time() <= NodeClock::now() - 24h) {
5867 if (current_time > peer->m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) {
5868 // Disconnect a peer (without NetPermissionFlags::NoBan permission) if it is our only sync peer,
5869 // and we have others we could be using instead.
5870 // Note: If all our peers are inbound, then we won't
5871 // disconnect our sync peer for stalling; we have bigger
5872 // problems if we can't get any outbound peers.
5874 LogInfo("Timeout downloading headers, %s\n", pto->DisconnectMsg(fLogIPs));
5875 pto->fDisconnect = true;
5876 return true;
5877 } else {
5878 LogInfo("Timeout downloading headers from noban peer, not %s\n", pto->DisconnectMsg(fLogIPs));
5879 // Reset the headers sync state so that we have a
5880 // chance to try downloading from a different peer.
5881 // Note: this will also result in at least one more
5882 // getheaders message to be sent to
5883 // this peer (eventually).
5884 state.fSyncStarted = false;
5885 nSyncStarted--;
5886 peer->m_headers_sync_timeout = 0us;
5887 }
5888 }
5889 } else {
5890 // After we've caught up once, reset the timeout so we can't trigger
5891 // disconnect later.
5892 peer->m_headers_sync_timeout = std::chrono::microseconds::max();
5893 }
5894 }
5895
5896 // Check that outbound peers have reasonable chains
5897 // GetTime() is used by this anti-DoS logic so we can test this using mocktime
5898 ConsiderEviction(*pto, *peer, GetTime<std::chrono::seconds>());
5899
5900 //
5901 // Message: getdata (blocks)
5902 //
5903 std::vector<CInv> vGetData;
5904 if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.IsInitialBlockDownload()) && state.vBlocksInFlight.size() < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
5905 std::vector<const CBlockIndex*> vToDownload;
5906 NodeId staller = -1;
5907 auto get_inflight_budget = [&state]() {
5908 return std::max(0, MAX_BLOCKS_IN_TRANSIT_PER_PEER - static_cast<int>(state.vBlocksInFlight.size()));
5909 };
5910
5911 // If a snapshot chainstate is in use, we want to find its next blocks
5912 // before the background chainstate to prioritize getting to network tip.
5913 FindNextBlocksToDownload(*peer, get_inflight_budget(), vToDownload, staller);
5914 if (m_chainman.BackgroundSyncInProgress() && !IsLimitedPeer(*peer)) {
5915 // If the background tip is not an ancestor of the snapshot block,
5916 // we need to start requesting blocks from their last common ancestor.
5917 const CBlockIndex *from_tip = LastCommonAncestor(m_chainman.GetBackgroundSyncTip(), m_chainman.GetSnapshotBaseBlock());
5918 TryDownloadingHistoricalBlocks(
5919 *peer,
5920 get_inflight_budget(),
5921 vToDownload, from_tip,
5922 Assert(m_chainman.GetSnapshotBaseBlock()));
5923 }
5924 for (const CBlockIndex *pindex : vToDownload) {
5925 uint32_t nFetchFlags = GetFetchFlags(*peer);
5926 vGetData.emplace_back(MSG_BLOCK | nFetchFlags, pindex->GetBlockHash());
5927 BlockRequested(pto->GetId(), *pindex);
5928 LogDebug(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(),
5929 pindex->nHeight, pto->GetId());
5930 }
5931 if (state.vBlocksInFlight.empty() && staller != -1) {
5932 if (State(staller)->m_stalling_since == 0us) {
5933 State(staller)->m_stalling_since = current_time;
5934 LogDebug(BCLog::NET, "Stall started peer=%d\n", staller);
5935 }
5936 }
5937 }
5938
5939 //
5940 // Message: getdata (transactions)
5941 //
5942 {
5943 LOCK(m_tx_download_mutex);
5944 for (const GenTxid& gtxid : m_txdownloadman.GetRequestsToSend(pto->GetId(), current_time)) {
5945 vGetData.emplace_back(gtxid.IsWtxid() ? MSG_WTX : (MSG_TX | GetFetchFlags(*peer)), gtxid.ToUint256());
5946 if (vGetData.size() >= MAX_GETDATA_SZ) {
5947 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5948 vGetData.clear();
5949 }
5950 }
5951 }
5952
5953 if (!vGetData.empty())
5954 MakeAndPushMessage(*pto, NetMsgType::GETDATA, vGetData);
5955 } // release cs_main
5956 MaybeSendFeefilter(*pto, *peer, current_time);
5957 return true;
5958}
static constexpr CAmount MAX_MONEY
No amount larger than this (in satoshi) is valid.
Definition: amount.h:26
bool MoneyRange(const CAmount &nValue)
Definition: amount.h:27
int64_t CAmount
Amount in satoshis (Can be negative)
Definition: amount.h:12
int ret
if(!SetupNetworking())
ArgsManager & args
Definition: bitcoind.cpp:277
@ READ_STATUS_OK
@ READ_STATUS_INVALID
@ READ_STATUS_FAILED
enum ReadStatus_t ReadStatus
const std::string & BlockFilterTypeName(BlockFilterType filter_type)
Get the human-readable name for a filter type.
BlockFilterType
Definition: blockfilter.h:94
BlockFilterIndex * GetBlockFilterIndex(BlockFilterType filter_type)
Get a block filter index by type.
static constexpr int CFCHECKPT_INTERVAL
Interval between compact filter checkpoints.
arith_uint256 GetBlockProof(const CBlockIndex &block)
Definition: chain.cpp:121
CBlockLocator GetLocator(const CBlockIndex *index)
Get a locator for a block index entry.
Definition: chain.cpp:45
int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &params)
Return the time it would take to redo the work difference between from and to, assuming the current h...
Definition: chain.cpp:136
const CBlockIndex * LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb)
Find the last common ancestor two blocks have.
Definition: chain.cpp:155
@ BLOCK_VALID_CHAIN
Outputs do not overspend inputs, no double spends, coinbase output ok, no immature coinbase spends,...
Definition: chain.h:73
@ BLOCK_VALID_TRANSACTIONS
Only first tx is coinbase, 2 <= coinbase input script length <= 100, transactions valid,...
Definition: chain.h:69
@ BLOCK_VALID_SCRIPTS
Scripts & signatures ok.
Definition: chain.h:77
@ BLOCK_VALID_TREE
All parent headers found, difficulty matches, timestamp >= median previous.
Definition: chain.h:59
@ BLOCK_HAVE_DATA
full block available in blk*.dat
Definition: chain.h:83
const CChainParams & Params()
Return the currently selected parameters.
#define Assert(val)
Identity function.
Definition: check.h:113
#define Assume(val)
Assume is the identity function.
Definition: check.h:125
Stochastic address manager.
Definition: addrman.h:89
void Connected(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
We have successfully connected to this peer.
Definition: addrman.cpp:1342
bool Good(const CService &addr, NodeSeconds time=Now< NodeSeconds >())
Mark an address record as accessible and attempt to move it to addrman's tried table.
Definition: addrman.cpp:1307
bool Add(const std::vector< CAddress > &vAddr, const CNetAddr &source, std::chrono::seconds time_penalty=0s)
Attempt to add one or more addresses to addrman's new table.
Definition: addrman.cpp:1302
void SetServices(const CService &addr, ServiceFlags nServices)
Update an entry's service bits.
Definition: addrman.cpp:1347
Definition: banman.h:64
bool IsBanned(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is banned.
Definition: banman.cpp:89
bool IsDiscouraged(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Return whether net_addr is discouraged.
Definition: banman.cpp:83
void Discourage(const CNetAddr &net_addr) EXCLUSIVE_LOCKS_REQUIRED(!m_banned_mutex)
Definition: banman.cpp:124
BlockFilterIndex is used to store and retrieve block filters, hashes, and headers for a range of bloc...
bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector< BlockFilter > &filters_out) const
Get a range of filters between two heights on a chain.
bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector< uint256 > &hashes_out) const
Get a range of filter hashes between two heights on a chain.
bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache)
Get a single filter header by block.
std::vector< CTransactionRef > txn
std::vector< uint16_t > indexes
A CService with information about it as peer.
Definition: protocol.h:367
ServiceFlags nServices
Serialized as uint64_t in V1, and as CompactSize in V2.
Definition: protocol.h:459
static constexpr SerParams V1_NETWORK
Definition: protocol.h:408
NodeSeconds nTime
Always included in serialization. The behavior is unspecified if the value is not representable as ui...
Definition: protocol.h:457
static constexpr SerParams V2_NETWORK
Definition: protocol.h:409
Nodes collect new transactions into a block, hash them into a hash tree, and scan through nonce value...
Definition: block.h:22
uint256 hashPrevBlock
Definition: block.h:26
uint256 GetHash() const
Definition: block.cpp:11
bool IsNull() const
Definition: block.h:49
Definition: block.h:69
std::vector< CTransactionRef > vtx
Definition: block.h:72
The block chain is a tree shaped structure starting with the genesis block at the root,...
Definition: chain.h:103
bool IsValid(enum BlockStatus nUpTo) const EXCLUSIVE_LOCKS_REQUIRED(
Check whether this block index entry is valid up to the passed validity level.
Definition: chain.h:259
CBlockIndex * pprev
pointer to the index of the predecessor of this block
Definition: chain.h:109
CBlockHeader GetBlockHeader() const
Definition: chain.h:194
arith_uint256 nChainWork
(memory only) Total amount of work (expected number of hashes) in the chain up to and including this ...
Definition: chain.h:127
bool HaveNumChainTxs() const
Check whether this block and all previous blocks back to the genesis block or an assumeutxo snapshot ...
Definition: chain.h:223
uint256 GetBlockHash() const
Definition: chain.h:207
int64_t GetBlockTime() const
Definition: chain.h:230
unsigned int nTx
Number of transactions in this block.
Definition: chain.h:132
NodeSeconds Time() const
Definition: chain.h:225
CBlockIndex * GetAncestor(int height)
Efficiently find an ancestor of this block.
Definition: chain.cpp:110
int nHeight
height of the entry in the chain. The genesis block has height 0
Definition: chain.h:115
FlatFilePos GetBlockPos() const EXCLUSIVE_LOCKS_REQUIRED(
Definition: chain.h:172
BloomFilter is a probabilistic filter which SPV clients provide so that we can filter the transaction...
Definition: bloom.h:45
bool IsWithinSizeConstraints() const
True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS (c...
Definition: bloom.cpp:89
An in-memory indexed chain of blocks.
Definition: chain.h:381
CBlockIndex * Tip() const
Returns the index entry for the tip of this chain, or nullptr if none.
Definition: chain.h:397
CBlockIndex * Next(const CBlockIndex *pindex) const
Find the successor of a block in this chain, or nullptr if the given index is not found or is the tip...
Definition: chain.h:417
int Height() const
Return the maximal height in the chain.
Definition: chain.h:426
bool Contains(const CBlockIndex *pindex) const
Efficiently check whether a block is present in this chain.
Definition: chain.h:411
CChainParams defines various tweakable parameters of a given instance of the Bitcoin system.
Definition: chainparams.h:78
const HeadersSyncParams & HeadersSync() const
Definition: chainparams.h:118
const Consensus::Params & GetConsensus() const
Definition: chainparams.h:90
Definition: net.h:1060
void ForEachNode(const NodeFn &func)
Definition: net.h:1185
bool ForNode(NodeId id, std::function< bool(CNode *pnode)> func)
Definition: net.cpp:3941
bool GetNetworkActive() const
Definition: net.h:1149
bool GetTryNewOutboundPeer() const
Definition: net.cpp:2423
std::vector< CAddress > GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional< Network > network, const bool filtered=true) const
Return randomly selected addresses.
Definition: net.cpp:3529
std::vector< CAddress > GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct)
Return addresses from the per-requestor cache.
Definition: net.cpp:3540
void SetTryNewOutboundPeer(bool flag)
Definition: net.cpp:2428
int GetExtraBlockRelayCount() const
Definition: net.cpp:2473
void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc)
Definition: net.cpp:2243
bool OutboundTargetReached(bool historicalBlockServingLimit) const EXCLUSIVE_LOCKS_REQUIRED(!m_total_bytes_sent_mutex)
check if the outbound target is reached if param historicalBlockServingLimit is set true,...
Definition: net.cpp:3758
void StartExtraBlockRelayPeers()
Definition: net.cpp:2434
bool DisconnectNode(std::string_view node)
Definition: net.cpp:3656
CSipHasher GetDeterministicRandomizer(uint64_t id) const
Get a unique deterministic randomizer.
Definition: net.cpp:3954
uint32_t GetMappedAS(const CNetAddr &addr) const
Definition: net.cpp:3639
int GetExtraFullOutboundCount() const
Definition: net.cpp:2459
bool CheckIncomingNonce(uint64_t nonce)
Definition: net.cpp:353
bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const
Return true if we should disconnect the peer for failing an inactivity check.
Definition: net.cpp:2001
bool GetUseAddrmanOutgoing() const
Definition: net.h:1150
RecursiveMutex & GetNodesMutex() const LOCK_RETURNED(m_nodes_mutex)
Fee rate in satoshis per virtualbyte: CAmount / vB the feerate is represented internally as FeeFrac.
Definition: feerate.h:35
CAmount GetFeePerK() const
Return the fee in satoshis for a vsize of 1000 vbytes.
Definition: feerate.h:63
inv message data
Definition: protocol.h:494
bool IsMsgCmpctBlk() const
Definition: protocol.h:511
bool IsMsgBlk() const
Definition: protocol.h:508
std::string ToString() const
Definition: protocol.cpp:77
bool IsMsgWtx() const
Definition: protocol.h:509
bool IsGenTxMsg() const
Definition: protocol.h:515
bool IsMsgTx() const
Definition: protocol.h:507
bool IsMsgFilteredBlk() const
Definition: protocol.h:510
uint256 hash
Definition: protocol.h:525
bool IsGenBlkMsg() const
Definition: protocol.h:519
bool IsMsgWitnessBlk() const
Definition: protocol.h:512
Used to relay blocks as header + vector<merkle branch> to filtered nodes.
Definition: merkleblock.h:127
std::vector< std::pair< unsigned int, Txid > > vMatchedTxn
Public only for unit testing and relay testing (not relayed).
Definition: merkleblock.h:139
bool IsRelayable() const
Whether this address should be relayed to other peers even if we can't reach it ourselves.
Definition: netaddress.h:219
bool IsRoutable() const
Definition: netaddress.cpp:462
static constexpr SerParams V1
Definition: netaddress.h:232
bool IsValid() const
Definition: netaddress.cpp:424
bool IsLocal() const
Definition: netaddress.cpp:398
bool IsAddrV1Compatible() const
Check if the current object can be serialized in pre-ADDRv2/BIP155 format.
Definition: netaddress.cpp:477
Transport protocol agnostic message container.
Definition: net.h:234
Information about a peer.
Definition: net.h:676
bool IsFeelerConn() const
Definition: net.h:810
const std::chrono::seconds m_connected
Unix epoch time at peer connection.
Definition: net.h:709
bool ExpectServicesFromConn() const
Definition: net.h:822
std::atomic< int > nVersion
Definition: net.h:719
std::atomic_bool m_has_all_wanted_services
Whether this peer provides all services that we want.
Definition: net.h:858
bool IsInboundConn() const
Definition: net.h:818
bool HasPermission(NetPermissionFlags permission) const
Definition: net.h:727
bool IsOutboundOrBlockRelayConn() const
Definition: net.h:767
NodeId GetId() const
Definition: net.h:902
bool IsManualConn() const
Definition: net.h:786
const std::string m_addr_name
Definition: net.h:714
std::string ConnectionTypeAsString() const
Definition: net.h:956
void SetCommonVersion(int greatest_common_version)
Definition: net.h:927
std::atomic< bool > m_bip152_highbandwidth_to
Definition: net.h:853
std::atomic_bool m_relays_txs
Whether we should relay transactions to this peer.
Definition: net.h:862
std::atomic< bool > m_bip152_highbandwidth_from
Definition: net.h:855
void PongReceived(std::chrono::microseconds ping_time)
A ping-pong round trip has completed successfully.
Definition: net.h:975
std::atomic_bool fSuccessfullyConnected
fSuccessfullyConnected is set to true on receiving VERACK from the peer.
Definition: net.h:731
bool IsAddrFetchConn() const
Definition: net.h:814
uint64_t GetLocalNonce() const
Definition: net.h:906
const CAddress addr
Definition: net.h:711
void SetAddrLocal(const CService &addrLocalIn) EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex)
May not be called more than once.
Definition: net.cpp:595
bool IsBlockOnlyConn() const
Definition: net.h:806
int GetCommonVersion() const
Definition: net.h:932
bool IsFullOutboundConn() const
Definition: net.h:782
Mutex m_subver_mutex
Definition: net.h:720
const uint64_t m_network_key
Network key used to prevent fingerprinting our node across networks.
Definition: net.h:744
std::atomic_bool fPauseSend
Definition: net.h:740
std::optional< std::pair< CNetMessage, bool > > PollMessage() EXCLUSIVE_LOCKS_REQUIRED(!m_msg_process_queue_mutex)
Poll the next message from the processing queue of this connection.
Definition: net.cpp:3875
std::atomic_bool m_bloom_filter_loaded
Whether this peer has loaded a bloom filter.
Definition: net.h:866
std::string LogIP(bool log_ip) const
Helper function to optionally log the IP address.
Definition: net.cpp:705
const std::unique_ptr< Transport > m_transport
Transport serializer/deserializer.
Definition: net.h:680
const bool m_inbound_onion
Whether this peer is an inbound onion, i.e. connected via our Tor onion service.
Definition: net.h:718
std::atomic< std::chrono::seconds > m_last_block_time
UNIX epoch time of the last block received from this peer that we had not yet seen (e....
Definition: net.h:873
std::string DisconnectMsg(bool log_ip) const
Helper function to log disconnects.
Definition: net.cpp:710
std::atomic_bool fDisconnect
Definition: net.h:734
std::atomic< std::chrono::seconds > m_last_tx_time
UNIX epoch time of the last transaction received from this peer that we had not yet seen (e....
Definition: net.h:879
RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
Definition: bloom.h:109
Simple class for background tasks that should be run periodically or once "after a while".
Definition: scheduler.h:40
void scheduleEvery(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Repeat f until the scheduler is stopped.
Definition: scheduler.cpp:108
void scheduleFromNow(Function f, std::chrono::milliseconds delta) EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex)
Call f once after the delta has passed.
Definition: scheduler.h:53
A combination of a network address (CNetAddr) and a (TCP) port.
Definition: netaddress.h:532
std::string ToStringAddrPort() const
Definition: netaddress.cpp:903
std::vector< unsigned char > GetKey() const
Definition: netaddress.cpp:895
SipHash-2-4.
Definition: siphash.h:15
uint64_t Finalize() const
Compute the 64-bit SipHash-2-4 of the data written so far.
Definition: siphash.cpp:81
CSipHasher & Write(uint64_t data)
Hash a 64-bit integer worth of data It is treated as if this was the little-endian interpretation of ...
Definition: siphash.cpp:32
CTxMemPool stores valid-according-to-the-current-best-chain transactions that may be included in the ...
Definition: txmempool.h:281
TxMempoolInfo info_for_relay(const T &id, uint64_t last_sequence) const
Returns info for a transaction if its entry_sequence < last_sequence.
Definition: txmempool.h:656
RecursiveMutex cs
This mutex needs to be locked when accessing mapTx or other members that are guarded by it.
Definition: txmempool.h:367
CFeeRate GetMinFee(size_t sizelimit) const
Definition: txmempool.cpp:1108
CTransactionRef get(const Txid &hash) const
Definition: txmempool.cpp:879
size_t DynamicMemoryUsage() const
Definition: txmempool.cpp:1045
const Options m_opts
Definition: txmempool.h:421
std::vector< TxMempoolInfo > infoAll() const
Definition: txmempool.cpp:858
TxMempoolInfo info(const T &id) const
Definition: txmempool.h:647
void RemoveUnbroadcastTx(const Txid &txid, const bool unchecked=false)
Removes a transaction from the unbroadcast set.
Definition: txmempool.cpp:1051
bool CompareDepthAndScore(const Wtxid &hasha, const Wtxid &hashb) const
Definition: txmempool.cpp:796
bool exists(const Txid &txid) const
Definition: txmempool.h:630
uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs)
Definition: txmempool.h:699
std::set< Txid > GetUnbroadcastTxs() const
Returns transactions in unbroadcast set.
Definition: txmempool.h:681
unsigned long size() const
Definition: txmempool.h:612
virtual void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr< const CBlock > &block)
Notifies listeners that a block which builds directly on our current tip has been received and connec...
virtual void BlockConnected(ChainstateRole role, const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being connected.
virtual void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload)
Notifies listeners when the block chain tip advances.
virtual void BlockChecked(const std::shared_ptr< const CBlock > &, const BlockValidationState &)
Notifies listeners of a block validation result.
virtual void ActiveTipChange(const CBlockIndex &new_tip, bool is_ibd)
Notifies listeners any time the block chain tip changes, synchronously.
virtual void BlockDisconnected(const std::shared_ptr< const CBlock > &block, const CBlockIndex *pindex)
Notifies listeners of a block being disconnected Provides the block that was disconnected.
Provides an interface for creating and interacting with one or two chainstates: an IBD chainstate gen...
Definition: validation.h:899
SnapshotCompletionResult MaybeCompleteSnapshotValidation() EXCLUSIVE_LOCKS_REQUIRED(const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(Chainstate ActiveChainstate)() const
Once the background validation chainstate has reached the height which is the base of the UTXO snapsh...
Definition: validation.h:1125
const CBlockIndex * GetBackgroundSyncTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The tip of the background sync chain.
Definition: validation.h:1136
MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept=false) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
Try to add a transaction to the memory pool.
bool IsInitialBlockDownload() const
Check whether we are doing an initial block download (synchronizing from disk or network)
RecursiveMutex & GetMutex() const LOCK_RETURNED(
Alias for cs_main.
Definition: validation.h:1032
CBlockIndex * ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1128
bool ProcessNewBlock(const std::shared_ptr< const CBlock > &block, bool force_processing, bool min_pow_checked, bool *new_block) LOCKS_EXCLUDED(cs_main)
Process an incoming block.
bool BackgroundSyncInProgress() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
The state of a background sync (for net processing)
Definition: validation.h:1131
bool ProcessNewBlockHeaders(std::span< const CBlockHeader > headers, bool min_pow_checked, BlockValidationState &state, const CBlockIndex **ppindex=nullptr) LOCKS_EXCLUDED(cs_main)
Process incoming block headers.
const arith_uint256 & MinimumChainWork() const
Definition: validation.h:1010
CChain & ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex())
Definition: validation.h:1126
void ReportHeadersPresync(const arith_uint256 &work, int64_t height, int64_t timestamp)
This is used by net_processing to report pre-synchronization progress of headers, as headers are not ...
node::BlockManager m_blockman
A single BlockManager instance is shared across each constructed chainstate to avoid duplicating bloc...
Definition: validation.h:1038
Double ended buffer combining vector and stream-like interfaces.
Definition: streams.h:130
bool empty() const
Definition: streams.h:165
size_type size() const
Definition: streams.h:164
void ignore(size_t num_ignore)
Definition: streams.h:219
int in_avail() const
Definition: streams.h:199
Fast randomness source.
Definition: random.h:386
uint64_t rand64() noexcept
Generate a random 64-bit integer.
Definition: random.h:404
bool IsWtxid() const
const uint256 & ToUint256() const LIFETIMEBOUND
HeadersSyncState:
Definition: headerssync.h:101
@ FINAL
We're done syncing with this peer and can discard any remaining state.
@ PRESYNC
PRESYNC means the peer has not yet demonstrated their chain has sufficient work and we're only buildi...
static Mutex g_msgproc_mutex
Mutex for anything that is only accessed via the msg processing thread.
Definition: net.h:1019
virtual bool SendMessages(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Send queued protocol messages to a given node.
virtual void FinalizeNode(const CNode &node)=0
Handle removal of a peer (clear state)
virtual bool HasAllDesirableServiceFlags(ServiceFlags services) const =0
Callback to determine whether the given set of service flags are sufficient for a peer to be "relevan...
virtual bool ProcessMessages(CNode *pnode, std::atomic< bool > &interrupt) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process protocol messages received from a given node.
virtual void InitializeNode(const CNode &node, ServiceFlags our_services)=0
Initialize a peer (setup state)
static bool HasFlag(NetPermissionFlags flags, NetPermissionFlags f)
ReadStatus FillBlock(CBlock &block, const std::vector< CTransactionRef > &vtx_missing, bool segwit_active)
bool IsTxAvailable(size_t index) const
ReadStatus InitData(const CBlockHeaderAndShortTxIDs &cmpctblock, const std::vector< std::pair< Wtxid, CTransactionRef > > &extra_txn)
virtual std::optional< std::string > FetchBlock(NodeId peer_id, const CBlockIndex &block_index)=0
Attempt to manually fetch block from a given peer.
virtual void ProcessMessage(CNode &pfrom, const std::string &msg_type, DataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic< bool > &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(g_msgproc_mutex)=0
Process a single message from a peer.
virtual ServiceFlags GetDesirableServiceFlags(ServiceFlags services) const =0
Gets the set of service flags which are "desirable" for a given peer.
virtual void StartScheduledTasks(CScheduler &scheduler)=0
Begin running background tasks, should only be called once.
virtual std::vector< node::TxOrphanage::OrphanInfo > GetOrphanTransactions()=0
static std::unique_ptr< PeerManager > make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, node::Warnings &warnings, Options opts)
virtual void UnitTestMisbehaving(NodeId peer_id)=0
virtual bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const =0
Get statistics from node state.
virtual void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds)=0
This function is used for testing the stale tip eviction logic, see denialofservice_tests....
virtual void CheckForStaleTipAndEvictPeers()=0
Evict extra outbound peers.
I randrange(I range) noexcept
Generate a random integer in the range [0..range), with range > 0.
Definition: random.h:254
bool Contains(Network net) const EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
Definition: netbase.h:131
bool IsValid() const
Definition: validation.h:105
Result GetResult() const
Definition: validation.h:108
std::string ToString() const
Definition: validation.h:111
bool IsInvalid() const
Definition: validation.h:106
256-bit unsigned big integer.
constexpr bool IsNull() const
Definition: uint256.h:48
std::string ToString() const
Definition: uint256.cpp:21
CBlockIndex * LookupBlockIndex(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
bool LoadingBlocks() const
Definition: blockstorage.h:397
bool ReadRawBlock(std::vector< std::byte > &block, const FlatFilePos &pos) const
bool ReadBlock(CBlock &block, const FlatFilePos &pos, const std::optional< uint256 > &expected_hash) const
Functions for disk access for blocks.
bool IsPruneMode() const
Whether running in -prune mode.
Definition: blockstorage.h:391
Class responsible for deciding what transactions to request and, once downloaded, whether and how to ...
Manages warning messages within a node.
Definition: warnings.h:40
std::string ToString() const
const uint256 & ToUint256() const LIFETIMEBOUND
256-bit opaque blob.
Definition: uint256.h:196
std::string TransportTypeAsString(TransportProtocolType transport_type)
Convert TransportProtocolType enum to a string value.
@ BLOCK_HEADER_LOW_WORK
the block header may be on a too-little-work chain
@ BLOCK_INVALID_HEADER
invalid proof of work or time too old
@ BLOCK_CACHED_INVALID
this block was cached as being invalid and we didn't store the reason why
@ BLOCK_CONSENSUS
invalid by consensus rules (excluding any below reasons)
@ BLOCK_MISSING_PREV
We don't have the previous block the checked one is built on.
@ BLOCK_INVALID_PREV
A block this one builds on is invalid.
@ BLOCK_MUTATED
the block's data didn't match the data committed to by the PoW
@ BLOCK_TIME_FUTURE
block timestamp was > 2 hours in the future (or our clock is bad)
@ BLOCK_RESULT_UNSET
initial value. Block has not yet been rejected
@ TX_MISSING_INPUTS
transaction was missing some of its inputs
@ TX_UNKNOWN
transaction was not validated because package failed
@ TX_NO_MEMPOOL
this node does not have a mempool so can't validate the transaction
@ TX_RESULT_UNSET
initial value. Tx has not yet been rejected
static size_t RecursiveDynamicUsage(const CScript &script)
Definition: core_memusage.h:12
RecursiveMutex cs_main
Mutex to guard access to validation specific variables, such as reading or changing the chainstate.
Definition: cs_main.cpp:8
bool DeploymentActiveAfter(const CBlockIndex *pindexPrev, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for the next block.
bool DeploymentActiveAt(const CBlockIndex &index, const Consensus::Params &params, Consensus::BuriedDeployment dep, VersionBitsCache &versionbitscache)
Determine if a deployment is active for this block.
HeadersSyncState::State State
ChainstateRole
This enum describes the various roles a specific Chainstate instance can take.
Definition: chain.h:25
bool fLogIPs
Definition: logging.cpp:47
#define LogInfo(...)
Definition: logging.h:368
#define LogError(...)
Definition: logging.h:370
static bool LogAcceptCategory(BCLog::LogFlags category, BCLog::Level level)
Return true if log accepts specified category, at the specified level.
Definition: logging.h:340
#define LogDebug(category,...)
Definition: logging.h:393
#define LogPrintf(...)
Definition: logging.h:373
unsigned int nonce
Definition: miner_tests.cpp:76
@ TXPACKAGES
Definition: logging.h:96
@ VALIDATION
Definition: logging.h:87
@ MEMPOOLREJ
Definition: logging.h:82
@ CMPCTBLOCK
Definition: logging.h:78
@ MEMPOOL
Definition: logging.h:68
@ NET
Definition: logging.h:66
Transaction validation functions.
@ DEPLOYMENT_SEGWIT
Definition: params.h:30
CSerializedNetMsg Make(std::string msg_type, Args &&... args)
constexpr const char * FILTERCLEAR
The filterclear message tells the receiving peer to remove a previously-set bloom filter.
Definition: protocol.h:180
constexpr const char * FEEFILTER
The feefilter message tells the receiving peer not to inv us any txs which do not meet the specified ...
Definition: protocol.h:192
constexpr const char * SENDHEADERS
Indicates that a node prefers to receive new block announcements via a "headers" message rather than ...
Definition: protocol.h:186
constexpr const char * GETBLOCKS
The getblocks message requests an inv message that provides block header hashes starting from a parti...
Definition: protocol.h:107
constexpr const char * HEADERS
The headers message sends one or more block headers to a node which previously requested certain head...
Definition: protocol.h:123
constexpr const char * ADDR
The addr (IP address) message relays connection information for peers on the network.
Definition: protocol.h:75
constexpr const char * GETBLOCKTXN
Contains a BlockTransactionsRequest Peer should respond with "blocktxn" message.
Definition: protocol.h:212
constexpr const char * CMPCTBLOCK
Contains a CBlockHeaderAndShortTxIDs object - providing a header and list of "short txids".
Definition: protocol.h:206
constexpr const char * CFCHECKPT
cfcheckpt is a response to a getcfcheckpt request containing a vector of evenly spaced filter headers...
Definition: protocol.h:254
constexpr const char * SENDADDRV2
The sendaddrv2 message signals support for receiving ADDRV2 messages (BIP155).
Definition: protocol.h:87
constexpr const char * GETADDR
The getaddr message requests an addr message from the receiving node, preferably one with lots of IP ...
Definition: protocol.h:132
constexpr const char * GETCFILTERS
getcfilters requests compact filters for a range of blocks.
Definition: protocol.h:224
constexpr const char * PONG
The pong message replies to a ping message, proving to the pinging node that the ponging node is stil...
Definition: protocol.h:150
constexpr const char * BLOCKTXN
Contains a BlockTransactions.
Definition: protocol.h:218
constexpr const char * CFHEADERS
cfheaders is a response to a getcfheaders request containing a filter header and a vector of filter h...
Definition: protocol.h:242
constexpr const char * PING
The ping message is sent periodically to help confirm that the receiving peer is still connected.
Definition: protocol.h:144
constexpr const char * FILTERLOAD
The filterload message tells the receiving peer to filter all relayed transactions and requested merk...
Definition: protocol.h:164
constexpr const char * SENDTXRCNCL
Contains a 4-byte version number and an 8-byte salt.
Definition: protocol.h:266
constexpr const char * ADDRV2
The addrv2 message relays connection information for peers on the network just like the addr message,...
Definition: protocol.h:81
constexpr const char * VERACK
The verack message acknowledges a previously-received version message, informing the connecting node ...
Definition: protocol.h:70
constexpr const char * GETHEADERS
The getheaders message requests a headers message that provides block headers starting from a particu...
Definition: protocol.h:113
constexpr const char * FILTERADD
The filteradd message tells the receiving peer to add a single element to a previously-set bloom filt...
Definition: protocol.h:172
constexpr const char * CFILTER
cfilter is a response to a getcfilters request containing a single compact filter.
Definition: protocol.h:229
constexpr const char * GETDATA
The getdata message requests one or more data objects from another node.
Definition: protocol.h:96
constexpr const char * SENDCMPCT
Contains a 1-byte bool and 8-byte LE version number.
Definition: protocol.h:200
constexpr const char * GETCFCHECKPT
getcfcheckpt requests evenly spaced compact filter headers, enabling parallelized download and valida...
Definition: protocol.h:249
constexpr const char * INV
The inv message (inventory message) transmits one or more inventories of objects known to the transmi...
Definition: protocol.h:92
constexpr const char * TX
The tx message transmits a single transaction.
Definition: protocol.h:117
constexpr const char * MEMPOOL
The mempool message requests the TXIDs of transactions that the receiving node has verified as valid ...
Definition: protocol.h:139
constexpr const char * NOTFOUND
The notfound message is a reply to a getdata message which requested an object the receiving node doe...
Definition: protocol.h:156
constexpr const char * MERKLEBLOCK
The merkleblock message is a reply to a getdata message which requested a block using the inventory t...
Definition: protocol.h:102
constexpr const char * WTXIDRELAY
Indicates that a node prefers to relay transactions via wtxid, rather than txid.
Definition: protocol.h:260
constexpr const char * BLOCK
The block message transmits a single serialized block.
Definition: protocol.h:127
constexpr const char * GETCFHEADERS
getcfheaders requests a compact filter header and the filter hashes for a range of blocks,...
Definition: protocol.h:237
constexpr const char * VERSION
The version message provides information about the transmitting node to the receiving node at the beg...
Definition: protocol.h:65
Definition: messages.h:21
static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS
Maximum number of transactions to consider for requesting, per peer.
Definition: txdownloadman.h:30
""_hex is a compile-time user-defined literal returning a std::array<std::byte>, equivalent to ParseH...
Definition: strencodings.h:384
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:245
bool fListen
Definition: net.cpp:117
std::string strSubVersion
Subversion as sent to the P2P network in version messages.
Definition: net.cpp:120
std::optional< CService > GetLocalAddrForPeer(CNode &node)
Returns a local address that we should advertise to this peer.
Definition: net.cpp:240
std::function< void(const CAddress &addr, const std::string &msg_type, std::span< const unsigned char > data, bool is_incoming)> CaptureMessage
Defaults to CaptureMessageToFile(), but can be overridden by unit tests.
Definition: net.cpp:4047
bool SeenLocal(const CService &addr)
vote for a local address
Definition: net.cpp:318
static const unsigned int MAX_SUBVERSION_LENGTH
Maximum length of the user agent string in version message.
Definition: net.h:67
static constexpr std::chrono::minutes TIMEOUT_INTERVAL
Time after which to disconnect, after waiting for a ping response (or inactivity).
Definition: net.h:59
int64_t NodeId
Definition: net.h:99
static constexpr auto HEADERS_RESPONSE_TIME
How long to wait for a peer to respond to a getheaders request.
static constexpr size_t MAX_ADDR_TO_SEND
The maximum number of address records permitted in an ADDR message.
static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET
The soft limit of the address processing token bucket (the regular MAX_ADDR_RATE_PER_SECOND based inc...
TRACEPOINT_SEMAPHORE(net, inbound_message)
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER
Number of blocks that can be requested at any given time from a single peer.
static constexpr auto BLOCK_STALLING_TIMEOUT_DEFAULT
Default time during which a peer must stall block download progress before being disconnected.
static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL
Average delay between feefilter broadcasts in seconds.
static constexpr auto EXTRA_PEER_CHECK_INTERVAL
How frequently to check for extra outbound peers and disconnect.
static const unsigned int BLOCK_DOWNLOAD_WINDOW
Size of the "block download window": how far ahead of our current height do we fetch?...
static constexpr int STALE_RELAY_AGE_LIMIT
Age after which a stale block will no longer be served if requested as protection against fingerprint...
static constexpr int HISTORICAL_BLOCK_AGE
Age after which a block is considered historical for purposes of rate limiting block relay.
static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL
Delay between rotating the peers we relay a particular address to.
static constexpr auto MINIMUM_CONNECT_TIME
Minimum time an outbound-peer-eviction candidate must be connected for, in order to evict.
static constexpr auto CHAIN_SYNC_TIMEOUT
Timeout for (unprotected) outbound peers to sync to our chainwork.
static constexpr auto OUTBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for outbound peers.
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS
Minimum blocks required to signal NODE_NETWORK_LIMITED.
static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL
Average delay between local address broadcasts.
static const int MAX_BLOCKTXN_DEPTH
Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests for.
static constexpr uint64_t CMPCTBLOCKS_VERSION
The compactblocks version we support.
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT
Protect at least this many outbound peers from disconnection due to slow/ behind headers chain.
static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL
Average delay between trickled inventory transmissions for inbound peers.
static constexpr auto MAX_FEEFILTER_CHANGE_DELAY
Maximum feefilter broadcast delay after significant change.
static constexpr uint32_t MAX_GETCFILTERS_SIZE
Maximum number of compact filters that may be requested with one getcfilters.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE
Headers download timeout.
static const unsigned int MAX_GETDATA_SZ
Limit to avoid sending big packets.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE
Block download timeout base, expressed in multiples of the block interval (i.e.
static constexpr auto STALE_CHECK_INTERVAL
How frequently to check for stale tips.
static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL
Average delay between peer address broadcasts.
static const unsigned int MAX_LOCATOR_SZ
The maximum number of entries in a locator.
static constexpr unsigned int INVENTORY_BROADCAST_TARGET
Target number of tx inventory items to send per transmission.
static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER
Additional block download timeout per parallel downloading peer (i.e.
static constexpr double MAX_ADDR_RATE_PER_SECOND
The maximum rate of address records we're willing to process on average.
static constexpr auto PING_INTERVAL
Time between pings automatically sent out for latency probing and keepalive.
static const int MAX_CMPCTBLOCK_DEPTH
Maximum depth of blocks we're willing to serve as compact blocks to peers when requested.
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE
Maximum number of headers to announce when relaying blocks with headers message.
static const unsigned int NODE_NETWORK_LIMITED_ALLOW_CONN_BLOCKS
Window, in blocks, for connecting to NODE_NETWORK_LIMITED peers.
static constexpr uint32_t MAX_GETCFHEADERS_SIZE
Maximum number of cf hashes that may be requested with one getcfheaders.
static constexpr auto BLOCK_STALLING_TIMEOUT_MAX
Maximum timeout for stalling block download.
static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY
SHA256("main address relay")[0:8].
static constexpr unsigned int INVENTORY_BROADCAST_MAX
Maximum number of inventory items to send per transmission.
static constexpr size_t MAX_PCT_ADDR_TO_SEND
the maximum percentage of addresses from our addrman to return in response to a getaddr message.
static const unsigned int MAX_INV_SZ
The maximum number of entries in an 'inv' protocol message.
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND
Maximum rate of inventory items to send per second.
static const unsigned int MAX_CMPCTBLOCKS_INFLIGHT_PER_BLOCK
Maximum number of outstanding CMPCTBLOCK requests for the same block.
ReachableNets g_reachable_nets
Definition: netbase.cpp:43
bool IsProxy(const CNetAddr &addr)
Definition: netbase.cpp:743
static constexpr unsigned int DEFAULT_MIN_RELAY_TX_FEE
Default for -minrelaytxfee, minimum relay fee for transactions.
Definition: policy.h:66
static constexpr TransactionSerParams TX_NO_WITNESS
Definition: transaction.h:196
static constexpr TransactionSerParams TX_WITH_WITNESS
Definition: transaction.h:195
std::shared_ptr< const CTransaction > CTransactionRef
Definition: transaction.h:423
GenTxid ToGenTxid(const CInv &inv)
Convert a TX/WITNESS_TX/WTX CInv to a GenTxid.
Definition: protocol.cpp:121
const uint32_t MSG_WITNESS_FLAG
getdata message type flags
Definition: protocol.h:470
@ MSG_TX
Definition: protocol.h:479
@ MSG_WTX
Defined in BIP 339.
Definition: protocol.h:481
@ MSG_BLOCK
Definition: protocol.h:480
@ MSG_CMPCT_BLOCK
Defined in BIP152.
Definition: protocol.h:484
@ MSG_WITNESS_BLOCK
Defined in BIP144.
Definition: protocol.h:485
ServiceFlags
nServices flags
Definition: protocol.h:309
@ NODE_NONE
Definition: protocol.h:312
@ NODE_WITNESS
Definition: protocol.h:320
@ NODE_NETWORK_LIMITED
Definition: protocol.h:327
@ NODE_BLOOM
Definition: protocol.h:317
@ NODE_NETWORK
Definition: protocol.h:315
@ NODE_COMPACT_FILTERS
Definition: protocol.h:323
static bool MayHaveUsefulAddressDB(ServiceFlags services)
Checks if a peer with the given service flags may be capable of having a robust address-storage DB.
Definition: protocol.h:360
static const int WTXID_RELAY_VERSION
"wtxidrelay" command for wtxid-based relay starts with this version
static const int SHORT_IDS_BLOCKS_VERSION
short-id-based block download starts with this version
static const int SENDHEADERS_VERSION
"sendheaders" command and announcing blocks with headers starts with this version
static const int PROTOCOL_VERSION
network protocol versioning
static const int FEEFILTER_VERSION
"feefilter" tells peers to filter invs to you by fee starts with this version
static const int MIN_PEER_PROTO_VERSION
disconnect from peers older than this proto version
static const int INVALID_CB_NO_BAN_VERSION
not banning for invalid compact blocks starts with this version
static const int BIP0031_VERSION
BIP 0031, pong message, is enabled for all versions AFTER this one.
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
#define LIMITED_STRING(obj, n)
Definition: serialize.h:493
uint64_t ReadCompactSize(Stream &is, bool range_check=true)
Decode a CompactSize-encoded variable-length integer.
Definition: serialize.h:330
constexpr auto MakeUCharSpan(const V &v) -> decltype(UCharSpanCast(std::span{v}))
Like the std::span constructor, but for (const) unsigned char member types only.
Definition: span.h:111
Describes a place in the block chain to another node such that if the other node doesn't have the sam...
Definition: block.h:124
std::vector< uint256 > vHave
Definition: block.h:134
bool IsNull() const
Definition: block.h:152
std::chrono::microseconds m_ping_wait
std::vector< int > vHeightInFlight
CAmount m_fee_filter_received
std::chrono::seconds time_offset
uint64_t m_addr_rate_limited
uint64_t m_last_inv_seq
uint64_t m_addr_processed
int64_t presync_height
ServiceFlags their_services
Parameters that influence chain consensus.
Definition: params.h:84
int64_t nPowTargetSpacing
Definition: params.h:120
std::chrono::seconds PowTargetSpacing() const
Definition: params.h:122
Validation result for a transaction evaluated by MemPoolAccept (single or package).
Definition: validation.h:127
const ResultType m_result_type
Result type.
Definition: validation.h:136
const TxValidationState m_state
Contains information about why the transaction failed.
Definition: validation.h:139
@ DIFFERENT_WITNESS
‍Valid, transaction was already in the mempool.
@ INVALID
‍Fully validated, valid.
const std::list< CTransactionRef > m_replaced_transactions
Mempool transactions replaced by the tx.
Definition: validation.h:142
static time_point now() noexcept
Return current system time or mocked time, if set.
Definition: time.cpp:26
std::chrono::time_point< NodeClock > time_point
Definition: time.h:19
Validation result for package mempool acceptance.
Definition: validation.h:233
PackageValidationState m_state
Definition: validation.h:234
std::map< Wtxid, MempoolAcceptResult > m_tx_results
Map from wtxid to finished MempoolAcceptResults.
Definition: validation.h:241
std::chrono::seconds median_outbound_time_offset
CFeeRate min_relay_feerate
A fee rate smaller than this is considered zero fee (for relaying, mining and transaction creation)
std::vector< NodeId > m_senders
Definition: txdownloadman.h:57
std::string ToString() const
Definition: txdownloadman.h:79
#define AssertLockNotHeld(cs)
Definition: sync.h:142
#define LOCK2(cs1, cs2)
Definition: sync.h:260
#define LOCK(cs)
Definition: sync.h:259
#define WITH_LOCK(cs, code)
Run code while locking a mutex.
Definition: sync.h:290
COutPoint ProcessBlock(const NodeContext &node, const std::shared_ptr< CBlock > &block)
Returns the generated coin (or Null if the block was invalid).
Definition: mining.cpp:104
static int count
#define EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: threadsafety.h:51
#define GUARDED_BY(x)
Definition: threadsafety.h:39
#define LOCKS_EXCLUDED(...)
Definition: threadsafety.h:50
#define ACQUIRED_BEFORE(...)
Definition: threadsafety.h:42
#define PT_GUARDED_BY(x)
Definition: threadsafety.h:40
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
#define TRACEPOINT(context,...)
Definition: trace.h:56
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
ReconciliationRegisterResult
static constexpr uint32_t TXRECONCILIATION_VERSION
Supported transaction reconciliation protocol version.
std::string SanitizeString(std::string_view str, int rule)
Remove unsafe chars.
int64_t GetTime()
DEPRECATED Use either ClockType::now() or Now<TimePointType>() if a cast is needed.
Definition: time.cpp:77
constexpr int64_t count_microseconds(std::chrono::microseconds t)
Definition: time.h:84
constexpr int64_t count_seconds(std::chrono::seconds t)
Definition: time.h:82
std::chrono::time_point< NodeClock, std::chrono::seconds > NodeSeconds
Definition: time.h:25
PackageMempoolAcceptResult ProcessNewPackage(Chainstate &active_chainstate, CTxMemPool &pool, const Package &package, bool test_accept, const std::optional< CFeeRate > &client_maxfeerate)
Validate (and maybe submit) a package to the mempool.
bool IsBlockMutated(const CBlock &block, bool check_witness_root)
Check if a block has been mutated (with respect to its merkle root and witness commitments).
bool HasValidProofOfWork(const std::vector< CBlockHeader > &headers, const Consensus::Params &consensusParams)
Check with the proof of work on each blockheader matches the value in nBits.
arith_uint256 CalculateClaimedHeadersWork(std::span< const CBlockHeader > headers)
Return the sum of the claimed work on a given set of headers.
AssertLockHeld(pool.cs)
assert(!tx.IsCoinBase())
static const unsigned int MIN_BLOCKS_TO_KEEP
Block files containing a block-height within MIN_BLOCKS_TO_KEEP of ActiveChain().Tip() will not be pr...
Definition: validation.h:72