Bitcoin Core 29.99.0
P2P Digital Currency
descriptor.cpp
Go to the documentation of this file.
1// Copyright (c) 2018-present The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5#include <script/descriptor.h>
6
7#include <hash.h>
8#include <key_io.h>
9#include <pubkey.h>
10#include <script/miniscript.h>
11#include <script/parsing.h>
12#include <script/script.h>
14#include <script/solver.h>
15#include <uint256.h>
16
17#include <common/args.h>
18#include <span.h>
19#include <util/bip32.h>
20#include <util/check.h>
21#include <util/strencodings.h>
22#include <util/vector.h>
23
24#include <algorithm>
25#include <memory>
26#include <numeric>
27#include <optional>
28#include <string>
29#include <vector>
30
31using util::Split;
32
33namespace {
34
36// Checksum //
38
39// This section implements a checksum algorithm for descriptors with the
40// following properties:
41// * Mistakes in a descriptor string are measured in "symbol errors". The higher
42// the number of symbol errors, the harder it is to detect:
43// * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for
44// another in that set always counts as 1 symbol error.
45// * Note that hex encoded keys are covered by these characters. Xprvs and
46// xpubs use other characters too, but already have their own checksum
47// mechanism.
48// * Function names like "multi()" use other characters, but mistakes in
49// these would generally result in an unparsable descriptor.
50// * A case error always counts as 1 symbol error.
51// * Any other 1 character substitution error counts as 1 or 2 symbol errors.
52// * Any 1 symbol error is always detected.
53// * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected.
54// * Any 4 symbol error in a descriptor of up to 507 characters is always detected.
55// * Any 5 symbol error in a descriptor of up to 77 characters is always detected.
56// * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected
57// * Random errors have a chance of 1 in 2**40 of being undetected.
58//
59// These properties are achieved by expanding every group of 3 (non checksum) characters into
60// 4 GF(32) symbols, over which a cyclic code is defined.
61
62/*
63 * Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32),
64 * multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val.
65 *
66 * This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}.
67 * It is chosen to define an cyclic error detecting code which is selected by:
68 * - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting
69 * 3 errors in windows up to 19000 symbols.
70 * - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors.
71 * - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512.
72 * - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512.
73 *
74 * The generator and the constants to implement it can be verified using this Sage code:
75 * B = GF(2) # Binary field
76 * BP.<b> = B[] # Polynomials over the binary field
77 * F_mod = b**5 + b**3 + 1
78 * F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
79 * FP.<x> = F[] # Polynomials over GF(32)
80 * E_mod = x**3 + x + F.fetch_int(8)
81 * E.<e> = F.extension(E_mod) # Extension field definition
82 * alpha = e**2743 # Choice of an element in extension field
83 * for p in divisors(E.order() - 1): # Verify alpha has order 32767.
84 * assert((alpha**p == 1) == (p % 32767 == 0))
85 * G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1])
86 * print(G) # Print out the generator
87 * for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers.
88 * v = 0
89 * for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)):
90 * v = v*32 + coef.integer_representation()
91 * print("0x%x" % v)
92 */
93uint64_t PolyMod(uint64_t c, int val)
94{
95 uint8_t c0 = c >> 35;
96 c = ((c & 0x7ffffffff) << 5) ^ val;
97 if (c0 & 1) c ^= 0xf5dee51989;
98 if (c0 & 2) c ^= 0xa9fdca3312;
99 if (c0 & 4) c ^= 0x1bab10e32d;
100 if (c0 & 8) c ^= 0x3706b1677a;
101 if (c0 & 16) c ^= 0x644d626ffd;
102 return c;
103}
104
105std::string DescriptorChecksum(const std::span<const char>& span)
106{
120 static const std::string INPUT_CHARSET =
121 "0123456789()[],'/*abcdefgh@:$%{}"
122 "IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~"
123 "ijklmnopqrstuvwxyzABCDEFGH`#\"\\ ";
124
126 static const std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
127
128 uint64_t c = 1;
129 int cls = 0;
130 int clscount = 0;
131 for (auto ch : span) {
132 auto pos = INPUT_CHARSET.find(ch);
133 if (pos == std::string::npos) return "";
134 c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character.
135 cls = cls * 3 + (pos >> 5); // Accumulate the group numbers
136 if (++clscount == 3) {
137 // Emit an extra symbol representing the group numbers, for every 3 characters.
138 c = PolyMod(c, cls);
139 cls = 0;
140 clscount = 0;
141 }
142 }
143 if (clscount > 0) c = PolyMod(c, cls);
144 for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum.
145 c ^= 1; // Prevent appending zeroes from not affecting the checksum.
146
147 std::string ret(8, ' ');
148 for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31];
149 return ret;
150}
151
152std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); }
153
155// Internal representation //
157
158typedef std::vector<uint32_t> KeyPath;
159
161struct PubkeyProvider
162{
163protected:
166 uint32_t m_expr_index;
167
168public:
169 explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {}
170
171 virtual ~PubkeyProvider() = default;
172
176 bool operator<(PubkeyProvider& other) const {
177 CPubKey a, b;
178 SigningProvider dummy;
179 KeyOriginInfo dummy_info;
180
181 GetPubKey(0, dummy, a, dummy_info);
182 other.GetPubKey(0, dummy, b, dummy_info);
183
184 return a < b;
185 }
186
192 virtual bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const = 0;
193
195 virtual bool IsRange() const = 0;
196
198 virtual size_t GetSize() const = 0;
199
200 enum class StringType {
201 PUBLIC,
202 COMPAT // string calculation that mustn't change over time to stay compatible with previous software versions
203 };
204
206 virtual std::string ToString(StringType type=StringType::PUBLIC) const = 0;
207
209 virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0;
210
214 virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const = 0;
215
217 virtual bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const = 0;
218
220 virtual std::optional<CPubKey> GetRootPubKey() const = 0;
222 virtual std::optional<CExtPubKey> GetRootExtPubKey() const = 0;
223
225 virtual std::unique_ptr<PubkeyProvider> Clone() const = 0;
226};
227
228class OriginPubkeyProvider final : public PubkeyProvider
229{
230 KeyOriginInfo m_origin;
231 std::unique_ptr<PubkeyProvider> m_provider;
232 bool m_apostrophe;
233
234 std::string OriginString(StringType type, bool normalized=false) const
235 {
236 // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
237 bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
238 return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path, use_apostrophe);
239 }
240
241public:
242 OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider, bool apostrophe) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)), m_apostrophe(apostrophe) {}
243 bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
244 {
245 if (!m_provider->GetPubKey(pos, arg, key, info, read_cache, write_cache)) return false;
246 std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), info.fingerprint);
247 info.path.insert(info.path.begin(), m_origin.path.begin(), m_origin.path.end());
248 return true;
249 }
250 bool IsRange() const override { return m_provider->IsRange(); }
251 size_t GetSize() const override { return m_provider->GetSize(); }
252 std::string ToString(StringType type) const override { return "[" + OriginString(type) + "]" + m_provider->ToString(type); }
253 bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
254 {
255 std::string sub;
256 if (!m_provider->ToPrivateString(arg, sub)) return false;
257 ret = "[" + OriginString(StringType::PUBLIC) + "]" + std::move(sub);
258 return true;
259 }
260 bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
261 {
262 std::string sub;
263 if (!m_provider->ToNormalizedString(arg, sub, cache)) return false;
264 // If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider
265 // In that case, we need to strip out the leading square bracket and fingerprint from the substring,
266 // and append that to our own origin string.
267 if (sub[0] == '[') {
268 sub = sub.substr(9);
269 ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + std::move(sub);
270 } else {
271 ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + "]" + std::move(sub);
272 }
273 return true;
274 }
275 bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
276 {
277 return m_provider->GetPrivKey(pos, arg, key);
278 }
279 std::optional<CPubKey> GetRootPubKey() const override
280 {
281 return m_provider->GetRootPubKey();
282 }
283 std::optional<CExtPubKey> GetRootExtPubKey() const override
284 {
285 return m_provider->GetRootExtPubKey();
286 }
287 std::unique_ptr<PubkeyProvider> Clone() const override
288 {
289 return std::make_unique<OriginPubkeyProvider>(m_expr_index, m_origin, m_provider->Clone(), m_apostrophe);
290 }
291};
292
294class ConstPubkeyProvider final : public PubkeyProvider
295{
296 CPubKey m_pubkey;
297 bool m_xonly;
298
299public:
300 ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey, bool xonly) : PubkeyProvider(exp_index), m_pubkey(pubkey), m_xonly(xonly) {}
301 bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
302 {
303 key = m_pubkey;
304 info.path.clear();
305 CKeyID keyid = m_pubkey.GetID();
306 std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
307 return true;
308 }
309 bool IsRange() const override { return false; }
310 size_t GetSize() const override { return m_pubkey.size(); }
311 std::string ToString(StringType type) const override { return m_xonly ? HexStr(m_pubkey).substr(2) : HexStr(m_pubkey); }
312 bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
313 {
314 CKey key;
315 if (!GetPrivKey(/*pos=*/0, arg, key)) return false;
316 ret = EncodeSecret(key);
317 return true;
318 }
319 bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
320 {
321 ret = ToString(StringType::PUBLIC);
322 return true;
323 }
324 bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
325 {
326 return m_xonly ? arg.GetKeyByXOnly(XOnlyPubKey(m_pubkey), key) :
327 arg.GetKey(m_pubkey.GetID(), key);
328 }
329 std::optional<CPubKey> GetRootPubKey() const override
330 {
331 return m_pubkey;
332 }
333 std::optional<CExtPubKey> GetRootExtPubKey() const override
334 {
335 return std::nullopt;
336 }
337 std::unique_ptr<PubkeyProvider> Clone() const override
338 {
339 return std::make_unique<ConstPubkeyProvider>(m_expr_index, m_pubkey, m_xonly);
340 }
341};
342
343enum class DeriveType {
344 NO,
345 UNHARDENED,
346 HARDENED,
347};
348
350class BIP32PubkeyProvider final : public PubkeyProvider
351{
352 // Root xpub, path, and final derivation step type being used, if any
353 CExtPubKey m_root_extkey;
354 KeyPath m_path;
355 DeriveType m_derive;
356 // Whether ' or h is used in harded derivation
357 bool m_apostrophe;
358
359 bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const
360 {
361 CKey key;
362 if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false;
363 ret.nDepth = m_root_extkey.nDepth;
364 std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint);
365 ret.nChild = m_root_extkey.nChild;
366 ret.chaincode = m_root_extkey.chaincode;
367 ret.key = key;
368 return true;
369 }
370
371 // Derives the last xprv
372 bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv, CExtKey& last_hardened) const
373 {
374 if (!GetExtKey(arg, xprv)) return false;
375 for (auto entry : m_path) {
376 if (!xprv.Derive(xprv, entry)) return false;
377 if (entry >> 31) {
378 last_hardened = xprv;
379 }
380 }
381 return true;
382 }
383
384 bool IsHardened() const
385 {
386 if (m_derive == DeriveType::HARDENED) return true;
387 for (auto entry : m_path) {
388 if (entry >> 31) return true;
389 }
390 return false;
391 }
392
393public:
394 BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive, bool apostrophe) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive), m_apostrophe(apostrophe) {}
395 bool IsRange() const override { return m_derive != DeriveType::NO; }
396 size_t GetSize() const override { return 33; }
397 bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key_out, KeyOriginInfo& final_info_out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
398 {
399 // Info of parent of the to be derived pubkey
400 KeyOriginInfo parent_info;
401 CKeyID keyid = m_root_extkey.pubkey.GetID();
402 std::copy(keyid.begin(), keyid.begin() + sizeof(parent_info.fingerprint), parent_info.fingerprint);
403 parent_info.path = m_path;
404
405 // Info of the derived key itself which is copied out upon successful completion
406 KeyOriginInfo final_info_out_tmp = parent_info;
407 if (m_derive == DeriveType::UNHARDENED) final_info_out_tmp.path.push_back((uint32_t)pos);
408 if (m_derive == DeriveType::HARDENED) final_info_out_tmp.path.push_back(((uint32_t)pos) | 0x80000000L);
409
410 // Derive keys or fetch them from cache
411 CExtPubKey final_extkey = m_root_extkey;
412 CExtPubKey parent_extkey = m_root_extkey;
413 CExtPubKey last_hardened_extkey;
414 bool der = true;
415 if (read_cache) {
416 if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) {
417 if (m_derive == DeriveType::HARDENED) return false;
418 // Try to get the derivation parent
419 if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return false;
420 final_extkey = parent_extkey;
421 if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
422 }
423 } else if (IsHardened()) {
424 CExtKey xprv;
425 CExtKey lh_xprv;
426 if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
427 parent_extkey = xprv.Neuter();
428 if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos);
429 if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL);
430 final_extkey = xprv.Neuter();
431 if (lh_xprv.key.IsValid()) {
432 last_hardened_extkey = lh_xprv.Neuter();
433 }
434 } else {
435 for (auto entry : m_path) {
436 if (!parent_extkey.Derive(parent_extkey, entry)) return false;
437 }
438 final_extkey = parent_extkey;
439 if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
440 assert(m_derive != DeriveType::HARDENED);
441 }
442 if (!der) return false;
443
444 final_info_out = final_info_out_tmp;
445 key_out = final_extkey.pubkey;
446
447 if (write_cache) {
448 // Only cache parent if there is any unhardened derivation
449 if (m_derive != DeriveType::HARDENED) {
450 write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey);
451 // Cache last hardened xpub if we have it
452 if (last_hardened_extkey.pubkey.IsValid()) {
453 write_cache->CacheLastHardenedExtPubKey(m_expr_index, last_hardened_extkey);
454 }
455 } else if (final_info_out.path.size() > 0) {
456 write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey);
457 }
458 }
459
460 return true;
461 }
462 std::string ToString(StringType type, bool normalized) const
463 {
464 // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
465 const bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
466 std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path, /*apostrophe=*/use_apostrophe);
467 if (IsRange()) {
468 ret += "/*";
469 if (m_derive == DeriveType::HARDENED) ret += use_apostrophe ? '\'' : 'h';
470 }
471 return ret;
472 }
473 std::string ToString(StringType type=StringType::PUBLIC) const override
474 {
475 return ToString(type, /*normalized=*/false);
476 }
477 bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
478 {
479 CExtKey key;
480 if (!GetExtKey(arg, key)) return false;
481 out = EncodeExtKey(key) + FormatHDKeypath(m_path, /*apostrophe=*/m_apostrophe);
482 if (IsRange()) {
483 out += "/*";
484 if (m_derive == DeriveType::HARDENED) out += m_apostrophe ? '\'' : 'h';
485 }
486 return true;
487 }
488 bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override
489 {
490 if (m_derive == DeriveType::HARDENED) {
491 out = ToString(StringType::PUBLIC, /*normalized=*/true);
492
493 return true;
494 }
495 // Step backwards to find the last hardened step in the path
496 int i = (int)m_path.size() - 1;
497 for (; i >= 0; --i) {
498 if (m_path.at(i) >> 31) {
499 break;
500 }
501 }
502 // Either no derivation or all unhardened derivation
503 if (i == -1) {
504 out = ToString();
505 return true;
506 }
507 // Get the path to the last hardened stup
508 KeyOriginInfo origin;
509 int k = 0;
510 for (; k <= i; ++k) {
511 // Add to the path
512 origin.path.push_back(m_path.at(k));
513 }
514 // Build the remaining path
515 KeyPath end_path;
516 for (; k < (int)m_path.size(); ++k) {
517 end_path.push_back(m_path.at(k));
518 }
519 // Get the fingerprint
520 CKeyID id = m_root_extkey.pubkey.GetID();
521 std::copy(id.begin(), id.begin() + 4, origin.fingerprint);
522
523 CExtPubKey xpub;
524 CExtKey lh_xprv;
525 // If we have the cache, just get the parent xpub
526 if (cache != nullptr) {
527 cache->GetCachedLastHardenedExtPubKey(m_expr_index, xpub);
528 }
529 if (!xpub.pubkey.IsValid()) {
530 // Cache miss, or nor cache, or need privkey
531 CExtKey xprv;
532 if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
533 xpub = lh_xprv.Neuter();
534 }
535 assert(xpub.pubkey.IsValid());
536
537 // Build the string
538 std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path);
539 out = "[" + origin_str + "]" + EncodeExtPubKey(xpub) + FormatHDKeypath(end_path);
540 if (IsRange()) {
541 out += "/*";
542 assert(m_derive == DeriveType::UNHARDENED);
543 }
544 return true;
545 }
546 bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
547 {
548 CExtKey extkey;
549 CExtKey dummy;
550 if (!GetDerivedExtKey(arg, extkey, dummy)) return false;
551 if (m_derive == DeriveType::UNHARDENED && !extkey.Derive(extkey, pos)) return false;
552 if (m_derive == DeriveType::HARDENED && !extkey.Derive(extkey, pos | 0x80000000UL)) return false;
553 key = extkey.key;
554 return true;
555 }
556 std::optional<CPubKey> GetRootPubKey() const override
557 {
558 return std::nullopt;
559 }
560 std::optional<CExtPubKey> GetRootExtPubKey() const override
561 {
562 return m_root_extkey;
563 }
564 std::unique_ptr<PubkeyProvider> Clone() const override
565 {
566 return std::make_unique<BIP32PubkeyProvider>(m_expr_index, m_root_extkey, m_path, m_derive, m_apostrophe);
567 }
568};
569
571class DescriptorImpl : public Descriptor
572{
573protected:
575 const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args;
577 const std::string m_name;
578
583 const std::vector<std::unique_ptr<DescriptorImpl>> m_subdescriptor_args;
584
586 virtual std::string ToStringExtra() const { return ""; }
587
598 virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, std::span<const CScript> scripts, FlatSigningProvider& out) const = 0;
599
600public:
601 DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args() {}
602 DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(Vector(std::move(script))) {}
603 DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::vector<std::unique_ptr<DescriptorImpl>> scripts, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(std::move(scripts)) {}
604
605 enum class StringType
606 {
607 PUBLIC,
608 PRIVATE,
609 NORMALIZED,
610 COMPAT, // string calculation that mustn't change over time to stay compatible with previous software versions
611 };
612
613 // NOLINTNEXTLINE(misc-no-recursion)
614 bool IsSolvable() const override
615 {
616 for (const auto& arg : m_subdescriptor_args) {
617 if (!arg->IsSolvable()) return false;
618 }
619 return true;
620 }
621
622 // NOLINTNEXTLINE(misc-no-recursion)
623 bool IsRange() const final
624 {
625 for (const auto& pubkey : m_pubkey_args) {
626 if (pubkey->IsRange()) return true;
627 }
628 for (const auto& arg : m_subdescriptor_args) {
629 if (arg->IsRange()) return true;
630 }
631 return false;
632 }
633
634 // NOLINTNEXTLINE(misc-no-recursion)
635 virtual bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const
636 {
637 size_t pos = 0;
638 for (const auto& scriptarg : m_subdescriptor_args) {
639 if (pos++) ret += ",";
640 std::string tmp;
641 if (!scriptarg->ToStringHelper(arg, tmp, type, cache)) return false;
642 ret += tmp;
643 }
644 return true;
645 }
646
647 // NOLINTNEXTLINE(misc-no-recursion)
648 virtual bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, const DescriptorCache* cache = nullptr) const
649 {
650 std::string extra = ToStringExtra();
651 size_t pos = extra.size() > 0 ? 1 : 0;
652 std::string ret = m_name + "(" + extra;
653 for (const auto& pubkey : m_pubkey_args) {
654 if (pos++) ret += ",";
655 std::string tmp;
656 switch (type) {
657 case StringType::NORMALIZED:
658 if (!pubkey->ToNormalizedString(*arg, tmp, cache)) return false;
659 break;
660 case StringType::PRIVATE:
661 if (!pubkey->ToPrivateString(*arg, tmp)) return false;
662 break;
663 case StringType::PUBLIC:
664 tmp = pubkey->ToString();
665 break;
666 case StringType::COMPAT:
667 tmp = pubkey->ToString(PubkeyProvider::StringType::COMPAT);
668 break;
669 }
670 ret += tmp;
671 }
672 std::string subscript;
673 if (!ToStringSubScriptHelper(arg, subscript, type, cache)) return false;
674 if (pos && subscript.size()) ret += ',';
675 out = std::move(ret) + std::move(subscript) + ")";
676 return true;
677 }
678
679 std::string ToString(bool compat_format) const final
680 {
681 std::string ret;
682 ToStringHelper(nullptr, ret, compat_format ? StringType::COMPAT : StringType::PUBLIC);
683 return AddChecksum(ret);
684 }
685
686 bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
687 {
688 bool ret = ToStringHelper(&arg, out, StringType::PRIVATE);
689 out = AddChecksum(out);
690 return ret;
691 }
692
693 bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override final
694 {
695 bool ret = ToStringHelper(&arg, out, StringType::NORMALIZED, cache);
696 out = AddChecksum(out);
697 return ret;
698 }
699
700 // NOLINTNEXTLINE(misc-no-recursion)
701 bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const
702 {
703 std::vector<std::pair<CPubKey, KeyOriginInfo>> entries;
704 entries.reserve(m_pubkey_args.size());
705
706 // Construct temporary data in `entries`, `subscripts`, and `subprovider` to avoid producing output in case of failure.
707 for (const auto& p : m_pubkey_args) {
708 entries.emplace_back();
709 if (!p->GetPubKey(pos, arg, entries.back().first, entries.back().second, read_cache, write_cache)) return false;
710 }
711 std::vector<CScript> subscripts;
712 FlatSigningProvider subprovider;
713 for (const auto& subarg : m_subdescriptor_args) {
714 std::vector<CScript> outscripts;
715 if (!subarg->ExpandHelper(pos, arg, read_cache, outscripts, subprovider, write_cache)) return false;
716 assert(outscripts.size() == 1);
717 subscripts.emplace_back(std::move(outscripts[0]));
718 }
719 out.Merge(std::move(subprovider));
720
721 std::vector<CPubKey> pubkeys;
722 pubkeys.reserve(entries.size());
723 for (auto& entry : entries) {
724 pubkeys.push_back(entry.first);
725 out.origins.emplace(entry.first.GetID(), std::make_pair<CPubKey, KeyOriginInfo>(CPubKey(entry.first), std::move(entry.second)));
726 }
727
728 output_scripts = MakeScripts(pubkeys, std::span{subscripts}, out);
729 return true;
730 }
731
732 bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final
733 {
734 return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache);
735 }
736
737 bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final
738 {
739 return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr);
740 }
741
742 // NOLINTNEXTLINE(misc-no-recursion)
743 void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final
744 {
745 for (const auto& p : m_pubkey_args) {
746 CKey key;
747 if (!p->GetPrivKey(pos, provider, key)) continue;
748 out.keys.emplace(key.GetPubKey().GetID(), key);
749 }
750 for (const auto& arg : m_subdescriptor_args) {
751 arg->ExpandPrivate(pos, provider, out);
752 }
753 }
754
755 std::optional<OutputType> GetOutputType() const override { return std::nullopt; }
756
757 std::optional<int64_t> ScriptSize() const override { return {}; }
758
764 virtual std::optional<int64_t> MaxSatSize(bool use_max_sig) const { return {}; }
765
766 std::optional<int64_t> MaxSatisfactionWeight(bool) const override { return {}; }
767
768 std::optional<int64_t> MaxSatisfactionElems() const override { return {}; }
769
770 // NOLINTNEXTLINE(misc-no-recursion)
771 void GetPubKeys(std::set<CPubKey>& pubkeys, std::set<CExtPubKey>& ext_pubs) const override
772 {
773 for (const auto& p : m_pubkey_args) {
774 std::optional<CPubKey> pub = p->GetRootPubKey();
775 if (pub) pubkeys.insert(*pub);
776 std::optional<CExtPubKey> ext_pub = p->GetRootExtPubKey();
777 if (ext_pub) ext_pubs.insert(*ext_pub);
778 }
779 for (const auto& arg : m_subdescriptor_args) {
780 arg->GetPubKeys(pubkeys, ext_pubs);
781 }
782 }
783
784 virtual std::unique_ptr<DescriptorImpl> Clone() const = 0;
785};
786
788class AddressDescriptor final : public DescriptorImpl
789{
790 const CTxDestination m_destination;
791protected:
792 std::string ToStringExtra() const override { return EncodeDestination(m_destination); }
793 std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); }
794public:
795 AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, "addr"), m_destination(std::move(destination)) {}
796 bool IsSolvable() const final { return false; }
797
798 std::optional<OutputType> GetOutputType() const override
799 {
800 return OutputTypeFromDestination(m_destination);
801 }
802 bool IsSingleType() const final { return true; }
803 bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
804
805 std::optional<int64_t> ScriptSize() const override { return GetScriptForDestination(m_destination).size(); }
806 std::unique_ptr<DescriptorImpl> Clone() const override
807 {
808 return std::make_unique<AddressDescriptor>(m_destination);
809 }
810};
811
813class RawDescriptor final : public DescriptorImpl
814{
815 const CScript m_script;
816protected:
817 std::string ToStringExtra() const override { return HexStr(m_script); }
818 std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(m_script); }
819public:
820 RawDescriptor(CScript script) : DescriptorImpl({}, "raw"), m_script(std::move(script)) {}
821 bool IsSolvable() const final { return false; }
822
823 std::optional<OutputType> GetOutputType() const override
824 {
825 CTxDestination dest;
826 ExtractDestination(m_script, dest);
827 return OutputTypeFromDestination(dest);
828 }
829 bool IsSingleType() const final { return true; }
830 bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
831
832 std::optional<int64_t> ScriptSize() const override { return m_script.size(); }
833
834 std::unique_ptr<DescriptorImpl> Clone() const override
835 {
836 return std::make_unique<RawDescriptor>(m_script);
837 }
838};
839
841class PKDescriptor final : public DescriptorImpl
842{
843private:
844 const bool m_xonly;
845protected:
846 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
847 {
848 if (m_xonly) {
850 return Vector(std::move(script));
851 } else {
852 return Vector(GetScriptForRawPubKey(keys[0]));
853 }
854 }
855public:
856 PKDescriptor(std::unique_ptr<PubkeyProvider> prov, bool xonly = false) : DescriptorImpl(Vector(std::move(prov)), "pk"), m_xonly(xonly) {}
857 bool IsSingleType() const final { return true; }
858
859 std::optional<int64_t> ScriptSize() const override {
860 return 1 + (m_xonly ? 32 : m_pubkey_args[0]->GetSize()) + 1;
861 }
862
863 std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
864 const auto ecdsa_sig_size = use_max_sig ? 72 : 71;
865 return 1 + (m_xonly ? 65 : ecdsa_sig_size);
866 }
867
868 std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
869 return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
870 }
871
872 std::optional<int64_t> MaxSatisfactionElems() const override { return 1; }
873
874 std::unique_ptr<DescriptorImpl> Clone() const override
875 {
876 return std::make_unique<PKDescriptor>(m_pubkey_args.at(0)->Clone(), m_xonly);
877 }
878};
879
881class PKHDescriptor final : public DescriptorImpl
882{
883protected:
884 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider& out) const override
885 {
886 CKeyID id = keys[0].GetID();
887 out.pubkeys.emplace(id, keys[0]);
889 }
890public:
891 PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "pkh") {}
892 std::optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; }
893 bool IsSingleType() const final { return true; }
894
895 std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 1 + 20 + 1 + 1; }
896
897 std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
898 const auto sig_size = use_max_sig ? 72 : 71;
899 return 1 + sig_size + 1 + m_pubkey_args[0]->GetSize();
900 }
901
902 std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
903 return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
904 }
905
906 std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
907
908 std::unique_ptr<DescriptorImpl> Clone() const override
909 {
910 return std::make_unique<PKHDescriptor>(m_pubkey_args.at(0)->Clone());
911 }
912};
913
915class WPKHDescriptor final : public DescriptorImpl
916{
917protected:
918 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider& out) const override
919 {
920 CKeyID id = keys[0].GetID();
921 out.pubkeys.emplace(id, keys[0]);
923 }
924public:
925 WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "wpkh") {}
926 std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
927 bool IsSingleType() const final { return true; }
928
929 std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20; }
930
931 std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
932 const auto sig_size = use_max_sig ? 72 : 71;
933 return (1 + sig_size + 1 + 33);
934 }
935
936 std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
937 return MaxSatSize(use_max_sig);
938 }
939
940 std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
941
942 std::unique_ptr<DescriptorImpl> Clone() const override
943 {
944 return std::make_unique<WPKHDescriptor>(m_pubkey_args.at(0)->Clone());
945 }
946};
947
949class ComboDescriptor final : public DescriptorImpl
950{
951protected:
952 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider& out) const override
953 {
954 std::vector<CScript> ret;
955 CKeyID id = keys[0].GetID();
956 out.pubkeys.emplace(id, keys[0]);
957 ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK
958 ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH
959 if (keys[0].IsCompressed()) {
961 out.scripts.emplace(CScriptID(p2wpkh), p2wpkh);
962 ret.emplace_back(p2wpkh);
963 ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH
964 }
965 return ret;
966 }
967public:
968 ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "combo") {}
969 bool IsSingleType() const final { return false; }
970 std::unique_ptr<DescriptorImpl> Clone() const override
971 {
972 return std::make_unique<ComboDescriptor>(m_pubkey_args.at(0)->Clone());
973 }
974};
975
977class MultisigDescriptor final : public DescriptorImpl
978{
979 const int m_threshold;
980 const bool m_sorted;
981protected:
982 std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
983 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override {
984 if (m_sorted) {
985 std::vector<CPubKey> sorted_keys(keys);
986 std::sort(sorted_keys.begin(), sorted_keys.end());
987 return Vector(GetScriptForMultisig(m_threshold, sorted_keys));
988 }
989 return Vector(GetScriptForMultisig(m_threshold, keys));
990 }
991public:
992 MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {}
993 bool IsSingleType() const final { return true; }
994
995 std::optional<int64_t> ScriptSize() const override {
996 const auto n_keys = m_pubkey_args.size();
997 auto op = [](int64_t acc, const std::unique_ptr<PubkeyProvider>& pk) { return acc + 1 + pk->GetSize();};
998 const auto pubkeys_size{std::accumulate(m_pubkey_args.begin(), m_pubkey_args.end(), int64_t{0}, op)};
999 return 1 + BuildScript(n_keys).size() + BuildScript(m_threshold).size() + pubkeys_size;
1000 }
1001
1002 std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1003 const auto sig_size = use_max_sig ? 72 : 71;
1004 return (1 + (1 + sig_size) * m_threshold);
1005 }
1006
1007 std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1008 return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
1009 }
1010
1011 std::optional<int64_t> MaxSatisfactionElems() const override { return 1 + m_threshold; }
1012
1013 std::unique_ptr<DescriptorImpl> Clone() const override
1014 {
1015 std::vector<std::unique_ptr<PubkeyProvider>> providers;
1016 providers.reserve(m_pubkey_args.size());
1017 std::transform(m_pubkey_args.begin(), m_pubkey_args.end(), providers.begin(), [](const std::unique_ptr<PubkeyProvider>& p) { return p->Clone(); });
1018 return std::make_unique<MultisigDescriptor>(m_threshold, std::move(providers), m_sorted);
1019 }
1020};
1021
1023class MultiADescriptor final : public DescriptorImpl
1024{
1025 const int m_threshold;
1026 const bool m_sorted;
1027protected:
1028 std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
1029 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override {
1030 CScript ret;
1031 std::vector<XOnlyPubKey> xkeys;
1032 xkeys.reserve(keys.size());
1033 for (const auto& key : keys) xkeys.emplace_back(key);
1034 if (m_sorted) std::sort(xkeys.begin(), xkeys.end());
1035 ret << ToByteVector(xkeys[0]) << OP_CHECKSIG;
1036 for (size_t i = 1; i < keys.size(); ++i) {
1037 ret << ToByteVector(xkeys[i]) << OP_CHECKSIGADD;
1038 }
1039 ret << m_threshold << OP_NUMEQUAL;
1040 return Vector(std::move(ret));
1041 }
1042public:
1043 MultiADescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti_a" : "multi_a"), m_threshold(threshold), m_sorted(sorted) {}
1044 bool IsSingleType() const final { return true; }
1045
1046 std::optional<int64_t> ScriptSize() const override {
1047 const auto n_keys = m_pubkey_args.size();
1048 return (1 + 32 + 1) * n_keys + BuildScript(m_threshold).size() + 1;
1049 }
1050
1051 std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1052 return (1 + 65) * m_threshold + (m_pubkey_args.size() - m_threshold);
1053 }
1054
1055 std::optional<int64_t> MaxSatisfactionElems() const override { return m_pubkey_args.size(); }
1056
1057 std::unique_ptr<DescriptorImpl> Clone() const override
1058 {
1059 std::vector<std::unique_ptr<PubkeyProvider>> providers;
1060 providers.reserve(m_pubkey_args.size());
1061 for (const auto& arg : m_pubkey_args) {
1062 providers.push_back(arg->Clone());
1063 }
1064 return std::make_unique<MultiADescriptor>(m_threshold, std::move(providers), m_sorted);
1065 }
1066};
1067
1069class SHDescriptor final : public DescriptorImpl
1070{
1071protected:
1072 std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1073 {
1074 auto ret = Vector(GetScriptForDestination(ScriptHash(scripts[0])));
1075 if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
1076 return ret;
1077 }
1078
1079 bool IsSegwit() const { return m_subdescriptor_args[0]->GetOutputType() == OutputType::BECH32; }
1080
1081public:
1082 SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {}
1083
1084 std::optional<OutputType> GetOutputType() const override
1085 {
1086 assert(m_subdescriptor_args.size() == 1);
1087 if (IsSegwit()) return OutputType::P2SH_SEGWIT;
1088 return OutputType::LEGACY;
1089 }
1090 bool IsSingleType() const final { return true; }
1091
1092 std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20 + 1; }
1093
1094 std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1095 if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1096 if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1097 // The subscript is never witness data.
1098 const auto subscript_weight = (1 + *subscript_size) * WITNESS_SCALE_FACTOR;
1099 // The weight depends on whether the inner descriptor is satisfied using the witness stack.
1100 if (IsSegwit()) return subscript_weight + *sat_size;
1101 return subscript_weight + *sat_size * WITNESS_SCALE_FACTOR;
1102 }
1103 }
1104 return {};
1105 }
1106
1107 std::optional<int64_t> MaxSatisfactionElems() const override {
1108 if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1109 return {};
1110 }
1111
1112 std::unique_ptr<DescriptorImpl> Clone() const override
1113 {
1114 return std::make_unique<SHDescriptor>(m_subdescriptor_args.at(0)->Clone());
1115 }
1116};
1117
1119class WSHDescriptor final : public DescriptorImpl
1120{
1121protected:
1122 std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1123 {
1125 if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
1126 return ret;
1127 }
1128public:
1129 WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {}
1130 std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
1131 bool IsSingleType() const final { return true; }
1132
1133 std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1134
1135 std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1136 if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1137 if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1138 return GetSizeOfCompactSize(*subscript_size) + *subscript_size + *sat_size;
1139 }
1140 }
1141 return {};
1142 }
1143
1144 std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1145 return MaxSatSize(use_max_sig);
1146 }
1147
1148 std::optional<int64_t> MaxSatisfactionElems() const override {
1149 if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1150 return {};
1151 }
1152
1153 std::unique_ptr<DescriptorImpl> Clone() const override
1154 {
1155 return std::make_unique<WSHDescriptor>(m_subdescriptor_args.at(0)->Clone());
1156 }
1157};
1158
1160class TRDescriptor final : public DescriptorImpl
1161{
1162 std::vector<int> m_depths;
1163protected:
1164 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1165 {
1166 TaprootBuilder builder;
1167 assert(m_depths.size() == scripts.size());
1168 for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1169 builder.Add(m_depths[pos], scripts[pos], TAPROOT_LEAF_TAPSCRIPT);
1170 }
1171 if (!builder.IsComplete()) return {};
1172 assert(keys.size() == 1);
1173 XOnlyPubKey xpk(keys[0]);
1174 if (!xpk.IsFullyValid()) return {};
1175 builder.Finalize(xpk);
1176 WitnessV1Taproot output = builder.GetOutput();
1177 out.tr_trees[output] = builder;
1178 out.pubkeys.emplace(keys[0].GetID(), keys[0]);
1179 return Vector(GetScriptForDestination(output));
1180 }
1181 bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const override
1182 {
1183 if (m_depths.empty()) return true;
1184 std::vector<bool> path;
1185 for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1186 if (pos) ret += ',';
1187 while ((int)path.size() <= m_depths[pos]) {
1188 if (path.size()) ret += '{';
1189 path.push_back(false);
1190 }
1191 std::string tmp;
1192 if (!m_subdescriptor_args[pos]->ToStringHelper(arg, tmp, type, cache)) return false;
1193 ret += tmp;
1194 while (!path.empty() && path.back()) {
1195 if (path.size() > 1) ret += '}';
1196 path.pop_back();
1197 }
1198 if (!path.empty()) path.back() = true;
1199 }
1200 return true;
1201 }
1202public:
1203 TRDescriptor(std::unique_ptr<PubkeyProvider> internal_key, std::vector<std::unique_ptr<DescriptorImpl>> descs, std::vector<int> depths) :
1204 DescriptorImpl(Vector(std::move(internal_key)), std::move(descs), "tr"), m_depths(std::move(depths))
1205 {
1206 assert(m_subdescriptor_args.size() == m_depths.size());
1207 }
1208 std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1209 bool IsSingleType() const final { return true; }
1210
1211 std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1212
1213 std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1214 // FIXME: We assume keypath spend, which can lead to very large underestimations.
1215 return 1 + 65;
1216 }
1217
1218 std::optional<int64_t> MaxSatisfactionElems() const override {
1219 // FIXME: See above, we assume keypath spend.
1220 return 1;
1221 }
1222
1223 std::unique_ptr<DescriptorImpl> Clone() const override
1224 {
1225 std::vector<std::unique_ptr<DescriptorImpl>> subdescs;
1226 subdescs.reserve(m_subdescriptor_args.size());
1227 std::transform(m_subdescriptor_args.begin(), m_subdescriptor_args.end(), subdescs.begin(), [](const std::unique_ptr<DescriptorImpl>& d) { return d->Clone(); });
1228 return std::make_unique<TRDescriptor>(m_pubkey_args.at(0)->Clone(), std::move(subdescs), m_depths);
1229 }
1230};
1231
1232/* We instantiate Miniscript here with a simple integer as key type.
1233 * The value of these key integers are an index in the
1234 * DescriptorImpl::m_pubkey_args vector.
1235 */
1236
1240class ScriptMaker {
1242 const std::vector<CPubKey>& m_keys;
1244 const miniscript::MiniscriptContext m_script_ctx;
1245
1249 uint160 GetHash160(uint32_t key) const {
1250 if (miniscript::IsTapscript(m_script_ctx)) {
1251 return Hash160(XOnlyPubKey{m_keys[key]});
1252 }
1253 return m_keys[key].GetID();
1254 }
1255
1256public:
1257 ScriptMaker(const std::vector<CPubKey>& keys LIFETIMEBOUND, const miniscript::MiniscriptContext script_ctx) : m_keys(keys), m_script_ctx{script_ctx} {}
1258
1259 std::vector<unsigned char> ToPKBytes(uint32_t key) const {
1260 // In Tapscript keys always serialize as x-only, whether an x-only key was used in the descriptor or not.
1261 if (!miniscript::IsTapscript(m_script_ctx)) {
1262 return {m_keys[key].begin(), m_keys[key].end()};
1263 }
1264 const XOnlyPubKey xonly_pubkey{m_keys[key]};
1265 return {xonly_pubkey.begin(), xonly_pubkey.end()};
1266 }
1267
1268 std::vector<unsigned char> ToPKHBytes(uint32_t key) const {
1269 auto id = GetHash160(key);
1270 return {id.begin(), id.end()};
1271 }
1272};
1273
1277class StringMaker {
1279 const SigningProvider* m_arg;
1281 const std::vector<std::unique_ptr<PubkeyProvider>>& m_pubkeys;
1283 bool m_private;
1284
1285public:
1286 StringMaker(const SigningProvider* arg LIFETIMEBOUND, const std::vector<std::unique_ptr<PubkeyProvider>>& pubkeys LIFETIMEBOUND, bool priv)
1287 : m_arg(arg), m_pubkeys(pubkeys), m_private(priv) {}
1288
1289 std::optional<std::string> ToString(uint32_t key) const
1290 {
1291 std::string ret;
1292 if (m_private) {
1293 if (!m_pubkeys[key]->ToPrivateString(*m_arg, ret)) return {};
1294 } else {
1295 ret = m_pubkeys[key]->ToString();
1296 }
1297 return ret;
1298 }
1299};
1300
1301class MiniscriptDescriptor final : public DescriptorImpl
1302{
1303private:
1305
1306protected:
1307 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts,
1308 FlatSigningProvider& provider) const override
1309 {
1310 const auto script_ctx{m_node->GetMsCtx()};
1311 for (const auto& key : keys) {
1312 if (miniscript::IsTapscript(script_ctx)) {
1313 provider.pubkeys.emplace(Hash160(XOnlyPubKey{key}), key);
1314 } else {
1315 provider.pubkeys.emplace(key.GetID(), key);
1316 }
1317 }
1318 return Vector(m_node->ToScript(ScriptMaker(keys, script_ctx)));
1319 }
1320
1321public:
1322 MiniscriptDescriptor(std::vector<std::unique_ptr<PubkeyProvider>> providers, miniscript::NodeRef<uint32_t> node)
1323 : DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) {}
1324
1325 bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type,
1326 const DescriptorCache* cache = nullptr) const override
1327 {
1328 if (const auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type == StringType::PRIVATE))) {
1329 out = *res;
1330 return true;
1331 }
1332 return false;
1333 }
1334
1335 bool IsSolvable() const override { return true; }
1336 bool IsSingleType() const final { return true; }
1337
1338 std::optional<int64_t> ScriptSize() const override { return m_node->ScriptSize(); }
1339
1340 std::optional<int64_t> MaxSatSize(bool) const override {
1341 // For Miniscript we always assume high-R ECDSA signatures.
1342 return m_node->GetWitnessSize();
1343 }
1344
1345 std::optional<int64_t> MaxSatisfactionElems() const override {
1346 return m_node->GetStackSize();
1347 }
1348
1349 std::unique_ptr<DescriptorImpl> Clone() const override
1350 {
1351 std::vector<std::unique_ptr<PubkeyProvider>> providers;
1352 providers.reserve(m_pubkey_args.size());
1353 for (const auto& arg : m_pubkey_args) {
1354 providers.push_back(arg->Clone());
1355 }
1356 return std::make_unique<MiniscriptDescriptor>(std::move(providers), m_node->Clone());
1357 }
1358};
1359
1361class RawTRDescriptor final : public DescriptorImpl
1362{
1363protected:
1364 std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1365 {
1366 assert(keys.size() == 1);
1367 XOnlyPubKey xpk(keys[0]);
1368 if (!xpk.IsFullyValid()) return {};
1369 WitnessV1Taproot output{xpk};
1370 return Vector(GetScriptForDestination(output));
1371 }
1372public:
1373 RawTRDescriptor(std::unique_ptr<PubkeyProvider> output_key) : DescriptorImpl(Vector(std::move(output_key)), "rawtr") {}
1374 std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1375 bool IsSingleType() const final { return true; }
1376
1377 std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1378
1379 std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1380 // We can't know whether there is a script path, so assume key path spend.
1381 return 1 + 65;
1382 }
1383
1384 std::optional<int64_t> MaxSatisfactionElems() const override {
1385 // See above, we assume keypath spend.
1386 return 1;
1387 }
1388
1389 std::unique_ptr<DescriptorImpl> Clone() const override
1390 {
1391 return std::make_unique<RawTRDescriptor>(m_pubkey_args.at(0)->Clone());
1392 }
1393};
1394
1396// Parser //
1398
1399enum class ParseScriptContext {
1400 TOP,
1401 P2SH,
1402 P2WPKH,
1403 P2WSH,
1404 P2TR,
1405};
1406
1407std::optional<uint32_t> ParseKeyPathNum(std::span<const char> elem, bool& apostrophe, std::string& error)
1408{
1409 bool hardened = false;
1410 if (elem.size() > 0) {
1411 const char last = elem[elem.size() - 1];
1412 if (last == '\'' || last == 'h') {
1413 elem = elem.first(elem.size() - 1);
1414 hardened = true;
1415 apostrophe = last == '\'';
1416 }
1417 }
1418 uint32_t p;
1419 if (!ParseUInt32(std::string(elem.begin(), elem.end()), &p)) {
1420 error = strprintf("Key path value '%s' is not a valid uint32", std::string(elem.begin(), elem.end()));
1421 return std::nullopt;
1422 } else if (p > 0x7FFFFFFFUL) {
1423 error = strprintf("Key path value %u is out of range", p);
1424 return std::nullopt;
1425 }
1426
1427 return std::make_optional<uint32_t>(p | (((uint32_t)hardened) << 31));
1428}
1429
1440[[nodiscard]] bool ParseKeyPath(const std::vector<std::span<const char>>& split, std::vector<KeyPath>& out, bool& apostrophe, std::string& error, bool allow_multipath)
1441{
1442 KeyPath path;
1443 std::optional<size_t> multipath_segment_index;
1444 std::vector<uint32_t> multipath_values;
1445 std::unordered_set<uint32_t> seen_multipath;
1446
1447 for (size_t i = 1; i < split.size(); ++i) {
1448 const std::span<const char>& elem = split[i];
1449
1450 // Check if element contain multipath specifier
1451 if (!elem.empty() && elem.front() == '<' && elem.back() == '>') {
1452 if (!allow_multipath) {
1453 error = strprintf("Key path value '%s' specifies multipath in a section where multipath is not allowed", std::string(elem.begin(), elem.end()));
1454 return false;
1455 }
1456 if (multipath_segment_index) {
1457 error = "Multiple multipath key path specifiers found";
1458 return false;
1459 }
1460
1461 // Parse each possible value
1462 std::vector<std::span<const char>> nums = Split(std::span(elem.begin()+1, elem.end()-1), ";");
1463 if (nums.size() < 2) {
1464 error = "Multipath key path specifiers must have at least two items";
1465 return false;
1466 }
1467
1468 for (const auto& num : nums) {
1469 const auto& op_num = ParseKeyPathNum(num, apostrophe, error);
1470 if (!op_num) return false;
1471 auto [_, inserted] = seen_multipath.insert(*op_num);
1472 if (!inserted) {
1473 error = strprintf("Duplicated key path value %u in multipath specifier", *op_num);
1474 return false;
1475 }
1476 multipath_values.emplace_back(*op_num);
1477 }
1478
1479 path.emplace_back(); // Placeholder for multipath segment
1480 multipath_segment_index = path.size()-1;
1481 } else {
1482 const auto& op_num = ParseKeyPathNum(elem, apostrophe, error);
1483 if (!op_num) return false;
1484 path.emplace_back(*op_num);
1485 }
1486 }
1487
1488 if (!multipath_segment_index) {
1489 out.emplace_back(std::move(path));
1490 } else {
1491 // Replace the multipath placeholder with each value while generating paths
1492 for (size_t i = 0; i < multipath_values.size(); i++) {
1493 KeyPath branch_path = path;
1494 branch_path[*multipath_segment_index] = multipath_values[i];
1495 out.emplace_back(std::move(branch_path));
1496 }
1497 }
1498 return true;
1499}
1500
1502std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkeyInner(uint32_t key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, bool& apostrophe, std::string& error)
1503{
1504 std::vector<std::unique_ptr<PubkeyProvider>> ret;
1505 bool permit_uncompressed = ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH;
1506 auto split = Split(sp, '/');
1507 std::string str(split[0].begin(), split[0].end());
1508 if (str.size() == 0) {
1509 error = "No key provided";
1510 return {};
1511 }
1512 if (IsSpace(str.front()) || IsSpace(str.back())) {
1513 error = strprintf("Key '%s' is invalid due to whitespace", str);
1514 return {};
1515 }
1516 if (split.size() == 1) {
1517 if (IsHex(str)) {
1518 std::vector<unsigned char> data = ParseHex(str);
1519 CPubKey pubkey(data);
1520 if (pubkey.IsValid() && !pubkey.IsValidNonHybrid()) {
1521 error = "Hybrid public keys are not allowed";
1522 return {};
1523 }
1524 if (pubkey.IsFullyValid()) {
1525 if (permit_uncompressed || pubkey.IsCompressed()) {
1526 ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, false));
1527 return ret;
1528 } else {
1529 error = "Uncompressed keys are not allowed";
1530 return {};
1531 }
1532 } else if (data.size() == 32 && ctx == ParseScriptContext::P2TR) {
1533 unsigned char fullkey[33] = {0x02};
1534 std::copy(data.begin(), data.end(), fullkey + 1);
1535 pubkey.Set(std::begin(fullkey), std::end(fullkey));
1536 if (pubkey.IsFullyValid()) {
1537 ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, true));
1538 return ret;
1539 }
1540 }
1541 error = strprintf("Pubkey '%s' is invalid", str);
1542 return {};
1543 }
1544 CKey key = DecodeSecret(str);
1545 if (key.IsValid()) {
1546 if (permit_uncompressed || key.IsCompressed()) {
1547 CPubKey pubkey = key.GetPubKey();
1548 out.keys.emplace(pubkey.GetID(), key);
1549 ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, ctx == ParseScriptContext::P2TR));
1550 return ret;
1551 } else {
1552 error = "Uncompressed keys are not allowed";
1553 return {};
1554 }
1555 }
1556 }
1557 CExtKey extkey = DecodeExtKey(str);
1558 CExtPubKey extpubkey = DecodeExtPubKey(str);
1559 if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) {
1560 error = strprintf("key '%s' is not valid", str);
1561 return {};
1562 }
1563 std::vector<KeyPath> paths;
1564 DeriveType type = DeriveType::NO;
1565 if (std::ranges::equal(split.back(), std::span{"*"}.first(1))) {
1566 split.pop_back();
1567 type = DeriveType::UNHARDENED;
1568 } else if (std::ranges::equal(split.back(), std::span{"*'"}.first(2)) || std::ranges::equal(split.back(), std::span{"*h"}.first(2))) {
1569 apostrophe = std::ranges::equal(split.back(), std::span{"*'"}.first(2));
1570 split.pop_back();
1571 type = DeriveType::HARDENED;
1572 }
1573 if (!ParseKeyPath(split, paths, apostrophe, error, /*allow_multipath=*/true)) return {};
1574 if (extkey.key.IsValid()) {
1575 extpubkey = extkey.Neuter();
1576 out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key);
1577 }
1578 for (auto& path : paths) {
1579 ret.emplace_back(std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type, apostrophe));
1580 }
1581 return ret;
1582}
1583
1585std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkey(uint32_t key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1586{
1587 std::vector<std::unique_ptr<PubkeyProvider>> ret;
1588 auto origin_split = Split(sp, ']');
1589 if (origin_split.size() > 2) {
1590 error = "Multiple ']' characters found for a single pubkey";
1591 return {};
1592 }
1593 // This is set if either the origin or path suffix contains a hardened derivation.
1594 bool apostrophe = false;
1595 if (origin_split.size() == 1) {
1596 return ParsePubkeyInner(key_exp_index, origin_split[0], ctx, out, apostrophe, error);
1597 }
1598 if (origin_split[0].empty() || origin_split[0][0] != '[') {
1599 error = strprintf("Key origin start '[ character expected but not found, got '%c' instead",
1600 origin_split[0].empty() ? ']' : origin_split[0][0]);
1601 return {};
1602 }
1603 auto slash_split = Split(origin_split[0].subspan(1), '/');
1604 if (slash_split[0].size() != 8) {
1605 error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size());
1606 return {};
1607 }
1608 std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end());
1609 if (!IsHex(fpr_hex)) {
1610 error = strprintf("Fingerprint '%s' is not hex", fpr_hex);
1611 return {};
1612 }
1613 auto fpr_bytes = ParseHex(fpr_hex);
1614 KeyOriginInfo info;
1615 static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes");
1616 assert(fpr_bytes.size() == 4);
1617 std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint);
1618 std::vector<KeyPath> path;
1619 if (!ParseKeyPath(slash_split, path, apostrophe, error, /*allow_multipath=*/false)) return {};
1620 info.path = path.at(0);
1621 auto providers = ParsePubkeyInner(key_exp_index, origin_split[1], ctx, out, apostrophe, error);
1622 if (providers.empty()) return {};
1623 ret.reserve(providers.size());
1624 for (auto& prov : providers) {
1625 ret.emplace_back(std::make_unique<OriginPubkeyProvider>(key_exp_index, info, std::move(prov), apostrophe));
1626 }
1627 return ret;
1628}
1629
1630std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext ctx, const SigningProvider& provider)
1631{
1632 // Key cannot be hybrid
1633 if (!pubkey.IsValidNonHybrid()) {
1634 return nullptr;
1635 }
1636 // Uncompressed is only allowed in TOP and P2SH contexts
1637 if (ctx != ParseScriptContext::TOP && ctx != ParseScriptContext::P2SH && !pubkey.IsCompressed()) {
1638 return nullptr;
1639 }
1640 std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, false);
1641 KeyOriginInfo info;
1642 if (provider.GetKeyOrigin(pubkey.GetID(), info)) {
1643 return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
1644 }
1645 return key_provider;
1646}
1647
1648std::unique_ptr<PubkeyProvider> InferXOnlyPubkey(const XOnlyPubKey& xkey, ParseScriptContext ctx, const SigningProvider& provider)
1649{
1650 CPubKey pubkey{xkey.GetEvenCorrespondingCPubKey()};
1651 std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, true);
1652 KeyOriginInfo info;
1653 if (provider.GetKeyOriginByXOnly(xkey, info)) {
1654 return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
1655 }
1656 return key_provider;
1657}
1658
1662struct KeyParser {
1664 using Key = uint32_t;
1666 FlatSigningProvider* m_out;
1668 const SigningProvider* m_in;
1670 mutable std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> m_keys;
1672 mutable std::string m_key_parsing_error;
1674 const miniscript::MiniscriptContext m_script_ctx;
1676 uint32_t m_offset;
1677
1679 miniscript::MiniscriptContext ctx, uint32_t offset = 0)
1680 : m_out(out), m_in(in), m_script_ctx(ctx), m_offset(offset) {}
1681
1682 bool KeyCompare(const Key& a, const Key& b) const {
1683 return *m_keys.at(a).at(0) < *m_keys.at(b).at(0);
1684 }
1685
1686 ParseScriptContext ParseContext() const {
1687 switch (m_script_ctx) {
1688 case miniscript::MiniscriptContext::P2WSH: return ParseScriptContext::P2WSH;
1689 case miniscript::MiniscriptContext::TAPSCRIPT: return ParseScriptContext::P2TR;
1690 }
1691 assert(false);
1692 }
1693
1694 template<typename I> std::optional<Key> FromString(I begin, I end) const
1695 {
1696 assert(m_out);
1697 Key key = m_keys.size();
1698 auto pk = ParsePubkey(m_offset + key, {&*begin, &*end}, ParseContext(), *m_out, m_key_parsing_error);
1699 if (pk.empty()) return {};
1700 m_keys.emplace_back(std::move(pk));
1701 return key;
1702 }
1703
1704 std::optional<std::string> ToString(const Key& key) const
1705 {
1706 return m_keys.at(key).at(0)->ToString();
1707 }
1708
1709 template<typename I> std::optional<Key> FromPKBytes(I begin, I end) const
1710 {
1711 assert(m_in);
1712 Key key = m_keys.size();
1713 if (miniscript::IsTapscript(m_script_ctx) && end - begin == 32) {
1714 XOnlyPubKey pubkey;
1715 std::copy(begin, end, pubkey.begin());
1716 if (auto pubkey_provider = InferXOnlyPubkey(pubkey, ParseContext(), *m_in)) {
1717 m_keys.emplace_back();
1718 m_keys.back().push_back(std::move(pubkey_provider));
1719 return key;
1720 }
1721 } else if (!miniscript::IsTapscript(m_script_ctx)) {
1722 CPubKey pubkey(begin, end);
1723 if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
1724 m_keys.emplace_back();
1725 m_keys.back().push_back(std::move(pubkey_provider));
1726 return key;
1727 }
1728 }
1729 return {};
1730 }
1731
1732 template<typename I> std::optional<Key> FromPKHBytes(I begin, I end) const
1733 {
1734 assert(end - begin == 20);
1735 assert(m_in);
1736 uint160 hash;
1737 std::copy(begin, end, hash.begin());
1738 CKeyID keyid(hash);
1739 CPubKey pubkey;
1740 if (m_in->GetPubKey(keyid, pubkey)) {
1741 if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
1742 Key key = m_keys.size();
1743 m_keys.emplace_back();
1744 m_keys.back().push_back(std::move(pubkey_provider));
1745 return key;
1746 }
1747 }
1748 return {};
1749 }
1750
1751 miniscript::MiniscriptContext MsContext() const {
1752 return m_script_ctx;
1753 }
1754};
1755
1757// NOLINTNEXTLINE(misc-no-recursion)
1758std::vector<std::unique_ptr<DescriptorImpl>> ParseScript(uint32_t& key_exp_index, std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1759{
1760 using namespace script;
1761 Assume(ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR);
1762 std::vector<std::unique_ptr<DescriptorImpl>> ret;
1763 auto expr = Expr(sp);
1764 if (Func("pk", expr)) {
1765 auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
1766 if (pubkeys.empty()) {
1767 error = strprintf("pk(): %s", error);
1768 return {};
1769 }
1770 ++key_exp_index;
1771 for (auto& pubkey : pubkeys) {
1772 ret.emplace_back(std::make_unique<PKDescriptor>(std::move(pubkey), ctx == ParseScriptContext::P2TR));
1773 }
1774 return ret;
1775 }
1776 if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && Func("pkh", expr)) {
1777 auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
1778 if (pubkeys.empty()) {
1779 error = strprintf("pkh(): %s", error);
1780 return {};
1781 }
1782 ++key_exp_index;
1783 for (auto& pubkey : pubkeys) {
1784 ret.emplace_back(std::make_unique<PKHDescriptor>(std::move(pubkey)));
1785 }
1786 return ret;
1787 }
1788 if (ctx == ParseScriptContext::TOP && Func("combo", expr)) {
1789 auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
1790 if (pubkeys.empty()) {
1791 error = strprintf("combo(): %s", error);
1792 return {};
1793 }
1794 ++key_exp_index;
1795 for (auto& pubkey : pubkeys) {
1796 ret.emplace_back(std::make_unique<ComboDescriptor>(std::move(pubkey)));
1797 }
1798 return ret;
1799 } else if (Func("combo", expr)) {
1800 error = "Can only have combo() at top level";
1801 return {};
1802 }
1803 const bool multi = Func("multi", expr);
1804 const bool sortedmulti = !multi && Func("sortedmulti", expr);
1805 const bool multi_a = !(multi || sortedmulti) && Func("multi_a", expr);
1806 const bool sortedmulti_a = !(multi || sortedmulti || multi_a) && Func("sortedmulti_a", expr);
1807 if (((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && (multi || sortedmulti)) ||
1808 (ctx == ParseScriptContext::P2TR && (multi_a || sortedmulti_a))) {
1809 auto threshold = Expr(expr);
1810 uint32_t thres;
1811 std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> providers; // List of multipath expanded pubkeys
1812 if (!ParseUInt32(std::string(threshold.begin(), threshold.end()), &thres)) {
1813 error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end()));
1814 return {};
1815 }
1816 size_t script_size = 0;
1817 size_t max_providers_len = 0;
1818 while (expr.size()) {
1819 if (!Const(",", expr)) {
1820 error = strprintf("Multi: expected ',', got '%c'", expr[0]);
1821 return {};
1822 }
1823 auto arg = Expr(expr);
1824 auto pks = ParsePubkey(key_exp_index, arg, ctx, out, error);
1825 if (pks.empty()) {
1826 error = strprintf("Multi: %s", error);
1827 return {};
1828 }
1829 script_size += pks.at(0)->GetSize() + 1;
1830 max_providers_len = std::max(max_providers_len, pks.size());
1831 providers.emplace_back(std::move(pks));
1832 key_exp_index++;
1833 }
1834 if ((multi || sortedmulti) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTISIG)) {
1835 error = strprintf("Cannot have %u keys in multisig; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTISIG);
1836 return {};
1837 } else if ((multi_a || sortedmulti_a) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTI_A)) {
1838 error = strprintf("Cannot have %u keys in multi_a; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTI_A);
1839 return {};
1840 } else if (thres < 1) {
1841 error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres);
1842 return {};
1843 } else if (thres > providers.size()) {
1844 error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size());
1845 return {};
1846 }
1847 if (ctx == ParseScriptContext::TOP) {
1848 if (providers.size() > 3) {
1849 error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size());
1850 return {};
1851 }
1852 }
1853 if (ctx == ParseScriptContext::P2SH) {
1854 // This limits the maximum number of compressed pubkeys to 15.
1855 if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) {
1856 error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE);
1857 return {};
1858 }
1859 }
1860
1861 // Make sure all vecs are of the same length, or exactly length 1
1862 // For length 1 vectors, clone key providers until vector is the same length
1863 for (auto& vec : providers) {
1864 if (vec.size() == 1) {
1865 for (size_t i = 1; i < max_providers_len; ++i) {
1866 vec.emplace_back(vec.at(0)->Clone());
1867 }
1868 } else if (vec.size() != max_providers_len) {
1869 error = strprintf("multi(): Multipath derivation paths have mismatched lengths");
1870 return {};
1871 }
1872 }
1873
1874 // Build the final descriptors vector
1875 for (size_t i = 0; i < max_providers_len; ++i) {
1876 // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts
1877 std::vector<std::unique_ptr<PubkeyProvider>> pubs;
1878 pubs.reserve(providers.size());
1879 for (auto& pub : providers) {
1880 pubs.emplace_back(std::move(pub.at(i)));
1881 }
1882 if (multi || sortedmulti) {
1883 ret.emplace_back(std::make_unique<MultisigDescriptor>(thres, std::move(pubs), sortedmulti));
1884 } else {
1885 ret.emplace_back(std::make_unique<MultiADescriptor>(thres, std::move(pubs), sortedmulti_a));
1886 }
1887 }
1888 return ret;
1889 } else if (multi || sortedmulti) {
1890 error = "Can only have multi/sortedmulti at top level, in sh(), or in wsh()";
1891 return {};
1892 } else if (multi_a || sortedmulti_a) {
1893 error = "Can only have multi_a/sortedmulti_a inside tr()";
1894 return {};
1895 }
1896 if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wpkh", expr)) {
1897 auto pubkeys = ParsePubkey(key_exp_index, expr, ParseScriptContext::P2WPKH, out, error);
1898 if (pubkeys.empty()) {
1899 error = strprintf("wpkh(): %s", error);
1900 return {};
1901 }
1902 key_exp_index++;
1903 for (auto& pubkey : pubkeys) {
1904 ret.emplace_back(std::make_unique<WPKHDescriptor>(std::move(pubkey)));
1905 }
1906 return ret;
1907 } else if (Func("wpkh", expr)) {
1908 error = "Can only have wpkh() at top level or inside sh()";
1909 return {};
1910 }
1911 if (ctx == ParseScriptContext::TOP && Func("sh", expr)) {
1912 auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error);
1913 if (descs.empty() || expr.size()) return {};
1914 std::vector<std::unique_ptr<DescriptorImpl>> ret;
1915 ret.reserve(descs.size());
1916 for (auto& desc : descs) {
1917 ret.push_back(std::make_unique<SHDescriptor>(std::move(desc)));
1918 }
1919 return ret;
1920 } else if (Func("sh", expr)) {
1921 error = "Can only have sh() at top level";
1922 return {};
1923 }
1924 if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wsh", expr)) {
1925 auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error);
1926 if (descs.empty() || expr.size()) return {};
1927 for (auto& desc : descs) {
1928 ret.emplace_back(std::make_unique<WSHDescriptor>(std::move(desc)));
1929 }
1930 return ret;
1931 } else if (Func("wsh", expr)) {
1932 error = "Can only have wsh() at top level or inside sh()";
1933 return {};
1934 }
1935 if (ctx == ParseScriptContext::TOP && Func("addr", expr)) {
1936 CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end()));
1937 if (!IsValidDestination(dest)) {
1938 error = "Address is not valid";
1939 return {};
1940 }
1941 ret.emplace_back(std::make_unique<AddressDescriptor>(std::move(dest)));
1942 return ret;
1943 } else if (Func("addr", expr)) {
1944 error = "Can only have addr() at top level";
1945 return {};
1946 }
1947 if (ctx == ParseScriptContext::TOP && Func("tr", expr)) {
1948 auto arg = Expr(expr);
1949 auto internal_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
1950 if (internal_keys.empty()) {
1951 error = strprintf("tr(): %s", error);
1952 return {};
1953 }
1954 size_t max_providers_len = internal_keys.size();
1955 ++key_exp_index;
1956 std::vector<std::vector<std::unique_ptr<DescriptorImpl>>> subscripts;
1957 std::vector<int> depths;
1958 if (expr.size()) {
1959 if (!Const(",", expr)) {
1960 error = strprintf("tr: expected ',', got '%c'", expr[0]);
1961 return {};
1962 }
1966 std::vector<bool> branches;
1967 // Loop over all provided scripts. In every iteration exactly one script will be processed.
1968 // Use a do-loop because inside this if-branch we expect at least one script.
1969 do {
1970 // First process all open braces.
1971 while (Const("{", expr)) {
1972 branches.push_back(false); // new left branch
1973 if (branches.size() > TAPROOT_CONTROL_MAX_NODE_COUNT) {
1974 error = strprintf("tr() supports at most %i nesting levels", TAPROOT_CONTROL_MAX_NODE_COUNT);
1975 return {};
1976 }
1977 }
1978 // Process the actual script expression.
1979 auto sarg = Expr(expr);
1980 subscripts.emplace_back(ParseScript(key_exp_index, sarg, ParseScriptContext::P2TR, out, error));
1981 if (subscripts.back().empty()) return {};
1982 max_providers_len = std::max(max_providers_len, subscripts.back().size());
1983 depths.push_back(branches.size());
1984 // Process closing braces; one is expected for every right branch we were in.
1985 while (branches.size() && branches.back()) {
1986 if (!Const("}", expr)) {
1987 error = strprintf("tr(): expected '}' after script expression");
1988 return {};
1989 }
1990 branches.pop_back(); // move up one level after encountering '}'
1991 }
1992 // If after that, we're at the end of a left branch, expect a comma.
1993 if (branches.size() && !branches.back()) {
1994 if (!Const(",", expr)) {
1995 error = strprintf("tr(): expected ',' after script expression");
1996 return {};
1997 }
1998 branches.back() = true; // And now we're in a right branch.
1999 }
2000 } while (branches.size());
2001 // After we've explored a whole tree, we must be at the end of the expression.
2002 if (expr.size()) {
2003 error = strprintf("tr(): expected ')' after script expression");
2004 return {};
2005 }
2006 }
2008
2009 // Make sure all vecs are of the same length, or exactly length 1
2010 // For length 1 vectors, clone subdescs until vector is the same length
2011 for (auto& vec : subscripts) {
2012 if (vec.size() == 1) {
2013 for (size_t i = 1; i < max_providers_len; ++i) {
2014 vec.emplace_back(vec.at(0)->Clone());
2015 }
2016 } else if (vec.size() != max_providers_len) {
2017 error = strprintf("tr(): Multipath subscripts have mismatched lengths");
2018 return {};
2019 }
2020 }
2021
2022 if (internal_keys.size() > 1 && internal_keys.size() != max_providers_len) {
2023 error = strprintf("tr(): Multipath internal key mismatches multipath subscripts lengths");
2024 return {};
2025 }
2026
2027 while (internal_keys.size() < max_providers_len) {
2028 internal_keys.emplace_back(internal_keys.at(0)->Clone());
2029 }
2030
2031 // Build the final descriptors vector
2032 for (size_t i = 0; i < max_providers_len; ++i) {
2033 // Build final subscripts vectors by retrieving the i'th subscript for each vector in subscripts
2034 std::vector<std::unique_ptr<DescriptorImpl>> this_subs;
2035 this_subs.reserve(subscripts.size());
2036 for (auto& subs : subscripts) {
2037 this_subs.emplace_back(std::move(subs.at(i)));
2038 }
2039 ret.emplace_back(std::make_unique<TRDescriptor>(std::move(internal_keys.at(i)), std::move(this_subs), depths));
2040 }
2041 return ret;
2042
2043
2044 } else if (Func("tr", expr)) {
2045 error = "Can only have tr at top level";
2046 return {};
2047 }
2048 if (ctx == ParseScriptContext::TOP && Func("rawtr", expr)) {
2049 auto arg = Expr(expr);
2050 if (expr.size()) {
2051 error = strprintf("rawtr(): only one key expected.");
2052 return {};
2053 }
2054 auto output_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
2055 if (output_keys.empty()) {
2056 error = strprintf("rawtr(): %s", error);
2057 return {};
2058 }
2059 ++key_exp_index;
2060 for (auto& pubkey : output_keys) {
2061 ret.emplace_back(std::make_unique<RawTRDescriptor>(std::move(pubkey)));
2062 }
2063 return ret;
2064 } else if (Func("rawtr", expr)) {
2065 error = "Can only have rawtr at top level";
2066 return {};
2067 }
2068 if (ctx == ParseScriptContext::TOP && Func("raw", expr)) {
2069 std::string str(expr.begin(), expr.end());
2070 if (!IsHex(str)) {
2071 error = "Raw script is not hex";
2072 return {};
2073 }
2074 auto bytes = ParseHex(str);
2075 ret.emplace_back(std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end())));
2076 return ret;
2077 } else if (Func("raw", expr)) {
2078 error = "Can only have raw() at top level";
2079 return {};
2080 }
2081 // Process miniscript expressions.
2082 {
2083 const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
2084 KeyParser parser(/*out = */&out, /* in = */nullptr, /* ctx = */script_ctx, key_exp_index);
2085 auto node = miniscript::FromString(std::string(expr.begin(), expr.end()), parser);
2086 if (parser.m_key_parsing_error != "") {
2087 error = std::move(parser.m_key_parsing_error);
2088 return {};
2089 }
2090 if (node) {
2091 if (ctx != ParseScriptContext::P2WSH && ctx != ParseScriptContext::P2TR) {
2092 error = "Miniscript expressions can only be used in wsh or tr.";
2093 return {};
2094 }
2095 if (!node->IsSane() || node->IsNotSatisfiable()) {
2096 // Try to find the first insane sub for better error reporting.
2097 auto insane_node = node.get();
2098 if (const auto sub = node->FindInsaneSub()) insane_node = sub;
2099 if (const auto str = insane_node->ToString(parser)) error = *str;
2100 if (!insane_node->IsValid()) {
2101 error += " is invalid";
2102 } else if (!node->IsSane()) {
2103 error += " is not sane";
2104 if (!insane_node->IsNonMalleable()) {
2105 error += ": malleable witnesses exist";
2106 } else if (insane_node == node.get() && !insane_node->NeedsSignature()) {
2107 error += ": witnesses without signature exist";
2108 } else if (!insane_node->CheckTimeLocksMix()) {
2109 error += ": contains mixes of timelocks expressed in blocks and seconds";
2110 } else if (!insane_node->CheckDuplicateKey()) {
2111 error += ": contains duplicate public keys";
2112 } else if (!insane_node->ValidSatisfactions()) {
2113 error += ": needs witnesses that may exceed resource limits";
2114 }
2115 } else {
2116 error += " is not satisfiable";
2117 }
2118 return {};
2119 }
2120 // A signature check is required for a miniscript to be sane. Therefore no sane miniscript
2121 // may have an empty list of public keys.
2122 CHECK_NONFATAL(!parser.m_keys.empty());
2123 key_exp_index += parser.m_keys.size();
2124 // Make sure all vecs are of the same length, or exactly length 1
2125 // For length 1 vectors, clone subdescs until vector is the same length
2126 size_t num_multipath = std::max_element(parser.m_keys.begin(), parser.m_keys.end(),
2127 [](const std::vector<std::unique_ptr<PubkeyProvider>>& a, const std::vector<std::unique_ptr<PubkeyProvider>>& b) {
2128 return a.size() < b.size();
2129 })->size();
2130
2131 for (auto& vec : parser.m_keys) {
2132 if (vec.size() == 1) {
2133 for (size_t i = 1; i < num_multipath; ++i) {
2134 vec.emplace_back(vec.at(0)->Clone());
2135 }
2136 } else if (vec.size() != num_multipath) {
2137 error = strprintf("Miniscript: Multipath derivation paths have mismatched lengths");
2138 return {};
2139 }
2140 }
2141
2142 // Build the final descriptors vector
2143 for (size_t i = 0; i < num_multipath; ++i) {
2144 // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts
2145 std::vector<std::unique_ptr<PubkeyProvider>> pubs;
2146 pubs.reserve(parser.m_keys.size());
2147 for (auto& pub : parser.m_keys) {
2148 pubs.emplace_back(std::move(pub.at(i)));
2149 }
2150 ret.emplace_back(std::make_unique<MiniscriptDescriptor>(std::move(pubs), node->Clone()));
2151 }
2152 return ret;
2153 }
2154 }
2155 if (ctx == ParseScriptContext::P2SH) {
2156 error = "A function is needed within P2SH";
2157 return {};
2158 } else if (ctx == ParseScriptContext::P2WSH) {
2159 error = "A function is needed within P2WSH";
2160 return {};
2161 }
2162 error = strprintf("'%s' is not a valid descriptor function", std::string(expr.begin(), expr.end()));
2163 return {};
2164}
2165
2166std::unique_ptr<DescriptorImpl> InferMultiA(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
2167{
2168 auto match = MatchMultiA(script);
2169 if (!match) return {};
2170 std::vector<std::unique_ptr<PubkeyProvider>> keys;
2171 keys.reserve(match->second.size());
2172 for (const auto keyspan : match->second) {
2173 if (keyspan.size() != 32) return {};
2174 auto key = InferXOnlyPubkey(XOnlyPubKey{keyspan}, ctx, provider);
2175 if (!key) return {};
2176 keys.push_back(std::move(key));
2177 }
2178 return std::make_unique<MultiADescriptor>(match->first, std::move(keys));
2179}
2180
2181// NOLINTNEXTLINE(misc-no-recursion)
2182std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
2183{
2184 if (ctx == ParseScriptContext::P2TR && script.size() == 34 && script[0] == 32 && script[33] == OP_CHECKSIG) {
2185 XOnlyPubKey key{std::span{script}.subspan(1, 32)};
2186 return std::make_unique<PKDescriptor>(InferXOnlyPubkey(key, ctx, provider), true);
2187 }
2188
2189 if (ctx == ParseScriptContext::P2TR) {
2190 auto ret = InferMultiA(script, ctx, provider);
2191 if (ret) return ret;
2192 }
2193
2194 std::vector<std::vector<unsigned char>> data;
2195 TxoutType txntype = Solver(script, data);
2196
2197 if (txntype == TxoutType::PUBKEY && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2198 CPubKey pubkey(data[0]);
2199 if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2200 return std::make_unique<PKDescriptor>(std::move(pubkey_provider));
2201 }
2202 }
2203 if (txntype == TxoutType::PUBKEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2204 uint160 hash(data[0]);
2205 CKeyID keyid(hash);
2206 CPubKey pubkey;
2207 if (provider.GetPubKey(keyid, pubkey)) {
2208 if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2209 return std::make_unique<PKHDescriptor>(std::move(pubkey_provider));
2210 }
2211 }
2212 }
2213 if (txntype == TxoutType::WITNESS_V0_KEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
2214 uint160 hash(data[0]);
2215 CKeyID keyid(hash);
2216 CPubKey pubkey;
2217 if (provider.GetPubKey(keyid, pubkey)) {
2218 if (auto pubkey_provider = InferPubkey(pubkey, ParseScriptContext::P2WPKH, provider)) {
2219 return std::make_unique<WPKHDescriptor>(std::move(pubkey_provider));
2220 }
2221 }
2222 }
2223 if (txntype == TxoutType::MULTISIG && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2224 bool ok = true;
2225 std::vector<std::unique_ptr<PubkeyProvider>> providers;
2226 for (size_t i = 1; i + 1 < data.size(); ++i) {
2227 CPubKey pubkey(data[i]);
2228 if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2229 providers.push_back(std::move(pubkey_provider));
2230 } else {
2231 ok = false;
2232 break;
2233 }
2234 }
2235 if (ok) return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers));
2236 }
2237 if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) {
2238 uint160 hash(data[0]);
2239 CScriptID scriptid(hash);
2240 CScript subscript;
2241 if (provider.GetCScript(scriptid, subscript)) {
2242 auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider);
2243 if (sub) return std::make_unique<SHDescriptor>(std::move(sub));
2244 }
2245 }
2246 if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
2247 CScriptID scriptid{RIPEMD160(data[0])};
2248 CScript subscript;
2249 if (provider.GetCScript(scriptid, subscript)) {
2250 auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider);
2251 if (sub) return std::make_unique<WSHDescriptor>(std::move(sub));
2252 }
2253 }
2254 if (txntype == TxoutType::WITNESS_V1_TAPROOT && ctx == ParseScriptContext::TOP) {
2255 // Extract x-only pubkey from output.
2256 XOnlyPubKey pubkey;
2257 std::copy(data[0].begin(), data[0].end(), pubkey.begin());
2258 // Request spending data.
2259 TaprootSpendData tap;
2260 if (provider.GetTaprootSpendData(pubkey, tap)) {
2261 // If found, convert it back to tree form.
2262 auto tree = InferTaprootTree(tap, pubkey);
2263 if (tree) {
2264 // If that works, try to infer subdescriptors for all leaves.
2265 bool ok = true;
2266 std::vector<std::unique_ptr<DescriptorImpl>> subscripts;
2267 std::vector<int> depths;
2268 for (const auto& [depth, script, leaf_ver] : *tree) {
2269 std::unique_ptr<DescriptorImpl> subdesc;
2270 if (leaf_ver == TAPROOT_LEAF_TAPSCRIPT) {
2271 subdesc = InferScript(CScript(script.begin(), script.end()), ParseScriptContext::P2TR, provider);
2272 }
2273 if (!subdesc) {
2274 ok = false;
2275 break;
2276 } else {
2277 subscripts.push_back(std::move(subdesc));
2278 depths.push_back(depth);
2279 }
2280 }
2281 if (ok) {
2282 auto key = InferXOnlyPubkey(tap.internal_key, ParseScriptContext::P2TR, provider);
2283 return std::make_unique<TRDescriptor>(std::move(key), std::move(subscripts), std::move(depths));
2284 }
2285 }
2286 }
2287 // If the above doesn't work, construct a rawtr() descriptor with just the encoded x-only pubkey.
2288 if (pubkey.IsFullyValid()) {
2289 auto key = InferXOnlyPubkey(pubkey, ParseScriptContext::P2TR, provider);
2290 if (key) {
2291 return std::make_unique<RawTRDescriptor>(std::move(key));
2292 }
2293 }
2294 }
2295
2296 if (ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR) {
2297 const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
2298 KeyParser parser(/* out = */nullptr, /* in = */&provider, /* ctx = */script_ctx);
2299 auto node = miniscript::FromScript(script, parser);
2300 if (node && node->IsSane()) {
2301 std::vector<std::unique_ptr<PubkeyProvider>> keys;
2302 keys.reserve(parser.m_keys.size());
2303 for (auto& key : parser.m_keys) {
2304 keys.emplace_back(std::move(key.at(0)));
2305 }
2306 return std::make_unique<MiniscriptDescriptor>(std::move(keys), std::move(node));
2307 }
2308 }
2309
2310 // The following descriptors are all top-level only descriptors.
2311 // So if we are not at the top level, return early.
2312 if (ctx != ParseScriptContext::TOP) return nullptr;
2313
2314 CTxDestination dest;
2315 if (ExtractDestination(script, dest)) {
2316 if (GetScriptForDestination(dest) == script) {
2317 return std::make_unique<AddressDescriptor>(std::move(dest));
2318 }
2319 }
2320
2321 return std::make_unique<RawDescriptor>(script);
2322}
2323
2324
2325} // namespace
2326
2328bool CheckChecksum(std::span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr)
2329{
2330 auto check_split = Split(sp, '#');
2331 if (check_split.size() > 2) {
2332 error = "Multiple '#' symbols";
2333 return false;
2334 }
2335 if (check_split.size() == 1 && require_checksum){
2336 error = "Missing checksum";
2337 return false;
2338 }
2339 if (check_split.size() == 2) {
2340 if (check_split[1].size() != 8) {
2341 error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size());
2342 return false;
2343 }
2344 }
2345 auto checksum = DescriptorChecksum(check_split[0]);
2346 if (checksum.empty()) {
2347 error = "Invalid characters in payload";
2348 return false;
2349 }
2350 if (check_split.size() == 2) {
2351 if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) {
2352 error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum);
2353 return false;
2354 }
2355 }
2356 if (out_checksum) *out_checksum = std::move(checksum);
2357 sp = check_split[0];
2358 return true;
2359}
2360
2361std::vector<std::unique_ptr<Descriptor>> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum)
2362{
2363 std::span<const char> sp{descriptor};
2364 if (!CheckChecksum(sp, require_checksum, error)) return {};
2365 uint32_t key_exp_index = 0;
2366 auto ret = ParseScript(key_exp_index, sp, ParseScriptContext::TOP, out, error);
2367 if (sp.size() == 0 && !ret.empty()) {
2368 std::vector<std::unique_ptr<Descriptor>> descs;
2369 descs.reserve(ret.size());
2370 for (auto& r : ret) {
2371 descs.emplace_back(std::unique_ptr<Descriptor>(std::move(r)));
2372 }
2373 return descs;
2374 }
2375 return {};
2376}
2377
2378std::string GetDescriptorChecksum(const std::string& descriptor)
2379{
2380 std::string ret;
2381 std::string error;
2382 std::span<const char> sp{descriptor};
2383 if (!CheckChecksum(sp, false, error, &ret)) return "";
2384 return ret;
2385}
2386
2387std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider)
2388{
2389 return InferScript(script, ParseScriptContext::TOP, provider);
2390}
2391
2393{
2394 std::string desc_str = desc.ToString(/*compat_format=*/true);
2395 uint256 id;
2396 CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin());
2397 return id;
2398}
2399
2400void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
2401{
2402 m_parent_xpubs[key_exp_pos] = xpub;
2403}
2404
2405void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub)
2406{
2407 auto& xpubs = m_derived_xpubs[key_exp_pos];
2408 xpubs[der_index] = xpub;
2409}
2410
2411void DescriptorCache::CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
2412{
2413 m_last_hardened_xpubs[key_exp_pos] = xpub;
2414}
2415
2416bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
2417{
2418 const auto& it = m_parent_xpubs.find(key_exp_pos);
2419 if (it == m_parent_xpubs.end()) return false;
2420 xpub = it->second;
2421 return true;
2422}
2423
2424bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const
2425{
2426 const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos);
2427 if (key_exp_it == m_derived_xpubs.end()) return false;
2428 const auto& der_it = key_exp_it->second.find(der_index);
2429 if (der_it == key_exp_it->second.end()) return false;
2430 xpub = der_it->second;
2431 return true;
2432}
2433
2435{
2436 const auto& it = m_last_hardened_xpubs.find(key_exp_pos);
2437 if (it == m_last_hardened_xpubs.end()) return false;
2438 xpub = it->second;
2439 return true;
2440}
2441
2443{
2444 DescriptorCache diff;
2445 for (const auto& parent_xpub_pair : other.GetCachedParentExtPubKeys()) {
2446 CExtPubKey xpub;
2447 if (GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) {
2448 if (xpub != parent_xpub_pair.second) {
2449 throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub");
2450 }
2451 continue;
2452 }
2453 CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2454 diff.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2455 }
2456 for (const auto& derived_xpub_map_pair : other.GetCachedDerivedExtPubKeys()) {
2457 for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) {
2458 CExtPubKey xpub;
2459 if (GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) {
2460 if (xpub != derived_xpub_pair.second) {
2461 throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub");
2462 }
2463 continue;
2464 }
2465 CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2466 diff.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2467 }
2468 }
2469 for (const auto& lh_xpub_pair : other.GetCachedLastHardenedExtPubKeys()) {
2470 CExtPubKey xpub;
2471 if (GetCachedLastHardenedExtPubKey(lh_xpub_pair.first, xpub)) {
2472 if (xpub != lh_xpub_pair.second) {
2473 throw std::runtime_error(std::string(__func__) + ": New cached last hardened xpub does not match already cached last hardened xpub");
2474 }
2475 continue;
2476 }
2477 CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2478 diff.CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2479 }
2480 return diff;
2481}
2482
2484{
2485 return m_parent_xpubs;
2486}
2487
2488std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const
2489{
2490 return m_derived_xpubs;
2491}
2492
2494{
2495 return m_last_hardened_xpubs;
2496}
bool ExtractDestination(const CScript &scriptPubKey, CTxDestination &addressRet)
Parse a scriptPubKey for the destination.
Definition: addresstype.cpp:49
bool IsValidDestination(const CTxDestination &dest)
Check whether a CTxDestination corresponds to one with an address.
CScript GetScriptForDestination(const CTxDestination &dest)
Generate a Bitcoin scriptPubKey for the given CTxDestination.
std::variant< CNoDestination, PubKeyDestination, PKHash, ScriptHash, WitnessV0ScriptHash, WitnessV0KeyHash, WitnessV1Taproot, PayToAnchor, WitnessUnknown > CTxDestination
A txout script categorized into standard templates.
Definition: addresstype.h:140
#define LIFETIMEBOUND
Definition: attributes.h:16
std::string FormatHDKeypath(const std::vector< uint32_t > &path, bool apostrophe)
Definition: bip32.cpp:54
int ret
node::NodeContext m_node
Definition: bitcoin-gui.cpp:42
#define CHECK_NONFATAL(condition)
Identity function.
Definition: check.h:81
#define Assume(val)
Assume is the identity function.
Definition: check.h:97
An encapsulated private key.
Definition: key.h:35
unsigned int size() const
Simple read-only vector-like interface.
Definition: key.h:117
bool IsValid() const
Check whether this private key is valid.
Definition: key.h:123
bool IsCompressed() const
Check whether the public key corresponding to this private key is (to be) compressed.
Definition: key.h:126
CPubKey GetPubKey() const
Compute the public key from a private key.
Definition: key.cpp:182
A reference to a CKey: the Hash160 of its serialized public key.
Definition: pubkey.h:24
An encapsulated public key.
Definition: pubkey.h:34
bool IsCompressed() const
Check whether this is a compressed public key.
Definition: pubkey.h:204
CKeyID GetID() const
Get the KeyID of this public key (hash of its serialization)
Definition: pubkey.h:164
bool IsValid() const
Definition: pubkey.h:189
bool IsValidNonHybrid() const noexcept
Check if a public key is a syntactically valid compressed or uncompressed key.
Definition: pubkey.h:195
A hasher class for SHA-256.
Definition: sha256.h:14
void Finalize(unsigned char hash[OUTPUT_SIZE])
Definition: sha256.cpp:727
CSHA256 & Write(const unsigned char *data, size_t len)
Definition: sha256.cpp:701
Serialized script, used inside transaction inputs and outputs.
Definition: script.h:415
A reference to a CScript: the Hash160 of its serialization.
Definition: script.h:602
Cache for single descriptor's derived extended pubkeys.
Definition: descriptor.h:19
bool GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey &xpub) const
Retrieve a cached parent xpub.
std::unordered_map< uint32_t, ExtPubKeyMap > GetCachedDerivedExtPubKeys() const
Retrieve all cached derived xpubs.
ExtPubKeyMap m_last_hardened_xpubs
Map key expression index -> last hardened xpub.
Definition: descriptor.h:26
void CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey &xpub)
Cache an xpub derived at an index.
DescriptorCache MergeAndDiff(const DescriptorCache &other)
Combine another DescriptorCache into this one.
ExtPubKeyMap GetCachedParentExtPubKeys() const
Retrieve all cached parent xpubs.
ExtPubKeyMap GetCachedLastHardenedExtPubKeys() const
Retrieve all cached last hardened xpubs.
void CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey &xpub)
Cache a parent xpub.
void CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey &xpub)
Cache a last hardened xpub.
bool GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey &xpub) const
Retrieve a cached xpub derived at an index.
std::unordered_map< uint32_t, ExtPubKeyMap > m_derived_xpubs
Map key expression index -> map of (key derivation index -> xpub)
Definition: descriptor.h:22
bool GetCachedLastHardenedExtPubKey(uint32_t key_exp_pos, CExtPubKey &xpub) const
Retrieve a cached last hardened xpub.
ExtPubKeyMap m_parent_xpubs
Map key expression index -> parent xpub.
Definition: descriptor.h:24
An interface to be implemented by keystores that support signing.
virtual bool GetCScript(const CScriptID &scriptid, CScript &script) const
virtual bool GetTaprootSpendData(const XOnlyPubKey &output_key, TaprootSpendData &spenddata) const
bool GetKeyByXOnly(const XOnlyPubKey &pubkey, CKey &key) const
virtual bool GetPubKey(const CKeyID &address, CPubKey &pubkey) const
bool GetKeyOriginByXOnly(const XOnlyPubKey &pubkey, KeyOriginInfo &info) const
virtual bool GetKey(const CKeyID &address, CKey &key) const
virtual bool GetKeyOrigin(const CKeyID &keyid, KeyOriginInfo &info) const
Utility class to construct Taproot outputs from internal key and script tree.
WitnessV1Taproot GetOutput()
Compute scriptPubKey (after Finalize()).
bool IsComplete() const
Return whether there were either no leaves, or the leaves form a Huffman tree.
TaprootBuilder & Add(int depth, std::span< const unsigned char > script, int leaf_version, bool track=true)
Add a new script at a certain depth in the tree.
static bool ValidDepths(const std::vector< int > &depths)
Check if a list of depths is legal (will lead to IsComplete()).
TaprootBuilder & Finalize(const XOnlyPubKey &internal_key)
Finalize the construction.
const unsigned char * begin() const
Definition: pubkey.h:295
static constexpr size_t size()
Definition: pubkey.h:293
CPubKey GetEvenCorrespondingCPubKey() const
Definition: pubkey.cpp:217
bool IsFullyValid() const
Determine if this pubkey is fully valid.
Definition: pubkey.cpp:224
constexpr unsigned char * begin()
Definition: uint256.h:115
size_type size() const
Definition: prevector.h:294
160-bit opaque blob.
Definition: uint256.h:189
256-bit opaque blob.
Definition: uint256.h:201
static const int WITNESS_SCALE_FACTOR
Definition: consensus.h:21
CScript ParseScript(const std::string &s)
Definition: core_read.cpp:63
uint160 Hash160(const T1 &in1)
Compute the 160-bit hash an object.
Definition: hash.h:92
uint160 RIPEMD160(std::span< const unsigned char > data)
Compute the 160-bit RIPEMD-160 hash of an array.
Definition: hash.h:222
std::string HexStr(const std::span< const uint8_t > s)
Convert a span of bytes to a lower-case hexadecimal string.
Definition: hex_base.cpp:29
static constexpr uint8_t TAPROOT_LEAF_TAPSCRIPT
Definition: interpreter.h:232
static constexpr size_t TAPROOT_CONTROL_MAX_NODE_COUNT
Definition: interpreter.h:235
std::string EncodeExtKey(const CExtKey &key)
Definition: key_io.cpp:283
CExtPubKey DecodeExtPubKey(const std::string &str)
Definition: key_io.cpp:244
CTxDestination DecodeDestination(const std::string &str, std::string &error_msg, std::vector< int > *error_locations)
Definition: key_io.cpp:299
std::string EncodeSecret(const CKey &key)
Definition: key_io.cpp:231
std::string EncodeDestination(const CTxDestination &dest)
Definition: key_io.cpp:294
CKey DecodeSecret(const std::string &str)
Definition: key_io.cpp:213
std::string EncodeExtPubKey(const CExtPubKey &key)
Definition: key_io.cpp:257
CExtKey DecodeExtKey(const std::string &str)
Definition: key_io.cpp:267
NodeRef< typename Ctx::Key > FromString(const std::string &str, const Ctx &ctx)
Definition: miniscript.h:2640
constexpr bool IsTapscript(MiniscriptContext ms_ctx)
Whether the context Tapscript, ensuring the only other possibility is P2WSH.
Definition: miniscript.h:245
NodeRef< typename Ctx::Key > FromScript(const CScript &script, const Ctx &ctx)
Definition: miniscript.h:2645
std::unique_ptr< const Node< Key > > NodeRef
Definition: miniscript.h:192
Definition: messages.h:20
std::span< const char > Expr(std::span< const char > &sp)
Extract the expression that sp begins with.
Definition: parsing.cpp:33
bool Const(const std::string &str, std::span< const char > &sp)
Parse a constant.
Definition: parsing.cpp:15
bool Func(const std::string &str, std::span< const char > &sp)
Parse a function call.
Definition: parsing.cpp:24
static std::vector< std::string > split(const std::string &str, const std::string &delims=" \t")
Definition: subprocess.h:303
std::vector< T > Split(const std::span< const char > &sp, std::string_view separators)
Split a string on any char found in separators, returning a vector.
Definition: string.h:107
std::string ToString(const T &t)
Locale-independent version of std::to_string.
Definition: string.h:233
static OutputType GetOutputType(TxoutType type, bool is_from_p2sh)
Definition: spend.cpp:248
static bool IsSegwit(const Descriptor &desc)
Whether the descriptor represents, directly or not, a witness program.
Definition: spend.cpp:47
bool operator<(const CNetAddr &a, const CNetAddr &b)
Definition: netaddress.cpp:612
std::optional< OutputType > OutputTypeFromDestination(const CTxDestination &dest)
Get the OutputType for a CTxDestination.
Definition: outputtype.cpp:110
const char * name
Definition: rest.cpp:49
std::unique_ptr< Descriptor > InferDescriptor(const CScript &script, const SigningProvider &provider)
Find a descriptor for the specified script, using information from provider where possible.
uint256 DescriptorID(const Descriptor &desc)
Unique identifier that may not change over time, unless explicitly marked as not backwards compatible...
bool CheckChecksum(std::span< const char > &sp, bool require_checksum, std::string &error, std::string *out_checksum=nullptr)
Check a descriptor checksum, and update desc to be the checksum-less part.
std::vector< std::unique_ptr< Descriptor > > Parse(const std::string &descriptor, FlatSigningProvider &out, std::string &error, bool require_checksum)
Parse a descriptor string.
std::string GetDescriptorChecksum(const std::string &descriptor)
Get the checksum for a descriptor.
std::unordered_map< uint32_t, CExtPubKey > ExtPubKeyMap
Definition: descriptor.h:16
static const unsigned int MAX_SCRIPT_ELEMENT_SIZE
Definition: script.h:28
@ OP_CHECKSIG
Definition: script.h:190
@ OP_NUMEQUAL
Definition: script.h:171
@ OP_CHECKSIGADD
Definition: script.h:210
static constexpr unsigned int MAX_PUBKEYS_PER_MULTI_A
The limit of keys in OP_CHECKSIGADD-based scripts.
Definition: script.h:37
CScript BuildScript(Ts &&... inputs)
Build a script by concatenating other scripts, or any argument accepted by CScript::operator<<.
Definition: script.h:616
static const int MAX_PUBKEYS_PER_MULTISIG
Definition: script.h:34
std::vector< unsigned char > ToByteVector(const T &in)
Definition: script.h:67
constexpr unsigned int GetSizeOfCompactSize(uint64_t nSize)
Compact Size size < 253 – 1 byte size <= USHRT_MAX – 3 bytes (253 + 2 bytes) size <= UINT_MAX – 5 byt...
Definition: serialize.h:297
static bool GetPubKey(const SigningProvider &provider, const SignatureData &sigdata, const CKeyID &address, CPubKey &pubkey)
Definition: sign.cpp:109
std::optional< std::vector< std::tuple< int, std::vector< unsigned char >, int > > > InferTaprootTree(const TaprootSpendData &spenddata, const XOnlyPubKey &output)
Given a TaprootSpendData and the output key, reconstruct its script tree.
const SigningProvider & DUMMY_SIGNING_PROVIDER
void PolyMod(const std::vector< typename F::Elem > &mod, std::vector< typename F::Elem > &val, const F &field)
Compute the remainder of a polynomial division of val by mod, putting the result in mod.
Definition: sketch_impl.h:18
TxoutType Solver(const CScript &scriptPubKey, std::vector< std::vector< unsigned char > > &vSolutionsRet)
Parse a scriptPubKey and identify script type for standard scripts.
Definition: solver.cpp:141
CScript GetScriptForMultisig(int nRequired, const std::vector< CPubKey > &keys)
Generate a multisig script.
Definition: solver.cpp:218
std::optional< std::pair< int, std::vector< std::span< const unsigned char > > > > MatchMultiA(const CScript &script)
Definition: solver.cpp:107
CScript GetScriptForRawPubKey(const CPubKey &pubKey)
Generate a P2PK script for the given pubkey.
Definition: solver.cpp:213
TxoutType
Definition: solver.h:22
@ WITNESS_V1_TAPROOT
@ WITNESS_V0_SCRIPTHASH
@ WITNESS_V0_KEYHASH
std::vector< Byte > ParseHex(std::string_view hex_str)
Like TryParseHex, but returns an empty vector on invalid input.
Definition: strencodings.h:68
constexpr bool IsSpace(char c) noexcept
Tests if the given character is a whitespace character.
Definition: strencodings.h:166
Definition: key.h:227
CExtPubKey Neuter() const
Definition: key.cpp:380
bool Derive(CExtKey &out, unsigned int nChild) const
Definition: key.cpp:359
CKey key
Definition: key.h:232
bool Derive(CExtPubKey &out, unsigned int nChild) const
Definition: pubkey.cpp:406
CPubKey pubkey
Definition: pubkey.h:348
Interface for parsed descriptor objects.
Definition: descriptor.h:98
virtual std::optional< int64_t > MaxSatisfactionElems() const =0
Get the maximum size number of stack elements for satisfying this descriptor.
virtual void GetPubKeys(std::set< CPubKey > &pubkeys, std::set< CExtPubKey > &ext_pubs) const =0
Return all (extended) public keys for this descriptor, including any from subdescriptors.
virtual bool ToNormalizedString(const SigningProvider &provider, std::string &out, const DescriptorCache *cache=nullptr) const =0
Convert the descriptor to a normalized string.
virtual std::optional< int64_t > MaxSatisfactionWeight(bool use_max_sig) const =0
Get the maximum size of a satisfaction for this descriptor, in weight units.
virtual std::string ToString(bool compat_format=false) const =0
Convert the descriptor back to a string, undoing parsing.
virtual std::optional< OutputType > GetOutputType() const =0
virtual bool Expand(int pos, const SigningProvider &provider, std::vector< CScript > &output_scripts, FlatSigningProvider &out, DescriptorCache *write_cache=nullptr) const =0
Expand a descriptor at a specified position.
virtual bool IsRange() const =0
Whether the expansion of this descriptor depends on the position.
virtual std::optional< int64_t > ScriptSize() const =0
Get the size of the scriptPubKey for this descriptor.
virtual bool IsSolvable() const =0
Whether this descriptor has all information about signing ignoring lack of private keys.
virtual void ExpandPrivate(int pos, const SigningProvider &provider, FlatSigningProvider &out) const =0
Expand the private key for a descriptor at a specified position, if possible.
virtual bool ToPrivateString(const SigningProvider &provider, std::string &out) const =0
Convert the descriptor to a private string.
virtual bool ExpandFromCache(int pos, const DescriptorCache &read_cache, std::vector< CScript > &output_scripts, FlatSigningProvider &out) const =0
Expand a descriptor at a specified position using cached expansion data.
std::map< CKeyID, CPubKey > pubkeys
unsigned char fingerprint[4]
First 32 bits of the Hash160 of the public key at the root of the path.
Definition: keyorigin.h:13
std::vector< uint32_t > path
Definition: keyorigin.h:14
XOnlyPubKey internal_key
The BIP341 internal key.
#define strprintf
Format arguments and return the string or write to given std::ostream (see tinyformat::format doc for...
Definition: tinyformat.h:1172
consteval auto _(util::TranslatedLiteral str)
Definition: translation.h:79
bool IsHex(std::string_view str)
bool ParseUInt32(std::string_view str, uint32_t *out)
Convert decimal string to unsigned 32-bit integer with strict parse error feedback.
assert(!tx.IsCoinBase())
std::vector< std::common_type_t< Args... > > Vector(Args &&... args)
Construct a vector with the specified elements.
Definition: vector.h:23